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Abstract—The problem of sequential anomaly detection is
considered under sampling constraints and generalized error
control. It is assumed that there is no prior information on the
number of anomalies. It is required to control the probability
at least k errors, of any kind, upon stopping, where k is a user
specified integer. It is possible to sample only a fixed number of
processes at each sampling instance. The processes to be sampled
are determined based on the already acquired observations. The
goal is to find a procedure that consists of a stopping rule and
a decision rule and a sampling rule that satisfy the sampling
and error constraints, and have as small as possible average
sample size for every possible scenario regarding the subset
of anomalous processes. We characterize the optimal expected
sample size for this problem to a first order approximation as
the error probability vanishes to zero, and we propose procedures
that achieve it. The performance of those procedures is compared
in a simulation study for different values of k.

Index Terms — Anomaly detection, generalized error, sam-
pling design, asymptotic optimality.

I. INTRODUCTION

The need to identify a subset of anomalous or outlying
processes arises in various contexts. For example, in eco-
nomics the processes may refer to prices in stock market
[9], while in fraud prevention security systems, they may
refer to e-commerce activity [8]. In large scale systems, the
practitioner may be willing to tolerate a small number of errors
in the final decision in order to reach a conclusion faster. This
tolerance to error can be expressed as a requirement to control
the probabilities of at least k1 false alarms and at least k2

missed detections, or alternatively the probability of at least k
errors, of any kind. We will refer to the former as control
of generalized familywise error rates when either k1 > 1
or k2 > 1, and to the second as control of the generalized
misclassification rate when k > 1.

Sequential procedures that control generalized familywise
error rates were proposed in [11], [12], when all processes
can be observed at each sampling instance. An asymptotic
optimality theory for such procedures was developed in [5]
for both generalized error metrics in [5].

When it is possible to sample only a fixed number of
processes at each sampling instance, the sequential anomaly
detection problem was considered with classical familywise
error rates (k1 = k2 = 1) in [6]. In addition to a stopping
rule that determines when to stop sampling, and a decision
rule that determines which processes to declare as anomalous

upon stopping, in our context it is also required to specify a
sampling rule that determines which channels to observe at
each sampling instance given the already collected observa-
tions. This formulation is also related to works such as [1],
[2], [3], [13], [7].

In this paper, we combine these two lines of work and
consider the sequential anomaly detection problem when it is
possible to sample only a fixed number of processes at each
sampling instance and it is required to control the generalized
misclassification rate k without having any prior information
on the size of the anomalous subset. We characterize the
optimal expected sample size for this problem to a first-order
asymptotic approximation as the error probability goes to 0,
and we propose procedures that achieve it under every possible
subset of anomalous processes.

To be more precise, we adopt the stopping and decision
rule from [5] and we focus on the design of sampling rules
that lead to asymptotic optimality. Specifically, we consider
a probabilistic rule in the spirit of [3], [7], as well as a
deterministic rule, which when we set k = 1, i.e, in the
case of classical misclassification error, reduces to one of the
sampling rules proposed in [6]. These rules are compared in a
simulation study in which the deterministic rule exhibits better
performance, especially when k is small, a result that agrees
with previous findings in [1], [2], [6].

The remainder of the paper is organized as follows. In Sec-
tion II we formulate the problem mathematically, in Section
III we present the main result of this work, whereas in Section
IV we introduce the proposed sampling rules. In Section V,
we present the results of a simulation study which illustrates
the performance of the proposed sampling rules for different
values of k. In Section VI we discuss potential generalizations
of this work.

II. PROBLEM FORMULATION

We consider M channels that generate observations se-
quentially in time, but at each time instance it is possible to
sample only K of them, where K is a user-specified number
in [M ] := {1, . . . ,M}. We must determine a sampling rule,
that is a sequence of random vectors,

R(n) := (R1(n), . . . , RM (n)), n ∈ N,
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such that, for every n ∈ N, R(n) takes values in {0, 1}M ,
channel i is sampled at time n if and only if Ri(n) = 1,

R1(n) + . . .+RM (n) = K, (1)

and R(n) is determined based on the available information
from the first n − 1 sampling instances. To be more precise,
for each n ∈ N let Xi(n) represent the observation from
channel i at time n when Ri(n) = 1 and set X(n) :=
(X1(n), . . . , XM (n)), where Xi(n) is an arbitrary constant
when Ri(n) = 0. Let also Z(n) denote a random vector
that is independent of the observations, and it is used for
randomization purposes if necessary. Thus, R(1) is arbitrary,
but for every n > 1 the random variable R(n) must be Fn−1-
measurable, where

Fn := σ(X(s), Z(s), 1 ≤ s ≤ n). (2)

For each i ∈ [M ] we assume that channel i is either
anomalous or not, and in the former (resp. latter) case its obser-
vations have density gi (resp. fi) with respect to a measure νi.
Specifically, if A ⊆ [M ] is the subset of anomalous channels,
or simply the “anomalous subset”, then

Xi(n) |Ri(n) = 1,Fn−1 ∼

{
gi, i ∈ A
fi, i /∈ A.

We assume that the densities fi, gi, i ∈ [M ] are completely
specified, and that the Kullback-Leibler (KL) information
numbers,

Ii :=

∫
log(gi/fi) gi dνi, Di :=

∫
log(fi/gi) fi dνi, (3)

are positive and finite. However, the anomalous subset is
completely unknown, thus, there are 2M distinct scenarios
for it. To emphasize this, we use PA and EA to denote
the underlying probability measure and the corresponding
expectation when the anomalous subset is A.

Our goal is to stop sampling as quickly as possible and
ideally identify, an anomalous subset upon stopping with less
than k errors. We need to find a stopping rule that determines
when to stop sampling, a decision rule that determines which
channels to classify as anomalous upon stopping and a sam-
pling rule, that determines the observations to be obtained from
the channels. That is, we need to find a triplet (T,∆, R) that
consists of
• an N-valued random variable, T , such that {T = n} ∈ Fn

for every n ∈ N,
• a sequence ∆ := (∆(n), n ∈ N), where each ∆(n) :=

(∆1(n), . . . ,∆M (n)) is an Fn-measurable random vec-
tor that takes values in {0, 1}M ,

• a sampling rule R := (R(n), n ∈ N) which is Fn−1-
measurable.

so that sampling is terminated at time T and channel i is de-
clared to be anomalous (resp. non-anomalous) upon stopping
when ∆i(T ) = 1 (resp. ∆i(T ) = 0).

The problem we consider in this work is to find a triplet
(T,∆, R) such that EA[T ] is as small as possible for every

A ⊆ [M ], while guaranteeing that the probability of at least k
mistakes, of any kind, is below α, where both k ∈ [M−1] and
α ∈ (0, 1) are user-specified parameters. To be more specific,
let C(α; k) denote the family of triplets (T,∆, R) for which

PA(|∆(T )4A| ≥ k) ≤ α for every A ⊆ [M ]. (4)

where 4 represents the symmetric difference of two sets, i.e.,
∆(T )4A := (A \∆(T )) ∪ (∆(T ) \A).

Let (T,∆, R) be a procedure that belongs to C(α; k) for any
given α. We will say that such a procedure is asymptotically
optimal under PA if it achieves

JA(α; k,K,M) := inf
(R,T,∆)∈C(α;k)

EA[T ] (5)

to a first-order asymptotic approximation as α→ 0, i.e., if

EA[T ] ∼ JA(α; k,K,M),

Since the anomalous subset is completely unknown, our goal
in this work is to find a procedure that is asymptotically
optimal for every A ⊆ [M ]. This problem was considered in
[5] when all channels are sampled at all times up to stopping
K = M , in which case only a stopping and a decision
rule need to be determined. Here, our focus is on the case
of sampling constraints K < M and our main goal is to
obtain sampling rules that lead to asymptotic optimality when
combined with the stopping and decision rule in [5].

III. MAIN RESULT

A. Stopping and Decision rules

We start by describing the proposed stopping and decision
rule given an arbitrary sampling rule R(n), n ∈ N. For each
n ∈ N, we denote by Λi(n) the log-likelihood ratio (LLR) of
all observations in channel i up to some arbitrary time n ∈ N,
which takes the following form

Λi(n) =

n∑
s=1

log

(
gi(Xi(s))

fi(Xi(s))

)
Ri(s). (6)

We consider the absolute value of these LLRs

Λ̄i(n) := |Λi(n)|, n ∈ N, (7)

and the corresponding order statistics,

Λ̄(1)(n)≤ . . .≤Λ̄(M)(n). (8)

Following [5], we stop as soon as the sum of the k smallest
absolute LLRs is larger than some positive threshold b, and
we classify as abnormal any channel with non-negative log-
likelihood ratio at the time of stopping. That is, the stopping
time is

T ∗b := inf

{
n ≥ 1 :

k∑
i=1

Λ̄(i)(n) ≥ b

}
(9)

and the proposed decision rule is

∆∗(n) := {ŵ1(n), . . . , ŵp(n)(n)}, n ∈ N, (10)
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where p(n) is the number of non-negative LLRs at time n,
and ŵ1(n), . . . , ŵp(n)(n) denote the indices of the increasingly
ordered non-negative LLRs at time n, i.e.,

0 ≤ Λŵ1(n)(n) ≤ . . . ≤ Λŵp(n)
(n) (11)

When all sensors are sampled at all times K = M , in which
case there is no need to specify a sampling rule, it follows from
[5] that, (T ∗b ,∆

∗) ∈ C(α; k) holds for any α when b is equal
to or larger than

b(α) = | log(α)|+ log

(
M

k

)
, (12)

and (T ∗b(α),∆
∗) is asymptotically optimal for every A ⊆ [M ].

When we do not sample all sensors at all times K < M ,
the same arguments as in [5] can be used to show that
(T ∗b(α),∆

∗, R) belongs to C(α; k) for any sampling rule, R.

B. Asymptotic optimality

For the triplet (T ∗b(α),∆
∗, R) to be asymptotically optimal,

we need to impose two conditions on the sampling rule, R.
Definition 1: A sampling rule R is consistent if for the

random time

σA := sup{n ≥ 1 : ∆∗(n) 6= A}. (13)

it guarantees EA[σA] <∞, for any A ⊆ [M ].
The first condition is that the sampling rule must be consis-

tent, i.e. to guarantee that the subset of anomalies is estimated
correctly forever after a random time of finite mean value.

The second condition is that for every i ∈ [M ] we have

∞∑
n=1

PA

(∣∣∣ 1
n

n∑
s=1

Ri(s)− ci(A)
∣∣∣ > ε

)
<∞, ∀ε > 0 (14)

where the quantities c1(A), . . . , cM (A) have to satisfy the
properties (18)-(20). The second condition determines which
are the desired limiting sampling frequencies that the sampling
rule must guarantee.

To state properties (18)-(20), let us denote by Fi(A) the ith

smallest number in the set

{Ii, Dj , i ∈ A, j /∈ A}, (15)

and by F̃i(A) the harmonic mean of the M − i + 1 largest
numbers in the same set, i.e.,

F1(A) ≤ . . . ≤ FM (A),

F̃i(A) :=
M − i+ 1∑M
u=i 1/Fu(A)

, i ∈ [M ].
(16)

For each i ∈ [M ] we also define the following quantity

Qi(A) := (M − i+ 1)
Fi(A)

F̃i(A)
+ i− 1, (17)

where Q0(A) := 0 and we note that

Q1(A) ≤ . . . ≤ QM (A) = M.

For every i ∈ [M ], let (i) denote the identity of the channel
with the ith smallest number in (15). It is more convenient to
describe the desired limiting sampling frequency for channel
(i) and not directly for channel i. Since we know the process to
which Fi(A) refers, once we have specified c(i)(A), i ∈ [M ],
we can recover ci(A), i ∈ [M ] which are used in the sampling
rules.

First, we require that

c(i)(A) = 1, for 1 ≤ i ≤ m(A), (18)

where m(A) is defined as follows:

m(A) := max{0 ≤ i ≤ k : K ≥ Qi(A)}

For the remaining limiting sampling frequencies we dis-
tinguish two cases depending on whether m(A) < k or
m(A) = k. Thus, for m(A) < i ≤M we require that

c(i)(A) = x(A)
F̃m(A)+1(A)

Fi(A)
when m(A) < k (19)

c(i)(A) ≥ Fk(A)

Fi(A)
when m(A) = k, (20)

where x(A) is defined as follows

K −m(A)

M −m(A)
,

and is a non-negative quantity since by the definition of m(A)
we have

K ≥ Qm(A)(A) > m(A)− 1

We now state the main result of this work, which provides
the first-order asymptotic approximation to the optimal ex-
pected sample size.

Theorem 1: Fix k ∈ [M−1], K ∈ [M ] and A ⊆ [M ]. Then,
as α→ 0

JA(α; k,K,M)| ∼ | logα|
VA(k,K,M)

, (21)

where VA(k,K,M) is defined as follows
m(A)∑
u=1

Fu(A) + (k −m(A))x(A) F̃m(A)+1(A). (22)

Moreover, if b(α) is given by (12), R is consistent and
(14) holds with c1(A), . . . , cM (A) implied by (18)-(20); then
(T ∗b(α), D

∗, R) is asymptotically optimal under PA.
Sketch of proof: Fix A ⊆ [M ]. The first step is to show

that

JA(α; k,K,M) ≥ | logα| (1 + o(1))

maxDK
VA(c1, . . . , cM )

,

where o(1) is a term that goes to 0 as α→ 0,

DK := {(c1, . . . , cM ) ∈ [0, 1]M : c1 + . . .+ cM = K},

and VA(c1, . . . , cM ) is equal to

min
C⊆[M ]: |A4C|=k

 ∑
i∈A\C

ciIi +
∑

j∈C\A

cjDj

 .
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which is equivalently expressed as

min
U⊆[M ]: |U |=k

∑
i∈U

c(i)F
i
A (23)

The max-min structure of (23) implies that the maximum value
of the function VA on DK is given by (22), and is achieved
by c(i) that satisfy (18)-(20). The second step is to show that
this asymptotic lower bound is achieved by a rule of the form
(T ∗b(α),∆

∗, R), which is implied by the imposed conditions
on the sampling rule.

We proceed to implications of Theorem 1.
Corollary 1: If m(A) = k, equivalently K ≥ Qk(A), then

VA(k,K,M) = F1(A) + . . .+ Fk(A),

and as a result for any A ⊆ [M ], as α→ 0

lim
α→0

JA(α; k,M,M)

JA(α; k,K,M)
= 1.

Therefore, if K < M but K ≥ Qk(A), the first-order
asymptotic approximation of the optimal expected sample size
under PA is the same as in the case of full sampling K = M .

The next corollary shows that the first-order asymptotic
approximation of the optimal expected size is reduced by at
least a factor of k compared to the case of no tolerance k = 1.

Corollary 2: For any A ⊆ [M ], as α→ 0

lim
α→0

JA(α; k,K,M)

JA(α; 1,K,M)
≤ 1

k
.

Proof: It suffices to verify that for k = 1,

VA(1,K,M) = cF1(A)

where c ≤ 1 is constant; while for k > 1,

VA(k,K,M) ≥ kcF1(A)

As a special case of the problem, we can consider

Ii = I ≤ D = Di, i ∈ [M ]. (24)

Then, for every A ⊆ [M ] we have

Qj(A) = M − (1− I/D) (M − |A|) for j ≤ |A|, (25)
Qj(A) = M, for j > |A. (26)

and depending on K, we use (25) to calculate the ci. When
in particular I = D, for every A ⊆ [M ] we have m(A) = 0,
ci = K/M and as a result

Corollary 3: Suppose I = D, then for every A ⊆ [M ] as
α→ 0

JA(α; k,K,M) ∼ | log(α)|
k(K/M)I

IV. SAMPLING RULES

Theorem 1 suggests that a sampling rule should be consis-
tent and designed so that for every A ⊆ [M ] it guarantees that
(14) holds with limiting sampling frequencies, ci(A), i ∈ [M ],
implied by (18)-(20). In this section we propose three sampling
rules, which satisfy these conditions.

To define the three sampling rules, we need to describe how
each of them selects the K channels to be sampled at some
arbitrary time n+ 1 given the available information from the
first n sampling instances. For all of them, this selection will
rely on the estimate, ∆∗(n), of the anomalous subset after the
first n sampling instances, defined in (9), and on the desired
sampling frequencies, ci(A), i ∈ [M ] for every A ⊆ [M ]
provided in (18)-(20).

When m(A) = k, or equivalently K ≥ Qk(A), (20) does
not determine uniquely c(i)(A) ∈ (0, 1) with i > k. A specific
selection which aims to the maximization of the number of
limiting sampling frequencies that are equal to 1, is provided
by the following algorithm:
Step A: Initialize

c(i)(A) = Fk(A)/Fi(A), ∀ i > k (27)

Step B: Allocate the extra quantity K − Qk(A) to every
c(i)(A) < 1, i ≥ k + 1, such that the equality

c(i)(A) Fi(A) = c(j)(A) Fj(A), ∀ i, j > k (28)

is preserved. By the time a c(i)(A) becomes equal to 1, we
do not consider it anymore in (28).

According to all three rules, we sample at n + 1 those
channels whose desired limiting sampling frequencies are
equal to 1 when the actual anomalous subset is the one
estimated by ∆∗(n), i.e., all channels in

Gn := {i ∈ [M ] : ci (∆∗(n)) = 1}. (29)

The three rules differ in how the remaining K−|Gn| channels
are sampled. In other words, they differ in how to select at
time n+ 1 a subset from

Pn := {B ∈ [M ] \Gn : |B| = K − |Gn|}.

A. Chernoff rule
The first approach is to sample B ∈ Pn with probability

qn(B), where qn is a probability mass function (pmf) on Pn
such that the probability that channel i ∈ [M ]\Gn is selected
at time n+ 1 equals the desired limiting sampling frequency
of this channel when the true anomalous subset is estimated
as ∆∗(n), i.e.,∑
B∈Pn: i∈B

qn(B) = ci(∆
∗(n)) for every i ∈ [M ] \Gn. (30)

We observe that the larger the Gn the smaller the number of
unknowns in (30), which reduces the computational complex-
ity of (30).

We refer to this sampling rule as Chernoff rule, since in
the case of no tolerance (k = 1) it is an improved version of
the probabilistic sampling rule that is implied by the general
framework in [3].
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B. Bernoulli rule

A convenient modification of the Chernoff rule can be
obtained if we sample at time n+1 each channel i ∈ [M ]\Gn
with probability ci(∆∗(n)). We refer to this sampling rule as
Bernoulli, since for each channel i ∈ [M ]\Gn we need to draw
a Bernoulli random variable Zi(n) with parameter ci(∆∗(n))
and sample channel i at time n+ 1 if and only if Zi(n) = 1.
This sampling rule does not require the solution of the linear
system (30), but it does not guarantee that exactly K channels
are sampled at each time, therefore it does not satisfy con-
straint (1). Nevertheless, the average number of observations
per sampling instance converges to K exponentially fast when
sampling continues indefinitely, as we can see for example by
Hoeffding’s inequality. Therefore, this rule may be acceptable
in practice when it is not crucial to respect the constraint (1)
at all times, but it suffices to guarantee that K observations
are taken on average per sampling instance.

C. Equalizer rule

Contrary to the two previous sampling rules where the
selection of a subset from Pn is the result of a random
mechanism, the third sampling rule selects all channels at
n+1, apart from at most one, in a deterministic way given the
observations up to time n. Specifically, let Nn denote the sum
of the desired limiting sampling frequencies from the channels
in ∆∗(n) \Gn, i.e.

Nn :=
∑

i∈∆∗(n)\Gn

ci(∆
∗(n)). (31)

The Equalizer sampling rule samples at time n+ 1

• All processes in Gn.
• For the remaining processes in [M ] \Gn, we sample the
bNnc processes with the smallest non-negative LLRs and
the K − |Gn| − dNne processes with the largest negative
LLRs.

• If Nn is not an integer, we draw an independent Bernoulli
random variable Z(n) with parameter Nn−bNnc. Among
the processes not sampled in the first two items we
sample the one with the smallest non-negative (resp.
largest negative) LLR if Z(n) = 1 (resp. 0).

We refer to this rule as the Equalizer rule, since it forces all
the LLR Λi(n), i ∈ [M ] \Gn to stay close together.

V. SIMULATION STUDY

In this section we present a simulation study with M = 10,
K = 5, fi = N (0, 1) and gi = N (µi, 1), thus, Ii = Di =
(µi)

2/2, where i ∈ [M ]. We set

µi =


0.5, 1 ≤ i ≤ 3

0.7, 4 ≤ i ≤ 7

1, 8 ≤ i ≤ 10

We compare the performance of the three sampling rules
that we introduced in the previous section for different values
of k ∈ [M − 1] when A contains the five first processes and
α = 10−3. Moreover, in our simulation study we did not select
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Fig. 1. Expected stopping time versus the tolerance level k.

b according to (12), but we performed simulation experiments
to find those threshold values for each sampling rule for which
the error constraint is satisfied with approximate equality.

In Fig. 1, we plot the estimated expected sample size that
corresponds to each sampling rule against k, with maximum
standard error 10−2. We see that the performance of the
Equalizer rule is better, especially when k is small, whereas
the Chernoff rule and the Bernoulli rule exhibit similar per-
formance. For any rule, the expected stopping time is reduced
by a factor of at least 1/k as k increases; a fact implied by
Corollary 2.

VI. CONCLUSION

We consider the sequential anomaly detection problem
under sampling constraints, where we can observe only a
predetermined number of channels at each instance. We as-
sume a generalized error metric where we tolerate up to
k − 1 misclassification errors. We characterize asymptoti-
cally optimal sampling rules and we compute the asymptotic
optimal performance. We provide three sampling rules that
achieve the asymptotically optimal performance, but differ
significantly with respect to their computational complexity
and performance in finite regime for all possible values of
k < M . We perform a simulation which depicts the better
performance of the Equalizer rule compared to the Chernoff
and the Bernoulli rule, in finite regime.

In this work we have assumed for simplicity that the
anomalous and non-anomalous behavior in each process is
completely specified. A first direction of generalization of the
current work would be to remove this assumption. Moreover,
it is interesting to consider the same problem in the case of
generalized familywise error rates.
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