
1

Compositional and Abstraction-Based Approach for Synthesis of

Edit Functions for Opacity Enforcement

Sahar Mohajerani, Yiding Ji and Stéphane Lafortune

Abstract—This paper develops a novel compositional and
abstraction-based approach to synthesize edit functions for opac-
ity enforcement in modular discrete event systems. Edit functions
alter the output of the system by erasing or inserting events in
order to obfuscate the outside intruder, whose goal is to infer
the secrets of the system from its observation. We synthesize edit
functions to solve the opacity enforcement problem in a modular
setting, which significantly reduces the computational complexity
compared with the monolithic approach. Two abstraction meth-
ods called opaque observation equivalence and opaque bisimu-
lation are first employed to abstract the individual components
of the modular system and their observers. Subsequently, we
propose a method to transform the synthesis of edit functions to
the calculation of modular supremal nonblocking supervisors. We
show that the edit functions synthesized in this manner correctly
solve the opacity enforcement problem.

I. INTRODUCTION

Opacity characterizes whether the integrity of the secrets of

a system can be preserved from the inference of an outside

intruder, potentially with malicious purposes. The intruder is

modeled as a passive observer with knowledge of the system’s

structure. A system is called opaque if the intruder is unable

to infer the system’s secrets from its observation.

Starting with [2], [3] in the computer science literature,

opacity has been extensively studied, especially in the field

of discrete event systems (DES), under multiple frameworks.

For finite state automaton models, various notions of opacity

have been studied, e.g., language-based opacity [22], current-

state opacity [34], initial-state opacity [36], K-step opacity [49]

and infinite-step opacity [33]. Opacity has also been discussed

in some other system models, like infinite state systems [6],

modular systems [24] and Petri nets [42], [43]. Opacity under a

special observer called Orwellian observer is discussed in [30]

and opacity under powerful attackers is studied in [14]. A

more recent work [51] investigates opacity for networked

supervisory control systems. Furthermore, some works in-

vestigate opacity in stochastic settings, e.g., [1], [7], [21],

[45]. Specifically, [52] presents a novel approach to tackle

infinite-step and K-step opacity in stochastic DES. The survey

paper [16] summarizes some recent results on opacity in DES.

When opacity does not hold, it is natural to study its

enforcement [10]. One popular approach is supervisory con-

trol [8], [9], [35], [41], [48], where some behaviors of the

system are disabled before they reveal the secrets. Another
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widely-applied method is sensor activation [5], [50], [53],

where the observability of events is dynamically changed.

Recently, a new enforcement method called insertion func-

tion was proposed in [46], which inserts fictitious events into

the output of the system to obfuscate the intruder. The authors

of [18] extended the method to study opacity enforcement

under the assumption that the intruder may or may not know

the implementation of insertion functions, while [19] discussed

opacity enforcement by insertion functions under quantitative

constraints. As a following work, [47] investigates a more

general method called edit functions, which manipulate the

output of the system by either inserting or erasing events.

Then [17], [20] considers the case when the edit function’s

implementation is known to the intruder. As a summary and

extension, [20] characterizes opacity enforcement by edit func-

tions as a three-player game and proposes a novel information

structure called three-player observer (TPO) to embed edit

functions. A special TPO called the All Edit Structure (AES)

is also introduced in [20] to characterize the edit constraints.

In this work, we elaborate the method in [20] to study

opacity enforcement in a modular setting. Our motivation is as

follows. To generate a three-player observer, the observer of

the system needs to be calculated, which is potentially costly

in computation. Furthermore, modern engineering systems

usually contain multiple components that are synchronized

and subject to malicious inference. In this sense, if we are

to apply edit functions to enforce opacity, heavy computation

is involved both from determining individual systems and

synchronizing them, which may be potentially cumbersome.

To alleviate this issue, this paper applies a compositional

and abstraction-based method to reduce the size of the modular

system before calculating the All Edit Structure. Bisimulation

and observation equivalence [25] are well-known methods to

abstract the state space of an automaton, while they do not

preserve opacity properties in general. As a variant, [54] pro-

poses several innovative concepts termed opacity-preserving

(bi)simulation relations to reduce the state space of the system

in opacity verification. A compositional visible bisimulation

equivalence method is discussed in [31] for abstraction-based

opacity verification.

For abstraction, we introduce opaque observation equiva-

lence and opaque bisimulation, which consider the secrecy

status of states when merging them. In our framework, each

individual system is abstracted using opaque observation

equivalence. After that, the observer is calculated. Since ab-

straction reduces the size of the state space, the computational

complexity of calculating the observer is lowered potentially.

Next, opaque bisimulation is employed to the observer of each

abstracted individual system, resulting in the smallest possible

automaton for future discussion.



We further leverage some results from supervisor reduction

and modular supervisory control theory to reduce the complex-

ity of supervisor synthesis. There is a rich literature on both

topics, see, e.g., [23], [28], [37], [39], [40]. The main idea is to

convert the construction of the monolithic All Edit Structure

to a modular supervisory control problem. Specifically, we

first transfer each individual three-player observer (without

considering edit constraints) to its automaton form and view

the set of interacting automata as the “plant” to be controlled.

Then we put the edit constraint as the specification, also in

an automaton form. Afterwards, we perform modular supervi-

sory control to synthesize a least restrictive and nonblocking

modular supervisor. It is shown that all the traces accepted

by the supervisor represent valid edit decisions contained in

the monolithic AES. Compared with the conventional mono-

lithic approach for supervisor synthesis [4], our compositional

approach is more efficient in computation.

The presentation of this work is organized as follows.

Section II gives a brief background introduction about the

system model, supervisory control theory and edit functions.

The general idea of the paper is presented in Sect. III as a

flow chart. Section IV explains the abstraction methods and

synchronization of three-player observers. Next, Section V

transforms the calculation of the monolithic All Edit Structure

to the calculation of a modular supervisor. Finally, some

concluding remarks are given in Section VI.

A preliminary and partial version of this work appears

in [26]. The current work improves [26] in the sense that [26]

only considers abstraction methods to synthesize edit functions

in a monolithic setting, while this work also takes synchronous

composition into consideration and the edit functions are

synthesized by a modular approach.

II. MODELING FORMALISM AND BACKGROUND

A. Events, Automata and their Composition

In this work, we consider discrete event systems modeled

as deterministic or nondeterministic automata.

Definition 1: A (nondeterministic) finite-state automaton is

a tuple G = 〈Σ,Q,→,Q0〉, where Σ is a finite set of events,

Q is a finite set of states, → ⊆ Q × Σ × Q is the state

transition relation, and Q0 ⊆ Q is the set of initial states.

G is deterministic if |Q0|= 1 and if x
σ
→ y1 and x

σ
→ y2 always

implies that y1 = y2.

When state marking is considered, the above definition is

extended to G= 〈Σ,Q,→,Q0,Qm〉, where Qm ⊆Q is the set of

marked states. In this paper, we identify marked states using

gray shading in the figures.

We assume that the system is partially observed, thus the

concepts of observable and unobservable events are intro-

duced. Since the exact identity of unobservable events is

irrelevant in our later discussion of opacity, they are uniformly

represented by a special event τ . The event τ is never included

in the alphabet Σ, unless explicitly mentioned. For this reason,

Στ = Σ∪{τ} is used to represent the whole set of observable

and unobservable events. Hereafter, nondeterministic automata

may contain transitions labeled by τ , while deterministic

automata never contain τ transitions. Moreover, Pτ : Σ∗
τ → Σ∗

is the projection that removes from strings in Σ∗
τ all the τ

events.

When automata are brought together to interact, lock-step

synchronization in the style of [15] is used.

Definition 2: Let G1 = 〈Σ1,Q1,→1,Q
0
1,Q

m
1 〉 and G2 =

〈Σ2,Q2,→2,Q
0
2,Q

m
2 〉 be two nondeterministic automata. The

synchronous composition of G1 and G2 is defined as

G1 ‖G2 :=
〈

Σ1 ∪Σ2,Q1 ×Q2,→,Q0
1 ×Q0

2,Q
m
1 ×Qm

2

〉

(1)

where

(x1,x2)
σ
→ (y1,y2) if σ ∈ (Σ1 ∩Σ2),

x1
σ
→1 y1, and x2

σ
→2 y2 ;

(x1,x2)
σ
→ (y1,x2) if σ ∈ (Σ1 \Σ2) ∪{τ}

and x1
σ
→1 y1 ;

(x1,x2)
σ
→ (x1,y2) if σ ∈ (Σ2 \Σ1) ∪{τ}

and x2
σ
→2 y2 .

Importantly, synchronous composition only imposes lock-

step synchronization on common events from Σ1 and Σ2.

The transition relation of an automaton G is written in infix

notation x
σ
→ y, and it is extended to strings in Σ∗

τ by letting

x
ε
→ x for all x ∈ Q, and x

tσ
→ z if x

t
→ y and y

σ
→ z for some y ∈

Q. Furthermore, x
t
→ means that x

t
→ y for some y ∈ Q, and

x → y means that x
t
→ y for some t ∈ Σ∗

τ . These notations also

apply to state sets, where X
t
→ Y for X ,Y ⊆ Q means that

x
t
→ y for some x ∈ X and y ∈Y , and to automata, where G

t
→

means that Q0 t
→ (t is defined in G) and G

t
→ x means Q0 t

→ x.

For brevity, p
s
⇒ q for s ∈ Σ∗ represents the existence of a

string t ∈ Σ∗
τ such that Pτ(t) = s and p

t
→ q. Thus, q

u
→ p for

u ∈ Σ∗
τ means a path containing exactly the events in u, while

q
u
⇒ p for u ∈ Σ∗ means existence of a path between p and q

with an arbitrary number of τ events between the observable

events in u. Similarly, p
τ
⇒ q means the existence of a string

t ∈ {τ}∗ such that p
t
→ q.

The language of an automaton G is defined as L (G) =
{s ∈ Σ∗ | G

s
⇒} and the language generated by G from q ∈ Q

is L (G,q) = {s ∈ Σ∗ | q
s
⇒}, thus we do not include event τ

in the language of an automaton. Moreover, we also introduce

projections Pi for i = 1,2, which are Pi : (Σ1 ∪Σ2)
∗ → Σ∗

i for

i = 1,2.

For a nondeterministic automaton G = 〈Στ ,Q,→,Q0〉, the

set of unobservably reached states of B ∈ 2Q, is UR(B) =
⋃

{C ⊆ Q | B
τ
⇒ C}. Its observer det(G) = 〈Σ,Xobs,→obs

,X0
obs〉 is a deterministic automaton, where X0

obs = UR(Q0)

and Xobs ⊆ 2Q, and X
σ
→obs Y , where X ,Y ∈ Xobs, if and only

if Y =
⋃

{UR(y) | x
σ
→ y for some x ∈ X and y ∈ Q}. By

convention, only reachable states from X0
obs under →obs are

considered in this paper. We also refer to the observer as the

(current-state) estimator of the system while an observer state

is referred to as (current-state) estimate.

A common automaton operation is the quotient modulo,

which is an equivalence relation on sets of states.

Definition 3: Let Z be a set. A relation ∼⊆ Z×Z is called

an equivalence relation on Z if it is reflexive, symmetric,

and transitive. Given an equivalence relation ∼ on Z, the
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equivalence class of z ∈ Z is [z] = {z′ ∈ Z | z ∼ z′ }, and

Z̃ = { [z] | z∈ Z } is the set of all equivalence classes modulo ∼.

Definition 4: Let G = 〈Σ,Q,→,Q0〉 be an automaton and

let ∼ ⊆ Q × Q be an equivalence relation. The quotient

automaton of G modulo ∼ is G̃ = 〈Σ, Q̃,→/∼, Q̃0〉, where

→/∼= {([x],σ , [y]) | x
σ
→ y} and Q̃0 = { [x0] | x0 ∈ Q0 }.

In order to compare automata structurally, we say that an

automaton is a subautomaton of another automaton if all states

and transitions in the first automaton are contained in the

second one. Formally, we have the following definition:

Definition 5: Let G1 =
〈

Στ ,Q1,→1,Q
0
1,Q

m
1

〉

and G2 =
〈

Στ ,Q2,→2,Q
0
2,Q

m
2

〉

be two automata. G1 is a subautomaton

of G2, denoted by G1 ⊑ G2, if Q1 ⊆ Q2, →1 ⊆→2, Q0
1 ⊆ Q0

2,

and Qm
1 ⊆ Qm

2 .

B. Supervisory Control Theory

Considering plant G and specification K, supervisory con-

trol theory provides a method to synthesize a supervisor to

restrict the behavior of the plant such that the given spec-

ification is always fulfilled. The supervisor S is a function

defined from the language of the system G to the set of

events, formally, S : L (G)→ 2Σ. We also partition the set of

events as uncontrollable events and controllable events, i.e.,

Σ = Σuc ∪Σc, where uncontrollable events cannot be disabled

by the supervisor. In the figures the uncontrollable events

are marked by an exclamation mark (!). The readers may

refer to [4] for the main results of monolithic supervisory

control under full observation. Here we focus on concepts

and definitions relevant to the present paper and the synthesis

procedure in this paper is done on deterministic automata.

Two requirements for the supervisor are controllability and

nonblockingness, where controllability captures safety in the

presence of uncontrollable events and nonblockingness focuses

on liveness of the system.

Definition 6: [4] Let G =
〈

Σ,QG,→G,Q
0
G,Q

m
G

〉

and K =
〈

Σ,QK ,→K ,Q
0
K ,Q

m
K

〉

be two deterministic automata such that

K ⊑ G. K is controllable w.r.t. G if, for all states x ∈ QK and

y ∈ QG and for every uncontrollable event υ ∈ Σuc such that

x
υ
→G y, it also holds that x

υ
→K y.

Definition 7: [4] Let G be a deterministic automaton. A

state x is called reachable in G if G→ x, and coreachable in G

if x→Qm. The automaton G is called reachable or coreachable

if every state in G has this property. G is called nonblocking

if every reachable state is coreachable.

The upper bound of controllable and nonblocking subau-

tomata is again controllable and nonblocking. This implies the

existence of a least restrictive subautomaton of the original

system, which is achieved by the maximally-permissive and

nonblocking supervisor.

Definition 8: Let G be an automaton, the supremal control-

lable and nonblocking subautomaton of G is called the supre-

mal supervisor, denoted by supC(G) where for all controllable

and nonblocking automata K w.r.t. G, K ⊑ supC(G).
Synthesis of supC(G) is done by iteratively removing block-

ing and uncontrollable states, until a fixed point is reached,

and restricting the final automaton to the remaining states and

their associated transitions, for more details please see [4],

[13], [44].

In this paper, we assume that the modular system has a set

of interacting components {G1, . . . ,Gn}, and there is also a set

of supervisors in a modular structure, i.e., S = {S1, . . . ,Sn}.

Here supervisor Si is responsible for controlling Gi. The set

of modular supervisors may be synchronized as
∥

∥

n

i=1
Si.

C. Opacity and Edit Functions

In this work, we suppose system G has certain secret

information which is characterized by the set of states. Thus

the state space is partitioned into two disjoint subsets: Q =
QS ∪QNS where QS is the set of secret states capturing the

secrets of the system, while QNS is the set of non-secret states.

When the system G is modular, G = {G1, . . . ,G2}, the set of

secret states of the system, QS, is QS = {(x1, . . . ,xn) |∃xi ∈
QS

i }.

Suppose there is an external intruder modeled as the ob-

server of the system, which intends to infer the secrets of the

system from its observation. Then a system is called opaque

if the intruder is unable to determine unambiguously if the

system has entered a secret state or not. Different notions of

opacity have been introduced in literature and we focus on

current-state opacity in this work.

Definition 9: A nondeterministic automaton G with a set

of secret states QS is current-state opaque w.r.t. QS if (∀s ∈
L (G,q0) : Q0 s

⇒ QS) then [ Q0 s
⇒ QNS].

The system is current-state opaque if for any string reaching

a secret state there is string with the same sequence of

observable events reaching a non-secret state. It is known that

current-state opacity can be verified by building the standard

observer automaton.

Theorem 1: Let G = 〈Στ ,Q,→,Q◦〉 be a nondeterminis-

tic automaton with set of secret states QS. Let det(G) =
〈Σ,Xobs,→obs,X

0
obs〉 be the current-state estimator of G. Then

G is current-state opaque w.r.t. QS if and only if [det(G)
s
→

X implies that X 6⊆ QS].
If all states violating current-state opacity are removed

from the observer det(G), then the accessible part of the

remaining structure is called the desired observer, denoted

by detd(G) = 〈Σ,Xobsd ,→obsd ,X
0
obsd〉. The language generated

by the desired observer is referred to as the safe language,

Lsafe = L (detd(G)). Accordingly, we also define the unsafe

language, Lunsafe = L (G)\Lsafe.

If a system is not current state opaque then an interface

based approach called edit function [20], [47] may be applied

to enforce it. An edit function may insert events into the output

of the system or erase events from the output of the system.

It is assumed that the intruder fails to distinguish between an

inserted event and its genuine counterpart. Let Σr = {σ →
ε : σ ∈ Σ} be the set of “event erasure” events.

Definition 10: A deterministic edit function is defined as

fe : Σ∗×Σ → Σ∗. Given s ∈ L (G), σ ∈ Σ,

fe(s,σ) =











sIσ if sI is inserted before σ

ε nothing is inserted and σ is erased

sI if sI is inserted and σ is erased

With an abuse of notation, we also define a string-based edit

function f̂e recursively as: f̂e(ε) = ε , f̂e(sσ) = f̂e(s) fe(s,σ)
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for s ∈ Σ∗ and σ ∈ Σ. In the sequel, to ease the notational

burden, we will drop the “ ˆ ” in f̂e and it will be clear

from the argument(s) of fe which function we are referring

to (incremental single-event one or string-based one).

Two notions termed public safety and private safety were

defined in [20] to characterize the behavior of edit functions. In

this paper, we consider private safety alone under the assump-

tion that the intruder does not know about the implementation

of an edit function.

Definition 11 (Private Safety): Given G and its observer

det(G), an edit function fe is privately safe if ∀s∈L (det(G)),
fe(s) ∈ Lsafe.

Recently a three-player game structure called three-player

observer (TPO) w.r.t. the system was defined in [20] to embed

edit functions. For the sake of completeness, we recall this

definition (more details are available in [20]).

Definition 12 (Three-player Observer): Given a system G

with its observer det(G) and desired observer detd(G),
let I ⊆ Xobsd × Xobs be the set of information states. A

three-player observer w.r.t. G is a tuple of the form T =
(QY ,QZ ,QW ,Σ,Σr,Θ,→yz,→zz,→zw,→wy,y0), where:

• QY ⊆ I is the set of Y states.

• QZ ⊆ I×Σ is the set of Z states. Let I(z), E(z) denote the

information state component and observable event com-

ponent of a Z state z respectively, so that z = (I(z),E(z)).
• QW ⊆ I × (Σ ∪ Σr) is the set of W -states. Let I(w),

A(w) denote the information state component and ac-

tion component of a W state w respectively, so that

w = (I(w),A(w)).
• Σ is the set of observable events.

• Σr is the set of event-erasure events.

• Θ ⊆ Σ∪{ε}∪Σr is the set of edit decisions at Z states.

(i) →yz: QY × Σ × QZ is the transition function from Y

states to Z states. For y = (xd ,x f ) ∈ QY , eo ∈ Σ, we

have: y
eo→yz z ⇒ [x f

eo→obs]∧ [I(z) = y]∧ [E(z) = eo].
(ii) →zz: QZ × Θ × QZ is the transition function from Z

states to Z states. For z= ((xd ,x f ),eo)∈QZ , θ ∈Θ, we

have: z
θ
→zz z′ ⇒ [θ ∈ Σ]∧ [I(z′) = (x′d ,x f )]∧ [xd

θ
→detd

x′d ]∧ [E(z′) = eo].
(iii) →zw1: QZ ×Θ×QW is the ε insertion transition func-

tion from Z states to W states. For z = ((xd ,x f ),eo) ∈

QZ , θ ∈ Θ we have: z
θ
→zw1 w ⇒ [θ = ε ]∧ [I(w) =

I(z)]∧ [A(w) = eo]∧ [xd
eo→detd ]∧ [x f

eo→obs].
(iv) →zw2: QZ ×Θ×QW is the event erasure transition func-

tion from Z states to W states. For z = ((xd ,x f ),eo) ∈

QZ , θ ∈Θ, we have: z
θ
→zw2 w⇒ [θ = eo → ε ]∧ [I(w)=

I(z)]∧ [A(w) = eo → ε ]∧ [x f
eo→obs].

(v) →wy1: QW ×Σ×QY is the transition function from W

states whose action component is in Σ to Y states. For

w = ((xd ,x f ),eo) ∈ QW , we have: w
eo→wy1 y ⇒ [y =

(x′d ,x
′
f )]∧ [xd

eo→detd x′d ]∧ [x f
eo→obs x′f ].

(vi) →wy2: QW ×Σ×QY is the transition function from W

states whose action component is in Σr to Y states. For

w= ((xd ,x f ),eo → ε)∈QW , we have: w
eo→wy2 y⇒ [y=

(xd ,x
′
f )]∧ [x f

eo→obs x′f ].

• y0 = (xobsd,0,xobs,0) ∈ QY is the initial state of T , where

xobsd,0 and xobs,0 are initial states of detd(G) and det(G),
respectively.

In general, a three-player observer characterizes a game be-

tween a dummy player, the edit function and the environment

(system). The state space of a TPO is partitioned as: QY states

(Y states) where the dummy player plays; QZ states (Z states)

where the edit function plays; QW states (W states) where the

environment plays. A Y state contains the intruder’s estimate

(left component) as well as the system’s true state estimate

(right component). A →yz transition is defined out of a Y

state, indicating that an observable event may occur and thus

is received by the edit function. Then the TPO transits to a Z

state and the turn of the game is passed to the edit function.

Notice that the observable event does not really occur and

this dummy player is only introduced to help determine the

decisions of edit functions.

At a Z state, the edit function may choose to insert certain

events (including ε) or erase its last observed event. If a non-ε
event is inserted, a →zz transition leads the TPO to another Z

state, which means the edit function still has the turn to insert

more events until it decides to stop insertion by inserting ε
or by erasing the last observed event. There may be multiple

transitions defined out of a Z state, i.e., multiple edit decisions;

we write Θ(z) to denote the set of edit decisions defined at

z ∈ QZ in a TPO.

If the edit function inserts nothing (respectively erases

the event it receives from the dummy player), then a →zw1

(respectively (→zw2)) transition is defined and the TPO is

at a W state. Then the environment plays by letting the

observable event executed from its preceding Y state occur.

Correspondingly, there are also two types of →wy transitions,

where →wy1 indicates that the executed observable event will

be observed by the intruder while →wy2 indicates that the

executed observable event will not be observed by the intruder

since it has been erased by the edit function.

When the three players take turns to play, the components

of each player’s states also get updated. From Def. 12, a →yz

transition does not change the state estimates for the intruder

or the system since the player at Y states is dummy and the

observable events from Y states do not really occur. With a →zz

transition, only xd is updated since xd is the estimate of the

intruder and event insertion only alters the observation of the

intruder. For →zw transitions, we only require the observable

event to be defined at xd or x f . Finally, a →wy1 transition

updates both xd and x f while a →wy1 transition only updates

x f as the intruder does not observe the erased event. To

characterize the information flow in a TPO, the notion of run

is defined in [20].

Definition 13 (Run): In a three-player observer T , a run

is defined as: ω = y0
e0−→ z1

0

θ 1
0−→ z2

0

θ 2
0−→ ·· ·

θ
m0−1

0−−−→ z
m0
0

θ
m0
0−−→

w0
e0−→ y1

e1−→ z1
1

θ 1
1−→ z2

1

θ 2
1−→ ·· ·zm1

1

θ
m1
1−−→ w1

e1−→ y2 · · ·
en−→ z1

n

θ 1
n−→

·· ·zmn
n

θ mn
n−−→wn

en−→ yn+1, where y0 is the initial state of T , ei ∈Σ,

θ
j

i ∈ Θ(z j
i ), ∀0 ≤ i ≤ n, 1 ≤ j ≤ mi and n ∈ N, mi ∈ N+.

We let ΩT be the set of all runs in a TPO T . For simplicity,

similar notations as for automata are defined for three-player

observers and thus T
ω
→ x denotes the existence of a run in a
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three-player observer. We also review the concepts of string

generated by a run and edit projection defined in [20].

Definition 14 (String Generated by a Run): Given a run ω
as in Definition 13, the string generated by ω is defined as:

l(ω) = θ 1
0 θ 2

0 · · ·θ
m0−1
0 θ

m0
0 e0θ 1

1 · · ·θ
m1
1 e1 · · ·en−1θ 1

n · · ·θ
mn
n en,

where ∀i ≤ n, θ mi
i ei = ε if θ mi

i = ei → ε .

Definition 15 (Edit Projection): Given TPO T and run ωT

as in Def. 13, the edit projection Pe : Ω → L (G) is defined

such that Pe(ωT ) = e0e1 · · ·en.

In a TPO, y∈QY is a terminating state if 6 ∃eo ∈ Σ, s.t. y
eo→.

And w∈QW is a deadlocking state if 6 ∃eo ∈ Σ, s.t. w
eo→ y. Also

z ∈ QZ is a deadlocking state if 6 ∃θ ∈ Θ, s.t. z
θ
→ z′ or z

θ
→ w.

We call a TPO T complete [20] if there are no deadlocking

W or Z states in T and ∀s ∈ L (G), ∃ω ∈ ΩT , s.t. Pe(ω) = s.

Definition 16 (Edit Function Embedded in TPO): Given a

TPO T , a deterministic edit function fe is embedded in T

if ∀s ∈ L (G), ∃ω ∈ ΩT , s.t. Pe(ω) = s and l(ω) = fe(s).
Next, we construct the largest three-player observer in the

sense that all the other three-player observers are subautomata

of it. Such a notion is well defined by considering all admis-

sible transitions at every state of the TPO, according to the

respective conditions in Def. 12.

Edit functions are designed to erase genuine events or insert

fictitious ones to mislead the intruder. In theory, it is possible to

design an edit function that erases all the events of the system,

although this is not desirable. To avoid this situation usually

the user provides some constraints on the edit functions. The

constraint that is considered in this paper is to limit the number

of consecutive erasures.

Definition 17 (Edit Constraint): The edit constraint, de-

noted by Φ, requires that the edit function should not make

n+1 consecutive erasures where n ∈ N.

Finally, we define the All Edit Structure (AES) [20] by

considering the edit constraint. A synthesis procedure was

also presented in [20] to construct the AES. Notice that the

following definition is slightly different from the AES in the

preliminary version of this work [26] since edit constraints are

not considered in [26].

Definition 18 (All Edit Structure): Given system G, ob-

server det(G) and desired estimator detd(G), the All Edit

Structure is defined to be the largest complete three-player

observer w.r.t. G, which satisfies the edit constraint.

From results in [20], private safety is achievable when the

AES is not empty by construction. Hereafter, we assume that

the AES is non-empty in the following discussion; if it is

empty, then opacity cannot be enforced by the mechanism of

edit functions. It was also proven in [20] that all privately safe

edit functions satisfying edit constraints are embedded in the

AES. Formally speaking, the following result holds.

Theorem 2: Given a system G and its corresponding AES

under edit constraint Φ, an edit function fe is privately safe

and satisfies Φ if and only if fe ∈ AES.

We end this section by briefly reviewing the pruning process

discussed in [20] to construct the AES. The presence of

edit constraints may preclude some undesired states from the

AES, thus leaving some states without outgoing transitions,

i.e.,“deadlock” Z or W states. Those states reflect the inability

of the edit function to issue a valid edit decision (for insertion

or erasure) while still maintaining opacity for all possible

future behaviors, thus should be removed in the pruning

process. Moreover, Y states that have transitions to a deadlock

Z state need to be pruned as well, since Y -states are the states

where the system issues an output event and the edit function

is not allowed to prevent their occurrence.

The construction of the AES may also be interpreted as the

calculation of a supervisor where the “plant” is the largest

three-player observer in terms of subautomaton, including all

potentially feasible edit decisions without considering edit

constraints. The Y states are considered as marked states.

The events labeling transitions from Y states to Z states and

from W states to Y states are considered as uncontrollable,

while the events labeling transitions from Z states to Z states

and Z states to W states are viewed as controllable. We also

define the proper specification by considering edit constraints,

deleting states that violate them, and taking the trim of the

resulting structure. The goal is to calculate the least restrictive,

controllable and nonblocking supervisor based on the plant and

this specification. Similar processes of pruning game structures

akin to TPOs were discussed in prior work, e.g., [18], [20],

[46]. We will leverage this approach in the following discus-

sion, but in the framework of modular supervisory control.

III. COMPOSITIONAL ABSTRACTION-BASED

METHODOLOGY

This section presents our novel compositional and

abstraction-based methodology for synthesizing modular form

edit functions based on individual three-player observers after

abstracting the original system. For simplicity, we call this

methodology the CA-AES (Composition Abstraction-All Edit

Structure) Algorithm hereafter. The input of the algorithm is

a set of nondetermistic automata, G = {G1, . . . ,Gn} and the

output is a modular representation of edit functions, which is

called Modular Edit Structure. The algorithm is summarized

in Figure 1 and its steps are as follows. We will explain how

to interpret the modular representation of edit functions later.

(i) The algorithm first abstracts each individual automaton,

Gi, using opaque observation equivalence. This results in

G̃i, which has fewer states and transitions compared to

the original automaton.

(ii) Next, we abstract the observer of G̃i, i.e., det(G̃i), by

opaque bisimulation and bisimulation, resulting in two

abstracted deterministic automata Hi,ob and Hi,b.

(iii) Then we calculate the abstracted desired observer of Gi

from Hi,ob, which is denoted by Hi,obd .

(iv) Afterward, the largest (abstracted) three-player observer

of each individual component Gi is calculated from

the abstracted observer Hi,b and the abstracted desired

observer Hi,obd , and it is denoted by T POi.

(v) The final step is to calculate a modular nonblocking

and controllable supervisor, then obtain a set of modular

edit functions. This is done by transforming the largest

three-player observers and the edit constraint to a set

of automata, i.e., GT
i and K, respectively. This modular

approach is in contrast to calculating monolithic edit

functions embedded in the monolithic AES [20].
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CA-AES

Transform to modular edit functions

Gi

G̃i

det(G̃i)

Hi,ob Hi,b

Hi,obd

T POi,abs

GT
i

opaque observation equivalence, Sect. IV-A

observer

opaque bisimulation,

Sect. IV-A bisimulation, Sect. IV-A

desired observer

T POi

Transform to automata

K

Constraint Φ in automata form

supC (GT
1 ‖ · · · ‖GT

n ‖K)

Modular supervisor in automata form

Modular Edit Structure:S1 ‖ · · · ‖Sm

input : {G1, · · · ,Gn} and Φ

Fig. 1. The steps of Algorithm CA-AES.

Specifically, in step (iv), each abstracted three-player ob-

server w.r.t. the corresponding individual system together

with the constraint Φ are transformed to a set of interacting

automata. Then in step (v), a modular supremal controllable

and nonblocking supervisor is calculated, thereby fulfilling

the edit constraint in the composed structure. Consequently,

the Modular Edit Structure is itself a modular supervisor.

Regarding step (v), it is possible to leverage existing efficient

algorithms on modular supervisory control to calculate the

Modular Edit Structure.

In the monolithic approach of calculating the AES, indi-

vidual systems G1 through Gn are synchronized first and then

the observer of the synchronized system is built. Since the

computational complexity of calculating the observer is expo-

nential, synchronizing individual components before building

the observer significantly increases the complexity, which may

be 2∏n
i=1 |Qi| in the worst case where |Qi| is the cardinality of

Qi. Moreover, constructing the All Edit Structure is polynomial

in terms of the state space of the observer, which may be

potentially intractable when we deal with the synchronized

system. In contrast, our compositional and abstraction-based

approach reduces computational cost considerably both from

abstracting individual systems and conducting computation in

a modular way. However, as will be demonstrated later, some

edit decisions may be omitted in the Modular Edit Structure

output by Algorithm CA-AES.

The presented approach relies heavily on the use of three-

player observers. We present an example to better understand

the structure of such observers.

Example 1: Consider the nondeterministic automaton G1

with secret states set QS
1 = {q3}, shown in Fig. 2. To generate

the three-player observer of G1, first the observer of G1 needs

to be built, which is shown as det(G1) in Fig. 2. To generate

the desired observer the state {q3} ⊆ QS
1 needs to be removed.

The desired observer detd(G1) is shown in Fig. 2.

Then we follow the procedures in [20] to build the TPO

w.r.t. det(G1) in Fig. 2 (labeled as T ′
1). As is discussed, the

game on the TPO is initiated from Y -state (q0,q0) where the

dummy player executes the observable event γ (the only event

defined at q0 in det(G1)). Then the edit function takes the turn

to play at the Z state (q0,q0,γ) where it has two choices: insert

nothing or erase γ . If γ is erased, then the W state (q0,q0,γ →
ε) is reached where the environment plays by executing γ .

Then the turn is passed back to the dummy player and the

rest of the structure is interpreted similarly.

The compositional abstraction-based approach is explained

in more details in the following sections. First, in Section IV,

we discuss abstractions at the component level and synchro-

nization of individual three-player observers, formalizing steps

(i)-(iv) of Algorithm CA-AES. Then, in Section V, we discuss

the last step of Algorithm CA-AES.

IV. SYNCHRONIZATION AND ABSTRACTION

OPERATIONS

This section presents results on abstraction and composi-

tion that support steps (i)-(iv) of Algorithm CA-CAS. First,

Sect. IV-A describes the methods to abstract nondeterministic

automata and their observers. Next, Sect. IV-B describes the

process of transforming every individual three-player observer

to an automaton form and shows that the automaton represen-

tation is a substructure (in the sense of subgraph) of the largest

monolithic three-player observer.

A. Opaque observation equivalence

The first strategy used in Algorithm CA-AES to alleviate

state space explosion is abstraction of system components.

This subsection contains a collection of abstraction methods

that can be used to abstract nondeterministc automata and

their observers such that the abstracted observers and the

desired observers are bisimilar to their original counterparts.

The abstraction methods are based on bisimulation and obser-

vation equivalence, which are computationally efficient and

can be calculated in polynomial-time [12]. We will prove in

Theorem 5 that if we build the largest three-player observer

based on the abstracted observer and the desired observer, we

obtain the same runs, consequently the same edit functions
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as we do from the largest three-player observer based on the

original observer and desired observer.

Bisimulation is a widely-used notion of abstraction that

merges states with the same future behavior.

Definition 19: [25] Let G = 〈Στ ,Q,→,Q0〉 be a nonde-

terministic automaton. An equivalence relation ≈ ⊆ Q × Q

is called a bisimulation on G, if the following holds for all

x1,x2 ∈ Q such that x1 ≈ x2: if x1
σ
→ y1 for some σ ∈ Στ , then

there exists y2 ∈ Q such that x2
σ
→ y2, and y1 ≈ y2.

Bisimulation seeks to merge states with the same outgoing

transitions to equivalent states including unobservable events,

i.e., τ events. If the unobservable events are disregarded, a

more general abstraction method called weak bisimulation or

observation equivalence naturally comes [25].

Definition 20: Let G = 〈Στ ,Q,→,Q0〉 be a nondeterminis-

tic automaton. An equivalence relation ∼ ⊆ Q×Q is called

an observation equivalence on G, if the following holds for

all x1,x2 ∈ Q such that x1 ∼ x2: if x1
s
⇒ y1 for some s ∈ Σ∗,

then there exists y2 ∈ Q such that x2
s
⇒ y2, and y1 ∼ y2.

In order to use observation equivalence for abstraction

in the opacity setting, the set of secret states needs to be

taken into account. In the following discussion, a restricted

version of observation equivalence called opaque observation

equivalence is employed. This notion was first defined in [27]

in the context of verifying opacity.

Definition 21: Let G = 〈Στ ,Q,→,Q0〉 be a nondetermin-

istic automaton with set of secret states QS ⊆ Q and set

of non-secret states QNS = Q \ QS. An equivalence relation

∼o ⊆ Q×Q is called an opaque observation equivalence on G

with respects to QS, if the following holds for all x1,x2 ∈ Q

such that x1 ∼o x2:

(i) if x1
s
⇒ y1 for some s ∈ Σ∗, then there exists y2 ∈ Q such

that x2
s
⇒ y2, and y1 ∼o y2,

(ii) x1 ∈ QS if and only if x2 ∈ QS.

We also wish to use bisimulation to abstract the observer

of a nondeterministic system. Besides opaque observation

equivalence, opaque bisimulation is also defined.

Definition 22: Let G = 〈Στ ,Q,→,Q0〉 be a nondeterminis-

tic automaton with set of secret states QS ⊆ Q and set of non-

secret states QNS = Q\QS. Let det(G) = 〈Σ,Xobs,→obs,X
0
obs〉

be the observer of G. An equivalence relation ≈o⊆ Xobs×Xobs

is called an opaque bisimulation equivalence on det(G) with

respects to QS, if the following holds for all X1,X2 ∈ Xobs such

that X1 ≈o X2:

(i) if X1
s
→ Y1 for some s ∈ Σ∗, then there exists Y2 ∈ Xobs

such that X2
s
→ Y2, and Y1 ≈o Y2,

(ii) X1 ⊆ QS if and only if X2 ⊆ QS.

The first step of Algorithm CA-AES is to abstract the system

using opaque observation equivalence. It has been shown in

[32] that if two automata are bisimilar, then their observers

are also bisimilar. In this paper this result is extended such

that abstracting a nondeterministic automaton using opaque

observation equivalence results in an observer and a desired

observer which are bisimilar to the observer and the desired

observer of the original system, respectively.

Proposition 3: Let G = 〈Στ ,Q,→,Q0〉 be a nondeterminis-

tic automaton with set of secret states QS ⊆ Q and set of non-

secret states QNS = Q\QS. Let ∼0 be an opaque observation

equivalence on G resulting in G̃ and let ≈ be a bisimulation.

Let detd(G) and detd(G̃) be the desired observer of G and G̃.

Then det(G)≈ det(G̃) and detd(G)≈ detd(G̃).
Proof: First we prove that det(G) ≈ det(G̃). To prove

det(G) ≈ det(G̃) it is enough to show that det(G)
s
→ X if

and only if det(G̃)
s
→ X̃ , which implies language equivalence

between det(G) and det(G̃) since det(G) and det(G̃) are

deterministic. This can be shown by induction. Moreover, in

the induction we also show that x ∈ X if and only if there exist

[x′] ∈ X̃ such that x ∈ [x′]. This is used for the second part of

the proof, where we show detd(G)≈ detd(G̃).

It is shown by induction on n ≥ 0 that X0 σ1→ X1 σ2→ . . .
σn→ Xn

in det(G) if and only if X̃0 σ1→ X̃1 σ2→ . . .
σn→ X̃n in det(G̃) such

that x∈X j if and only if [x′]∈ X̃k, where x∈ [x′], for 1≤ j ≤ n.

Base case: n = 0. Let X0 be the initial state of det(G) and

X̃0 be the initial state of det(G̃). It is shown that x ∈ X0 if and

only if there exists [x′] ∈ X̃0 such that x ∈ [x′].
First, let x ∈ X0. Then based on UR(x0), it follows that

there exists x0 ∈ Q0 such that x0 τ
⇒ x in G. Since G ∼o G̃ then

based on Def. 21, there exists [x′0] ∈ X̃0 such that [x′0]
τ
⇒ [x′]

in G̃ such that x0 ∈ [x′0] and x ∈ [x′]. Then based on UR(x0)
it follows that [x′] ∈ X̃0.

Now let [x′] ∈ X̃0. Then based on UR(x0), it follows that

there exists [x′0]∈ Q0 such that [x′0]
τ
⇒ [x′] in G̃. Since G ∼o G̃

then based on Def. 21, there exists x0 ∈ X0 such that x0 τ
⇒ x

in G such that x0 ∈ [x′0] and x ∈ [x′]. Then based on UR(x0)
it follows that x ∈ X0.

Inductive step: Assume the claim holds for some n ≥ 0, i.e,

X0 σ1σ2...σn
−−−−−→ Xn = X in det(G) if and only if X̃ = X̃0 σ1σ2...σn

−−−−−→
X̃n = X̃ in det(G̃), such that x ∈ Xk if and only if there exists

[x′]∈ X̃k such that x ∈ [x′] for all 0 ≤ k < n1. It must be shown

that X = Xn σn+1
−−−→ Y in det(G) if and only if X̃ = X̃n σn+1

−−−→ Ỹ

in det(G̃) such that x ∈ X if and only if there exists [x′] ∈ X̃

such that x ∈ [x′].

First, let X =Xn σn+1
−−−→Y in det(G) and let x∈X . Then based

on UR(x) it holds that x = x1 τ
⇒ ·· ·

τ
⇒ xr σn+1

−−−→ y in G, where

x j ∈ X for all 1 ≤ j ≤ r and y ∈ Y . Since G ∼o G̃ it holds

that [x′] = [x′1]
τ
⇒ ·· ·

τ
⇒ [x′r]

σn+1
−−−→ [y′] in G̃ such that x j ∈ [x′ j]

for all 1 ≤ j ≤ r and y ∈ [y′]. Based on UR(x) and inductive

assumption it holds that det(G̃)
σ1σ2...σn
−−−−−→ X̃n = X̃

σn+1
−−−→ Ỹ and

[x′] ∈ X̃ .

Now let X̃ = X̃n σn+1
−−−→ Ỹ in det(G̃) and let [x] ∈ X̃ . Then

based on UR(x) it holds [x] = [x1]
τ
⇒ ·· ·

τ
⇒ [xr]

σn+1
−−−→ [y] in G̃,

where [xi] ∈ X̃ for all 1 ≤ i ≤ r and [y] ∈ Ỹ . Since G ∼o G̃ it

holds that x′ = x′1
τ
⇒ ·· ·

τ
⇒ x′r

σn+1
−−−→ y′ in G̃ such that x′i ∈ [xi]

for all 1 ≤ i ≤ r and y′ ∈ [y]. Based on UR(x) and inductive

assumption it holds that det(G)
σ1σ2...σn
−−−−−→ Xn = X

σn+1
−−−→Y such

that x′ ∈ X .

Now we need to show that detd(G)≈ detd(G̃). It was proven

above that det(G)≈ det(G̃), which means det(G)
s
→ X if and

only if det(G̃)
s
→ X̃ and x ∈ X if and only if [x′] ∈ X̃ , where

x ∈ [x′]. Therefore, it is enough to show that X 6∈ Xobsd if and

only if X̃ 6∈ X̃obsd .

1Since the base case of the induction is proven for n = 0, X0 ε
→, the

inductive step is considered true for 0 ≤ k < n.
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First assume X ⊆ QS, which means for all x ∈ X it holds

that x ∈ QS and X 6∈ Xobsd . Since for all x ∈ X it holds that

there exist [x′] ∈ X̃ such that x ∈ [x′] then based on Def. 21

it holds that [x′] ∈ Q̃S. Thus, it can be concluded that for all

[x′] ∈ X̃ it holds that [x′] ∈ Q̃S. This means that X̃ ⊆ Q̃S and

consequently X̃ 6∈ X̃obsd .

Now assume X̃ ⊆ Q̃S, which means for all [x′] ∈ X̃ it holds

that [x′] ∈ Q̃S and X̃ 6∈ X̃obsd . If [x′] ∈ Q̃S then for all x ∈ [x′] it

holds that x ∈ QS. Moreover, it was shown above that [x′] ∈ X̃

if and only if x ∈ X , where x ∈ [x′]. Thus, from X̃ ⊆ Q̃S it

follows that X ⊆ QS, which means that X 6∈ Xobsd .

Thus, it can be concluded that detd(G)≈ detd(G̃). �

Opaque observation equivalence seeks to merge states of

a nondeterministc automaton, which are “equivalent”, before

constructing the observer. After calculating the observer, it is

possible to further abstract the observer using opaque bisim-

ulation. This guarantees that the smallest abstracted observer

generates the same language as the original observer. In the

following, Proposition 4 shows that if opaque bisimulation

is used to abstract the observer, then the abstracted desired

observer is also bisimilar to the original desired observer.

Proposition 4: Let G = 〈Στ ,Q,→,Q0〉 be a nondeterminis-

tic automaton with set of secret states QS ⊆ Q and set of non-

secret states QNS = Q\QS. Let ≈o be an opaque bisimulation

on det(G) resulting in d̃et(G). Let detd(G) and Hd be the

desired observers of det(G) and d̃et(G), respectively. Then

detd(G)≈ Hd , where ≈ is a bisimulation relation.

Proof: Since det(G) ≈o d̃et(G) based on Def. 22 it holds

that det(G)
s
→ X if and only if d̃et(G)

s
→ [X ′] and X ∈ [X ′].

Thus, it is enough show that X 6∈ Xobs,detd(G) if and only if

[X ′] 6∈ Xobs,Hd
, where X ∈ [X ′].

First assume X ⊆QS, so X 6∈Xobs,detd(G). Then since X ∈ [X ′]

based on Def. 22 it holds that for all X ′ ∈ [X ′], X ′ ⊆ QS. This

means [X ′]⊆ QS and consequently [X ′] 6∈ Xobs,Hd
.

Then assume [X ′] ⊆ QS, so [X ′] 6∈ Xobs,Hd
. Since X ∈ [X ′]

based on Def. 22, X ⊆ QS holds, i.e., X 6∈ Xobs,detd(G). �

We now present the main results of this subsection.

Theorem 5: Let G be a nondeterministic automaton with

secret states QS ⊆ Q and non-secret states QNS = Q\QS. Let

det(G) and detd(G) be the observer and the desired observer of

G, respectively. Let ∼o be an opaque observation equivalence

on G such that G̃ ∼o G. Let Hob ≈o det(G̃) and Hb ≈ det(G̃)
where ≈o and ≈ are opaque bisimulation and bisimulation,

respectively. Let Hobd be the desired observer of Hob. Let T

be the largest three-player observer w.r.t. det(G) and detd(G),
also let T ′ be the largest three-player observer w.r.t. Hobd and

Hb. Then T
ω
→ q if and only if T ′ ω

→ q̃.

Proof: In Supplementary Materials. �

Theorem 5 proves that the largest three-player observer

obtained from the abstracted system (using opaque observation

equivalence and opaque bisimulation) has the same set of runs

with that obtained from the original system. This result is

essential for the correctness of Algorithm CA-AES.

Remark 1: The abstractions in the worst case scenario fail

to merge any states. However, as pointed out in the paper the

complexity of the abstraction methods is polynomial, while

the complexity of calculating the observer is exponential in the

number of states. Thus, if the abstraction results in merging

even few states, it can potentially reduce the complexity of

calculating the observer significantly. Therefore, it is worth

applying the abstraction algorithm before calculating the ob-

servers.

Example 2: Consider the nondeterministic system G =
{G1,G2}, shown in Fig. 2, with secret states sets QS

1 = {q3}
and QS

2 = {s3} where all the events are observable except event

τ . In G1 states q1 and q2 are opaque observation equivalent as

they both have the same secrecy status and equivalent states

can be reached from both, q1
α
→ q3 and q2

α
→ q3, and q1

τ
→ q2

and q2
ε
→ q2. Merging q1 and q2 results in the abstracted

automaton G̃1 shown in Fig. 2. Moreover, states s1 and s2 are

also opaque observation equivalent and merging them results

in automaton G̃2 shown Fig. 2. After abstracting the automata,

the system becomes a deterministic system. Moreover, the

observers as of G̃1 and G̃2 are bisimilar to det(G1) and

det(G2), respectively. The same is also true for the desired

observer of G̃1 and G̃2. Fig. 2 shows the largest three-player

observers of G̃1 and G̃2, respectively.

B. Synchronous composition of TPOs

The second strategy used in Algorithm CA-AES to reduce

computation complexity is synchronous composition of indi-

vidual systems. In this work, the main advantage of our com-

positional approach is to build the largest three-player observer

of each component individually, instead of synchronizing

individual components and then building the largest monolithic

three-player observer. Before synchronization, we first transfer

each individual TPO to an automaton using Def. 23. Next,

the individual automata are transformed to a set of interacting

automata based on Def. 24. It is shown in Theorem 8 that

the set of modular three-player observers form a subsystem of

their monolithic counterpart, in the sense that some runs are

omitted after synchronization. Before Theorem 8, Lemmas 6

and 7 establish that synchronization of individual observers

(respectively, desired observers) is isomorphic to the observer

(respectively, desired observers) of the synchronized system.

Definition 23: Let T = 〈QY ,QZ ,QW ,Σ,Σε ,Θ,→yz,→zz

,→zw,→wy,y0〉 be a three-player observer. Automaton

MT = 〈ΣMT ,Q,→,Q0,Qm〉 is the monolithic transformed

deterministic automaton of T where,

(i) ΣMT = Σ∪ [
⋃

p∈QZ

ΘE(p)]∪ [
⋃

p∈QW

ΣA(p),w]

(ii) Q = QY ∪QZ ∪QW ,

(iii) →= {(p,α,q) | p ∈ Qy ∧ p
α
→yz q}

⋃

{(p,σ ,q) | p ∈ QZ ∧

σ = αE(p) ∧ p
α
→zz,zw1,zw2

q}
⋃

{(p,σ ,q) | p ∈ QW ∧σ =

αA(p),w ∧ p
α
→wy1,wy2

q}

(iv) Q0 = y0,

(v) Qm = QY .

The events labeling outgoing transitions mapped from original

Y states in T , i.e., {(p,α,q) | p ∈ Qy ∧ p
α
→yz q} and outgoing

transitions mapped from original W states in T , {(p,σ ,q) |

p ∈ QW ∧σ = αA(p),w ∧ p
α
→wy1,wy2

q} are considered as un-

controllable while the other events are controllable.

In Def. 23, Σα represents that α is added to all the events

of Σ. To transform a three-player observer to an automaton,
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G1

q0

q1

q2

q3

α

α
γ

γ

τ

q0

α

γ

{q1,q2}

{q3}

det(G1)

q0

γ

{q1,q2}

detd(G1)

G2

s0

s1

s2

s3

α

β

τ

G̃1

q0

α

γ

q12

q3

G̃2

s0

s12

s3

α

β

T ′
1

(q0 ,q0)

(q0 ,q0),γ

(q0 ,q0),
γ → ε

(q0 ,q0),
γ

(q0 ,q12)(q12 ,q12)

(q0 ,q12),α(q12 ,q12),α

(q0 ,q12),
α → ε

(q12 ,q12),
α → ε

(q0 ,q3)(q12 ,q3)

γ

γ → εε

γγ

α α

γ

α → εα → ε

αα

T ′
2

(s0 ,s0)

(s0 ,s0),β

(s0 ,s0),
β → ε

(s0 ,s0),
β

(s0 ,s12)(s12 ,s12)

(s0 ,s12),α(s12 ,s12),α

(s0 ,s12),
α → ε

(s12 ,s12),
α → ε

(s0 ,s3)(s12 ,s3)

β

β → εε

ββ

α α

β

α → εα → ε

αα

MT
1

εγ

γα

!α!α

!γ

γ → εγ

γγ→ε ,w

α → εα α → εα

αα→ε ,wαα→ε ,w

γγ,w

MT
2

!α!α

!β

β → εβ

ββ→ε ,w

α → εα α → εα

αα→ε ,wαα→ε ,w

βα

ββ ,w

εβ

GT
1

!α!α

!γ

εγ γ → εγ

γγ→ε ,w
γγ,w

γα
α → εαα → εα

αα→ε ,wαα→ε ,w

!β

!β

!β

!β

!β

(q0,q3)

GT
2

!α!α

!β

εβ β → εβ

ββ→ε ,w
ββ ,w

βα
α → εαα → εα

αα→ε ,wαα→ε ,w

!γ

!γ

!γ

!γ

!γ

(s0,s3)

Fig. 2. System G = {G1,G2} and its abstraction {G̃1, G̃2}. The figure
also shows the largest three-player observers T ′

1 and T ′
2 of the abstracted

components and their automata transformations, denoted by GT
1 and GT

2 . The
uncontrollable events are marked by (!).

each state of the three-player observer is considered as an

automaton state, Qi = Qi
Y ∪Qi

Z ∪Qi
W in Def. 23. Moreover,

the information about the states needs to be considered to

distinguish some transitions in the transformed automaton and

to have a correct synchronization of three-player observers,

since the information about state types (Y , W , Z) is lost in the

transformation. To this end, in the transformed automaton, the

events labeling the transitions from z to z states, from z to w

states and from w to y states, need to have the information of

the predecessor states reflected in them. Thus, the events in the

transformed automaton have the observable event components

of Z states,
⋃

p∈Qi
Z

Θi
E(p), and the action components of W states,

⋃

p∈Qi
W

Σi
A(p),w. The initial state of the transformed automaton

is the initial state of the three-player observer and the marked

states are the original Y states.

Example 3: Consider the two three-player observers T ′
1

and T ′
2 shown in Fig. 2. To transform the three-player

observers T1 and T2 to their monolithic automata, renaming

ρ : {α,β ,γ ,εγ ,γ → εγ ,γγ→ε ,w,γε ,w,γα ,εβ ,β → εβ ,ββ→ε ,w,

βε ,w,βα ,α → εα ,αα→ε ,w} → {α,β ,γ ,ε ,α → ε ,β → ε ,γ →
ε} is introduced. Next, all Y states in T ′

1 and T ′
2 are considered

as marked. Fig. 2 shows MT
1 and MT

2 , which are the monolithic

transformed automata from T ′
1 and T ′

2 , respectively. All the

events that come from transitions defined out of Y states and

W states in T ′
1 and T ′

2 are considered as uncontrollable in GT
1

and GT
2 , thus α , β and γ are uncontrollable.

This paper describes the compositional approach for modu-

lar systems. In order to have a correct interaction between the

transformed automata, the transformation of the three-player

observers needs to be done in the modular setting.

Definition 24: Let T = {T1, . . . ,Tn} be a three-player ob-

server system such that Ti = 〈Qi
Y ,Q

i
Z ,Q

i
W ,Σi,Σε

i ,Θ
i,→i

yz,→
i
zz

,→i
zw,→

i
wy,y

i
0〉. Let MT

i = 〈Σi
MT ,Q

i
M,→i

M,Q0
M

i
,Qm

M
i〉 be the

monolithic transformed deterministic automaton of Ti, based

on Def. 23. The transformed automaton system of T is

G T = {GT
1 , · · · ,G

T
n }, where GT

i = 〈Σi
GT ,Qi,→

i,Q0
i ,Q

m
i 〉 and

(i) ΣGT
i
=Σi

MT ∪ [
⋃

α∈(Σ j\Σi); j 6=i

((Σi∩Σ j)α ∪(Σi∩Σ j)α ,w∪(Σi∩

Σ j)α→ε ,w)]
(ii) Qi = Qi

M ,

(iii) →i
M

⋃

{(p,α, p) | p ∈ Qi
y and α ∈

⋃

j 6=i

(Σ j \Σi)}

(iv) Q0
i = Q0

M

i
,

(v) Qm
i = Qm

M
i.

Since some shared events in the transformed automaton be-

come local after incorporating the extra state information, they

need to be added in the alphabet of the transformed automa-

ton,
⋃

α∈(Σ j\Σi); j 6=i

((Σi ∩Σ j)α ∪ (Σi ∩Σ j)α ,w ∪ (Σi ∩Σ j)α→ε ,w) in

Def. 24. Moreover, the events not defined from Y states of

certain TPO T but defined from Y states of some other TPO

T ′ are added as self-loops at the corresponding states in the

transformed automaton of T , {(p,α, p) | p ∈ Qi
y and α ∈

⋃

j 6=i

(Σ j \Σi)}. To create a map between the events of a TPO

and its transformed automaton, renaming of events is nec-

essary. Note, when the transformation of a single automaton

9



TABLE I
THE TABLE SHOWS THE LINK BETWEEN THE EVENTS OF A TPO, ITS

TRANSFORMED AUTOMATON AND THE CORRESPONDING RENAMING.

TPO T Automaton GT Renaming ρ

y
α
→yz z y

α
→ z ρ(α) = α

z
α
→zz z′, E(z) = eo z

αeo−−→ z′ ρ(αeo ) = α

z
α
→zw1 w, E(z) = eo z

αeo−−→ w ρ(αeo ) = α

z
α
→zw2 w, E(z) = eo z

αeo−−→ w ρ(αeo ) = α

w
α
→wy1 y, A(w) = eo w

αeo ,w
−−−→ y ρ(αeo ,w) = α

w
α
→wy2 y, A(w) = eo → ε w

αeo→ε ,w
−−−−−→ y ρ(αeo→ε ,w) = α

is considered Def. 23 and Def. 24 produce the same results.

Thus, in the following wherever a transformed automaton is

discussed we refer to Def. 24.

Renaming ρ simply removes the extra information from the

events of the transformed automaton and maps them back to

the original events in the TPO. To be more specific, ρ is

a map such that ρ(ασ ) = α and ρ(α) = α . Table I shows

how the events in a transformed automaton are linked to the

original events of a TPO, while the third column shows how

renaming works. Specifically, in the case where events label

→yz transitions, renaming does not change events names.

Example 4: Consider the abstracted system G̃ = {G̃1, G̃2},

shown in Fig. 2. The sets of secret states are Q̃S
1 = {q3},

Q̃S
2 = {s3} where all the events are observable. T ′

1 and T ′
2 are

the largest three-player observers of G̃1, G̃2, respectively. In

Example 3 the monolithic transformed automata of T ′
1 and T ′

2

were generated. The three-player observer system {T ′
1 ,T

′
2} is

transformed to automata system G = {GT
1 ,G

T
2 }, shown Fig. 2,

by adding self-loops at the marked states. Event β is not in

the alphabet of T ′
1 so it appears as a self-loop at all marked

states in GT
1 , which correspond to Y states in T ′

1 . Similarly, γ
is added as a self-loop at marked states in GT

2 since γ is not

in the alphabet of T ′
2 .

In the following, Theorem 8 proves that if the synchroniza-

tion of transformed individual three-player observers contains

a transition, then the largest monolithic three-player observer

w.r.t. the synchronized system also contains an equivalent

transition. However, the inverse is not necessarily true as there

are some behaviors in the monolithic three-player observer

that are omitted in the modular structure. Before Theorem 8,

Lemma 6 [38] and Lemma 7 establish that the modular ob-

server and desired observer are isomorphic to their monolithic

counterparts.

Lemma 6: [38] Let G1 = 〈Σ1,Q1,→1,Q
0
1〉 and G2 =

〈Σ2,Q2,→2,Q
0
2〉 be two nondeterministic automata. Then

det(G1 ‖G2) is isomorphic to det(G1)‖det(G2).

Lemma 7: Let G1 = 〈Q1,Σ1,→1,Q
0
1〉 and G2 = 〈Q2,Σ2,→2

,Q0
2〉 be two nondeterministic automata with sets of secret

states QS
1 and QS

2, respectively. Then detd(G1) ‖ detd(G2) is

isomorphic to detd(G1 ‖G2).

Proof: From det(G1 ‖G2) is isomorphic to det(G1)‖det(G2)
it follows that det(G1 ‖ G2)

s
→ X if and only if det(G1) ‖

det(G2)
s
→ (X1,X2) and (x1,x2) ∈ X if and only if (x1,x2) ∈

X1 ×X2. Now we need to show that X 6∈ Xobsd if and only if

(X1,X2) 6∈ X1,obsd ×X2,obsd .

First assume X 6∈ Xobsd , which means X ⊆ QS. This further

means that for all (x1,x2)∈X , either x1 ∈QS
1 or x2 ∈QS

2, which

implies either X1 6∈ X1,obsd or X2 6∈ X2,obsd . Thus, (X1,X2) 6∈
X1,obsd ×X2,obsd .

Now assume (X1,X2) 6∈ X1,obsd ×X2,obsd . This means either

X1 6∈ X1,obsd or X2 6∈ X2,obsd , which implies either X1 ⊂ QS
1 or

X2 ⊂ QS
2. Hence for all (x1,x2) ∈ (X1,X2) = X either x1 ∈ QS

1

or x2 ∈ QS
2, which implies X ⊆ QS. Thus, X 6∈ Xobsd . �

Theorem 8: Let G1 = 〈Q1,Σ1,→1,Q
0
1〉 and

G2 = 〈Q2,Σ2,→2,Q
0
2〉 be two nondeterministic automata

with sets of secret states QS
1 and QS

2, respectively. Let

T1 = 〈Q1
Y ,Q

1
Z ,Q

1
W ,Σ1,Σ

ε
1,Θ1,→

1
yz,→

1
zz,→

1
zw,→

1
wy,y

1
0〉 and

T2 = 〈Q2
Y ,Q

2
Z ,Q

2
W ,Σ2,Σ

ε
2,Θ2,→

2
yz,→

2
zz,→

2
zw,→

2
wy,y

2
0〉

be the largest three-player observers w.r.t. G1 and

G2, respectively. Let GT
1 = 〈ΣGT

1
,Q1,→

1,Q0
1,Q

m
1 〉 and

GT
2 = 〈ΣGT

2
,Q2,→

2,Q0
2,Q

m
2 〉 be the transformed automata

of T1 and T2, respectively. Let T be the largest

monolithic three-player observer w.r.t. G1||G2. Then let

ρ : (ΣGT
1
∪ ΣGT

2
) → (Σ1 ∪ Σε

1 ∪ Θ1) ∪ (Σ2 ∪ Σε
2 ∪ Θ2) be a

renaming. We have [GT
1 ‖GT

2
s
→ (q1,q2)]⇒ [T

ρ(s)
−−→ q].

Proof: In Supplementary Materials. �

Theorem 8 shows that synchronization of individual trans-

formed three-player observers is a subsystem of the largest

monolithic three-player observer. Specifically, if there is a

string s in GT
1 ‖GT

2 , then there always exists a corresponding

path ρ(s) in T . The synchronized automaton form TPOs may

not always be equal to the monolithic TPO since some →zz

transitions may not appear in the synchronized system. This

happens when a state in the synchronization of TPOs is a

combination of an original Z and an original Y state from

individual TPOs, while the observable event component of

the original Z state is a local event. However, as there is no

difference between local and shared events in the monolithic

approach of obtaining TPOs, the largest monolithic TPO

contains all possible transitions of edit decisions. The proof

of Theorem 8 also illustrates that for every state in the largest

monolithic TPO, there exists a corresponding state in the

synchronized individual TPOs in automaton form.

Remark 2: Although the statement of Theorem 8 concen-

trates on the case of two individual systems, the result can be

generalized to more than two individual systems. �

Remark 3: Notice that Theorem 8 illustrates that some tran-

sitions are “missing” in the synchronized automaton compared

with the largest monolithic three-player observer T . It further

implies that more transitions will be missing if we synchronize

more individual TPOs (in automaton form). Actually, we may

locate those missing transitions and add them back to the

synchronized automaton ‖n
i=1GT

i .

Specifically, consider states (q1,q2, · · · ,qn) and

(q′1,q
′
2, · · · ,q

′
n) in ‖n

i=1GT
i such that qi,q

′
i ∈ Qi

Y ∪ Qi
Z for

all i, i.e., every component in those states is either a Y

state or a Z state from an individual transformed automaton.

Then we add transition (q1,q2, · · · ,qn)
σ
−→ (q′1,q

′
2, · · · ,q

′
n) if

there exists a set of indexes I ∈ 2{1,2,···n}, such that for all

i ∈ I, qi = (xi,d ,xi, f ),q
′
i = (x′i,d ,xi, f ) ∈ Qi

Y and xi,d
σ
−→ x′i,d in

detd(Gi); while for all i /∈ I, qi = q′i. Intuitively, the added

transition implies that event σ may be inserted in the largest

monolithic TPO w.r.t. ‖n
i=1Gi. However, due to the fact that
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T

(A,A) (A,A),γ

(A,A),
γ → ε

(A,A), γ

(A,C)(C,C)

(C,C),β (A,C),β

(C,C), β (C,C),
β → ε

(A,C), β
(A,C),
β → ε

(A,A),β

(A,A),
β → ε

(A,A), β

(A,B)(B,B)

(B,B),γ (A,B),γ

(B,B), γ
(B,B),
γ → ε (A,B), γ (A,B),

γ → ε

(D,D)
(B,D)

(C,D)
(A,D)

(D,D),α
(B,D),α

(C,D),α
(A,D),α

(D,D),
α → ε (B,D),

α → ε

(C,D),
α → ε (A,D),

α → ε

(D,E)
(B,E)

(C,E)
(A,E)

γβ

γ → εεβ → εε

γ
γβ

β

γ γ β β

β γ

ε γ → ε
ε γ → ε ε β → ε ε β → ε

γ
γ

γ γ β

β β
β

α
α

α
α

α → ε
α → ε

α → ε
α → ε

α
α

α
α

γ
βγ

β

Fig. 3. The monolithic largest three-player observer w.r.t. to G1 ‖G2 (also same as that w.r.t. G̃1 ‖ G̃2 in this particular case) in Example 5.

there are no transitions defined from a Y state to another Y

state in TPOs, those transitions are missing in ‖n
i=1GT

i , which

implies the synchronized system ‖n
i=1GT

i may only contain a

subset of edit decisions in the largest monolithic TPO.

However, the above mentioned operation may not be pre-

ferred in practice since it involves explicitly synchronizing

individual TPOs in their automaton form. This is usually not

feasible in modular approaches and should be avoided in our

Algorithm CA-AES as well. �

Finally, the results of this section are formally recapped

in Theorem 9, which illustrates that the synchronization of

transformed (automaton form) three-player observers w.r.t. in-

dividual abstracted systems contain a subset of the transitions

of the largest monolithic three-player observer. The proof

follows directly from Theorem 8 and Theorem 5.

Theorem 9: Let G1 and G2 be two nondeterministic au-

tomaton with sets of secret states QS
i ⊆ Qi and sets of non-

secret states QNS
i = Q \ QS

i for i = 1,2. Let det(Gi) and

detd(Gi) be the observer and the desired observer of Gi,

respectively. Let ∼o be an opaque observation equivalence

on Gi such that G̃i ∼o Gi for i = 1,2. Let Hi,ob ≈o det(G̃i)
and Hi,b ≈ det(G̃i) for i ∈ {1,2}, where ≈o and ≈ are

opaque bisimulation and bisimulation, respectively. Let T

be the largest three-player observer w.r.t. G1 ‖ G2 and let

T ′
i = 〈Qi

Y ,Q
i
Z ,Q

i
W ,Σi,Σ

ε
i ,Θi,→

i
yz,→

i
zz,→

i
zw,→

i
wy,y

i
0〉 be the

largest three-player observer w.r.t. detd(Hi,ob) and Hi,b for

i ∈ {1,2}. Let GT
i = 〈ΣGT

i
,Qi,→

i,Q0
i ,Q

m
i 〉 for i = 1,2 be

the transformed automata of T ′
i and let ρ : (ΣGT

1
∪ ΣGT

2
) →

(Σ1 ∪ Σε
1 ∪ Θ1) ∪ (Σ2 ∪ Σε

2 ∪ Θ2) be a renaming. We have

[GT
1 ‖GT

2
s
→ (q1,q2)]

τ
⇒ [T

ρ(s)
−−→ q].

Example 5: Consider the system G = {G1,G2} shown in

Fig. 2. In the first step of the compositional approach the

system is abstracted by applying opaque observation equiv-

alence, see Example 2. The abstracted system G̃ = {G̃1, G̃2}
is shown in Fig. 2. Next, the three player observer of individual

components are built. As explained in Example 4 the three-

player observers of G̃1 and G̃2 are T ′
1 and T ′

2 , respectively,

shown in Fig. 2. Moreover, Fig. 2 also shows GT
1 and

GT
2 , the transformed automata of T ′

1 and T ′
2 , respectively.

The largest monolithic three-player observer w.r.t G1 ‖ G2

is denoted by T and is shown in Fig. 3. In this particular

example, it can be verified that the original and abstracted

three-player observers are identical (this need not be true in

general); therefore, T in Fig. 3 also represents the largest

three-player observer w.r.t. G̃1 ‖ G̃2. In T , we have states:

A = {(q0,s0)}, B = {(q0,s1),(q0,s2)}, C = {(q1,s0),(q2,s0)},

D = {(q1,s1),(q2,s1),(q2,s2),(q1,s2)} and E = {(q3,s3)}.

After synchronizing GT
1 with GT

2 , we find that there are

some transitions in Fig. 3, which do not correspond to any

transition in GT
1 ‖GT

2 . For example, no transition in GT
1 ‖GT

2

corresponds to the zz transition of β from state (A,B,γ) to

(B,B,γ) in Fig. 3.

V. FROM ALL EDIT STRUCTURE CALCULATION

TO SUPERVISOR SYNTHESIS

So far we have shown that in our compositional and

abstraction-based approach, individual components can be

abstracted and each largest three-player observer w.r.t. an

abstracted component can be calculated individually. Then we

transfer those three-player observers (TPOs) to their automaton

forms. After that, we have also shown in Theorem 9 that
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the synchronization of the transformed three-player observers

results in a subsystem of the largest monolithic three-player

observer up to the renaming of events.

Recall that the All Edit Structure (AES) is obtained after

pruning deadlocking states from the largest TPO. Here the

modular structure of the transformed TPO is kept and the

calculation of a “Modular Edit Structure” can be done by

mapping this problem to a modular nonblocking supervisory

control problem under full observation.

As was discussed at the end of Section II-C, we pursue

an approach to convert the pruning process (from the largest

TPO to the AES) to a supervisory control problem. In this

setting, the plant is a collection of automata transformed

from individual largest TPOs obtained at the end of step (iv)

of Algorithm CA-AES. The specification is the automaton

form of the edit constraint. The constraint of having up to

n+1 consecutive erasures can be modeled by a specification

automaton with n states where transitions are labeled by the

decision events and all states are marked except the last

state, which is a blocking state. After n consecutive event

erasures, the next transition of event erasure α → εα leads

the specification forward to a blocking state. If the next event

is a non-erasure event, it leads the specification back to the

initial state, thus resetting the sequence of erasures. Since

we have a modular representation of the plant, we are able

to leverage computationally efficient compositional techniques

for modular nonblocking supervisory control problems.

Definition 25: Let T = {T1, . . . ,Tn} be a three-player ob-

server system where Ti = 〈Qi
Y ,Q

i
Z ,Q

i
W ,Σi,Σε

i ,Θ
i,→i

yz,→
i
zz

,→i
zw,→

i
wy,y

i
0〉 and let Φ be the edit constraint on T such

that there are not n + 1 consecutive event erasures. Then

K = 〈ΣK ,QK ,→K ,Q
0
K ,Q

K
m〉 is the automaton form of Φ where,

• QK = {x1, . . . ,xn}

• →K=
⋃

1≤i≤n−1{(xi,α → εα ,xi+1) | p
α→ε
−−−→zw2

q and E(p) = α} ∪
⋃

1≤i≤n−2{(xi+1,εα ,x1) | p
ε
→zw1

q and E(p) = α} ∪
⋃

1≤i≤n−2{(xi+1,ασ ,x1) | p
α
→zz

q and E(p) = σ} ∪{(x1,εα ,x1) | p
ε
→zw1 q and E(p) =

α}∪{(x1,ασ ,x1) | p
α
→zz q and E(p) = σ},

• Q0
K = x1

• QK
m = {x1, . . . ,xn−1}

Example 6: Consider the transformed system G T =
{GT

1 ,G
T
2 } shown in Fig. 2. Assume the constraint Φ only

allows one erasure. The specification automaton of this con-

straint is shown in Fig. 4 as K. Automaton K has three states.

As there is no constraint on event insertion, the events related

with event insertion just form self-loops at the initial state of

K. On the other hand, by executing α → εα , β → εβ or γ → εγ

the specification transits from x1 to x2. Next, at x2 if the edit

decision is to certain events, then the system goes back to the

initial state x1, thus allowing more event erasures since there

are no consecutive erasures. However, if another event erasure

occurs from x2, the system goes to the blocking state x3.

The following theorem establishes that the three-player

observer of the system under constraint Φ and the transformed

system synchronized with the specification K have the same

runs up to a renaming of the events.

Theorem 10: Let G = 〈Σ,Q,→,Q0〉 be a nondeterministic

K

x1

x2

x3

εβ

εβ

εγ

εγ

γα

γα

βα

βα β → εβ

β → εβ

α → εα

α → εα

γ → εγ

γ → εγ

S

x1

x2

εβ

εβ

εγ

εγ

γα

γα

βα

βα
β → εβ
α → εα
γ → εγ

SP

!α

εβ

α → εα

αα→ε ,w

!γ !βγ → εγ γγ→ε ,w

ββ ,wγα

Fig. 4. Automaton K is the automaton form of the constraint Φ in Example 6,
S and SP ares the supervisor and the selected path in Example 7.

automaton with the set of secret states QS ⊆ Q. Let T ′ =
〈Q′

Y ,Q
′
Z ,Q

′
W ,Σ,Σε ,Θ,→′

yz,→
′
zz,→

′
zw,→

′
wy,y

′
0〉 be the largest

three-player observer of G under the edit constraint Φ
which prohibits n + 1 consecutive event erasures. Let T =
〈QY ,QZ ,QW ,Σ,Σε ,Θ,→yz,→zz,→zw,→wy,y0〉 be the largest

three-player observer w.r.t. G when no constraint is considered

and let GT = 〈ΣGT ,Q,→,Q0〉 be the automaton transformation

of T . Let K be the specification automaton of Φ. Then

GT ‖K
s
→ if and only if T ′ ρ(s)

−−→.

Proof: Clearly T ′ ⊑ T and ΣK ⊆ ΣGT . First let GT ‖K
s
→

(qG,qK)
σ
→ (pG, pK), let PK : ΣGT → ΣK and let PE : ΣGT →

⋃

σ∈Σ{σ → εσ ∈ ΣK} be a map that removes all the events

except event erasures from ΣK . From GT ‖K
s
→ (qG,qK)

σ
→

(pG, pK) and ΣK ⊆ ΣGT and Def. 2, it holds that GT s
→ qG

σ
→

pG and K
PK(s)
−−−→ qK

PK(σ)
−−−→ pK . Now consider three cases:

1) qK = xi, pK = xi+1 and pK ,qK ∈ QK
m. Then |PE(s)| < n.

This implies σ is an erasure event but there are not n

consecutive erasures in s, so T ′ ρ(s)
−−→ qT

ρ(σ)
−−−→ pT .

2) qK = xi, pK = xi+1, qK ∈QK
m but pK 6∈QK

m. Then |PE(s)|=

n and K
PK(s)
−−−→ qK

σ
→ pK , which implies GT ‖K

sσ
→ (pG, pK)

and (pG, pK) is a blocking state. This further indicates

there are n consecutive erasures in s,so T ′ ρ(s)
−−→ qT 6→.

3) qK = xi, pK = x1 and pK ,qK ∈ QK
m. This implies σ is a

non-erasure event, so T ′ ρ(s)
−−→ qT

ρ(σ)
−−−→ pT .

Now assume T ′ ρ(s)
−−→ qT . This means T

ρ(s)
−−→ qT , which

implies GT s
→ qT . Consider two cases. 1. |PE(s)| < n. Then

K
PK(s)
−−−→ qK , which implies GT ‖K

s
→ (qG,qK). 2. |PE(s)|= n.

This means T ′ ρ(s)
−−→ qT 6→ and K

PK(s)
−−−→ qK 6→, which implies

GT ‖K
s
→ (qG,qK) 6→. �

The following theorem shows that equivalent states are

removed in solving the supervisory control problem to obtain

an automaton satisfying the edit constraint and in the pruning

process to obtain the AES from the largest TPO.

Theorem 11: Let G = 〈Σ,Q,→,Q0〉 be a nondeterministic

automaton with the set of secret states QS ⊆ Q and let Φ be

the edit constraint which prohibits n+1 consecutive event era-

sures. Let T = 〈QY ,QZ ,QW ,Σ,Σε ,Θ,→yz,→zz,→zw,→wy,y0〉
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be the largest three-player observer w.r.t. G without consid-

ering the edit constraint and let GT = 〈ΣGT ,Q,→,Q0〉 be the

the transformed automaton of T . Let ρ : ΣGT → (Σ1∪Σε
1 ∪Θ1)

be a renaming and let AES be the All Edit Structure obtained

from T . Let S be the supremal controllable and nonblocking

subautomaton of GT after considering the specification intro-

duced by Φ. Then S
ρ−1(s)
−−−−→ q if and only if AES

ρ(s)
−−→ q.

Proof: In Supplementary Materials. �

Theorem 11 proves that when it comes to imposing the edit

constraint, the pruning process from the largest TPO to the

AES removes equivalent states with the synthesis procedure

of a supremal supervisor. Hence no information is lost when

we apply the supervisory control approach to enforce the edit

constraints and obtain edit functions. This result is essential

to show that the transformation of the TPO to an equivalent

automaton and the constraint Φ to specification K is correctly

done in Def. 23 and Def. 25, respectively. The next step

is to consider the modular representation of the system. In

that case, we will use the transformation in Def. 24, which

results in a set of automata transformations of the individual

three-player observers, with necessary self-loops to capture the

synchronization among the components. Finally, we combine

the results about abstraction and decomposition, which results

in Theorem 12.

Theorem 12: Let G = {G1, . . . ,Gn} be a modular nonde-

terministic system with sets of secret states QS
i . Let AES be

the All Edit Structure of G under constraint Φ. Let det(Gi)
and detd(Gi) be the observer and the desired observer of Gi,

respectively. Let ∼o be an opaque observation equivalence on

Gi such that G̃i ∼o Gi for i = 1, · · · ,n. Let Hi,ob ≈o det(G̃i)
and Hi,b ≈ det(G̃i) for i = 1, · · · ,n, where ≈o and ≈ are

opaque bisimulation and bisimulation, respectively. Let T ′
i be

the largest three-player observer of detd(Hi,ob) and Hi,b for

i = 1, · · · ,n with the event set Σi,T . Let GT
i be the transformed

automaton of T ′
i and K be the automaton specification. Let

Pe : Ω → L (G ) be an edit projection and l(ω) be a string

generated by run (Def. 15 and Def. 14). Let S be the

least restrictive controllable and nonblocking supervisor cal-

culated from {GT
1 , . . . ,G

T
n ,K} and let ρ : (ΣGT

1
∪·· ·∪ΣGT

n
)→

(Σ1,T ∪ ·· · ∪Σn,T ) be the renaming map. Then [∀s ∈ L (G ),
∃t ∈L (S ): Pe(ρ(t))= s]⇒ [l(ρ(t))= fe(s) where fe ∈AES].

Proof: The proof follows directly from Theorems 11 and 10,

in combination with Theorem 9. �

Theorem 12 essentially shows the proof for all the steps

shown in Fig. 1. The theorem shows that Algorithm CA-

AES correctly synthesizes edit functions for opacity enforce-

ment in a modular form, therefore, the algorithm is sound.

It also reveals that the problem of calculating the modular

representation of the All Edit Structure can be transformed

to synthesizing modular supervisors. The advantage of such

a transformation is that we may leverage various existing

approaches for calculating a modular supremal nonblocking

supervisor in the literature; see, e.g., [11], [28], [29], [37].

Therefore, we can obtain a modular representation of the All

Edit Structure, which is noticeably efficient to compute. Then

we may synchronize individual components in the Modular

Edit Structure, which results in a subsystem of the monolithic

AES. However, as was pointed out in Section IV, some edit

decisions are omitted after the synchronization. In practice, it

is usually desired to retain the modular structure and extract

an edit function from it, much in the same way as a set of

modular supervisors control a plant. The extraction process is

explained next.

Each step of extracting a valid edit decision is described

in Fig. 5. Here the edit function is an interface between the

system’s output and the outside environment. Assume that the

system outputs event γ , then the edit function makes an edit

decision for that event and the edited string will be output to

the external observers.

Specifically, this process contains the following steps. (1)
when γ is received by the edit function, all the components

of the Modular Edit Structure are in states that correspond to

Y states of the All Edit Structure. (2) At these states, event γ
is executed and states of all the components in the Modular

Edit Structure are updated simultaneously. After the execution

of γ , each component of the Modular Edit Structure is at a

state that corresponds to a Z state of the All Edit Structure.

(3) Then assume there are multiple transitions defined out of

such a current state, we need to select one common transition

which corresponds to a specific edit decision and can be

viewed as making a control decision from the current state.

Note that as the selected transition needs to be accepted by

all the components, thus it may happen spontaneously in all

the components of the system. The solution of the modular

supervisory control problem guarantees the existence of such

a common transition out of the current Z states.

Algorithm CA-AES returns the edited string ρ(σ0 . . .σk) for

event γ when every component of the Modular Edit Structure

reaches a new state corresponding to a Y state of the AES. At

that point, the Modular Edit Structure is ready to process the

next event output by the system, and the above steps repeat.

Meanwhile, the algorithm keeps track of the states of the

Modular Edit Structure as its components evolve. Based on

Theorem 11, the edited string ρ(σ0 . . .σk) is accepted by the

monolithic AES. This finally confirms that the extracted edit

decision from the Modular Edit Structure corresponds a valid

edit decision in the monolithic AES. The above process is

illustrated in the following example.

Example 7: Consider the nondeterministic system G =
{G1,G2} shown in Fig. 2. As it was shown in Example 2,

the system can be abstracted using opaque observation equiv-

alence. After abstraction, the system becomes deterministic,

which means there is no need to calculate the observers of G1

and G2. The largest three-player observers of G̃1 and G̃2 are

T ′
1 and T ′

2 , respectively, shown in Fig. 2. Next, the three-player

observers are transformed to automata GT
1 and GT

2 shown in

Fig. 2, as explained in Example 4.

Assume the user adds an edit constraint such that only

one consecutive erasure is allowed as in Example 6. The

specification automaton of this constraint is K, shown in Fig. 4.

Due to this constraint, the Y states (A,D) and (B,E) are

considered undesired states in T , shown in Fig. 3 and they

should not be reached when we synthesize edit functions.

Since (A,D) is not allowed, its successor states (A,D,α),
(A,D,α → ε) and (A,E) become unreachable from the initial
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Fig. 5. Process of selecting an edit decision from the modular All Edit Structure.

state (A,A). Those three states together with (A,D) and (B,E)
are drawn in dashed lines in Fig. 3 and are to be removed in

the next step. Furthermore, states (B,D,α → ε), (A,C,β → ε)
and (A,B,γ → ε) become deadlocking after (A,D) and (B,E)
are removed. They are drawn in dotted lines in Fig. 3 and are

also to be removed.

Following the compositional approach with supervisor re-

duction presented in [29], [40], we calculate a least restrictive

and nonblocking supervisor for the transformed automaton,

which is shown in Fig. 4 as automaton S. All the paths

accepted by this supervisor represent valid edit decisions. Con-

sider the accepted path SP shown in Fig. 4, it corresponds to an

edit function’s decisions for string γβα such that fe(γβα) =
γ(γ → ε)γβεβαγ(α → ε)α , which is shown by thick lines

in T , Fig. 3. As is seen, ρ(SP) = fe(γβα). Specifically, when

event γ is output by the system, SP returns γ(γ → εγ)(γγ→ε ,w),
which means erasing the γ . Next, event β is output by the

system and it is unchanged according to SP. Finally, α is

output by the system and SP returns α(γα)(α → εα)(αα→ε ,w),
which means erasing α and inserting γ . Similarly, we may

consider other paths accepted by the supervisor in Fig. 4 to

track edit decisions on other strings, then we have a complete

picture of how an edit function works.

Remark 4: From the result in Theorem 8, our modular algo-

rithm CA-AES results in fewer edit decisions compared with

the monolithic approach in [20], due to the synchronization

process in Section IV. This indicates that our method may not

be complete in the sense that even if Algorithm CA-AES does

not return any modular form edit functions, the monolithic

approach may still return valid edit functions. This may be

viewed as the tradeoff of reducing computational complexity

by the modular method. �

VI. CONCLUSION

This paper investigated a compositional and abstraction-

based approach to synthesize edit functions for opacity en-

forcement in a modular setting, given a set of individual

systems. The edit functions modify the system’s output by

inserting and erasing events, under the constraint of limited

number of event erasures. The Three-Player Observer (TPO)

and All Edit Structure (AES) proposed in our prior work

were employed here; these discrete structures embed edit

functions and reflect the constraints. The monolithic approach

first synchronizes all individual systems, then calculates the

monolithic AES to obtain edit functions. In contrast, the

compositional approach first exploits the modular structure

and builds individual TPOs. Then, it incorporates the edit

constraint and calculates the Modular Edit Structure in a

nonblocking modular supervisory control manner to obtain

edit functions. In addition, we also applied abstraction methods

to reduce the state space of the system before opacity en-

forcement. We showed that the abstraction processes preserve

opacity. Combining system composition and abstraction, we

proposed an efficient approach to enforce opacity for complex

systems containing multiple components.
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Theorem 5: Let G be a nondeterministic automaton with

secret states QS ⊆ Q and non-secret states QNS = Q \ QS.

Let det(G) and detd(G) be the observer and the desired

observer of G, respectively. Let ∼o be an opaque observation

equivalence on G such that G̃ ∼o G. Let Hob ≈o det(G̃) and

Hb ≈ det(G̃) where ≈o and ≈ are opaque bisimulation and

bisimulation, respectively. Let Hobd be the desired observer of

Hob. Let T be the largest three-player observer w.r.t. det(G)
and detd(G), also let T ′ be the largest three-player observer

w.r.t. Hobd and Hb. Then T
ω
→ q if and only if T ′ ω

→ q̃.

Proof: From Propositions 3 and 4 it holds that det(G)≈ Hb

and detd(G)≈ Hobd . Thus, we need to show that a transition

is defined in T if and only if the same transition is defined in

T ′. It is shown by induction on n ≥ 0 that y0 ω
→ qn in T if and

only if ỹ0 ω
→ q̃n in T ′.

Base case: (⇒) First assume y0 eo→ z0 in T , where y0 =

(X0
obsd ,X

0
obs). Based on Def. 12 it holds that X0

obs

eo→ in

det(G), I(z0) = y0 and E(z0) = eo. From X0
obs

eo→ in det(G)

and since det(G) ≈ Hb it holds that X̃0
obs

eo→ in Hb. Thus,

ỹ0 = (X̃0
obsd , X̃

0
obs) and X̃0

obs

eo→ in Hb, I(z̃0) = ỹ0 and E(z̃0) = eo.

This means ỹ0 eo→ z̃0 in T ′.

(⇐) Now assume ỹ0 eo→ z̃0 in T ′, where ỹ0 = (X̃0
obsd , X̃

0
obs).

The same argument as (⇒) holds.

Inductive step: Assume the claim holds for some n ≥ 0, i.e,

n ≥ 0 that y0 ω
→ qn in T if and only if ỹ0 ω

→ q̃n in T ′.

(⇒) It must be shown that if qn
σ
→ pn in T then q̃n

σ
→ p̃n

in T ′. There are six possibilities:

• qn = y is a Y state and pn = z is a Z state, Def. 12 (i).

Let y=(xd ,x f ) and σ ∈Σ. Based on inductive assumption

there exists ỹ = (x̃d , x̃ f ) and ỹ0 ω
→ ỹ in T ′. From y

σ
→ z in

T and based on Def. 12 it holds that x f
σ
→ in det(G)

and I(z) = y and E(z) = σ . Since det(G) ≈ Hb it holds

that there exists x̃ f
σ
→ in Hb, where x̃ f ≈ x f . This means

ỹ
σ
→ z̃ in T ′, where ỹ = (x̃d , x̃ f ) and I(z̃) = (x̃d , x̃ f ) and

E(z̃) = σ .

• qn = z is a Z state and pn = z′ is a Z state, Def. 12 (ii).

Let z = ((xd ,x f ),eo) and σ ∈ Θ. Then based on Def. 12

it holds that σ ∈ Σ and I(z′) = (x′d ,x f ) and xd
σ
→ x′d in

detd(G) and E(z′) = eo. Since detd(G)≈ Hobd and from

xd
σ
→ x′d in detd(G) it follows that x̃d

σ
→ x̃′d in Hobd , where

x̃d ≈ xd and x̃′d ≈ x′d , and based on the inductive assump-

tion it follows that there exists z̃ = ((x̃d , x̃ f ),eo) such that

ỹ0 ω
→ z̃ in T ′. Thus, z̃

σ
→ z̃′ in T ′, where z̃ = ((x̃d , x̃ f ),eo)

and σ ∈ Σ and I(z̃′) = (x̃′d , x̃ f ) and x̃d
σ
→ x̃′d in Hobd and

E(z̃′) = eo.

• q̃n
σ
→ p̃n is the ε insertion function and qn = z is a Z state

and pn =w is a W state, Def. 12 (iii). Let z= ((xd ,x f ),eo)
and σ ∈ Θ. Then based on Def. 12 it holds that σ = ε
and I(w) = I(z) and A(w) = eo and xd

eo→ and x f
eo→ in

detd(G) and det(G), respectively. Since det(G)≈ Hb and

detd(G)≈Hobd , from x f
eo→ in det(G) it follows that x̃ f

eo→

in Hb and from xd
eo→ in detd(G) it follows that x̃d

eo→
in Hobd . Moreover, based on the inductive assumption it

holds that there exists z̃ = ((x̃d , x̃ f ),eo) such that ỹ0 ω
→ z̃

in T ′. Thus, z̃
σ
→ w̃ in T ′, where based on Def. 12 it holds

that σ = ε and I(w̃) = I(z̃) and A(w̃) = eo and x̃d
eo→ and

x̃ f
eo→ in Hobd and Hb, respectively.

• q̃n
σ
→ p̃n is the event erasure transition function and qn = z

is a Z state and pn = w is a W state, Def. 12 (iv). Let

z = ((xd ,x f ),eo) and σ ∈ Θ. Then based on Def. 12 it

holds that σ = eo → ε and I(w) = I(z) and A(w) = eo →

ε and x f
eo→ in det(G). Since det(G) ≈ Hb from x f

eo→

in det(G) it follows that x̃ f
eo→ in Hb. Moreover, based

on the inductive assumption it follows that there exists

z̃ = ((x̃d , x̃ f ),eo) such that ỹ0 ω
→ z̃ in T ′. Thus, z̃

σ
→ w̃ in

T ′, where based on Def. 12 it holds that σ = eo → ε and

I(w̃) = I(z̃) and A(w̃) = eo → ε and x̃ f
eo→ in Hb.

• qn = w is a W state and pn = y is a Y state and σ ∈ Σ,

Def. 12 (v). Let w = ((xd ,x f ),eo). Then based on Def. 12

it holds that y = (x′d ,x
′
f ) and x f

eo→ x′f in det(G) and xd
eo→

x′d in detd(G). Since det(G) ≈ Hb and detd(G) ≈ Hobd ,

from x f
eo→ x′f in det(G) it follows that x̃ f

eo→ x̃′f in Hb

and from xd
eo→ x′d in detd(G) it follows that x̃d

eo→ x̃′d
in Hobd . Moreover, based on the inductive assumption it

holds that there exists w̃ = ((x̃d , x̃ f ),eo) such that ỹ0 ω
→ w̃

in T ′. Thus, w̃
σ
→ ỹ in T ′, where based on Def. 12 it holds

that ỹ = (x̃′d , x̃
′
f ) and x̃ f

eo→ x̃′f in Hb and x̃d
eo→ x̃′d in Hobd .

• qn = w is a W state and pn = y is a Y state and σ ∈ Σ,

Def. 12 (vi). Let w = ((xd ,x f ),eo → ε). Then based on

Def. 12 it holds that y = (xd ,x
′
f ) and x f

eo→ x′f in det(G).

Since det(G)≈ Hb and from x f
eo→ x′f in det(G) it holds

that x̃ f
eo→ x̃′f in Hb. Moreover, based on the inductive

assumption it holds that there exists w̃= ((x̃d , x̃ f ),eo → ε)

such that ỹ0 ω
→ w̃ in T ′. Thus, w̃

σ
→ ỹ in T ′, where based

on Def. 12 it holds that ỹ = (x̃d , x̃
′
f ) and x̃ f

eo→ x̃′f in Hb.

(⇐) It must be shown that if q̃n
σ
→ p̃n in T ′ then qn

σ
→ pn

in T . The same argument as (⇒) holds. �

Theorem 8: Let G1 = 〈Q1,Σ1,→1,Q
0
1〉 and G2 =

〈Q2,Σ2,→2,Q
0
2〉 be two nondeterministic automata with

sets of secret states QS
1 and QS

2, respectively. Let T1 =
〈Q1

Y ,Q
1
Z ,Q

1
W ,Σ1,Σ

ε
1,Θ1,→

1
yz,→

1
zz,→

1
zw,→

1
wy,y

1
0〉 and T2 =

〈Q2
Y ,Q

2
Z ,Q

2
W ,Σ2,Σ

ε
2,Θ2,→

2
yz,→

2
zz,→

2
zw,→

2
wy,y

2
0〉 be the largest

three-player observers w.r.t. G1 and G2, respectively. Let

GT
1 = 〈ΣGT

1
,Q1,→

1,Q0
1,Q

m
1 〉 and GT

2 = 〈ΣGT
2
,Q2,→

2,Q0
2,Q

m
2 〉

be the transformed automata of T1 and T2, respectively. Let T

be the largest monolithic three-player observer w.r.t. G1||G2.

Then let ρ : (ΣGT
1
∪ΣGT

2
)→ (Σ1 ∪Σε

1 ∪Θ1)∪ (Σ2 ∪Σε
2 ∪Θ2) be

a renaming. We have [GT
1 ‖GT

2
s
→ (q1,q2)]⇒ [T

ρ(s)
−−→ q].

Proof: We need to show that a transition is defined in GT
1 ‖

GT
2 if the equivalent transition is defined in T . It is shown by

induction on n ≥ 0 that (y0
1,y

0
2)

s
→ (qn

1,q
n
2) in GT

1 ‖GT
2 implies

y0
T

ρ(s)
−−→ qT in T .

Let GT
1 ‖GT

2
s
→ (q1,q2).

Base case: n = 0. Let (y0
1,y

0
2) be the initial state of

G1 ‖ G2, i.e., y0
1 (respectively y0

2) is the initial state of T1

(respectively T2). From Def. 12, y0
1 = (X0

1,obsd ,X
0
1,obs) and

y0
2 = (X0

2,obsd ,X
0
2,obs), where X0

i,obs and X0
i,obsd are the ini-

tial state of det(Gi) and detd(Gi) for i ∈ {1,2}, respec-

1



tively. From Lemmas 6 and 7, det(G1 ‖G2) and detd(G1 ‖
G2) are isomorphic to det(G1) ‖ det(G2) and detd(G1) ‖
detd(G2), which implies (X0

1,obs,X
0
2,obs) is the initial state

of det(G1) ‖ det(G2) and detd(G1) ‖ detd(G2). Thus y0
T =

((X0
1,obsd ,X

0
2,obsd),(X

0
1,obs,X

0
2,obs)) is the initial state of T .

Inductive step: Assume the claim holds for some 0 ≤ n,

which means if (y0
1,y

0
2) = (q0

1,q
0
2)

σ0...σn−1
−−−−−→ (qn

1,q
n
2) in GT

1 ‖GT
2

then y0 ρ(σ0...σn−1)
−−−−−−−→ qn in T . Now we need to show that if

(q1,q2) = (qn
1,q

n
2)

σn→ (p1, p2) in GT
1 ‖GT

2 then q = qn ρ(σn)
−−−→ p

in T . From (q1,q2) = (qn
1,q

n
2)

σn→ (p1, p2) in GT
1 ‖GT

2 and based

on Def. 2 it holds that qi
σn→ pi in GT

i for i ∈ {1,2}, which

means qi
σn→ pi in Ti for i ∈ {1,2}. Consider the following four

cases for all the possible transitions:

• if ρ(σn) = σn then based on Def. 24 it holds that qi
σn→ pi

is a yz transition in the original Ti such that E(pi) =
σn and I(pi) = qi if σn ∈ Σi and qi = pi otherwise for

i ∈ {1,2}. Let qi = (xi,d ,xi, f ) for i ∈ {1,2}. Based on

Def. 12 this means xi, f
σn→ in det(Gi) if σn ∈Σi. Moreover,

based on the inductive assumption there exists y=(xd ,x f )

such that y0
T

ω
→ y in T , which implies det(G1 ‖G2)

Pe(ω)
−−−→

x f . Since based on Lemma 6 det(G1 ‖G2) and det(G1)‖

det(G2) are isomorphic it holds det(G1)‖det(G2)
Pe(ω)
−−−→

and string Pe(ω) reaches (x1, f ,x2, f ) in det(G1)‖det(G2).

Thus, based on xi, f
σn→ in det(Gi) it can be deduced that

(x1, f ,x2, f )
σn→ in det(G1‖G2), it also implies (x1, f ,x2, f )

σn→

in det(G1 ‖G2) by Lemma 6. This means qn
T = qT

σn→ pT

is a yz transition in T .

• if ρ(σn) = α and σn = αeo . Then based on Def. 24

there are three possibilities for qi
ρ(σn)
−−−→ pi in Ti: it is

a zz transition or a zw1 transition or a zw2 transition and

eo = E(qi). Now consider the following cases:

1) αeo ∈ ΣGT
1
\ΣGT

2
. This means q1

αeo→ p1 in GT
1 , which

implies q1
σn→ p1 in T1. From σneo

6∈ ΣGT
2

and def. 24

it follows that σn 6∈ Σ2, which implies q2 = p2.

Consider the following three cases: If q1
σn→ p1 in

T1 is a zz transition, then based on Def. 12 it holds

that x1,d
σn→ x′1,d in detd(G1). If q1

σn→ p1 in T1 is

a zw1 transition, then based on Def. 12 it holds

that x1,d
σn→ in detd(G1) and x1, f

σn→ in det(G1).

If q1
σn→ p1 in T1 is a zw2 transition, then based

on Def. 12 it holds that x1, f
σn→ in det(G1). In all

the three cases based on Lemmas 6 and 7, where

they show detd(G1 ‖ G2) and detd(G1) ‖ detd(G2)

are isomorphic, it holds that (x1,d ,x2,d)
σn→ (x′1,d ,x2,d)

in detd(G1 ‖G2) and (x1, f ,x2, f )
σn→ in det(G1 ‖G2).

These mean qn = q
σn→ p in T is a zz transition if

q1
σn→ p1 in T1 is a zz transition, qn = q

σn→ p is a zw1

transition in T if q1
σn→ p1 is a zw1 transition in T1

and qn
T = qT

σn→ pT is a zw2 transition in T if q1
σn→ p1

is a zw2 transition in T1.

2) σneo
∈ ΣGT

1
∩ΣGT

2
. This means qi

σneo−−→ pi in GT
i for

i ∈ {1,2}, which implies qi
σn→ pi in Ti for i ∈ {1,2}.

Again there are three cases: If qi
σn→ pi in Ti for

i = 1,2 is a zz transition. Then based on Def. 12

it holds that xi,d
σn→ x′i,d in detd(Gi) for i = 1,2. If

qi
σn→ pi in Ti is a zw1 transition for i ∈ {1,2}. Then

based on Def. 12 it holds that xi,d
σn→ in detd(Gi) and

xi, f
σn→ in det(Gi) for i = 1,2. If qi

σn→ pi in Ti is a

zw2 transition for i = 1,2. Then based on Def. 12

it holds that xi, f
σn→ in det(Gi) for i = 1,2. In all

the three cases based on Lemmas 6 and 7 where

they show detd(G1 ‖ G2) and detd(G1) ‖ detd(G2)

are isomorphic, it holds that (x1,d ,x2,d)
σn→ (x′1,d ,x

′
2,d)

in detd(G1 ‖G2) and (x1, f ,x2, f )
σn→ in det(G1 ‖G2).

These mean qn
T = qT

σn→ pT in T is a zz transition if

qi
σn→ pi in Ti is a zz transition, qn

T = qT
σn→ pT is a

zw1 transition in T if qi
σn→ pi is a zw1 transition in Ti

and qn
T = qT

σn→ pT is a zw2 transition in T if qi
σn→ pi

is a zw2 transition in Ti for i ∈ {1,2}.

3) σneo
∈ ΣGT

2
\ΣGT

1
. The same argument as case 1.

• if ρ−1(σn) = σneo,w then based on Def. 24 there are again

three cases:

1) σneo,w ∈ ΣGT
1
\ΣGT

2
. This means q1

σneo,w
−−−→ p1 in GT

1 .

From σneo,w 6∈ΣGT
2

and def. 24 it follows that σn 6∈Σ2,

which implies q2 = p2. From ρ−1(σn) = σneo,w it

holds that p1
σn→ q1 in T1 is a wy1 transition. This

means x1,d
σn→ x′1,d in detd(G1) and x1, f

σn→ x′1, f in

det(G1). Based on Lemmas 6 and 7, where they

show detd(G1 ‖ G2) and detd(G1) ‖ detd(G2) are

isomorphic, it holds that (x1,d ,x2,d)
σn→ (x′1,d ,x2,d)

in detd(G1 ‖ G2) and (x1, f ,x2, f )
σn→ (x′1, f ,x2, f ) in

det(G1 ‖G2). This means qn
T = qT

σn→ pT is a wy1

transition in T .

2) σneo,w ∈ ΣGT
1
∩ΣGT

2
. Then it follows that qi

σneo,w
−−−→ pi

in GT
i for i ∈ {1,2}. This means qi

σ
→ pi in Ti is a

wy1 transition, which implies xi,d
σn→ x′i,d in detd(Gi)

and xi, f
σn→ x′i, f in det(Gi) for i ∈ {1,2}. Based on

Lemmas 6 and 7, where they show detd(G1 ‖G2)
and detd(G1) ‖ detd(G2) are isomorphic, it holds

that (x1,d ,x2,d)
σn→ (x′1,d ,x

′
2,d) in detd(G1 ‖ G2) and

(x1, f ,x2, f )
σn→ (x′1, f ,x

′
2, f ) in det(G1 ‖G2). This means

qn
T = qT

σn→ pT is a wy1 transition in T .

3) σneo,w ∈ ΣGT
2
\ΣGT

1
. The same argument as case 1.

• if ρ−1(σn) = σneo→ε ,w then the same argument as above,

ρ−1(σn) = σneo,w, holds. �

Theorem 11: Let G = 〈Σ,Q,→,Q0〉 be a nondeterministic

automaton with the set of secret states QS ⊆ Q and let Φ be

the edit constraint which prohibits n+1 consecutive event era-

sures. Let T = 〈QY ,QZ ,QW ,Σ,Σε ,Θ,→yz,→zz,→zw,→wy,y0〉
be the largest three-player observer w.r.t. G without consid-

ering the edit constraint and let GT = 〈ΣGT ,Q,→,Q0〉 be the

the transformed automaton of T . Let ρ : ΣGT → (Σ1∪Σε
1 ∪Θ1)

be a renaming and let AES be the All Edit Structure obtained

from T . Let S be the supremal controllable and nonblocking

subautomaton of GT after considering the specification intro-

2



duced by Φ. Then S
ρ−1(s)
−−−−→ q if and only if AES

ρ(s)
−−→ q.

Proof: The pruning process to obtain the AES and the su-

pervisor synthesis procedure are both iterative, which remove

states at each iteration. We will show by induction that at each

iteration a state is removed in GT by the supervisory control

synthesis procedure if and only if the corresponding state is

removed by the pruning process from T .

Base case: Clearly GT and T have the same transition

relation.

Inductive step: Assume the claim holds for some n > 0.

We let Xn
G be the state space of GT at the n-th iteration of

supervisor synthesis process and Xn
T be the state set of T at the

n-th iteration of pruning process. Then S
ρ−1(s)
−−−−→ q⇔ AES

ρ(s)
−−→

q holds for all q ∈ Xn
G (q ∈ Xn

T ). Now we need to show that

Xn+1
G and Xn+1

T are also equal. Assume GT s
→ q, which implies

T
ρ(s)
−−→ q based on Def. 24.

(⇒) First we show that if q 6∈ Xn+1
T , which means q is

removed by the pruning process at the n-th iteration, so q 6∈
Xn+1

G . Then q 6∈ Xn+1
T if it is a deadlock state or it is a Y

state and there exists eo ∈ Σ such that q
eo→ z′, where z′ is a

deadlock Z state. If q is a deadlock state then based on Def. 12

it holds that q is either a W state or a Z state. Thus, consider

the following three case:

• q is a W state. Then 6 ∃eo ∈ Σ such that q
eo→. Then based

on Def. 24 it holds that either q 6
eoeo−−→ or q 6

eoeo→ε
−−−−→ in GT

either, which means q 6→. Thus, q is a blocking state in

GT and q 6∈ Θnonb(Xn
G).

• q is a Z state. If q is a deadlock state then 6 ∃θ ∈ Θ such

that q
θ
→ z′ or q

θ
→ w in T . Then based on Def. 24 it holds

that either q
θE(q)
−−−→ z′ or q

θE(q)
−−−→ w does not exist in GT ,

which means q 6→. Thus, q is a blocking state in GT and

q 6∈ Θnonb(Xn
G).

• q is a Y state and q
eo→ z′, where z′ is a deadlock Z state.

Then based on Def. 24 it holds that q
eo→ z′ in GT and

eo ∈ Σu. As it was shown above if z′ is a deadlock state

in T then z′ is also a deadlock state in GT , thus removed

by the supervisor synthesis procedure. If z′ is removed,

i.e, z′ 6∈ Xn
G, then q 6∈ Θcont(Xn

G).

Thus, if q is removed in the pruning of T , then q is also

removed from GT in supervisor synthesis.

(⇐) Now we show that if q 6∈ Θnonb(Xn
G)∩Θcont(Xn

G), then

q 6∈ Xn+1
T and q needs to be removed from T by the pruning

process. If q 6∈ Θnonb(Xn
G)∩Θcont(Xn

G), there are two cases:

• q 6∈ Θnonb(Xn
G). Then it holds that q is a blocking state,

which means q
α
→ does not exists in GT . There are three

possibilities for q, it can be a Y , Z or W state. If q is a

Y state in T then q ∈ Qm in G, which means q ∈ Θ̂nonb,

which contradicts the assumption. Thus, q can only be a

W or Z state in T . In both cases from q 6
α
→ in GT and

Def. 24, it holds that 6 ∃ρ(α) ∈ Θ such that q
ρ(θ)
−−→ in T .

This means q is a deadlock state in T and q 6∈ Xn+1
T

• q 6∈ Θcont(Xn
G). This means that q

u
→ z in GT such that

u ∈ Σu and z 6∈ Xn
G. Based on Def. 24, this means that q

is a Y state in T and z is a Z state. It was shown above

that if z 6∈ Xn
G then z 6∈ Xn

T , which means z is a deadlock Z

state. Thus q will be removed by pruning process, which

means q 6∈ Xn+1
T .

Thus, if q is removed by synthesis from GT then q is also

removed from T by pruning. �
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