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Abstract

This paper demonstrates the application of Natural Language Processing (NLP) tools to explore
large libraries of documents and to correlate heuristic associations between text descriptions in
figure captions with interpretations of images and figures. The use of visualization tools based on
NLP methods permit one to quickly assess the extent of research described in the literature related
to a specific topic. We demonstrate how the use of NLP methods on only the figure captions can
harness domain knowledge to rapidly map descriptive associations.

1. Introduction

The continuous improvement and power of Natural Language Processing (NLP) tools has spawned
many studies to navigate the literature in materials science and has been demonstrated for selected
use cases [1-13]. Variational Autoencoders, for example, have been suggested as a way to derive
specific processing parameters from existing scientific literature [14]. Specific processing-
property relationships have been demonstrated through tailored entity extraction tools such as
ChemDataExtractor [15] to automatically populate thermal and magnetic databases of some



materials [16]. In this paper we introduce another genre of application to utilize NLP to interrogate
and harness knowledge embedded in documents in the materials science literature.

Figures exist in many different forms, and much of the interpretation of processing-structure-
property relationships is based on the instantaneous ability to identify what the figure
quantitatively provides. While someone with domain expertise can provide this interpretation, the
ability to scale this up if we have hundreds of thousands of figures and images is a totally different
challenge. The aim in applying NLP tools should not simply be to track where words occur or
count their frequency, but rather to capture more subjective relationships which drive our ability
to read the literature and in connecting images to text. As a case study for the development and
knowledge gain possible from NLP tools, we use quantum materials as our platform. We use NLP
tools to identify correlations between the text in figure captions within the quantum material
literature, providing guidance on the types of techniques and properties that have been explored.
This provides a mapping and compression of the information in the quantum materials area. This
provides guidance as to potential data sources or types of images for the domain experts to use in
uncovering structure-property relationships.

The term “quantum materials” covers an incredibly wide area of disciplines, including topological
materials, quantum computing, magnetoelectrics, and mottronics, while also covering a vast
property space including superconductivity, magnetism, photonics, and mechanics [17,18]. The
focus of our case study is on assessing the extent of work done in the field of exploring structure-
property relationships, especially in terms of microstructural characterization, and not necessarily
in seeking a specific scientific mechanism governing their behavior. The use of quantum materials
is especially appropriate as a case study since the literature extends across a broad spectrum of
publications and much of that work is not clearly identifiable through titles and/or abstracts alone.
In fact, much of the work is embedded within papers that are focused on other aspects of quantum
materials and not necessarily structure-property relationships, hence making it very difficult if not
nearly impossible to even assess or find relevant information by mining titles and/or abstracts e.
Harnessing one’s domain expertise in linking heuristic interpretation of images and graphs to
captions opens an untapped resource for knowledge discovery using NLP methods

In this study we use NLP tools to visualize connections in the data and explore ‘hidden’
relationships that can be inferred in exploring the associations between information embedded in
the interpretation of figures regarding structure-property relationships. Large scientific corpuses,
such as the body of literature of quantum materials, contains many types of data. Defining
correlations in this data, particularly defining correlations between images, helps to define
relationships which are otherwise difficult to describe. These correlations capture information
succinctly and enable effective visualization, thereby exposing relationships that are lost in the
data complexity. Rather than analyze the figures themselves, we show that by instead analyzing a
large number of captions associated with a range of figure types, we are able to establish
connections between figures and their associated captions. This association contains a vast amount
of untapped heuristic knowledge that we are now capturing using our NLP methods.



To a domain expert, these figures provide useful qualitative information that guides the reader and
contains important information, even if the quantitative interpretation of these figures is not the
main objective of these papers. As the details of the figures are often not reflected in the titles
and/or abstracts of the papers, text mining alone will miss the discovery of the critical information
embedded in these figures. To address this challenge, we show how using NLP limited solely to
the figure captions can indeed capture trends in the information contained in the figures. We do
not analyze nor input the figures in this approach, but rather visually assess the trends after the
analysis to test this logic. We provide a case study in the field of quantum materials by exploring
a collection of more than 300,000 images and their corresponding captions from over 50,000
articles on topological materials. This information often serve as supporting information and
reside as figures and graphs. We show that despite the large level of research publications in the
field of quantum materials and the recognition of the importance of microstructural influences on
properties of such materials, there is in fact a paucity of experimental studies that link specific
wavenumbers with microstructural features.

The tabulation of structure-property relationships in the field of quantum materials represents one
such example of a rapidly expanding field of literature, and identifying where data and gaps in the
experimental knowledge exist is challenging. In this paper we show how we can rapidly explore
and identify information that would otherwise have been difficult to uncover in the large number
of documents. Capturing the associations in this way takes advantage of an existing, yet untapped,
data resource. Our premise is that a domain specialist often conducts a survey of the literature, to
obtain a general sense of the status of the types of studies conducted in a given field. A rapid
aggregate analysis of thousands of papers provides the reader a quick sense of the information
landscape of research activity in the field. We are linking the experimental and/or computational
technique that is the source of a given figure (eg. electron microscopy, X-ray or Raman scattering,
band structure, etc.) to other information about the material given in the caption.

1I. Methods

The Elsevier text mining application programming interface (API)[19] was used to query and
retrieve full texts, images and captions of articles related to topological materials. Over forty
individual keywords including broad topical headings such as 2D Topological Materials,
Topological Band Theory, Topological Crystalline Insulator, and Topological superconductor
were used to access and retrieve the literature database. From these sources, 50,639 articles on
topological materials and 304,967 images were collected, along with the corresponding captions.
Fifty-three keywords relevant to topological materials were identified and the images were labeled
based on the presence or absence of these keywords in their captions, resulting in 100,000 images
labeled according to the occurrence of keywords in their respective captions. Thirty of the most
common labels of images in this collection are visually represented in Figure 1.

The empirical information content of scientific publications are in various forms such as images
(for example, spectra and micrographs), text and tables [20, 21]. For topological materials, these
include microstructure data such as electron micrographs, conductance and resistance
measurements, band diagrams, synthesis flowcharts, x-ray diffraction images, angle resolved
photon emission spectroscopy, mass spectroscopy, density of states calculations, Hall conductance



studies, and magnetization measurements. Dispersed over the body of literature on topological
materials, these images capture several properties and chemistries arranged over several scales of
length, space and time. Caption groupings formed by the vector space modeling of caption texts
serve both as a visualization tool enabling rapid and holistic comprehension of the topological
literature, and as an exploratory tool highlighting previously unknown relationships between sets
of images. As a visualization tool, a caption plot helps identify which property measurements are
most represented in the literature. We are also able to determine which measurements occur most
frequently with one another, as well as how they are distributed across different topical databases,
thereby identifying where the gaps in the data exist.
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Figure 1. The most common labels assigned to images based on keyword occurrences in the
captions and their distribution in the literature, as related to quantum materials. This provides
our search space for analyzing and extracting information from figures, thereby linking text and
figures. This paper provides an accelerated approach towards the classification of figure types,
without requiring the complexity of figure recognition approaches.

The schematic workflow we employ to form caption plots is shown in Figure 2. The caption texts
are converted to vectors using Term Frequency Inverse Document Frequency (Tfidf) vectorization
[22]. Similar vectors are identified by their cosine similarity using a T-distributed Stochastic
Neighbor Embedding algorithm. Thus, individual captions are converted to points on a plot and
colored according to their labels which annotate groups with the type of images they represent.
We define ‘type of image’ here as meaning the label(s) of the images based on the 53 keywords.
We assume that the occurrence of a keyword in the caption indicates that the figure shows data
related with that keyword. For example, a type of image corresponding with SEM is expected to



show data obtained via SEM, phase diagram is expected to show a phase diagram or some
thermodynamic relationships, and so on. Comparison between the labeling of captions via NLP
versus manual labeling finds that this assumption is reasonable.
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Figure 2. Vector space modeling of textual documents. The vocabulary size of the corpus
determines the dimensionality of the vector space. The text entries, which here are for illustrative
purposes only, result in a three dimensional vector space after Tfidf vectorization and the
calculation of the cosine matrix. Larger vocabulary sizes lead to higher dimensional
representations of the document.

Tfidf is a statistical count that reflects the relevance of a word in a document and is a common
vectorization technique for text mining and information retrieval. For a term ‘t’ appearing in ‘d’
documents within a collection D:

tfidf (t,d,D) = tf (t,d) x idf(t,D)
Where tf(t,d) is the term frequency defined by:

1,if tispresentind
0, otherwise

tf(t.d) = |

The inverse document frequency idf(t,D) is defined as:

N
{d € D:t € d}|

idf(t,D) = log

Tfidf ensures that unique terms are weighted higher than common terms. For example, the word
‘figure’, ‘image’ and ‘plot’ are likely to occur very commonly in captions and carry no additional
semantic content that adds to our knowledge of the image. However, terms such as magnetization
and conductance are unlikely to be as common and are weighted higher. The terms with the highest



tfidf scores are retained by the model as the basis for a vector space. Similar vectors are identified
by their cosine similarity using the T-distributed Stochastic Neighbor Embedding (TSNE)
algorithm, resulting in individual captions being converted to points on a plot and colored
according to their labels annotating groupings of points with the type of images they represent.

The cosine distance between two captions are calculated as:

caption — 1 .caption — 2

cos(caption — 1, caption — 2) =

|caption — 1||caption — 2|

Similar captions with shared vocabulary have cosine values approaching one — signifying that they
are geometrically located at proximate locations in higher dimensional space. The caption vectors
are analyzed using TSNE [23] to project similar vectors into a 2 dimensional space according to
their cosine metric. TSNE is a nonlinear dimensionality reduction technique that models a higher
dimensional object such that similar objects are modeled by nearby points and dissimilar objects
by distant points with high probability. Given a set of high dimensional objects xi, TSNE computes
the probabilities pjj such that:

exp(— cos?(x;, x;)/20%)

Liexi €Xp(— €05 (x;, xx) [20%)

Pjii =

Where o is the bandwidth of a Gaussian kernel internal to the algorithm. This is adapted to the
density of the data, with smaller values used in dense parts of the high dimensional space. The
result is a two dimensional projection of the higher dimensional manifold such that similar captions
are plotted in close proximity. Finally, each caption is colored according to the label identified by
the string identification keyword search.

To convert a caption into a vector, the tokens (words) in a caption are compared with the selected
basis terms and, if present, the tfidf score of the token becomes the length of the vector in that
dimension. Similar captions with shared vocabulary have cosine values approaching unity,
signifying that they are geometrically located at proximate locations in higher dimensional space.
Additionally, each caption is colored according to the label identified by the string identification
keyword search.

II1. Results

For the topical heading ‘topological superconductors’, 11,000 images were labeled and their
captions were modeled in Tfidf vector space and then by TSNE. TSNE positions points based on
similarity, and the caption analysis plot of topological superconductors is shown in Figure 3, with
each point corresponding to a unique labeling of a figure caption. It should immediately be noted
that the points in the scatter plot also group according to their color, demonstrating that the
vectorization protocol has indeed placed similar types of image captions next to each other. Thus,
the vectorization approach has effectively captured the semantic content of the caption texts. The
size of the labels corresponds to the number of points within the high density region, and regions



are annotated such that the size of the labels are proportional to the number of points within a high
density region. Phase Diagrams, Density of States (DOS), resistance, magnetization and band
structure form the largest set of images in topological superconductors[24]. Of these, resistance
and magnetization occupy the center of the image, signifying that they share semantic contexts
with all other types of images. Resistance studies and magnetization measurements are the two
most common methods to establish superconductivity in a material and therefore the terms in these
captions are likely to be distributed across all other images, explaining their central position in the
caption plot.

® M

g, 4 L phase diagram
. y PR r" 7 » _o® '_.’ '
. ™ L *® * @
. m .. % ° Lk n‘._
e ok o e fgenr v e DOS
r .Rez nsp(-!(l'ra, o® ‘v:".. L Y p onone - ©

° b u... ® I‘g * ®#electron duns\ty -

L. eoy o % o
- .lSynlhesnsn n"&' .: o - ”- 3 iy

e & = :‘v‘_; o4 : .l_»,:; band'structure

- L ] .’,H'—’|
'-':-{' '""'°5"::£,“::_-'re5|sta (CE §iEnerty shectri ¢

08 ag g Y LIRS X . Fermi surface
S ;}ClFrm_ag 9e.E|zat19r'1 P o L
;' tica Magnet ;resstance" -?

ARPES

Dirac con:

#ls o o e *°
v L
crystal structure el

s oe
STM ._K
L]

Figure 3. Caption analysis plot of 11,000 captions on quantum materials. This figure provides
two pieces of critical information: the proximity of points measures the correlation between
concepts, and the size of the labels correspond to the relative abundance of these images in
literature. This therefore provides information on both the relationship of topics and the perceived
importance of topics.

Captions related with characterization approaches such as SEM, TEM, AFM, Raman Spectra, and
ARPES are distributed along the edge of the plot. These microscopy techniques share the words
‘electron’ and derivatives of ‘microscopy’ which are highly weighted by Tfidf and hence organize
next to each other. Measurements and representations of electronic structure group along another
edge across the microstructures, showing that the plots have successfully distinguished between
two distinct types of images: microstructural maps of materials and electronic structure data.
Current maps and X-ray Photon spectra are seen to be outlier groupings not immediately proximate



to other groupings, suggesting that these are less commonly provided measurements and are
semantically separated from other types of data.

The selection of weighted semantic terms is demonstrated by isolating individual groups as is
shown in Figure 4, with this region corresponding to the Raman spectra region of Figure 3. Note,
each color corresponds with the assigned image type from the NLP based labeling of the figure
(for example, the yellow circles are ‘Raman Spectra’ type). The figures represented by the yellow
pixels are found to be typical Raman spectra. However, other types of images identified by their
labeling color are seen to be adjacent to Raman spectra. For example, image 6 is labeled as a TEM
image and upon inspection it is found that this is a Raman spectrum with a TEM image of the
corresponding section under study. Similarly, Raman images with optical micrographs and Spectra
with stress loading are also identified.

From this, we are able to define a correlation between Raman shift and TEM images. While we
are not explicitly accounting for domain expertise, the domain expertise will be reflected in the
literature by the number of times concepts appear together, and therefore extracting those
correlations helps to guide the ensuing interpretation, although domain expertise is still required
for the interpretation of these correlations.

14]
Raman
spectra with
stress \

X |
cycling |I / U

Intensity (a.u)
=

R aman shift (em’)

[1-3]
Raman
Spectra

[5-6] Raman spectra 7 B &
with TEM images

[7] Raman spectra § o — e
with optical images %

|
Intensity (arb. units)
g
E
g

1w 00 220

R 118 T ARG et [l=— iR |
00 200 20 400
Raman shift (cm ')

Figure 4. Connection between textual and graphical entries. This provides an alternate approach
for representing the existing knowledge on topological superconductors. The inset figures are
adapted with permission from references [23-29] .

IV. Discussion



As discussed previously, the Caption plots provide two critical pieces of information: the number
of times the concepts appear (thus representing their perceived importance by domain experts) and
the correlation between the concepts. We are able to quantitatively assess correlations between
relationships of figures. This correlation is defined by the Euclidean distance between the centers
of the groupings captured in the Caption plots, with a smaller distance indicating higher
correlation. For example, in the prior analysis Raman Spectra is closest to Microstructure, as
expected since Raman measures atomic bonds as well as phonons in a material. These measures
are highly influenced by the microstructure and defect chemistry[25], thus justifying our
interpretation of correlations.

Considering the relationship between quantum properties and length scales, we compare the
similarity between resistance and electronic (DOS), crystal and micro-structures. We define
similarity here as being based on the proximity of points. The distances listed in Figure 5 are based
on the distance between the center points of the groupings, which were defined as described earlier.
From these comparisons, we first identify that microstructure is the least represented measured
length scale, as shown by the smaller label size as compared to DOS / band structure and crystal
structure. The second interpretation is that resistance is most closely correlated with the
microstructure length scale, as shown in Figure 5, where microstructure is the nearest region of
interest to resistance. We therefore identify based on the caption analysis that for a quantum
property (resistance) that microstructural scale measurements provide the highest related data,
although this length scale is also the least represented in the literature. While domain experts
working in the field may not be interested in the area of microstructure due to the existing
background and knowledge of the experts, the purpose of this paper is to demonstrate a tool which
allows someone without expertise in the field to quickly assess the literature landscape, thereby
lowering the barrier to cross-cutting between fields.
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Figure 5. Comparison of property (resistance) with measurement length scales. We find that of
the electronic, crystallographic and microstructural length scales, microstructure is the most
connected with the quantum material properties (as seen by the close proximity of the label to
‘resistance’). Conversely though, we find that microstructure is the least explored of these
measures in the quantum material literature (as seen by the smaller label size).

V. Conclusion

In this paper, we introduced the application of natural language processing for utilizing vast
amounts of information for analysis of quantum materials, but with this information in the form of
text which is usually not utilized in traditional data driven design. This paper included the analysis
of 11,000 captions related with topological superconductors from textual resources on topological
crystalline insulators, and with a vocabulary size of 4 million words. From this analysis, which
introduces a unique visualization tool, we are able to quantify correlations in the data which
otherwise go unidentified. An application of this work is to discover quickly where measurements,
length scales, and structure-property relationships connect, and not just for one property at a time



but for multiple attributes as a single snapshot. Targeting the relationship between the caption and
the figure provides the analytical ability to rapidly interpret the state of the field.
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