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Abstract 

This paper demonstrates the application of Natural Language Processing (NLP) tools to explore 

large libraries of documents and to correlate heuristic associations between text descriptions in 

figure captions with interpretations of images and figures. The use of visualization tools based on 

NLP methods permit one to quickly assess the extent of research described in the literature related 

to a specific topic.  We demonstrate how the use of NLP methods on only the figure captions can 

harness domain knowledge to rapidly map descriptive associations. 

 

 

 

I. Introduction 

The continuous improvement and power of Natural Language Processing (NLP) tools has spawned 

many studies to navigate the literature in materials science and has been demonstrated for selected 

use cases [1-13]. Variational Autoencoders, for example, have been suggested as a way to derive 

specific processing parameters from existing scientific literature [14]. Specific processing-

property relationships have been demonstrated through tailored entity extraction tools such as 

ChemDataExtractor [15] to automatically populate thermal and magnetic databases of some 

Arti fi cial Intelligence Research Letter 



materials [16].  In this paper we introduce another genre of application to utilize NLP to interrogate 

and harness knowledge embedded in documents in the materials science literature.  

Figures exist in many different forms, and much of the interpretation of processing-structure-

property relationships is based on the instantaneous ability to identify what the figure 

quantitatively provides.  While someone with domain expertise can provide this interpretation, the 

ability to scale this up if we have hundreds of thousands of figures and images is a totally different 

challenge. The aim in applying NLP tools should not simply be to track where words occur or 

count their frequency, but rather to capture more subjective relationships which drive our ability 

to read the literature and in connecting images to text.  As a case study for the development and 

knowledge gain possible from NLP tools, we use quantum materials as our platform. We use NLP 

tools to identify correlations between the text in figure captions within the quantum material 

literature, providing guidance on the types of techniques and properties that have been explored.  

This provides a mapping and compression of the information in the quantum materials area.  This 

provides guidance as to potential data sources or types of images for the domain experts to use in 

uncovering structure-property relationships. 

 

The term “quantum materials” covers an incredibly wide area of disciplines, including topological 

materials, quantum computing, magnetoelectrics, and mottronics, while also covering a vast 

property space including  superconductivity, magnetism, photonics, and mechanics [17,18].  The 

focus of our case study is on assessing the extent of work done in the field of exploring structure-

property relationships, especially in terms of microstructural characterization, and not necessarily 

in seeking a specific scientific mechanism governing their behavior. The use of quantum materials 

is especially appropriate as a case study since the literature extends across a broad spectrum of 

publications and much of that work is not clearly identifiable through titles and/or abstracts alone. 

In fact, much of the work is embedded within papers that are focused on other aspects of quantum 

materials and not necessarily structure-property relationships, hence making it very difficult if not 

nearly impossible to even assess or find relevant information by mining titles and/or abstracts e.  

Harnessing one’s domain expertise in linking heuristic interpretation of images and graphs to 

captions opens an untapped resource for knowledge discovery using NLP methods  

In this study we use NLP tools to visualize connections in the data and explore ‘hidden’ 

relationships that can be inferred in exploring the associations between information embedded in 

the interpretation of figures regarding structure-property relationships.  Large scientific corpuses, 

such as the body of literature of quantum materials, contains many types of data.  Defining 

correlations in this data, particularly defining correlations between images, helps to define 

relationships which are otherwise difficult to describe.  These correlations capture information 

succinctly and enable effective visualization, thereby exposing relationships that are lost in the 

data complexity.  Rather than analyze the figures themselves, we show that by instead analyzing a 

large number of captions associated with a range of figure types, we are able to establish 

connections between figures and their associated captions.  This association contains a vast amount 

of untapped heuristic knowledge that we are now capturing using our NLP methods.   

 



To a domain expert, these figures provide useful qualitative information that guides the reader and 

contains important information, even if the quantitative interpretation of these figures is not the 

main objective of these papers.  As the details of the figures are often not reflected in the titles 

and/or abstracts of the papers, text mining alone will miss the discovery of the critical information 

embedded in these figures. To address this challenge, we show how using NLP limited solely to 

the figure captions can indeed capture trends in the information contained in the figures.  We do 

not analyze nor input the figures in this approach, but rather visually assess the trends after the 

analysis to test this logic.  We provide a case study in the field of quantum materials by exploring 

a collection of more than 300,000 images and their corresponding captions from over 50,000 

articles on topological materials.  This information often serve as supporting information and 

reside as figures and graphs.   We show that despite the large level of research publications in the 

field of quantum materials and the recognition of the importance of microstructural influences on 

properties of such materials, there is in fact a paucity of experimental studies that link specific 

wavenumbers with microstructural features. 

 

The tabulation of structure-property relationships in the field of quantum materials represents one 

such example of a rapidly expanding field of literature, and identifying where data and gaps in the 

experimental knowledge exist is challenging.  In this paper we show how we can rapidly explore 

and identify information   that would otherwise have been difficult to uncover in the large number 

of documents. Capturing the associations in this way takes advantage of an existing, yet untapped, 

data resource. Our premise is that a domain specialist often conducts a survey of the literature, to 

obtain a general sense of the status of the types of studies conducted in a given field. A rapid 

aggregate analysis of thousands of papers provides the reader a quick sense of the information 

landscape of research activity in the field. We are linking the experimental and/or computational 

technique that is the source of a given figure (eg. electron microscopy, X-ray or Raman scattering, 

band structure, etc.) to other information about the material given in the caption. 

 

II. Methods  

The Elsevier text mining application programming interface (API)[19] was used to query and 

retrieve full texts, images and captions of articles related to topological materials. Over forty 

individual keywords including broad topical headings such as 2D Topological Materials, 

Topological Band Theory, Topological Crystalline Insulator, and Topological superconductor 

were used to access and retrieve the literature database.  From these sources, 50,639 articles on 

topological materials and 304,967 images were collected, along with the corresponding captions.  

Fifty-three keywords relevant to topological materials were identified and the images were labeled 

based on the presence or absence of these keywords in their captions, resulting in 100,000 images 

labeled according to the occurrence of keywords in their respective captions. Thirty of the most 

common labels of images in this collection are visually represented in Figure 1.  

The empirical information content of scientific publications are in various forms such as images 

(for example, spectra and micrographs), text and tables [20, 21]. For topological materials, these 

include microstructure data such as electron micrographs, conductance and resistance 

measurements, band diagrams, synthesis flowcharts, x-ray diffraction images, angle resolved 

photon emission spectroscopy, mass spectroscopy, density of states calculations, Hall conductance 



studies, and magnetization measurements. Dispersed over the body of literature on topological 

materials, these images capture several properties and chemistries arranged over several scales of 

length, space and time. Caption groupings formed by the vector space modeling of caption texts 

serve both as a visualization tool enabling rapid and holistic comprehension of the topological 

literature, and as an exploratory tool highlighting previously unknown relationships between sets 

of images.  As a visualization tool, a caption plot helps identify which property measurements are 

most represented in the literature.  We are also able to determine which measurements occur most 

frequently with one another, as well as how they are distributed across different topical databases, 

thereby identifying where the gaps in the data exist. 

 

Figure 1. The most common labels assigned to images based on keyword occurrences in the 

captions and their distribution in the literature, as related to quantum materials.  This provides 

our search space for analyzing and extracting information from figures, thereby linking text and 

figures.  This paper provides an accelerated approach towards the classification of figure types, 

without requiring the complexity of figure recognition approaches. 

 

The schematic workflow we employ to form caption plots is shown in Figure 2. The caption texts 

are converted to vectors using Term Frequency Inverse Document Frequency (Tfidf) vectorization 

[22]. Similar vectors are identified by their cosine similarity using a T-distributed Stochastic 

Neighbor Embedding algorithm. Thus, individual captions are converted to points on a plot and 

colored according to their labels which annotate groups with the type of images they represent.  

We define ‘type of image’ here as meaning the label(s) of the images based on the 53 keywords. 

We assume that the occurrence of a keyword in the caption indicates that the figure shows data 

related with that keyword.  For example, a type of image corresponding with SEM is expected to 



show data obtained via SEM, phase diagram is expected to show a phase diagram or some 

thermodynamic relationships, and so on.  Comparison between the labeling of captions via NLP 

versus manual labeling finds that this assumption is reasonable. 

 

Figure 2. Vector space modeling of textual documents.  The vocabulary size of the corpus 

determines the dimensionality of the vector space.  The text entries, which here are for illustrative 

purposes only, result in a three dimensional vector space after Tfidf vectorization and the 

calculation of the cosine matrix.  Larger vocabulary sizes lead to higher dimensional 

representations of the document. 

 

Tfidf is a statistical count that reflects the relevance of a word in a document and is a common 

vectorization technique for text mining and information retrieval. For a term ‘t’ appearing in ‘d’ 

documents within a collection D: 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑)  ×  𝑖𝑑𝑓(𝑡, 𝐷) 

Where tf(t,d) is the term frequency defined by:  

𝑡𝑓(𝑡, 𝑑) = {
 1 , 𝑖𝑓 𝑡 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The inverse document frequency idf(t,D) is defined as: 

𝑖𝑑𝑓(𝑡, 𝐷) = log
𝑁

|{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
 

Tfidf ensures that unique terms are weighted higher than common terms. For example, the word 

‘figure’, ‘image’ and ‘plot’ are likely to occur very commonly in captions and carry no additional 

semantic content that adds to our knowledge of the image. However, terms such as magnetization 

and conductance are unlikely to be as common and are weighted higher. The terms with the highest 



tfidf scores are retained by the model as the basis for a vector space. Similar vectors are identified 

by their cosine similarity using the T-distributed Stochastic Neighbor Embedding (TSNE) 

algorithm, resulting in individual captions being converted to points on a plot and colored 

according to their labels annotating groupings of points with the type of images they represent.   

The cosine distance between two captions are calculated as: 

cos(𝑐𝑎𝑝𝑡𝑖𝑜𝑛 − 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑐𝑎𝑝𝑡𝑖𝑜𝑛 − 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝑐𝑎𝑝𝑡𝑖𝑜𝑛 − 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ . 𝑐𝑎𝑝𝑡𝑖𝑜𝑛 − 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑐𝑎𝑝𝑡𝑖𝑜𝑛 − 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗||𝑐𝑎𝑝𝑡𝑖𝑜𝑛 − 2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
 

Similar captions with shared vocabulary have cosine values approaching one – signifying that they 

are geometrically located at proximate locations in higher dimensional space. The caption vectors 

are analyzed using TSNE [23] to project similar vectors into a 2 dimensional space according to 

their cosine metric.  TSNE is a nonlinear dimensionality reduction technique that models a higher 

dimensional object such that similar objects are modeled by nearby points and dissimilar objects 

by distant points with high probability. Given a set of high dimensional objects xi, TSNE computes 

the probabilities pij such that: 

𝑝𝑗|𝑖 =
exp (− 𝑐𝑜𝑠2(𝑥𝑖, 𝑥𝑗)/2𝜎

2)

∑ exp (−𝑐𝑜𝑠2(𝑥𝑖, 𝑥𝑘)/2𝜎2)𝑘≠𝑖
 

Where σ is the bandwidth of a Gaussian kernel internal to the algorithm. This is adapted to the 

density of the data, with smaller values used in dense parts of the high dimensional space. The 

result is a two dimensional projection of the higher dimensional manifold such that similar captions 

are plotted in close proximity. Finally, each caption is colored according to the label identified by 

the string identification keyword search. 

To convert a caption into a vector, the tokens (words) in a caption are compared with the selected 

basis terms and, if present, the tfidf score of the token becomes the length of the vector in that 

dimension. Similar captions with shared vocabulary have cosine values approaching unity, 

signifying that they are geometrically located at proximate locations in higher dimensional space. 

Additionally, each caption is colored according to the label identified by the string identification 

keyword search.  

 

III. Results 

 

For the topical heading ‘topological superconductors’, 11,000 images were labeled and their 

captions were modeled in Tfidf vector space and then by TSNE. TSNE positions points based on 

similarity, and the caption analysis plot of topological superconductors is shown in Figure 3, with 

each point corresponding to a unique labeling of a figure caption.  It should immediately be noted 

that the points in the scatter plot also group according to their color, demonstrating that the 

vectorization protocol has indeed placed similar types of image captions next to each other. Thus, 

the vectorization approach has effectively captured the semantic content of the caption texts. The 

size of the labels corresponds to the number of points within the high density region, and regions 



are annotated such that the size of the labels are proportional to the number of points within a high 

density region. Phase Diagrams, Density of States (DOS), resistance, magnetization and band 

structure form the largest set of images in topological superconductors[24]. Of these, resistance 

and magnetization occupy the center of the image, signifying that they share semantic contexts 

with all other types of images. Resistance studies and magnetization measurements are the two 

most common methods to establish superconductivity in a material and therefore the terms in these 

captions are likely to be distributed across all other images, explaining their central position in the 

caption plot.  

 

Figure 3. Caption analysis plot of 11,000 captions on quantum materials.  This figure provides 

two pieces of critical information: the proximity of points measures the correlation between 

concepts, and the size of the labels correspond to the relative abundance of these images in  

literature.  This therefore provides information on both the relationship of topics and the perceived 

importance of topics. 

 

Captions related with characterization approaches such as SEM, TEM, AFM, Raman Spectra, and 

ARPES are distributed along the edge of the plot. These microscopy techniques share the words 

‘electron’ and derivatives of ‘microscopy’ which are highly weighted by Tfidf and hence organize 

next to each other. Measurements and representations of electronic structure group along another 

edge across the microstructures, showing that the plots have successfully distinguished between 

two distinct types of images: microstructural maps of materials and electronic structure data. 

Current maps and X-ray Photon spectra are seen to be outlier groupings not immediately proximate 



to other groupings, suggesting that these are less commonly provided measurements and are 

semantically separated from other types of data.  

The selection of weighted semantic terms is demonstrated by isolating individual groups as is 

shown in Figure 4, with this region corresponding to the Raman spectra region of Figure 3.  Note, 

each color corresponds with the assigned image type from the NLP based labeling of the figure 

(for example, the yellow circles are ‘Raman Spectra’ type).  The figures represented by the yellow 

pixels are found to be typical Raman spectra. However, other types of images identified by their 

labeling color are seen to be adjacent to Raman spectra. For example, image 6 is labeled as a TEM 

image and upon inspection it is found that this is a Raman spectrum with a TEM image of the 

corresponding section under study. Similarly, Raman images with optical micrographs and Spectra 

with stress loading are also identified.  

From this, we are able to define a correlation between Raman shift and TEM images.  While we 

are not explicitly accounting for domain expertise, the domain expertise will be reflected in the 

literature by the number of times concepts appear together, and therefore extracting those 

correlations helps to guide the ensuing interpretation, although domain expertise is still required 

for the interpretation of these correlations.  

 

 

Figure 4. Connection between textual and graphical entries.  This provides an alternate approach 

for representing the existing knowledge on topological superconductors. The inset figures are 

adapted with permission from references [23-29] . 

 

IV. Discussion 



As discussed previously, the Caption plots provide two critical pieces of information: the number 

of times the concepts appear (thus representing their perceived importance by domain experts) and 

the correlation between the concepts.  We are able to quantitatively assess correlations between 

relationships of figures.  This correlation is defined by the Euclidean distance between the centers 

of the groupings captured in the Caption plots, with a smaller distance indicating higher 

correlation.  For example, in the prior analysis Raman Spectra is closest to Microstructure, as 

expected since Raman measures atomic bonds as well as phonons in a material.  These measures 

are highly influenced by the microstructure and defect chemistry[25], thus justifying our 

interpretation of correlations. 

Considering the relationship between quantum properties and length scales, we compare the 

similarity between resistance and electronic (DOS), crystal and micro-structures.  We define 

similarity here as being based on the proximity of points. The distances listed in Figure 5 are based 

on the distance between the center points of the groupings, which were defined as described earlier. 

From these comparisons, we first identify that microstructure is the least represented measured 

length scale, as shown by the smaller label size as compared to DOS / band structure and crystal 

structure.  The second interpretation is that resistance is most closely correlated with the 

microstructure length scale, as shown in Figure 5, where microstructure is the nearest region of 

interest to resistance.  We therefore identify based on the caption analysis that for a quantum 

property (resistance) that microstructural scale measurements provide the highest related data, 

although this length scale is also the least represented in the literature.  While domain experts 

working in the field may not be interested in the area of microstructure due to the existing 

background and knowledge of the experts, the purpose of this paper is to demonstrate a tool which 

allows someone without expertise in the field to quickly assess the literature landscape, thereby 

lowering the barrier to cross-cutting between fields. 



 

 

Figure 5. Comparison of property (resistance) with measurement length scales.  We find that of 

the electronic, crystallographic and microstructural length scales, microstructure is the most 

connected with the quantum material properties (as seen by the close proximity of the label to 

‘resistance’).  Conversely though, we find that microstructure is the least explored of these 

measures in the quantum material literature (as seen by the smaller label size).   

 

 

V. Conclusion 

 In this paper, we introduced the application of natural language processing for utilizing vast 

amounts of information for analysis of quantum materials, but with this information in the form of 

text which is usually not utilized in traditional data driven design.  This paper included the analysis 

of 11,000 captions related with topological superconductors from textual resources on topological 

crystalline insulators, and with a vocabulary size of 4 million words. From this analysis, which 

introduces a unique visualization tool, we are able to quantify correlations in the data which 

otherwise go unidentified.  An application of this work is to discover quickly where measurements, 

length scales, and structure-property relationships connect, and not just for one property at a time 



but for multiple attributes as a single snapshot. Targeting the relationship between the caption and 

the figure provides the analytical ability to rapidly interpret the state of the field.   
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