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Abstract—The problem of anomaly detection is considered
when multiple processes are observed sequentially, but it is
possible to sample only a subset of them at a time according
to an adaptive sampling policy. The problem is to stop sampling
as soon as possible and identify the anomalous processes, while
controlling appropriate error probabilities. We consider two
versions of this problem: in the first one there is no assumption
regarding the anomalous processes, in the second their number
is assumed to be known a priori. For each version, we obtain the
optimal asymptotic performance as the error probabilities vanish
and characterize the sampling rules that lead to asymptotic
optimality. Moreover, we present two sampling rules for each
setup, which differ in terms of the computational complexity
and the actual performance they imply.

Index Terms — Anomaly detection, outlying sequence detec-
tion, sequential design of experiments, asymptotic optimality.

I. INTRODUCTION

The need to identify a subset of anomalous or outlying
processes arises in various contexts. For example, in biology
the processes may refer to brain cell signals [9], while in
economics the processes may refer to prices in stock market
[10]. In many of these applications, the observations are
obtained in a sequential manner and there are constraints on
the number of processes that can be observed at each time step.
The question that arises is how to accurately determine the
subset of anomalous processes as quickly as possible subject
to such sampling constraints.

When all processes are observed at each time, this prob-
lem has been studied in [6] when an upper and a lower
bound on the number of anomalies are available. When there
are sampling constraints and the number of anomalies is
known a priori, this problem has been considered in [1],
[2]. Specifically, the special case of homogeneous processes
is considered in [1], whereas the general, non-homogeneous
case is considered in [2] when either only one process can
be observed at a time, or there is exactly one anomalous
process. The related problem of testing multiple hypotheses
with observation control was considered in [4], where the
groundbreaking work of Chernoff [3] was extended beyond
the case of two hypotheses. A dynamic programming approach
to this problem was presented in [7]. For other detection
problems with observation control we refer to [8].

In this paper, we consider the above anomaly detection
problem when the number of anomalies is known a priori, but

also in the more robust setup where the anomalous subset is
completely unknown. For each of these two setups, we obtain
the optimal asymptotic performance as the error probabilities
vanish and characterize the sampling rules that lead to asymp-
totic optimality. Moreover, we present two different sampling
rules for each setup. The first one is based on [4] and samples
each possible subset of processes with some probability. The
second requires ordering the local test statistics that correspond
to the various processes and samples those processes with the
smallest positive or largest negative values. When the number
of anomalies is known, the latter approach generalizes the
sampling rules in [1], [2], whereas to the best of our knowledge
it is novel in the case that the anomalous subset is completely
unknown.

The rest of the paper is organized as follows. In Section
II, we formulate the problem mathematically. In Section III,
we introduce the proposed stopping and decision rules. In
Section IV, we obtain the optimal asymptotic performance
and characterize the sampling rules that achieve asymptotic
optimality. In Section V, we present two examples of such
sampling rules. We conclude in Section VI. The proofs are
not presented due to lack of space.

II. PROBLEM FORMULATION

We assume there are M channels, each of which is either
anomalous or not. An observation from channel i is modeled as
a random variable with density gi when the channel is anoma-
lous and density fi otherwise, where i ∈ [M ] ≡ {1, . . . ,M}.
Here, fi, gi are densities with respect to a σ-finite measure
νi for which the corresponding Kullback-Leibler information
numbers

Ii =

∫
log(gi/fi) gi dνi, Di =

∫
log(fi/gi) fi dνi (1)

are positive and finite for every i ∈ [M ]. The problem is to
identify the anomalous channels as quickly as possible when
only K of the M channels can be sampled at a time. That is,
if Ri(n) is equal to 1 if channel i is sampled at time n ∈ N ≡
{1, 2, . . .} and 0 otherwise, we must have

R1(n) + . . .+RM (n) = K. (2)

We denote by Xi(n) the observation from channel i at time
n when Ri(n) = 1, whereas Xi(n) is defined in an arbitrary
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way when Ri(n) = 0. We set R(n) = (R1(n), . . . , RM (n)),
X(n) = (X1(n), . . . , XM (n)), and also denote by Z(n) a
random vector that is independent of the previous observations
and may be used for randomization purposes. We require that
R(n+ 1) be Fn-measurable for every n ≥ 1, where Fn is the
σ-algebra that contains all available information up to time n,
i.e.,

Fn = σ(X(s), Z(s); 1 ≤ s ≤ n).

Then, if A is the subset of anomalous channels, we have:

Xi(n) |Ri(n) = 1,Fn−1 ∼

{
gi, i ∈ A
fi, i /∈ A.

In addition to a sampling rule, we need to determine a
stopping rule T and a decision rule ∆, where T is an {Fn}-
stopping time at which we stop sampling, i.e., {T = n} ∈ Fn
for every n ≥ 1, and ∆ = (∆1, . . . ,∆M ) is an FT -measurable
random vector such that ∆i is 1 if channel i is declared to be
anomalous upon stopping and 0 otherwise. We want to select
a triplet (R,∆, T ) so that the expected value of T is small
and the true subset of anomalous channels is identified upon
stopping. We will consider two formulations for this problem.
Here, and in what follows, we denote by PA and EA the under-
lying probability measure and the corresponding expectation
when the subset of anomalous channels is A ⊆ [M ].

A. Two versions of the problem

In the first version of the problem, the subset of anomalous
channels is completely unknown. We denote by Cα,β the class
of triplets (R, T,D) for which the probability of at least one
false alarm and at least one missed detection is below α and
β respectively, i.e.,

PA

(⋃
i/∈A

{∆i = 1}

)
≤ α & PA

(⋃
i∈A
{∆i = 0}

)
≤ β

for every A ⊆ [M ], where α, β are user-specified probabilities.
The problem then is to find a procedure in Cα,β that achieves

inf
(R,T,∆)∈Cα,β

EA[T ] (3)

to a first-order asymptotic approximation as α, β → 0 for
every A ⊆ [M ]. For simplicity, we further assume that there
is a positive real number r > 0 such that

| logα| ∼ r | log β|

as α, β → 0. Thus, r is a parameter that expresses the
asymmetry in the user-specified tolerance levels.

In the second version of the problem, the number of
anomalies is known a priori to be equal to L, and consequently
the final decision rule will specify L channels as anomalous.
In this case, if there is a false identification, there is both a
false alarm and a missed detection and it is more relevant
to control the probability of misclassification. Specifically, we

denote by Cγ the class of procedures (R, T,∆) for which the
probability of at least one error of any kind is at most γ, i.e.,

PA

 ⋃
i∈A,j /∈A

{∆i = 0} ∪ {∆j = 1}

 ≤ γ
for every A ⊆ [M ] with size |A| = L, where again γ ∈ (0, 1)
is a user-specified target level. Then, the second problem we
consider is to find a procedure in Cγ that achieves

inf
(T,∆,R)∈Cγ

EA[T ] (4)

to a first-order asymptotic approximation as γ → 0 for every
A⊆[M ] such that |A| = L.

B. Notation

For each A ⊆ [M ] we set

I∗A = min
i∈A

Ii, D∗A = min
i/∈A

Di

IA =
|A|∑

i∈A(1/Ii)
, DA =

M − |A|∑
i/∈A(1/Di)

.
(5)

That is, I∗A (resp. D∗A) is the minimum and IA (resp. DA) the
harmonic mean of the numbers in {Ii, i ∈ A} (resp. {Di, i /∈
A}.

We denote by Λi(n) the log-likelihood ratio (LLR) of all
observations in channel i up to time n:

Λi(n) =
n∑
s=1

log

(
gi(Xi(s))

fi(Xi(s))

)
Ri(s). (6)

We also consider the corresponding order statistics

Λ(1)(n)≥Λ(2)(n)≥ . . .≥Λ(M)(n) (7)

and denote by w1(n), . . . , wM (n) the corresponding indices:

Λ(i)(n) = Λwi(n), i ∈ [M ]. (8)

We denote by p(n) the number of non-negative LLRs at time
n and by ŵ1(n), . . . , ŵp(n)(n) the indices of the increasingly
ordered positive LLRs at time n.

0 ≤ Λŵ1(n)(n) ≤ . . . ≤ Λŵp(n)
(n). (9)

For each i ∈ [M ] we denote by πi(n) the proportion of times
channel i has been sampled up to time n, i.e.,

πi(n) =
1

n

n∑
s=1

Ri(s), n ≥ 1.

We say that (z1, . . . , zM ) is a vector of limiting sampling
frequencies under PA if for every ε > 0 and i ∈ [M ] we
have ∞∑

n=1

PA (|πi(n)− zi| > ε) <∞, (10)

i.e., if zi is the long-run proportion of times channel i is
sampled under PA when sampling is continued indefinitely.
Note that due to the sampling constraint (2), a vector of
limiting sampling frequencies must belong to

DK = {(c1, . . . , cM ) ∈ [0, 1]M : c1 + . . .+ cM = K}. (11)
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III. MAIN RESULT

A. Stopping and decision rules

When the number of anomalies is unknown, we follow the
Intersection rule proposed in [11] and stop as soon as every
LLR is outside (−a, b), where a, b are positive thresholds to
be determined, and claim that the anomalous channels are the
ones with positive LLRs upon stopping. In other words, the
stopping rule is

Tint = inf{n ≥ 1 : Λi(n)/∈(−a, b) ∀ i ∈ [M ]} (12)

and the decision rule

∆int = {ŵ1(Tint), . . . , ŵp(Tint)(Tint)}. (13)

It is known [6] that when all M sensors are sampled at each
time (K = M ) and the thresholds are

a = | log(β)|+ log(M), b = | log(α)|+ log(M), (14)

the resulting procedure belongs to Cα,β and achieves (3) as
α, β → 0; in particular, for every A ⊆ [M ] we have

EA[Tint] ∼
| log(α)|
J∗A

∼ inf
(T,∆)∈Cα,β

EA[T ], (15)

where

J∗A =


rD∗A, |A| = 0,

min{I∗A, rD∗A}, 0 < |A| < M,

I∗A, |A| = M.

(16)

On the other hand, when the number of anomalies is known
to be L, where 0 < L < M , we stop as soon as the “gap”
between the Lth and the (L+1)th largest LLRs exceeds some
positive value d and we claim that the anomalous channels are
the L ones with the largest LLRs. In other words, the stopping
rule is

Tgap = inf{n ≥ 1 : Λ(L)(n)− Λ(L+1)(n) ≥ d} (17)

and the decision rule is

∆gap = {w1(Tgap), . . . , wL(Tgap)}. (18)

It is known [6] that when all sensors are sampled at all times
(K = M ) and threshold d is selected so that

d = | log(γ)|+ log(L(M − L)), (19)

the resulting procedure belongs to Cγ and achieves (4) as γ →
0; in particular, for every A ⊆ [M ] with |A| = L we have

EA[Tgap] ∼
| log(γ)|
I∗A +D∗A

∼ inf
(T,∆)∈Cγ

EA[T ]. (20)

The main goal of the present paper is to extend the above
results to the case that we sample only K channels at each
time, where 1 ≤ K < M .

B. Unknown number of anomalies

For each A ⊆ [M ], we introduce the function

JA(c1, . . . , cM ) = min

{
min
i∈A

(ciIi), rmin
j /∈A

(cjDj)

}
, (21)

with (c1, . . . , cM ) ∈ DK , defined in (11). We denote by
(cA1 , . . . , c

A
M ) the optimizer of JA, which satisfies:

Ii c
A
i = rDj c

A
j = min{K/KA, 1} J∗A (22)

for every i ∈ A and j /∈ A, where J∗A is defined in (16) and
KA is equal to

(M − |A|) min{I∗A, rD∗A}
rDA

+ |A| min{I∗A, rD∗A}
IA

(23)

when 0 < |A| < M and equal to

M I∗A/IA, when |A| = M

M D∗A/DA, when |A| = 0.
(24)

The following theorem says that any sampling policy whose
limiting sampling frequencies satisfy (22) leads to asymptotic
optimality.

Theorem 1: Consider a procedure that consists of the
stopping rule (12) with thresholds (14), the decision rule (13),
and a sampling rule with limiting sampling frequencies given
by (22). Then, as α, β → 0 we have

EA[Tint] ∼
| log(α)|

min{K/KA, 1} J∗A
∼ inf

(R,T,∆)∈Cα,β
EA[T ].

Comparing with (15), we conclude that the best first-
order asymptotic performance increases by a factor of
max{KA/K, 1} when sampling K, instead of M , channels at
a time. By its definition in (23)–(24) it is clear that KA ≤M
for every A ⊆ [M ] and that the equality holds when the
problem is homogeneous and symmetric, in the sense that

Ii = I & Di = D, for every i ∈ [M ], (25)
r = 1 & Di = Ii for every i ∈ [M ]. (26)

Indeed, when (25) and (26) hold, KA = M for every A ⊆ [M ]
and the limiting sampling frequencies in (22) become K/M ,
which means that all channels need to be sampled equally
in the long run. On the other hand, if either (25) or (26) is
violated, then KA may be smaller than M , and in this case the
ceiling of KA is the minimum number of channels that need to
be sampled at each time in order to achieve the best asymptotic
performance when the subset of anomalous channels is A.

C. Known number of anomalies

When the number of anomalies is known to be L, we define
the function

QA(c1, . . . , cM ) = min

{
min
i∈A

(ciIi) + min
i/∈A

(ciDi)

}
, (27)
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where (c1, . . . , cM ) ∈ DK , defined in (11). As before, we
denote by (cA1 , . . . , c

A
M ) the optimizer of QA, which is now

given by the following identities:

cAi Ii = xA I
∗
A and cAj Dj = yAD

∗
A (28)

for every i ∈ A and j /∈ A, where

xA =

{
min{K/K̂A, 1}, if (M − L)IA ≥ LDA

min{(K − ǨA)+/K̂A, 1}, otherwise

yA =

{
min{(K − K̂A)+/ǨA, 1}, if (M − L)IA ≥ LDA

min{K/ǨA, 1}, otherwise
(29)

and

K̂A = L
I∗A
IA
, ǨA = (M − L)

D∗A
DA

. (30)

Theorem 2: Consider a policy that consists of the stopping
rule (17) with threshold (19), the decision rule (18), and a
sampling rule with limiting sampling frequencies given by
(28). Then, as γ → 0 we have

EA[Tgap] ∼
| log(γ)|

xAI∗A + yAD∗A
∼ inf

(R,T,∆)∈Cγ
EA[T ],

where xA, yA are defined in (29)-(30).

Similarly to the previous setup, the ceiling of K̂A + ǨA

can be interpreted as the smallest number of channels that
needs to be sampled at each time in order to achieve the
best asymptotic expected sample size when the subset of
anomalous channels is A. By (30) it is clear that K̂A ≤ L
and ǨA ≤M − L for every A ⊆ [M ] and that the equalities
hold in the homogeneous case where (25) holds.

IV. SAMPLING RULES

In order to describe a sampling rule, we need to explain how
at each time n we select the channels to be sampled at time n+
1. The first step for this determination is the estimation of the
anomalous channels at time n. When the number of anomalies
is unknown, the proposed estimate is the set of channels with
positive LLR at time n, i.e., {ŵ1(n), . . . , ŵp(n)(n)}, whereas
when the number of anomalies is known to be L, the proposed
estimate is the set of channels with the largest L LLRs at
time n, i.e., {w1(n), . . . , wL(n)}. Clearly, in each case the
estimate may vary with n and may not agree with the true
subset of anomalies. However, in order to lighten the notation,
in what follows we simply denote it by A. We will present two
sampling rules that guarantee the desired limiting sampling
frequencies in different ways.

A. Probabilistic sampling

The first sampling rule is inspired by the approach in [3],
[4] and samples a subset of channels of size K, say B, with
some probability qA(B), where qA is a pmf on the class of
all subsets of [M ] with size K, which we will denote by PK .

Specifically, the pmf qA should be a solution of the following
linear system with M equations and

(
M
K

)
unknowns:∑

B∈PK :i∈B
qA(B) = cAi , i∈[M ], (31)

where the cAi s are given by (22) (resp. (28)) when the number
of anomalies is unknown (resp. known). Note that the right-
hand side in (31) is the probability that channel i is included
in the selected sample when sampling according to qA.

The computational complexity of solving this system is
at least cubic in

(
M
K

)
. One may solve offline the system in

(31) for every possible subset A and store the results for on-
line implementation. Of course, this task becomes increasingly
intensive in computation and demanding in memory as M
increases, especially if the number of anomalies is unknown.

There are certain special cases in which the solution of this
system is unique and straightforward. Consider for example
the case where the number of anomalies is unknown: when
(25) and (26) hold, then qA is the uniform pmf for every
A; when M = 3 and K = 2 subset {i, j} is sampled with
probability (cAi +cAj −cAk )/2, where {i, j, k} is any permutation
of {1, 2, 3}.

B. Deterministic sampling

The second sampling rule generalizes the approach pro-
posed in [1] and samples at each time the channels with the
smallest positive and/or smallest negative LLRs. Specifically,
let

NA =
∑
i∈A

cAi , (32)

where cAi is given by (22) (resp. (28)) when the number of
anomalies is unknown (resp. known). If NA is an integer, then
we sample at n+1 the NA channels with the smallest positive
LLRs at time n and the K − NA channels with the largest
negative LLRs at time n.

In the general case that NA may not be an integer, we let
Z(n) be a Bernoulli random variable with parameter NA −
bNAc. Then, if Z(n) = 0 (resp. Z(n) = 1), we sample at
time n+ 1 the bNAc (resp. dNAe) channels with the smallest
positive LLRs at time n and the K−bNAc (resp. K−dNAe)
channels with the largest negative LLRs at time n.

This sampling rule determines how to sample at most dKAe
(resp. dK̂A+ǨAe ) channels when the number of anomalies is
unknown (resp. known). Any remaining sensors can be chosen
arbitrarily. Most importantly, this sampling rule requires only
the ordering of the LLRs, therefore it is easy to implement for
any values of K and M , as its computational complexity at
any given time is O(M log(M)).

C. An illustration

In order to illustrate these sampling rules we consider a
simple setup with M = 3 and K = 2, f = N(0, 1),
g = N(0.5, 1), r = 1. Thus, Dj = Ii = 1/8 for every
i ∈ [M ], which means that we have a homogeneous and
symmetric setup, i.e., conditions (25) and (26) are satisfied.
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When the number of anomalies is unknown, the prob-
abilistic approach samples at any time uniformly over
{1, 3}, {2, 3}, {1, 2}. On the other hand, the sampling of the
deterministic approach depends on the size of the current
estimate of the subset of anomalous channels. Indeed, let
A denote the estimated subset of anomalies at time n, i.e.,
the subset of channels with positive LLRs at time n. Then,
NA = K|A|/M = 2|A|/3, which implies that the 2 channels
with the largest negative (resp. smallest positive) LLRs are
sampled if |A| = 0 (resp. |A| = 3). When |A| = 1
(resp. |A| = 2) the largest negative (resp. smallest positive)
is sampled always while the smallest positive (resp. largest
negative) with probability 2/3 and the second largest negative
(resp. second smallest positive) with probability 1/3.

When the number of anomalies is known to be L ∈ {1, 2},
the condition (M − L)IA ≥ LDA reduces to M ≥ 2L
for every subset of size L, thus, both sampling rules are
independent of the estimated subset of anomalies in this case.
Specifically, the deterministic rule samples the 2 channels with
the largest (resp. smallest) LLRs when L = 1 (resp. L = 2),
whereas the probabilistic approach is equally likely to sample
each of the two subsets than contain the channel with largest
(resp. smallest) LLR when L = 1 (resp. L = 2).

D. Simulation

We now present a simulation study with M = 10, K = 5,
f = N(0, 1), g = N(0.5, 1), where we compare the Intersec-
tion rule (with a = b), which does not make any assumption
regarding the anomalous subset, and the Gap rule, which
assumes that the number of anomalies is known. Moreover, we
implement each of these procedures with both the probabilistic
and the deterministic sampling rule. In Fig. 1 we plot for each
of the resulting four schemes the required expected sample
size (ESS) versus the true number of anomalies when the
probability of a false alarm/missed detection of the Intersection
rule and the probability of misclassification of the Gap rule
are approximately equal to 10−3.
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Fig. 1. Expected stopping time versus the number anomalies.

The first conclusion that we can draw from this figure is that
we always obtain better performance using the deterministic

instead of the probabilistic sampling rule. The difference is
relatively small when the number of anomalies is known, but
it is much more pronounced when the subset of anomalies
is completely unknown. Another interesting observation is
that the ESS of the Gap rule increases significantly (with
both sampling rules) as the number of anomalies approaches
M/2 = 5. On the other hand, the ESS of the Intersection rule
is relatively stable as the number of anomalies varies.

V. DISCUSSION

The above simulation example suggests that even if both
sampling rules lead to first-order asymptotic optimality, the
deterministic sampling rule leads to better performance in
practice than the probabilistic one, at least in a homogeneous
and symmetric setup where (25)-(26) hold. In view of the
fact that it is also much easier to implement for large values
of M and in non-homogeneous cases, we can argue that the
deterministic sampling rule should be the default sampling rule
for this problem.

Another important point is that a known number of anoma-
lies is a quite restrictive and often unrealistic assumption that
may lead to non-valid results in some cases of misspecification
(e.g., if it is assumed that there are two anomalies but in reality
there is only one). This paper shows that the anomaly detection
problem admits an elegant, simple and efficient solution even
if nothing is assumed about the anomalous subset. In current
and future work, we plan to extend these results in the spirit of
[6] and incorporate more realistic cases of prior information,
such as an upper bound on the size of the anomalous subset.
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