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Abstract

This paper investigates the enforcement of opacity by insertion functions subject to multiple quantitative constraints capturing
resource or energy limitations. There is a malicious intruder attempting to infer secrets of the system from its observations. To
prevent the disclosure of secrets, the insertion function inserts fictitious events to the output of the system to obfuscate the intruder.
The system is initialized with several types of resources, referred to as energy. The energy is consumed or replenished with event
occurrences while always consumed with event insertions. The insertion function must enforce opacity while ensuring that each
type of resource is never depleted. This problem is then reduced to a two-player game between the insertion function and the
system (environment), with properly defined objectives. A game structure called the Energy Insertion Structure, denoted by EIS
is proposed, which provably contains solutions to the energy constrained opacity enforcement problem. Then we further study the
bounded cost rate insertion problem on the insertion function’s winning region of EIS , which requires that the long run average
rate of insertion cost be bounded. This problem is formulated as a multidimensional mean payoff game and a special method called
hyperplane separation technique is applied to efficiently solve it.
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1. Introduction

Opacity is an information-flow based property that character-
izes whether the secrets of a system can be inferred by an out-
side intruder with malicious purposes. The outside intruder is
typically modeled as an observer with knowledge of the struc-
ture of the system; its intention is to infer system secrets by
observing system outputs. The system is opaque if the intruder
is never able to unambiguously determine any of the system se-
crets from its observations.

Opacity has received significant attention in the context of
Discrete Event Systems (DES). Different notions of opacity
have been proposed and studied for finite-state automata, e.g.,
language-based opacity [22], current-state opacity [30], initial-
state opacity [31], K-step opacity [36] and infinite-step opac-
ity [40]. Opacity has also been discussed in other models,
like infinite state systems [10], Petri nets [33], modular sys-
tems [23] and timed systems [7]. Opacity under the so-called
Orwellian observation is studied in [25]. Additionally, many
works investigate opacity quantitatively in stochastic settings,
e.g., [3, 11, 20, 38]. The review paper [16] provides a compre-
hensive summary of research topics on opacity in DES.
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Violations of opacity give rise to the problem of opacity en-
forcement, see, e.g., [2, 15], which has been investigated under
various mechanisms. Supervisory control can be used to dis-
able non-opaque behaviors, thereby preventing disclosure of se-
crets [13, 32, 34, 35, 39]. Another popular framework is sensor
activation [8, 37], which dynamically changes the observability
of certain events but does not intervene with the operation of the
system. Differently from these approaches, [17] studies opacity
enforcement using insertion functions, which may insert ficti-
tious events into the system’s output to modify the intruder’s
observation for obfuscation purposes. This method is further
generalized to edit functions [19, 24] which may erase events
from the output of the system, along with event insertions.

All the above works concentrate on logical properties of
opacity enforcement. However, in many applications, the ex-
ecution of system events may gain or consume certain types of
resources of the system, which we refer to as “energy”. Be-
sides, secrecy obfuscation may also consume some types of re-
sources so that some strategies may be preferred due to lower
costs. Those resources may be interpreted as budget for inser-
tion of fictitious events, processing time, storage space, power
supply, and so forth. Motivated by this practical situation, it is
meaningful to investigate opacity enforcement under quantita-
tive constraints. We assume that the system has several types
of resources whose amounts are all fixed. The system’s energy
levels may change due to event occurrences and defense of se-
crets. Under this framework, our objective is to guarantee that
secrets are not disclosed to the intruder while each type of re-
source is never depleted in the process of enforcing opacity.

In this work, we consider opacity enforcement by leveraging
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the technique of insertion functions [17] and further investigate
it under a quantitative setting. This problem is inspired by the
rapidly growing application of location-based services (LBS).
Suppose there is a device providing LBS, which sends person-
alized information to the user by exploiting the user’s real time
location. There may be a malicious eavesdropper which intends
to infer some critical information of the user from the queries
sent by the device, through the open communication network.
To prevent the disclosure of secrets, some fictitious queries may
be inserted to the ongoing queries if they are going to reveal the
user’s critical information. Then the resulting query sequences
must be made consistent with some existing queries not reveal-
ing any secret information. This mechanism is shown in Fig-
ure 1. Since inserting queries may cost certain resources like
electricity, bandwidth and money, the insertion functions may
not insert arbitrary long or arbitrary many queries for obfusca-
tion in practice. They should be properly designed so that the
resource budget requirements are not violated. In addition, the
resources should not be consumed too sharply so that the inser-
tion functions work economically, i.e., the rate of insertion cost
should be bounded from above.

Figure 1: Location-based service and insertion mechanism

These requirements lead us to study opacity enforcement by
insertion functions with multiple quantitative objectives. This
problem is discussed under imperfect information due to the in-
sertion function’s partial observation of the system, i.e., it is
only aware of the occurrence of observable events. The inser-
tion function aims to enforce opacity under the constraint that
each type of resource of the system never drops below zero, for
all possible system behaviors (worst-case analysis). We trans-
fer this problem to a two-player game between the insertion
function and the environment, then solve it by constructing a
discrete game structure called Energy Insertion Structure, de-
noted by EIS . The insertion function plays by inserting events,
which consumes resources, while the system plays by execut-
ing events, which consumes or gains resources. So the system’s
resource levels dynamically change, which are reflected in EIS .

Based on EIS , we first find the strategies of the insertion
function, which enforce opacity while not violate the energy
level constraints. Among them, we are particularly interested in
the strategies working in an “economical” way. In other words,
there should exist an upper bound for the rate of insertion cost
so that only a reasonable amount of resource is consumed per
step of insertion. Motivated by this requirement, we further
formulate the bounded insertion cost rate problem as a multi-
dimensional mean payoff game and solve it by leveraging the
hyperplane separation technique originally proposed in [9].

Our work is inspired by some results on quantitative two-
player games in theoretical computer science, specifically, en-

ergy games and mean payoff games [1, 14]. In some cases, one
player only has imperfect information about the game and thus
is not informed of some moves of its opponent. Under imper-
fect information, energy games are decidable and known to be
ACK-complete [27] with fixed amount of initial energy, while
mean payoff games are in general undecidable [12]. Another
generalization is multidimensional game [9], where both play-
ers have several quantitative objectives. The above works also
inspired the work [28], which studies supervisory control for
DES using energy games with partial observation. We adapt
some methodology from [28] to the different problem of opac-
ity enforcement by obfuscation. To the best of our knowledge,
this paper is the first to investigate opacity enforcement under
multiple quantitative objectives.

The rest of this paper is organized as follows. Section 2
describes our system model. Section 3 formulates the energy
constrained opacity enforcement problem. Section 4 introduces
EIS and presents its construction algorithm. Section 5 solves
the energy constrained opacity enforcement problem based on
EIS . Section 6 formulates the bounded cost rate insertion strat-
egy synthesis problem and solves it by the hyperplane separa-
tion technique. Finally, Section 7 concludes the paper.

A preliminary version of this paper appears in [18] and the
improvement is three-fold. First, [18] only shows the sound-
ness of obtaining insertion functions from EIS , while this work
also shows the completeness. Second, we extend the one-
dimensional quantitative objective in [18] to the multidimen-
sional case. Finally, we solve the bounded cost rate insertion
strategy synthesis problem, which was not treated in [18].

2. System Model

We consider opacity and its enforcement in a quantitative
DES modeled as a weighted finite-state automaton:

G = (X, E, f , x0, ω)
where X is the finite set of states, E is the finite set of events,
f : X×E → X is the partial state transition function, and x0 ∈ X
is the unique initial state. We denote by XS ⊂ X the set of
secret states that should remain opaque. The transition function
is extended to domain X × E∗ in the standard manner [6] and
we still denote it by f . The language generated by G is defined
as L(G) = {s ∈ E∗ : f (x0, s)!} where ! means “is defined”. We
write s ≤ u if string s is a prefix of string u; also s < u if s ≤ u
and s , u. We also denote by t ∈ s if string t is a substring
of s. The multidimensional function ω : E → Zk assigns a
k-dimensional weight vector to each event in E where k is a
(fixed) positive integer and each entry reflects the gain or cost
of a certain type of resource associated with the occurrence of
an event. We denote by ω(i)(e) the i-th component of ω(e) for
e ∈ E. In this work, we let

−→
0 be the k-dimensional vector of all

0s. The function ω is additive, whose domain is extended to E∗

by letting ω(ε) =
−→
0 , ω(se) = ω(s) + ω(e) where s ∈ E∗, e ∈ E.

Given an automaton G, for x1, x2 ∈ X and e ∈ E, we denote
by x1

e
−→ x2 if f (x1, e) = x2. A run in G is a sequence of

alternating states and events: r = x1
e1
−→ x2

e2
−→ · · ·

en−1
−−−→ xn

and it may be infinitely long. We denote the set of runs in G
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by Run(G) and x ∈ r if x is a state in r. A run is initial if its
initial state is the initial state of the system. Also, a run forms a
cycle if x1 = xn and the cycle is simple if ∀i, j ∈ {1, 2, · · · n− 1},
i , j ⇒ xi , x j. If r is a cycle, there is a corresponding loop
e1e2 · · · en−1 starting from and ending in x1. We further call the
loop simple if the cycle is simple.

We refer to the set of quantitative resources associated with
the operation of the system as energy. The system is granted
with initial energy vector v0 ∈ Nk to support its operation.
Given s = e0e1 · · · en−1 ∈ L(G), the energy level of the sys-
tem after s is V(s) = v0 +

∑n−1
i=0 ω(ei). We also denote by V (i)(s)

the i-th component of the k-dimensional vector V(s). Then we
make the following important assumption that the energy level
vector should always be nonnegative in every dimension and
we will explain it in the next section.

Assumption 1. ∀s ∈ L(G), V(s) ≥
−→
0 .

System G is partially observable, i.e., E = Eo∪Euo, where Eo

is the set of observable events and Euo is the set of unobservable
events. Given t = t′e ∈ E∗, its natural projection under P :
E∗ → E∗o is recursively defined as P(t) = P(t′)P(e) where t′ ∈
E∗ and e ∈ E. The projection of an event is P(e) = e if e ∈ Eo

and P(e) = ε if e ∈ Euo ∪ {ε}, where ε is the empty string.
Given a set of states q ⊆ X, the unobservable reach, denoted

by UR(q), is defined as: UR(q) = {x′ ∈ X : ∃x ∈ q,∃s ∈
E∗uo, s.t. f (x, s) = x′}. The observable reach under observable
event eo, denoted by Nexteo (q), is defined as: Nexteo (q) = {x′ ∈
X : ∃x ∈ q, eo ∈ Eo, s.t. f (x, eo) = x′}. Then the observer of
G is: Obs(G) = (Xobs, Eo, δ, xobs,0, ωobs) where Xobs ⊆ 2X is the
state space; δ : Xobs × Eo → Xobs is the transition function and
∀xobs ∈ Xobs, δ(xobs, eo) = UR(Nexteo (xobs)); xobs,0 = UR(x0)
is the initial state; ωobs : Eo → Zk is the same as ω over the
restricted domain Eo. An observer state can be viewed as a
(current) state estimate of the system, which is a subset of X.

3. Problem Formulation

In this section, we first review the notion of current-state
opacity and the mechanism of insertion functions. Then we for-
mulate the energy constrained opacity enforcement problem.

Definition 1 (Current-State Opacity (CSO)). Given system G,
projection P, and secret state set XS , G is CSO if ∀t ∈ LS :=
{t ∈ L(G) : f (x0, t) ∈ XS }, ∃t′ ∈ LNS := {t ∈ L(G) : f (x0, t) ∈
(X \ XS )} such that P(t) = P(t′).

A system is current-state opaque if for every string reach-
ing a secret state, there exists another string reaching a non-
secret state which shares the same projection, thereby provid-
ing deniability of the secret. CSO can be verified by building
the observer and checking whether an observer state contains
solely secret states. Based on CSO, we define the safe lan-
guage, which is the prefix-closure of the projected non-secret
strings: Lsa f e = P[L(G)] \ {[P[L(G)] \ P(LNS )] E∗o}. We also
define the unsafe language Lunsa f e = P[L(G)] \ Lsa f e.

Given system G and its observer Obs(G), the desired ob-
server Obsd(G) = (Xd, Eo, δd, xd,0) is obtained by removing all

observer states composed of only secret states and then taking
the accessible part, see [17]. Here Xd ⊆ Xobs is the state space,
Eo is the set observable events, δd : Xd × Eo → Xd is the same
transition function as δ with restricted domain Xd × Eo, xd,0 is
the initial state and we omit the weight function in Obsd(G). It
is easy to see that Obsd(G) generates exactly Lsa f e.

Opacity may not always hold and an insertion function may
be used to enforce opacity. The insertion function is an interface
between the output of the system and the external environment
including the intruder. It may insert fictitious events into the
output stream of the system to obfuscate the intruder; see [17]
for more details of this concept.

Definition 2 (Insertion Function). An insertion function is de-
fined as: fin : E∗o×Eo → E∗oEo such that for l ∈ E∗o and eo ∈ Eo,
fin(l, eo) = sIeo where sI ∈ E∗o.

By definition, the insertion function inserts sI before the next
observable event eo given that l has been observed, then it out-
puts sIeo. It is likely that sI is ε when no event is inserted.
An insertion function fin may be encoded as an input/output
(I/O) automaton IA = (Xia, Eo, E+

o , δia, δoa, xia,0). Here Xia is
the state space; Eo is the set of input events; E+

o = E∗oEo is
the set of output strings; δia : Xia × Eo → Xia is the transition
function; δoa : Xia × Eo → E+

o is the output function such that
δoa(xia, eo) = sIeo where δia(xia, eo)! and δia(xia,0, s) = xia, if
fin(s, eo) = sIeo; xia,0 ∈ Xia is the initial state.

We also define a string-based version of fin and with a slight
abuse of notation, denote it by fin as well (it will be clear from
the argument which form of fin is being considered): fin(ε) = ε
and fin(leo) = fin(l) fin(l, eo).

An insertion function inserts strings based on the observable
behavior of the system. However, unobservable events do oc-
cur between two observable events. As a convention, when we
need to discuss unprojected strings with insertion, we assume
without loss of generality that the inserted string is placed right
before the next observable event in an unprojected string.

Convention 1. Given s = ξ0e0 · · · ξn−1en−1ξn ∈ L(G) where
∀ j ≤ n, ξ j ∈ E∗uo and e j ∈ Eo, if fin(e0e1 · · · e j−1, e j) =

θ je j where ∀ j ≤ n, θ j ∈ E∗o, then s is mapped to s′ =

ξ0θ0e0 · · · ξ jθie j · · · ξnθnen where P(s′) ∈ P[L(G)].

It is possible that s′ < L(G), but what matters is that P(s′) ∈
P[L(G)], since the intruder only observes strings in P[L(G)]
for its inference of secrets.

Next, we present the notion of private safety from [17],
which indicates that every string in P[L(G)] is mapped to a
safe string under certain insertion choices.

Definition 3 (Private Safety). Given system G with projection P
and safe language Lsa f e, insertion function fin is privately safe
if ∀s ∈ P[L(G)], fin(s) ∈ Lsa f e.

We assume that event insertion always costs energy and de-
fine the insertion weight function ωin : Eo → (Z \ N+)k, which
assigns a k-dimensional weight vector to each inserted event,
where all components are non positive. Function ωin is addi-
tive and its domain is extended to E∗o by letting ωin(ε) =

−→
0 and
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ωin(seo) = ωin(s) + ωin(eo) for s ∈ E∗o, eo ∈ Eo. Equivalently,
we may use −ωin to stand for insertion costs. Without loss of
generality, we assume that ωin(eo) ,

−→
0 for all eo ∈ Eo, i.e.,

insertion of an observable event always costs energy. The i-th
component of ωin(eo) for eo ∈ Eo is denoted by ω(i)

in (eo).
Next, we define the system’s energy level after insertion as

Vm : L(G) × E∗ → Zk. Given s = ξ0e0ξ1e1 · · · ξn−1en−1ξn ∈

L(G) where ∀ j ≤ n, ξ j ∈ E∗uo and e j ∈ Eo, suppose s
is mapped to s′ = ξ0θ0e0ξ1θ1e1 · · · ξn−1θn−1en−1ξn by Conven-
tion 1 by some insertion function; then we let Vm(s, s′) =

V(s) +
∑n−1

j=0 ωin(θ j). We will denote s′ by s fin if s is mapped
to s′ by fin. Hence, Vm(s, s fin ) is the energy level of the system
after string s is modified by insertion function fin.

Given a non-opaque system G with initial energy vector
v0, we aim to design an insertion function fin which enforces
opacity but never forces the system’s energy level to drop be-
low zero in the component-wise sense. That is, the insertion
function is constrained by the energy level of the system, i.e.,
∀s ∈ P[L(G)], Vm(s, s fin ) ≥

−→
0 . Since insertion always costs

energy, we made Assumption 1 earlier to ensure some energy
margins for the insertion function. We now formally formulate
the energy constrained opacity enforcement problem.

Problem 1. Given system G with initial energy vector v0, the
energy constrained opacity enforcement problem is to find an
insertion function fin such that: (i) fin is privately safe; (ii)
∀s ∈ L(G), Vm(s, s fin ) ≥

−→
0 .

Due to partial observation of the system, we need to estimate
both current states and energy levels of the system so that inser-
tion functions may make proper decisions to enforce opacity.
This issue will be discussed in the following sections. Also no-
tice that if there exists an insertion function solving Problem 1
with initial energy vector v0, then the same insertion function
also solves the problem with any initial energy vector v′0 ≥ v0.
We will see later that this simple monotonicity property allows
us to define a finite structure to embed solutions to Problem 1.

4. Energy Insertion Structure

In this section we define energy information states and En-
ergy Insertion Structure, which is denoted by EIS . By intro-
ducing these concepts, we transform Problem 1 into a reachabil-
ity game with perfect information between the insertion func-
tions and environment. Then we solve Problem 1 on EIS .

4.1. Building the Verifier

We first review the concept of verifier proposed in [17]. It
serves as an intermediate structure for constructing EIS here
and encodes potentially feasible insertion choices for opacity
enforcement without considering the energy constraints.

Given system G, in order to build the verifier, we first intro-
duce the feasible observer [17]. The feasible observer is ob-
tained by adding self-loops for all observable events at each
state in observer Obs(G). Formally, it is defined as Obs f (G) =

(X f , Eo, δ, δsl, x
f
0 ) where X f = Xobs is the state space; Eo is the

set of observable events; δ is the same transition function as

in the observer; δsl : X f × Eo → X f is the self-loop transi-
tion function such that ∀x f ∈ X f , ∀eo ∈ Eo, δsl(x f , eo) = x f ;
x f

0 = xobs,0 is the initial state. Thus at a state x f , there may be
two transitions labeled by eo defined: (i) the normal transition
δ representing the occurrence of an observable event and (ii)
transition δsl representing potential event insertion.

Then we synchronize desired observer Obsd(G) and feasible
observer Obs f (G) by the verifier parallel composition [17] to
obtain the verifier, defined as Gv = (Xv, Eo, δvd, δvs, xv0). Here
Xv ⊆ Xd × X f is the state space, Eo is the set of observable
events; δvs : Xv × Eo → Xv is the transition function corre-
sponding to normal transitions in both Obsd(G) and Obs f (G);
δvd : Xv × Eo → Xv is the transition function corresponding
to normal transitions in Obsd(G) and added self-loop transi-
tions in Obs f (G); xv0 = (xobs,0, xobs,0) is the initial state. A
state xv = (xd, x f ) ∈ Xv has two components: the left one is
the intruder’s estimate and the right one is the (true) system’s
estimate. They are usually different as insertion functions ob-
fuscate the intruder by manipulating its observation.

Definition 4 (Verifier parallel composition). The verifier par-
allel composition ‖v is a special parallel composition between
Obsd(G) and Obs f (G): Gv = Obsd(G)‖vObs f (G) where tran-
sition functions δvs and δvd are defined for synchronization:
δvs((xd, x f ), e) := (δd(xd, e), δ(x f , e)) and δvd((xd, x f ), e) :=
(δd(xd, e), δsl(x f , e)) = (δd(xd, e), x f ).

The transition function δvs captures actual event occurrences,
thus both the intruder’s and the system’s estimates change with
such transitions; while δvd captures event insertions, thus only
the intruder’s estimate is updated. This is consistent with the
mechanism of the insertion function, which is an interface be-
tween the output of the system and the outside environment. It
only changes the intruder’s observations but not the system’s
behavior. Here xd ∈ Xd and xd < 2XS by definition, so what
the intruder observes does not reveal the system’s secrets. For
completeness, we define δvd(xv, ε) = xv for all xv ∈ Xv.

4.2. Energy Information States
We aim to synthesize an insertion function which enforces

opacity and maintains nonnegative energy level in all dimen-
sions. To achieve these goals, we integrate the information of
state estimates and energy levels into properly defined Energy
Information States. Here we let |·| be the cardinality of a set.

Definition 5 (Energy Information State). Given G, an energy
information state is: qe = ((xd, x f ), [v(1), · · · v(|x f |)]) ∈ Xv ×

∪
|X|
i=1Z

k×|i|. Let I(qe) and EL(qe) denote the state estimate and
energy level components, respectively, so qe = (I(qe), EL(qe)).

We denote by QE the set of energy information states, which
track the system’s estimate xd , the intruder’s estimate x f and
the energy levels of the system at each state in x f . Besides,
each qe ∈ QE induces a belief function hqe : X → Zk. Specif-
ically, for qe ∈ QE where I(qe) = (xd, x f ) ∈ Xv, we have
EL(qe) = {hqe (x) : x ∈ x f }. We usually put EL(qe) in a column
vector’s form: [hqe (x1), · · · hqe (x|x f |)]. By convention, elements
in EL(qe) are placed in an increasing order w.r.t. state names in
x f . Our definition is inspired by the belief function in [12] and
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the observation function in [28]. In the following discussion,
we use h(i)

qe (x) to denote the i-th element in hqe (x).
To compare energy level vectors, we extend the measure ≤

from scalars to vectors as follows: given two vectors v1 =

[v1(1), v1(2), · · · , v1(k)], v2 = [v2(1), v2(2), · · · , v2(k)] ∈ Zk,
we denote by v1 ≤ v2 (respectively v1 ≥ v2) if ∀1 ≤ i ≤
k, v1(i) ≤ v2(i) (respectively v1(i) ≥ v2(i)). Then we fur-
ther extend it to a measure on matrices: given two matrices
m1 = [v1, v2, · · · , vn],m2 = [v′1, v

′
2, · · · , v

′
n] ∈ Zk×n, we denote

by m1 ≤ m2 if vi ≤ v′i for all 1 ≤ i ≤ n.
An energy information state qe ∈ QE is energy safe (or sim-

ply safe) if ∀x ∈ x f where I(qe) = (xd, x f ), hqe (x) ≥
−→
0 . We

define an order 4 over the set of energy information states: for
qe

1, q
e
2 ∈ QE , qe

1 4 qe
2 if I(qe

1) = I(qe
2) and EL(qe

1) ≤ EL(qe
2).

We also say that qe
2 subsumes qe

1 if qe
1 4 qe

2, i.e., qe
1 and qe

2
share the same verifier state component but the energy level
vector of qe

2 is no less than that of qe
1 at every possible current

state in I(qe
2). By Dickson’s lemma (see [21]), the order ≤ on

Nm is a well-quasi-ordering for any m ∈ N. In addition, the
Cartesian product of two well-quasi-ordered sets S ⊆ Nm and
T ⊆ Nm by using ≤ is also a well-quasi ordered set [26], i.e.,
(s, t) ≤ (s′, t′) ⇔ [s ≤ s′] ∧ [t ≤ t′] for s, s′ ∈ S , t, t′ ∈ T . Thus
we can further argue that 4 on safe energy information states
is also a well-quasi ordering, i.e., for any infinite sequence of
states qe

1, q
e
2 · · · ∈ QE , ∃i, j ∈ N, s.t. i < j and qe

i 4 qe
j.

We call qae ∈ QE × Eo an augmented energy information
state, i.e., qae is an energy information state augmented with an
observable event. Let IE(qae), E(qae) denote the energy infor-
mation state and observable event components of qae, respec-
tively. So we have qae = (IE(qae), E(qae)). With a slight abuse
of notation, we use hqae to stand for hqe where qe = IE(qae). Be-
sides, qae is (energy) safe if ∀x ∈ x f where I(IE(qae)) = (xd, x f ),
hqae (x) ≥

−→
0 . Then we define the following two concepts to

characterize the update of energy and augmented energy infor-
mation states with event insertion and execution.

For eo ∈ Eo, we say that qae ∈ QE × Eo is an eo-execution
successor of qe ∈ QE if IE(qae) = qe and qae = (qe, eo). In
other words, we simply combine an energy information state
qe with an observable event eo to create an augmented energy
information state qae.

For θ ∈ E∗o, eo ∈ Eo, we say qe ∈ QE is a (θ, eo)-insertion
successor of qae = (IE(qae), eo) ∈ QE × Eo if: (i) I(qe) =

(x′d, x′ f ) = δvs(δvd((xd, x f ), θ), eo) where I(IE(qae)) = (xd, x f );
(ii) ∀x′ ∈ x′ f , ∀1 ≤ i ≤ k, h(i)

qe (x′) = min
ξ∈E∗uo

{h(i)
qae (x) + ω(i)(eo) +

ω(i)(ξ) + ω(i)
in (θ) : ∃x ∈ x f , s.t. f (x, eoξ) = x′}.

Intuitively, a (θ, eo)-insertion successor indicates the update
of state estimates and energy levels after string θ is inserted be-
fore observable event eo. Since event insertion does not change
the system’s estimate, the system’s estimate gets updated after
eo occurs. While the intruder’s estimate is updated with both
θ and eo. For a current state x′ in the system’s estimate x′ f , it
may be reached through strings starting from some state(s) x in
x f and those strings may have different unobservable strings as
suffixes. In this case, hqe (x′) indicates the minimum energy level
at every dimension at x′ with the occurrence of eo and unob-

servable string ξ from some x ∈ x f s.t. x′ = f (x, eoξ). We also
take into account of the cost of inserted string θ (potentially ε).
Intuitively, if the worst case energy level is nonnegative, then
the system’s energy level is always nonnegative.

An insertion-execution sequence is a sequence of alternating
states, inserted strings and executed observable events of the

form: ρ = ye
1

e1
−→ ze

1
θ1
−→ ye

2
e2
−→ ze

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n where
∀i ≤ n, θi ∈ E∗o, ei ∈ Eo, ye

i ∈ QE , ze
i ∈ QE × Eo, ze

i is an ei-
execution successor of ye

i and ye
i+1 is a (θi, ei)-insertion successor

of ze
i . Such a sequence may be finite or infinite.

Lemma 1. Given an insertion-execution sequence ρ = ye
1

e1
−→

ze
1

θ1
−→ ye

2
e2
−→ ze

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n, let I(ye
i ) = (xd

i , x
f
i ) for all

1 ≤ i < n and let l = e1e2 · · · en−1 and l′ = θ1e1 · · · θn−1en−1,
then δd(xd

1, l
′) = xd

n in Obsd(G) and δ(x f
1 , l) = x f

n in Obs f (G).

Proof. By induction. First, consider ye
1

e1
−→ ze

1
θ1
−→ ye

2. Since ze
1 is

an e1-execution successor of ye
1 and ye

2 is an (θ1, e1)-insertion
successor of ze

1, then (xd
2, x

f
2 ) = δvs(δvd((xd

1, x
f
2 ), θ1), e1). So

δd(xd
1, θ1e1) = xd

2 and δ(x f
1 , e1) = x f

2 by definitions of δvd and
δvs in the verifier parallel composition.

Then suppose the result holds for ye
1

e1
−→ ze

1
θ1
−→ ye

2
e2
−→

ze
2 · · ·

ek−1
−−−→ ze

k−1
θk−1
−−−→ ye

k. When n = k + 1, by a similar argument,
we can show that δd(xd

k , θkek) = xd
k+1 and δ(x f

k , ek) = x f
k+1. Com-

bining the inductive hypothesis, we know δd(xd
1, θ1e1 · · · θkek) =

xd
k+1 and δ(x f

1 , e1 · · · ek) = x f
k+1, so the result also holds at k + 1,

which completes the whole proof.

Lemma 1 illustrates that in an insertion-execution sequence,
the “original string” e1e2 · · · en−1 before insertion is defined in
the feasible observer and the string θ1e1 · · · θn−1en−1 after in-
sertion is defined in the desired observer. This result further
implies that the string after insertion is always a safe one, so
private safety is not violated following the insertion choices in
any insertion-execution sequence.

The following theorem shows that the belief function always
returns the minimum energy level at every dimension by strings
that have the same observation and reach some state in the es-
timate, under certain insertion choices. By convention, we de-

note by ρ j = ye
1

e1
−→ ze

1
θ1
−→ ye

2
e2
−→ ze

2 · · ·
e j−1
−−−→ ze

j−1

θ j−1
−−−→ ye

j for

1 ≤ j ≤ n the j-th prefix of ρ. Also we let V (i)
m (s, s′) denote the

i-th component of the k-dimensional vector Vm(s, s′).

Theorem 1. Given an insertion-execution sequence ρ = ye
1

e1
−→

ze
1

θ1
−→ ye

2
e2
−→ ze

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n, let I(ye
i ) = (xd

i , x
f
i ) for all

1 ≤ i ≤ n and let l = e1 · · · en−1, then ∀x ∈ x f
n , ∀1 ≤ i ≤ k,

h(i)
ye

n
(x) = min

s
{V (i)

m (s, s′) : ∃x′ ∈ x f
1 , s ∈ P−1(l), s.t. f (x′, s) =

x, δd(xd
1, P(s′)) = xd

n} where string s is mapped to s′ following
Convention 1 under insertions indicated by ρ.

Proof. Proof by induction on the length of l. Suppose s =

ξ1e1 · · · ξn−1en−1ξn, P(s) = l = e1 · · · en and s is mapped
to s′ = ξ1θ1e1 · · · ξnθnenξn+1 where θ j ∈ E∗o and P(s′) =

θ1e1 · · · θnen = l′. Let l j = e1 · · · e j and l′j = θ1e1 · · · θ je j
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be the j-th prefix of l and l′, respectively. Let l0 = ε and
s j = ξ1e1 · · · ξ j−1e jξ j+1, with s0 = ε. We also suppose
δvd(δvs(· · · δvs(δvd((xd

1, x
f
1 ), θ1), e1) · · · , e j−1), θ j) = (x′dj , x

′ f
j ) and

δvs((x′dj , x
′ f
j ), e j) = (xd

j+1, x
f
j+1) in Gv.

Induction Basis: n = 0, the result holds immediately.
Inductive Hypothesis: Assume that the result holds when n =

j − 1, i.e., for ρ j.
Induction Step: consider n = j. First, δvd((xd

j , x
f
j ), θ j) =

(x′dj+1, x
′ f
j+1) and δvs(δvd((x′dj+1, x

′ f
j+1), θ j), e j) = (xd

j+1, x
f
j+1) hold

by the definition of the verifier. Then in ρ j+1, ze
j is an e j-

execution successor of ye
j and ye

j+1 is a (θ j, e j)-insertion suc-

cessor of ze
j. So by definition, ∀x′ ∈ x f

j+1, ∀1 ≤ i ≤ j,

h(i)
ye

j+1
(x′) = min

ξ j+1∈E∗uo

{h(i)
ye

j
(x) + ω(i)(e j) + ω(i)(ξ j+1) + ω(i)

in (θ j) :

∃x ∈ x f
j , s.t. f (x, e jξ j+1) = x′}. From the inductive hypothe-

sis, we have h(i)
ye

j+1
(x′) = min

s j−1
min

ξ j+1∈E∗uo

{V (i)
m (s j−1, s′j−1) + ω(i)(e j) +

ω(i)(ξ j+1) + ω(i)
in (θ j) : ∃x′′ ∈ x f

1 , x ∈ x f
j , s.t. f (x′′, s j−1) =

x, δd(xd
1, P(s′j−1)) = xd

j , f (x, e jξ j+1) = x′}. That is, h(i)
ye

j+1
(x′) =

min
s j
{V (i)

m (s j, s′j) : ∃x′′ ∈ x f
1 , s j ∈ P−1(l j), s.t. f (x′′, s j) =

x′, δd(xd
1, P(s′j)) = xd

j+1}. Thus the result holds when n = j,
completing the whole proof.

Given an energy information state ye ∈ QE , for every x ∈ x f

where I(ye) = (xd, x f ), each component of hye (x) may be due
to different strings with the same projection but different unob-
servable substrings. This can be interpreted as follows: since
the insertion function does not know the occurrence of unob-
servable strings, it should be “conservative” and take into ac-
count the system’s worst-case energy level in every dimension.

4.3. Building the Energy Insertion Structure

We now formally define EIS by construction in Algorithm 1.
EIS is a two-player game structure which reflects the up-
date of energy and augmented energy information states with
event insertion and execution. It is of the form: EIS =

(QE
Y ,Q

E
Z , Eo, f E

yz , f E
zy , y

e
0, v0,QE

l ) where QE
Y ⊆ QE is the set of en-

ergy information states; QE
Z ⊆ QE × Eo is the set of augmented

energy information states; f E
yz : QE

Y × Eo → QE
Z is the transition

function from QE
Y states to QE

Z states; f E
zy : QE

Z × E∗o → QE
Y is

the transition function from QE
Z states to QE

Y states; Eo is the set
of observable events; ye

0 ∈ QE
Y is the initial state; v0 ∈ Nk is the

initial energy vector; and QE
l is the set of leaf states. We call

a QE
Y state as Y-state and a QE

Z state as Z-state. A Z-state ze is
deadlocking if @θ ∈ E∗o, s.t. f E

zy(ze, θ)!. Deadlocking Z-states are
undesirable and will be pruned away in constructing EIS .

Algorithm 1 builds the state space of EIS recursively by
adding (θ, eo)-insertion successors and eo-execution successors
into the structure. In general, EIS represents a game with
full observation between the insertion function and the environ-
ment. The environment plays at Y-states and the insertion func-
tion plays at Z-states. The procedure DoDFS builds the state
space of EIS in a depth-first search like process. The game is
initiated from ye

0 where the system plays first by executing ob-
servable events. The state estimate component of ye

0 contains

Algorithm 1 Construction of EIS

Input: Obs(G), Gv, v0
Output: EIS = (QE

Y ,Q
E
Z , E, f E

yz , f E
zy , Eo, ye

0, v0,QE
l )

1: QE
Y = {ye

0} where I(ye
0) = (xobs,0, xobs,0), ∀x ∈ xobs,0, ∀i ≤ k,

hi
ye

0
(x) = min

ξ∈E∗uo

{V i(ξ) : f (x0, ξ) = x}, and QF
Z = ∅, QE

l = ∅;

2: EIS pre = DoDFS (ye
0,Obs(G),Gv);

3: EIS = Prune(EIS pre);
4: procedure DoDFS (ye,Obs(G),Gv)
5: for eo ∈ Eo, s.t. δ(x f , eo)! in Obs(G), where I(ye) =

xv = (xd, x f ) do
6: let ze be an eo-execution successor of ye;
7: add transition ye eo

−→ ze to f E
yz ;

8: if ze < ZE then
9: QE

Z = QE
Z ∪ {z

e};
10: for θ ∈ E∗o, s.t. ∃x̃v = δvd(xv, θ), δvs(x̃v, eo)! do
11: let y′e be an (θ, eo)-insertion successor of ze;

12: add transition ze θ
−→ y′e to f E

zy ;
13: if y′e < QE

Y then
14: if y′e is energy safe then
15: QE

Y = QE
Y ∪ {y

′e};

16: if there exists a run re = ye
0

e0
−→ ze

0
θ0
−→

ye
1 · · ·

en−1
−−−→ ze

n−1
θn−1
−−−→ y′e and ∃ j ≤ n, s.t. ye

j 4 y′e then
17: let S ub(y′e) = ye

j, stop searching
from y′e, QE

l = QE
l ∪ {y

′e};
18: else DoDFS (y′e,Obs(G),Gv);
19: if y′e is not energy safe then
20: QE

Y = QE
Y ∪ {y

′e}, QE
l = QE

l ∪ {y
′e},

stop searching from y′e, ignore all θ′ s.t. θ < θ′;
21: procedure Prune(EIS pre)
22: for ze ∈ QE

Z that is deadlocking do
23: remove ze and all ye ∈ QE

Y , s.t. f E
yz(ye, eo) = ze for

some eo ∈ Eo;
24: take the accessible part of the structure;

the initial states of the observer and the desired observer. For
the energy level matrix EL(ye

0), we track the minimum energy
level of the system by unobservable strings. In Line 5, the envi-
ronment plays by executing eo if eo is defined from the system’s
estimate x f in observer Obs(G). Then we create an eo-execution
successor ze and define a f E

yz transition out of ye. Note that no
string has been inserted yet and we create ze simply to indicate
that some string may be inserted before observable event eo.

After that, the games goes on and it is the insertion function’s
turn to play by inserting stings. In Line 10, θ is a logically fea-
sible insertion choice if a δvd transition labeled with θ is defined
in the verifier and the δvd transition is followed by a δvs transi-
tion labeled by some observable event eo. That means θ can be
inserted before eo without considering the energy constraint. So
we create a (θ, eo)-insertion successor y′e and define a f E

zy tran-
sition out of ze, indicating that θ has been inserted before eo.
Since the initial energy vector is fixed and insertion is costly,
there may only be a finite set of finite-length inserted strings
that lead to nonnegative energy levels. When y′e is safe, i.e.,

6



θ is inserted before eo without violating the energy constraint,
we proceed to check the condition in Line 16. If there exists an
initial run re ending in y′e and ye

j ∈ re for some j < n, s.t. y′e

subsumes ye
j, then we know the state estimate I(ye

j) is reached

again, i.e., I(ye
j) = I(y′e). Let I(ye

j) = (xd
j , x

f
j ), then we know

there exists a simple cycle x f
j

e j
−→ x f

j+1 · · ·
en−1
−−−→ x f

j in the feasi-
ble observer Obs f (G) (also in the observer Obs(G)). There also
exists a cycle starting from and ending in xd

j in the desired ob-
server, whose corresponding loop is l = θ je j · · · θn−1en−1. It is
also the case that ∀x ∈ xd

j , ∀s ∈ P−1(l), s.t. f (x, s) = x, we have

V(s) +
∑n−1

i= j θi ≥
−→
0 . In words, even after considering the cost

of inserting θ j, · · · , θn−1 into the original string, the system’s
energy level vector is still nondecreasing in every dimension.

Even though the structure may be further expanded, we ter-
minate searching from y′e and define S ub(y′e) to store the state
subsumed by y′e. Note that y′e and ye

j share the same state es-
timate while the energy level at y′e is no less than that of ye

j in
component-wise sense. No matter what decision is made by
the environment at y′e, if the insertion function makes the same
decision at the succeeding state of y′e as it does at the succeed-
ing state of ye

j, then all the new succeeding states created in
this manner are energy safe as well. This is consistent with the
monotonicity property discussed at the end of Section 3. Later
on, we will see this observation ensures finiteness of EIS .

If no cycle is detected, we call DoDFS again in Line 18 to
continue searching until no more states are added to the struc-
ture. On the other hand, if y′e is not energy safe, system’s en-
ergy level is below 0 at some dimension. Then we stop search-
ing from y′e in Line 20 and discard longer string θ′ where θ < θ′.
Sinceωin(θ′) < ωin(θ) ≤ 0, insertion of θ′ would inevitably drop
the energy level vector below 0 at certain dimension.

DoDFS may result in some deadlocking Z-states where no
insertion can be made. We denote by EIS pre the intermedi-
ate structure obtained after DoDFS , then remove deadlocking
Z-states and their preceding Y-states recursively in Procedure
Prune since the observable events from Y-states can not be
blocked from happening. More reasoning can be found in [17],
where a similar pruning process is conducted. Prune works
like calculating the supremal controllable sublanguage [6] by
viewing the environment’s winning states as undesirable, f E

yz

transitions as uncontrollable, f E
zy transitions as controllable, and

Y-states as marked. Next, we show Algorithm 1 stops after a fi-
nite number of steps and returns a finite structure, namely, EIS .

Theorem 2. The state space of EIS is finite.

Proof. By contradiction. Suppose that EIS is infinite. The
number of outgoing transitions at each state is finite since Eo

is finite and there are only a finite number of insertion choices
defined at a Z-state due to energy constraints. Then by König’s

lemma (see, e.g., [21]), there exists an infinite run ye
1

e1
−→ ze

1
θ1
−→

ye
2

e2
−→ ze

2
θ2
−→ ye

3 · · · in EIS . From Algorithm 1, every state in
the run is energy safe and it is never the case that ∃i < j, s.t.
ye

i 4 ye
j. However, this contradicts the well-quasi ordering 4

on safe energy information states.

The size of EIS is bounded by Ackermann function [29] fol-
lowing a similar augment as in [12], which also presented a pro-
cedure of “unfolding” the game graph until some simple cycles
are formed or the energy level drops below 0. The complexity
of EIS exceeds its counterpart without energy constraint [17].

In EIS , we call a leaf state ye ∈ QE
l as a good leaf state if ye

is energy safe, otherwise, we call it a bad leaf state. We denote
the sets of good and bad leaf states by QE

lg and QE
lb, respectively.

In order to win the game and solve Problem 1, the insertion
function should make decisions such that only good leaf states
are reached. The environment just does the opposite to prevent
the insertion function from winning, thus the game on EIS is
a zero sum reachability game. We elaborate the reasoning and
discuss both players’ strategies in the next section.

Example 1. Let the automaton G in Figure 2 be with ob-
servable events Eo = {a, b, c, d}, unobservable events Euo =

{u1, u2, u3, u4, u5, u6, u7}, and secret states XS = {x7, x8, x10}.
The system is granted with initial energy v0 = [9, 9]T where T
stands for the transpose of a matrix. The weight function in this
example is 2-dimensional and the weight vector of each event is
show in Figure 2. Additionally, the insertion weight functionωin

is defined as follows: ωin(a) = [−3,−6]T , ωin(b) = [−1,−3]T ,
ωin(c) = [−2,−2]T , ωin(d) = [−3,−1]T .

The observer is shown in Figure 3 with states: A =

{x0, x3, x4, x9}, B = {x1}, C = {x2}, D = {x5, x6}, E = {x7, x8}

and F = {x10}. The system is not current state opaque due to
states E and F, thus we apply insertion functions to enforce
opacity. The desired observer Obsd(G) is obtained by remov-
ing E and F from Obs(G) and taking the accessible part, while
the feasible observer Obs f (G) is obtained by adding self-loops
for every event in Eo at every state in Obs(G); their figures are
omitted here due to space limitations. Next we build the verifier
Gv in Figure 4 following Definition 4, where dashed lines indi-
cate δvd transitions and solid lines indicate δvs transitions. Gv

contains all potentially feasible insertion choices.
Then we follow Algorithm 1 to build EIS in Figure 5, where

square states stand for Y-states while oval states stand for Z-
states. In DoDFS , the game is initiated from ye

0 where the
environment plays first: it can execute events a, b or c. For
example, if b is executed, then b-execution successor ze

0 =

(ye
0, b) is reached where it is the insertion function’s turn to

play; while if a is inserted, then a-insertion successor ye
1 is

reached. We have I(ye
1) = (C,D) as δvd((A, A), a) = (B, A) and

δvs((B, A), b) = (C,D) in Gv. Also h(1)
ye

1
(x5) = min{h(1)

ye
0

(x3) +

ω(1)(b) + ω(1)
in (a), h(1)

ye
0

(x4) + ω(1)(b) + ω(1)
in (a)} = 5, h(2)

ye
1

(x5) =

min{h(2)
ye

0
(x3) +ω(2)(b) +ω(2)

in (a), h(2)
ye

0
(x4) +ω(2)(b) +ω(2)

in (a)} = 3,

h(1)
ye

1
(x6) = min{h(1)

ye
1

(x5) + ω(1)(u4), h(1)
ye

1
(x5) + ω(1)(u5)} = 0 and

h(2)
ye

1
(x6) = min{h(2)

ye
1

(x5)+ω(2)(u4), h(2)
ye

1
(x5)+ω(2)(u5)} = 0. Hence

ye
1 = {(C,D),

[
5, 0
3, 0

]
}. The other states are calculated similarly.

The first component of h(2)
ye

1
(x5) = [5, 3]T comes from string

u2u3b and insertion of a, while the second component comes
from string u1u3b and insertion of a. Since the insertion func-
tion does not know whether u2u3b or u1u3b occurs when it ob-
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serves b, it has to estimate the worst case energy level, which is
consistent with Theorem 1. We list the energy and augmented
energy information states obtained from DoDFS in Table 1.

ye
0 = {{A, A},

[
9, 10, 7, 7
9, 10, 9, 8

]
} ze

0 = {{A, A},
[
9, 10, 7, 7
9, 10, 9, 8

]
, b}

ye
1 = {(C,D),

[
5, 0
3, 0

]
} ze

1 = {(C,D),
[
5, 0
3, 0

]
, c}

ye
2 = {(B, E),

[
2, 1
2, 1

]
} ze

2 = {(B, E),
[
2, 1
2, 1

]
, c}

ye
3 = {(B, E),

[
3, 2
1, 0

]
} ze

3 = {(B, E),
[
1, 0
3, 2

]
, c}

ye
4 = {(B, E),

[
2, 1
2, 1

]
} ye

5 = {(B, E),
[
4, 3
0, −1

]
}

ye
6 = {(B, E),

[
1, 0
3, 2

]
} ze

4 = {(B, E),
[
3, 2
1, 0

]
, c}

ye
7 = {(B, E),

[
0, −1
4, 3

]
} ye

8 = {(B, E),
[
−4, −5
0, −1

]
}

ye
9 = {(B, E),

[
−2, −3
−2, −3

]
} ye

10 = {(B, E),
[
−3, −4
−1, −2

]
}

ye
11 = {(B, E),

[
−1, −2
−3, −4

]
} ye

12 = {(C,D),
[

2, −3
−2, −5

]
}

ye
13 = {(D,D),

[
8, 9
3, 6

]
} ze

5 = {(D,D),
[
8, 9
3, 6

]
, c}

ze
6 = {(A, A),

[
9, 10, 7, 7
9, 10, 9, 8

]
, c} ye

14 = {(B, F),
[
5
1

]
}

ye
15 = {(B, F),

[
3
3

]
} ye

16 = {(B, F),
[

2
−4

]
}

ye
17 = {(B, F),

[
0
−2

]
} ye

18 = {(B, F),
[
−2
0

]
}

ze
7 = {(A, A),

[
9, 10, 7, 7
9, 10, 9, 8

]
, a} ye

19 = {(B, B),
[
1
1

]
}

ze
8 = {(B, B),

[
1
1

]
, b} ye

20 = {(C,C),
[
2
1

]
}

ze
9 = {(C,C),

[
2
1

]
, c} ye

21 = {(B, B),
[
4
3

]
}

ze
10 = {(B, B),

[
1
1

]
, d} ye

22 = {(C,C),
[
1
2

]
}

ze
11 = {(C,C),

[
1
2

]
, c} ye

23 = {(B, B),
[
3
4

]
}

ye
24 = {(B, E),

[
0, −1
−4, −5

]
}

Table 1: Energy and augmented energy information states

After DoDFS , we find ye
2 4 ye

4, ye
21 4 ye

19 and ye
23 4 ye

19, so
we stop searching from ye

4, ye
21 and ye

23. Besides, ye
5, ye

7, ye
8, ye

9,
ye

10, ye
11, ye

12, ye
16, ye

17, ye
18, ye

24 are not energy safe so they are the
bad leaf states. Furthermore, Z-state ze

5 is deadlocking since
no transition is defined out of it. Then we prune away ze

5 and
its preceding Y-state ye

13 in process Prune of Algorithm 1. The
final EIS is shown in Figure 5, where the dashed lines represent
deleted states in the pruning process from EIS pre to EIS .

5. Solution to the Opacity Enforcement Problem

In this section, we discuss the strategies for both players to
win the game on the Energy Insertion Structure. We also show
that the insertion function’s winning strategies in EIS lead to
sound solutions to Problem 1.
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The runs in EIS are finite insertion-execution sequences and
we denote the set of runs in EIS by Run(EIS ). Given re ∈

Run(EIS ), we denote by ye ∈ re and ze ∈ re if ye (respectively
ze) is a Y-state (respectively Z-state) in re. Let LastY (re) and
LastZ(re) be the last Y-state and Z-state of re, respectively, and
denote by Runy(EIS ) (respectively Runz(EIS )) the set of runs
whose last states are Y-states (respectively Z-states).

Given an initial run re = ye
0

e0
−→ ze

0
θ0
−→ · · · ye

n−1
en−1
−−−→ ze

n−1
θn−1
−−−→

ye
n, the edit projection Pe : Run(EIS ) → P[L(G)] is defined
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such that Pe(re) = e0e1 · · · en−1. So Pe just returns the original
string before any insertion takes place. For re ∈ Run(EIS ), we
denote it by re(l) if Pe(re) = l. We call θ0e0θ1e1 · · · θn−1en−1 as
the generated string of re and denote it by lg(re), i.e., lg(re) is the
string after insertion. By Lemma 1, δd(xobs,0, lg(re)) is defined
in Obsd(G), so lg(re) ∈ L(Obsd(G)) = Lsa f e, i.e., l is mapped to
a safe string by insertion decisions in EIS .

Then we define strategies for both players in EIS . The
insertion function’s strategy (insertion strategy) is defined as
πin : Runz(EIS ) → E∗o and the environment’s strategy as
πen : Runy(EIS ) → Eo. When it is a player’s turn to play,
it selects a transition according to its strategies. Since the in-
sertion function does not know the occurrence of unobservable
events and makes decisions from its observations, its strategy is
called observation based. Denote the set of all insertion strate-
gies by Πin and the set of all environment’s strategies by Πen.
From an insertion strategy, we know exactly the decisions of an
insertion function, so from now on, we use “insertion strategy”
and “insertion function” interchangeably.

A strategy πi ∈ Πi for player i ∈ {in, en} in EIS is called
positional if the decisions only depend on the current energy
(augmented energy) information state. In other words, πi ∈ Πi

is positional if πi(r f ) = πi(r′f ) for all r f , r′f ∈ Run(EIS ) such
that Last(r f ) = Last(r′f ). Therefore, positional strategies for
the insertion function and the environment can be represented
as πin : QE

Z → E∗o and πen : QE
Y → Eo, respectively. From re-

sults in [1, 14], positional strategies are sufficient for players to
win a reachability game, thus we simply assume both players’
strategies are positional in the rest of this section.

If the insertion function plays πin while the environment
plays πen from the initial state ye

0, then a unique initial run, de-
noted by re(πin, πen), is generated. We also define Run(πin, ye) =

{ye e1
−→ ze

1
θ1
−→ ye

2 · · ·
en−1
−−−→ ze

n−1
θn−1
−−−→ ye

n : ∀i < n, θi = πin(ye e1
−→

ze
1

θ1
−→ ye

2 · · · y
e
i

ei
−→ ze

i )} as the set of runs starting from ye and
consistent with insertion strategy πin, i.e., insertion decisions in
the run are specified by πin. The set of runs consistent with an
environment’s strategy πen are defined analogously.

In EIS , we say that the insertion function wins the game if
only good leaf states are reached while the environment wins
if bad leaf states are reached. Thus they play a finite-duration
zero sum reachability game. By defining the energy information
states, we have constructed a game under full observation on
EIS . Therefore, either the supervisor or the environment has a
winning strategy [1]. Formally speaking, πin ∈ Πin is winning
from ye if ∀re ∈ Run(πin, ye), LastY (re) ∈ QE

l ⇒ LastY (re) ∈
QE

lg, i.e., πin is a winning strategy for the insertion function if all
runs consistent with it end in a good leaf state. In other words,
the insertion function wins if private safety is satisfied and the
energy level of the system is never below 0 in every dimension.

We define the insertion function’s winning region Winin in
EIS as the set of states where it has a strategy to reach a good
leaf state no matter what strategy the environment plays. This is
a commonly used concept in graph game theory, see., e.g. [1].
Then we present Algorithm 2 to compute Winin.

In Algorithm 2, we prune away bad leaf states and calcu-
late the winning region for the insertion function in an itera-

Algorithm 2 Compute the insertion function’s winning region

Input: EIS
Output: Winin

1: Remove all bad leaf states from EIS ;
2: while ∃ze ∈ QF

Z , s.t. ze is deadlocking do
3: Remove ze and all ye ∈ QE

Y , s.t. f E
yz(ye, eo) = ze for some

eo ∈ Eo;
4: Take the accessible part of the structure;
5: Denote the remaining structure by EIS w;
6: if EIS w is not empty then
7: Return all states in EIS w;
8: else Return ∅;

tive manner. We first remove all bad leaf states from EIS . If
the removal of bad leaf states results in some deadlocking Z-
states, then we know all transitions from such Z-states lead to
bad leaf states, where the insertion function loses the game for
sure. Thus we further remove those Z-states and their preceding
Y-states where the environment has a way to reach the dead-
locking Z-states. This process continues until no more states
are removed and we denote the resulting structure by EIS w.
The pruning process works in a fixed-point iteration manner.

By definition, a privately safe insertion function (strategy)
maps every string in P[L(G)] to a safe one. However, state
pruning may remove all potentially feasible insertion choices
for a particular string if they all violate energy constraints. Thus
we need to guarantee that all strings in P[L(G)] are still pre-
served in the EIS w after the pruning. Before proving that asser-
tion, we present the following result from Algorithm 2.

Lemma 2. If Winin , ∅, then @l ∈ P[L(G)], s.t. ∀πin ∈ Πin,
∀re ∈ Run(πin, ye

0) with Pe(re) = l, LastY (re) ∈ QE
lb in EIS .

Proof. By contradiction. Assume ∃l ∈ P[L(G)], s.t. ∀πin ∈

Πin, ∀re ∈ Run(πin, ye
0) with Pe(re) = l in EIS , LastY (re) ∈

QE
lb. Suppose l = e0 · · · en−1 and re = ye

0
e1
−→ ze

1
θ1
−→ ye

2 · · ·
en−1
−−−→

ze
n−1

θn−1
−−−→ ye

n ∈ Run(πin, ye
0). Since LastY (re) ∈ QE

lb holds for all
re ∈ Run(πin, ye

0) with Pe(re) = l and for all πin ∈ Πin, the last
Y-state of every run in Run(πin, ye

0) with Pe(re) = l is pruned
in Algorithm 2. Then we know the last Z-state of each run in
Run(πin, ye

0) with Pe(re) = l becomes deadlocking so those ze
n−1

are pruned away as well. Furthermore, we also prune away
all preceding Y-states ye

n−1 such that f E
yz(ye

n−1, en−1) = ze
n−1 by

Algorithm 2. This process continues until the initial state ye
0 is

pruned, so EIS w is empty.

Next we slightly modify EIS w: merge ye with S ub(ye) by let-
ting all transitions going to ye reach S ub(ye) instead, if S ub(ye)
is defined in Algorithm 1. Intuitively, we assume that the game
continues at the leaf states of EIS w, which share the same state
estimate with the state subsumed by them. We denote the re-
sulting structure by EIS m and extend concepts of runs and both
players’ strategies to EIS m. Besides, the energy level vector
at each leaf state is no less than that at the state subsumed by
the same leaf state. Thus if every leaf state is energy safe, the
system’s energy level vector never contains a negative element

9



when their state estimates are reached again. In this way the
game is extend to be infinite-duration without loss of general-
ity since we assume that the insertion functions in EIS w always
make the same decisions at each leaf state and the state sub-
sumed by it. Therefore, if the insertion function plays accord-
ing to strategies in EIS m, it will always maintain the system’s
energy level above 0 in each dimension. This is an implication
of the monotonicity of energy game discussed at the end of Sec-
tion 3 : if the insertion function wins the game from some state
with energy level vector v ∈ Nk, it also wins the game from the
same state with any energy level vector v′ ≥ v.

In EIS m, we define the unmodified language Lu(EIS m) =

{l ∈ P[L(G)] : ∃re ∈ Run(EIS m), s.t. Pe(re) = l}, where
Run(EIS m) denotes the set of runs in EIS m. Lu(EIS m) just “re-
trieves” the original language before any insertion takes place.
Then we prove a property of Lu(EIS m) in Lemma 3.

Lemma 3. If Winin , ∅, then Lu(EIS m) = P[L(G)].

Proof. By the definition of Lu(EIS m), Lu(EIS m) ⊆ P[L(G)]
holds immediately. Thus we only need to show P[L(G)] ⊆
Lu(EIS m) and we proceed by contradiction. Assume that
Lu(EIS m) * P[L(G)] and ∃l ∈ P[L(G)] but l < Lu(EIS m).
Then by construction of EIS and EIS m, there exists a finite
prefix l′ < l, s.t. ∀πin ∈ Πin, ∀re ∈ Run(πin, ye

0) with Pe(re) = l′,
LastY (re) ∈ QE

lb. That is, there exists a finite string in P[L(G)]
such that no insertion strategy in EIS m can map it to a safe
string without reaching a bad leaf state. However, that means
Winin = ∅ by Lemma 2, which contradicts the assumption.

Now we are now ready to state one of the main results in
this paper. Given a winning insertion strategy in EIS , we can
always construct an insertion function solving Problem 1. Con-
versely, if there exists an insertion function solving Problem 1,
we can always find a winning insertion strategy in EIS .

Theorem 3. There exists an insertion function solving Prob-
lem 1 if and only if there exists a winning strategy for the inser-
tion function in EIS .

Proof. The “only if” part: by contrapositive, i.e., if no winning
insertion strategy exists in EIS , then no insertion function solv-
ing Problem 1. If no strategy exists for the insertion function to
reach good leaf states in EIS , then we know the winning set
Winin is empty, i.e., Algorithm 2 returns an empty set. So by
Lemma 2, ∃s ∈ L(G) with P(s) = l = e0 · · · en−1, s.t. for all ini-
tial re(l) ∈ Run(EIS ), LastY (re(l)) ∈ QE

l ⇒ LastY (re(l)) ∈ QE
lb,

i.e., all runs with original string l end in bad leaf states. Then by
the pruning process in Algorithm 2, every initial run re(l) would
be removed, thus the initial state of EIS is also removed and
EIS w becomes empty. From the construction in Algorithm 1,
for all feasible insertion choices θ0, · · · , θn−1 s.t. s is mapped to
s′ by Convention 1 and θ0e0 · · · θn−1en−1 ∈ Lsa f e, we have that

Vm(s, s′) <
−→
0 . In other words, no matter what string is inserted

into l, the system’s energy level would drop below 0 at some
dimension. Thus no insertion function solves Problem 1.

The “if” part. Suppose that πin is a winning insertion strat-
egy in EIS . Since we follow Algorithm 2 to obtain Winin and

EIS w, then πin is also in EIS w. Then we extend EIS w to EIS m

by merging states. By definition of EIS , the state estimate com-
ponent of each state is in Xv ⊆ Xobsd × Xobs so the intruder’s es-
timate is always in Xobsd. Since by the definition of the desired
observer, ∀xobsd ∈ Xobsd, xobsd < 2XS , we know πin maps every
string in P[L(G)] into a safe string.

Besides, ∀s ∈ L(G) with P(s) = l = e0e1 · · · en−1, suppose

that there exists a run re(l) = ye
0

e0
−→ ze

0
θ0
−→ ye

1
e1
−→ · · · ye

n−1
en−1
−−−→

ze
n−1

θn−1
−−−→ ye

n consistent with πin in EIS m, denoted by rπin (l). Ev-
ery ye ∈ rπin (l) is energy safe and the belief function in each
energy information state returns the minimum energy level of
the system at every dimension under certain insertion choices.
Then from Theorem 1, we know that ∀s ∈ P−1(l) ∩ L(G),
Vm(s, sπin ) ≥

−→
0 , therefore πin solves Problem 1.

The above theorem shows the completeness and soundness
of Algorithms 1 and 2. Therefore, Problem 1 can be solved
by first building EIS and then finding the insertion function’s
winning strategies if they exist. As was shown in the last sec-
tion, the state space of EIS is bounded by Ackermann func-
tion, which is not primitive recursive. Also, both the winning
set and strategies for a reachability game can be computed in
linear time with respect to the size of EIS from results in [1].
Therefore we have the complexity bound for solving Problem 1.
We end this section by revisiting our running example.

Example 2. We revisit Example 1 and synthesize insertion
functions to solve Problem 1. We follow Algorithm 2 and build
EIS w in Figure 6. In Algorithm 2, all bad leaf states are re-
moved and the winning region Winin is the set of states in
EIS w. Here we use dashed lines to connect each good leaf
state with the state subsumed by it. Observe that condition
Lu(EIS m) = P[L(G)] holds for EIS m in Figure 6 so that every
string in P[L(G)] may be mapped to some safe strings. From
EIS w, we find one winning insertion strategy, which solves
Problem 1 and is indicated by blue lines in Figure 6. Finally,
we encode this selected insertion function as an I/O automaton
in Figure 7, where the insertion decisions are explicitly shown.
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Figure 6: EIS w with a winning insertion strategy indicated by blue lines

6. Bounded Cost Rate Insertion Strategies

In the last section, we have solved the opacity enforcement
problem so that the system’s energy level at every dimension
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Figure 7: An insertion function that solves Problem 1

never drops below 0. Since event insertion always costs energy,
it is beneficial to explore an economical way of insertion for
practical purposes. Motivated by this requirement, we propose
the concept of bounded cost rate insertion strategies and inves-
tigate their synthesis in this section.

6.1. Motivation and Problem Formulation
The structure EIS w obtained in the last section usually con-

tains more that one insertion strategies that solve Problem 1.
Generally, there exist cycles in the original system thus inser-
tion functions may need to insert fictitious events infinitely of-
ten to enforce opacity, in which case event insertion consumes
an infinite amount of energy. From a practical point of view, it
is desirable to require that the insertion function’s long run rate
of energy consumption be bounded so that the designer may
control the energy consumed per insertion step.

To facilitate our discussion, we proceed as before and merge
each leaf state of EIS w with the state subsumed by it, resulting
in EIS m. As was discussed earlier, the same decision is made
at the leaf state and at the state subsumed by it; also, the same
game starts from the leaf states as from the subsumed states.
Thus we are able to discuss infinite-duration games on EIS m.

To explore the rate of insertion cost, we first define Vc :
Run(EIS m)→ (Z \N)k as the accumulative insertion cost func-

tion for runs in EIS m. Given rm = ye
0

e1
−→ ze

1
θ1
−→ ye

2 · · ·
en−1
−−−→

ze
n−1

θn−1
−−−→ ye

n, Vc(rm) =
∑n

i=1 ωin(θi). We also define Vmc :
Runin f (EIS m) → Rk as the limit mean insertion weight func-

tion for infinite runs in EIS m. Given rm = ye
1

e1
−→ ze

1
θ1
−→ ye

2
e2
−→

ze
2

θ2
−→ · · · , Vmc(rm) = lim infn→∞

1
n
∑n

i=1 ωin(θi). Then we pro-
pose the bounded cost rate insertion strategy synthesis problem.

Problem 2. Synthesize a bounded cost rate insertion strategy
πin such that for any infinite initial run rm ∈ Runin f (πin, ye

0),
−Vmc(rm) ≤ vb for some threshold vector vb ∈ Nk.

Intuitively, we require the long run average of insertion cost
be below a threshold under bounded rate cost insertion strate-
gies, so that the rate of insertion cost does not blow up. This
problem is discussed on EIS m and is meaningful when the orig-
inal system G is cyclic, i.e., there are infinite runs in G and
the EIS m. Problem 2 can be viewed as a multidimensional
mean payoff game [9] between the insertion function and the
environment. Specifically, the insertion function tries to main-
tain multidimensional mean payoff vectors bounded by a given
threshold vb while the antagonistic environment tires to spoil
the goal. Furthermore, this game is with complete information

as inserted events and insertion cost are known to both players.
Due to this fact, we may ignore the state information but only
focus on weights associated with fzy transitions in EIS m.

We add a minus sign on both sides of the inequality in Prob-
lem 2 and obtain lim infn→∞

1
n
∑n

i=1 ωin(θi) ≥ −vb. Equivalently,

we may show whether lim infn→∞
1
n
∑n

i=1(ωin(θi) + vb) ≥
−→
0

holds. Hence, we add vb to each insertion weight vector in
EIS m and discuss the equivalent mean payoff objective. For
simplicity, we still denote the game graph by EIS m. We further
let W = max{−ω(i)

in (θ) : ∃ze ∈ QE
Z , θ ∈ E∗o, s.t. f E

zy(ze, θ)!, 1 ≤
i ≤ k} be the maximal absolute value of elements in insertion
weight functions in EIS m. Obviously, W is a positive integer.

6.2. Hyperplane Separation Technique

A multidimensional mean payoff game is more challenging
to solve than a one-dimensional game since the objectives in
different dimensions may be in conflict. In this section, we ap-
ply a recently-proposed method called hyperplane separation
technique from [9] to solve Problem 2. Originally, this tech-
nique was developed for general multidimensional mean payoff

games. The main idea is to reduce the multidimensional mean
payoff game in Problem 2 to a one-dimensional mean payoff

game on the same graph and then solve it. It can be further
shown that there is close relation between the winning regions
of both players in the original game and the induced game.

Since the algebraic mean of a set of vectors can always be
expressed as a convex combination of those vectors, we have
the following observation: if there exists a convex combination
of the cost vectors such that some dimensions remain negative,
then there exists a strategy for the environment to spoil the goal
of the insertion function in Problem 2. Intuitively, we are going
to “separate” the convex combinations leading to each player to
win the game. By linear space theory, a hyperplane may also
be used to separate vectors in a linear space.

In a linear space, a vector v lies above a hyperplane H with
normal vector λ if vT · λ ≥ 0; otherwise, it lies below H ; see,
e.g., [4]. Furthermore, if the mean payoff vector resulted from a
game lies below a hyperplane containing the origin, then it has
at least one negative element. Therefore, if such a hyperplane
exists, then the insertion function fails to enforce its multidi-
mensional mean payoff objective and loses the game. On the
other hand, if the insertion function is able to achieve mean
payoff vectors that lie above all possible hyperplanes, then it
can ensure its objective and win the game.

Given a k-dimensional insertion weight vector ωin(θ) for
some insertion decision θ and a vector λ ∈ Rk, we denote by
ωin(θ)T ·λ the inner product between ωin(θ) and λ. With a slight
abuse of notation, we also use ωT

in · λ when there is no need to
specify the insertion decision θ.

Then we assign ωT
in · λ to the edge labeled with insertion

weight function ωin in EIS m and transfer a game with multi-
dimensional objective to one with one-dimensional objective.
From the above discussion, the insertion function achieves a
mean payoff vector that lies above H or a mean payoff vector
with all nonnegative elements if and only if it ensures that the
one-dimensional mean payoff objective remains nonnegative,
with weight function ωT

in · λ in EIS m. Therefore, our goal is
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to search for such hyperplanes, which transfers the problem of
solving a multidimensional mean payoff game to one of finding
a proper normal vector in the k-dimensional integer space.

6.3. Synthesize Bounded Cost Rate Insertion Strategies

We establish the relation between the original multidimen-
sional mean payoff game and the induced one-dimensional
mean payoff game after applying the hyperplane separation
technique. Then we derive solutions to Problem 2.

Denote by Winem (respectively Winim) the winning region
of the environment (respectively the insertion function) in the
multidimensional mean payoff game with weight function ωin;
further denote by Winλem (respectively Winλim) the winning re-
gion of the environment (respectively the insertion function) in
the one-dimensional mean payoff game with weight function
ωT

in · λ. From now on, we focus on the environment’s winning
strategies. Since a mean payoff game under complete informa-
tion is determined [14], i.e., from any vertex in the game graph,
exactly one player has a winning strategy, we may directly ob-
tain the insertion function’s winning strategies afterwards.

Given a vector λ ∈ Rk, we do the inner product between λ
and each insertion weight vector in EIS m to obtain a game with
scalar insertion weights, while we do not consider the weights
associated with event occurrence anymore. In the new game,
we hope to achieve a nonnegative mean payoff objective. We
repeat Lemma 1 and Lemma 2 of [9] here: (i) For every λ ∈ Rk,
we have Winλem ⊆ Winem; also if Winλem , ∅, then Winem , ∅;
(ii) If for all λ ∈ Rk we have Winλem = ∅, then Winem = ∅. These
results establish the relation between the winning regions for
both players in the original game and the new game.

These results illustrate a potential way to determine whether
the environment player has a non-empty winning region in the
multidimensional mean payoff game: we just need to check all
λ ∈ Rk to determine whether the environment wins the one-
dimensional mean payoff game with weight function ωT

in · λ.
The readers are referred to [9] for detailed proofs.

Therefore, the key point is to search for a hyperplane and
then determine the winner of the induced one-dimensional
mean payoff game. However, it seems that we need to check
infinitely many vectors in Rk, which is not feasible in prac-
tice. Fortunately, by Lemma 3 in [9], we only need to check
a finite number of vectors in a k-dimensional space. Let M =

(k · n · W)k+1, where W is the maximal absolute value in in-
sertion weight functions defined in EIS m, n is the number of
states in EIS m, and k is the number of dimensions. For a pos-
itive integer i, we denote by Z±i = { j ∈ Z : −i ≤ j ≤ i} (resp.
Z+

i = { j ∈ N : 1 ≤ j ≤ i}) the set of integers (positive integers)
from −i to i (resp. from 1 to i). Lemma 3 of [9] is stated here:
There exists λ ∈ Rk such that Winλem , ∅ if and only if there
exists λ′ ∈ (Z±M)k such that Winλ

′

em , ∅. The proof is omitted.
To summarize and strengthen the above results, we repeat

Lemma 4 in [9] as a theorem here.

Theorem 4. Given the multidimensional mean-payoff game
on EIS m, we have that: (1)

⋃
λ∈(Z+

M )k Winλem ⊆ Winem; (2) if⋃
λ∈(Z+

M )k Winλem = ∅, then Winem = ∅.

This theorem illustrates that if the environment wins the one-
dimensional mean payoff game with weight vector ωT

in · λ at
a certain state in EIS m for some λ ∈ (Z+

M)k, then it also has a
way to beat the insertion function and win the multidimensional
mean payoff game from the same state; conversely, if the inser-
tion function wins any one-dimensional mean payoff game with
weight vector ωT

in · λ where λ ∈ (Z+
M)k at a state in EIS m, then

the insertion function also wins the original multidimensional
game from that state. This theorem suggests that we can re-
strict attention to vectors in (Z+

M)k and determine which player
wins the transformed one-dimensional game. More details con-
cerning the proof of the theorem can be found in [9].

Based on the above results, we present Algorithm 3 to solve
Problem 2. We first assume that states in EIS m are numbered
from 1 to n. At each state, we sequentially iterate over vector
λ ∈ (Z+

M)k to see if there exists a winning strategy for the envi-
ronment with weight function ωT

in · λ by the pseudo-polynomial
algorithm proposed in [5] for mean payoff games. Then we
define the attractor for each player in EIS m. Let Q be a set
of states in EIS m, then for the environment (“em” for short),
Attrem(Q) is defined recursively as follows: Q0 = Q, Q j+1 =

Q j ∪ {ye ∈ QE
Y : ∃ze ∈ Q j, eo ∈ Eo s.t. f E

yz(ye, eo) = ze} ∪ {ze ∈

QE
Z : ∀ye ∈ QE

Y : [∃θ ∈ E∗o, s.t. f E
zy(ze, θ) = ye] ⇒ [ye ∈ Q j]}

and Attrem(Q) =
⋃

j≥0 Q j. The environment ensures to reach
Qi from Qi+1 within one transition regardless of the insertion
function’s strategies, so it may reach states in Q from states in
Attrem(Q) within a finite number of transitions regardless of the
insertion function’s strategies. On the other hand, the environ-
ment may avoid reaching Q if it is at states outside of Attrem(Q).
Similarly, we define the attractor for the insertion function.

Algorithm 3 Find solutions to Problem 2

Input: EIS m

Output: Insertion strategies solving Problem 2
1: for j = 1 : n do
2: if q j is still in the remaining structure then
3: Consider q j ∈ QE

Y ∪ QE
Z in EIS m;

4: for λ ∈ (Z+
M)k do

5: if there exists an environment’s winning strat-
egy from q j to achieve a negative mean payoff in the trans-
formed one-dimensional game with weight function ωT

in · λ
by the method in Section 5 of [5] then

6: Remove Attrem({q j}) from EIS m;
7: if the remaining structure is not empty then
8: Return insertion strategies in the structure;
9: else No solution exists for Problem 2.

In Algorithm 3, we apply the method in [5] to solve the in-
duced one-dimensional mean payoff game and this method out-
performs any other known method in terms of complexity. If
at the current state in EIS m, there exists a winning strategy for
the environment for the one-dimensional mean-payoff objective
with weight function ωT

in ·λ, then we remove the attractor of the
current state and proceed to the next iteration. The reason is that
if the environment wins the mean payoff game from a vertex in
the game graph, it also wins the game from the attractor of the
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current vertex.1 Thus the game graph may be shrinking when
the algorithm is running. However, if the environment is unable
to win the one-dimensional game for any λ ∈ (Z+

M)k at the cur-
rent state, i.e., the insertion function has a winning strategy to
enforce a nonnegative mean payoff from the current state for all
λ ∈ (Z+

M)k, then the insertion function may enforce a mean pay-
off vector with all nonnegative elements. Thus this state should
be included in the winning region of the insertion function for
the multidimensional mean payoff game. Therefore, after all
states in EIS m are checked, the insertion function has winning
strategies for Problem 2 against all environment’s strategies if
the remaining structure is not empty. Otherwise, no solution
exists for Problem 2 if all states of EIS m are removed. Besides,
as positional strategies suffice to win a mean payoff game with
perfect information [14], we simply let strategies returned by
Algorithm 3 be positional so that a finite number of strategies
are returned. The correctness of Algorithm 3 is from Theo-
rem 4 and more details concerning solving a one-dimensional
mean payoff game are available in [5].

Finally, we briefly discuss the complexity of Algorithm 3 fol-
lowing a similar argument as in [9]. When running the algo-
rithm, we need n iterations under the worst case and in each
iteration we solve at most Mk one-dimensional mean payoff

games. Thus the iterative algorithm needs to solve O(n · Mk)
one-dimensional mean payoff games with m edges, n vertexes,
and the maximal weight being at most k · W · M (as the max-
imum element in all λ ∈ (Z+

M)k is M, the maximum weight in
every dimension of ωin is W, and we sum k dimensions). Since
one-dimensional mean payoff games with n vertexes, m edges
and maximal weight W can be solved in time O(n ·m ·W) by the
method proposed in [5], the overall complexity of the algorithm
is O(n2 · m · k · W · (k · n · W)k2+2k+1), which is polynomial in
terms of the number of vertexes when k is fixed.

Example 3. We revisit Example 2 and further discuss Prob-
lem 2 based on the solutions of Problem 1. We show EIS m in
Figure 8 after merging the leaf states with states subsumed by
them in EIS w. Then we investigate the bound of insertion cost
rate by starting with threshold vb = [3, 3]T and see if Problem 2
has a solution. It is seen that EIS m contains cyclic runs and
this problem is discussed on them. We add vb to each each in-
sertion cost vector in EIS m to obtain the new weight vectors
ωin(b) + vb = [2, 0]T , ωin(d) + vb = [0, 2]T , ωin(ε) + vb = [3, 3]T

and those events are inserted in cyclic runs. After running Al-
gorithm 3, we find that there exist insertion strategies solving
Problem 2. The detailed process is tedious and is omitted here.
For example, one feasible insertion strategy is to choose to in-
sert b at Z-state ze

2. Then it is easy to see that this strategy
achieves a positive mean payoff value.

However, if we change the threshold vector to v′b = [1, 1]T ,
then Problem 2 has no solution. From Figure 8, we see that two

simple cycles ye
2

c
−→ ze

2
{b}
−−→ ye

3
c
−→ ze

3
{d}
−−→ ye

2 and ye
2

c
−→ ze

2
{d}
−−→ ye

6
c
−→

ze
4
{b}
−−→ ye

2 both have weight vector ωin(b) + ωin(d) = [−4,−4]T .

1The pruning here is similar to calculating the supremal controllable sublan-
guage [6] by viewing the environment’s winning states as undesirable, f E

yz tran-
sitions as uncontrollable, f E

zy transitions as controllable, and Y-states as marked.

Since −ωin(b)−ωin(d)
2 = [2, 2]T > vb, no insertion strategy can en-

force mean payoff threshold [1, 1]T .
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Figure 8: EIS m after merging states

7. Conclusion

This work investigated opacity enforcement by insertion
functions under multiple quantitative constraints for the first
time in discrete event systems. The system is initialized with
certain types of energy and the energy levels change dynami-
cally with event insertion and execution. Our goal is to syn-
thesize an insertion function that enforces opacity as well as
ensures that the system’s energy level in every dimension is
never below zero. We transferred the constrained opacity en-
forcement problem to a two-player game between the insertion
function and the environment. A bipartite information structure
called Energy Insertion Structure was defined to characterize
the game. It also provides a sound and complete characteriza-
tion of the solution space. Then we subsequently considered the
rate of insertion cost and formulated the bounded cost rate in-
sertion strategy synthesis problem, which was characterized as
a multidimensional mean payoff game. A method called hyper-
plane separation technique was applied to reduce the multidi-
mensional game to a one-dimensional game on the same graph.
Additional analysis showed that by solving the induced game,
we obtain valid solutions for the original problem.
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