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Translational Knowledge Discovery Between
Drug Interactions and Pharmacogenetics

Heng-Yi Wu!, Aditi Shendre>™, Shijun Zhangz, Pengyue Zhangz, Lei Wangz, Desta Zeruesenay3,
Luis M. Rocha4’5, Hagit Shatkay6, Sara K. (&inney”, Xia Ningz’s’* and Lang Li>*

Clinical translation of drug-drug interaction (DDI) studies is limited, and knowledge gaps across different types of
DDI evidence make it difficult to consolidate and link them to clinical consequences. Consequently, we developed
information retrieval (IR) models to retrieve DDI and drug-gene interaction (DGI) evidence from 25 million PubMed
abstracts and distinguish DDI evidence into in vitro pharmacokinetic (PK), clinical PK, and clinical pharmacodynamic
(PD) studies for US Food and Drug Administration (FDA) approved and withdrawn drugs. Additionally, information
extraction models were developed to extract DDI-pairs and DGI-pairs from the IR-retrieved abstracts. An overlapping
analysis identified 986 unique DDI-pairs between all 3 types of evidence. Another 2,157 and 13,012 DDI-pairs and
3,173 DGl-pairs were identified from known clinical PK/PD DDI, clinical PD DDI, and DGI evidence, respectively. By
integrating DDI and DGI evidence, we discovered 119 and 18 new pharmacogenetic hypotheses associated with
CYP3A and CYP2D6, respectively. Some of these DGI evidence can also aid us in understanding DDI mechanisms.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

M Several studies have explored different informatics ap-
proaches to mine drug interactions data from the biomedical
literature. However, none of them have distinguished the drug-
drug interaction (DDI) evidence into 77 vitro pharmacokinetic
(PK), clinical PK, and clinical pharmacodynamic (PD) studies,
which can impede the translational scope of drug interactions
research.

WHAT QUESTION DID THIS STUDY ADDRESS?

M The goal of this study was to retrieve and extract DDI and
drug-gene interaction (DGI) evidence from the biomedical
literature and distinguish the DDI study types into iz vitro
PK, clinical PK, and clinical PD studies. Additionally, the inte-
grated DDI and DGI evidence were used to determine knowl-
edge gaps that could enable the generation of novel DDI or DGI
and adverse drug event (ADE)-related hypotheses.

Drug-drug interactions (DDIs) are one of the major causes of
adverse drug events (ADEs) and have been demonstrated as a
public health burden."* With increasing rates of poly-pharmacy,
the incidence of DDIs is most likely to increase, and, thus, drug
interaction research remains essential.’ Current DDI studies
investigate different but complimentary scopes of drug interac-
tions: iz vitro pharmacokinetics (PK), clinical PK, and clinical

WHAT DOES THIS STUDY ADD TO OUR KNOW-
LEDGE?

M This study adds to the existing knowledge by providing
(i) a novel algorithm that extracts drug interaction evidence
from diverse DDI and DGI studies, (ii) a method to distinguish
the different types of DDI studies, and (iii) an integrated drug
interactions data that enables knowledge discovery through
generation of novel genetic hypotheses or molecular DDI
mechanisms.

HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY ORTRANSLATIONAL SCIENCE?

M The integrated knowledge generated by our study is valuable
for translational research in drug interaction studies. It can fa-
cilitate future studies that help in improving our understanding
of DDI-related ADEs through the detection of novel genetic or
molecular mechanisms. The validated hypotheses can then be
evaluated for potential clinical applications in the future.

pharmacodynamics (PD).*® In vitro PK studies investigate DDI-
related molecular mechanisms, such as metabolic enzymes or
drug transporter proteins using recombinant systems or cell/
tissue models. Clinical PK studies, on the other hand, evaluate
whether one objective drug’s exposure is changed due to the
co-administrated precipitant drug. The molecular mechanisms
of clinical PK DDIs are not necessarily known, unless the two
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drugs are either known substrates/inhibitors/inducers of an
enzyme. Clinical PD studies investigate whether the objective
drug’s efficacy or ADEs are changed because of the co-admin-
istrated prccipit:ant.7 In vitro PK experiments can be easily con-
nected to pharmacogenetic (PG) studies because of their shared
proteins and genes but this is not necessarily true in case of clini-
cal PK or PD DDI studies.®’

The goal of translational research in relation to DDI and PG
studies is to achieve a comprehensive understanding of the PD,
PK, and molecular mechanisms underlying drug effects in order
to ultimately achieve clinical utility. However, it usually takes
a long time to accomplish this overarching goal because of ex-
isting barriers between different scientific domains.* A salient
example is tamoxifen, whose CYP2D6 metabolic pathway was
initially discovered iz vitro in 2004."° The genetic effects of
CYP2D6 on the exposure of tamoxifen and its active metabo-
lites was later published in 2007."! The PK interactions between
tamoxifen and selective serotonin reuptake inhibitors, such as
paroxetine, were subsequently revealed in 2009.12 Finally, the
combined effect of the CYP2D6 genotypes and drug inhibitors
on tamoxifen efficacy and ADEs (hot flashes) was determined
in 2012."% This example clearly demonstrates the association be-
tween DDI and drug-gene interaction (DGI) studies; however,
it also shows the extended duration of DDI and PG research
needed to achieve translational goals.

The translational landscape of drug interactions research has
created an enormous opportunity for the field of informatics.
The diverse and independent scientific disciplines involved in
DDI and DGI research make it difficult to provide compre-
hensive evidence for all drugs.4 Despite the existence of several
databases, none of them have been successful in linking all the
available information. DrugBank is probably the only database
that comes close to identifying and including both DDI and
DGI evidence. ' However, it’s PK and PD DDI evidence lack de-
tails on magnitude of drug exposure change and clinical pheno-
types, respectively. DGI evidence in DrugBank include a drug’s
relationship with metabolic enzymes or transporter proteins but
not the effect of PG on PK and PD effects. On the other hand,
PharmGKB is designed to provide PG evidence on PK and
PD outcomes, but no DDI evidence.!> The Drug Interaction
Database includes a collection of iz vitro PK and clinical PK
DDI evidence, but very limited PD DDI and PG evidence.'®
Therefore, it is of greatest translational research interest to con-
solidate these evidence in order to promote discovery of knowl-
edge gaps between discordant DDI and DGI studies.”®

Text mining, as an efficient knowledge discovery tool, has
been extensively applied to mine drug interaction signals from
the biomedical literature.'’ ! For example, Percha and Altman
have developed a novel classification model to map all DGIs in
MEDLINE abstracts, and discover new drug-gene relation-
ships.18 Previously, our group generated new DDI pairs by mining
the PubMed literature using known cytochrome P450 (CYP450)
probe substrates and inhibitors, and identifying all existing
CYP450 substrates and inhibitors from iz vitro experiments.17
Recently, we also developed a DDI and DGI corpus with the goal
of developing a new text mining algorithm and evaluating the
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performance of the text mining analyses separately for iz vitro and
clinical PK DDI evidence.?! However, we did not investigate the
overlapping or nonoverlapping evidence between the two. None
of the existing informatics analyses have fully investigated the
translational landscape of DDI and PG studies and the knowl-
edge gaps that exist between them, nor have they differentiated
between iz vitro and clinical PK, and clinical PD evidence in the
published DDI studies.

In this paper, a text mining approach was utilized to differen-
tially screen 7z vitro PK DD], clinical PK DDI, and clinical PD
DDI, and DGI evidence, followed by an overlapping analysis.
Our aim was to investigate and identify knowledge gaps among
in vitro PK, clinical PK, and clinical PD studies, and translate
the literature-based discovery evidence between DDI and DGI
studies.

METHODS

A detailed description of the methods involved in the development of
the text mining approach is presented in the Supplemental File. A brief
description is included below.

Lexica construction

Lexica comprising of drug names, enzymes, action terms, and ADE terms
were prepared. Based on the drug groups in DrugBank, the US Food and
Drug Administration (FDA) approved and withdrawn drugs (2,403 ge-
neric names) were extracted for text mining. For drug enzyme terms, 94
symbol names and synonyms (350 terms in total) were collected from
Gene ontology,22 HUGO Gene Nomenclature Committee (I—IGNC),23
and the Human Cytochrome P450 (CYP) Allele Nomenclature
Database.”* The action terms that describe the drug and enzyme rela-
tionships (i.c., inhibition or induction) were collected from our PK ontol-
ogy21 and the recent work by Percha and Aleman.'® The 19,550 preferred
terms of adverse drug reactions were normalized from 70,177 lowest level
terms in The Medical Dictionary for Regulatory Activity (MedDRA)
database.”

Corpus construction

Two types of corpora, including information retrieval (IR) and in-
formation extraction (IE) were constructed for retrieving DDI and
DGI abstracts and extracting DDI/DGI pairs, respectively. The IR
corpus has 300 manually curated DDI abstracts in each one of the iz
vitro PK, clinical PK, and clinical PD studies. For PG studies, 3,429
DGl-relevant abstracts were collected from PharmGKB. The IE cor-
pus consists of 210 iz vitro PK DDI, 218 clinical PK DDI, 140 clin-
ical PD DDI, and 395 DGI abstracts. In the IE corpus, terms such
as drugs, enzymes, and relationships between drug-drug/drug-gene
pairs were annotated. The details of the data collection (Table S1),
text annotation, and annotation evaluation process are provided in the
Supplemental File.

Text mining schemes

As shown in Figure 1, text mining for each type of DDI or DGI evidence
was accomplished in two stages: IR and IE. In the IR stage, an optimal
model that maximizes the recall rate of identifying relevant abstracts for
cach type of study was built using the IR corpus. The documentlevel
classifier was trained upon N1-positive DDI abstracts and N2 randomly
selected negative abstracts. In addition, the performance of the docu-
ment-level classifier was evaluated using the testing dataset (N3 DDI ab-
stracts and N4-negative abstracts). The data collection statistics for the
IR models is shown in Table 1. After the optimal IR models were buil,
25 million abstracts were screened, and relevant DDI and DGI abstracts
were identified.
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Figure 1 Text mining pipeline for the information retrieval and information extraction tasks. DDI, drug-drug interaction; DGI, drug-gene

interaction; |IE, information extraction; IR, information retrieval.

Table 1 Data collection statistics for IR models

Training data Testing data

Positive Negative Positive Negative
Study types (N1) (N2) (N3) (N4)
DDI
In vitro PK 150° 10,000 150° 800°
Clinical PK
Clinical PD
DGI 1,700 1,700 1,729 8,300

DDI, drug-drug interaction; DGI, drug—-gene interaction; IR, information
retrieval; PD, pharmacodynamic; PK, pharmacokinetic.

#The 150 abstracts were different for training and testing as well as each of
the in vitro PK, clinical PK, and clinical PD DDI studies.bAmong 800 negative
abstracts, 500 were single-drug or nutrition-related abstracts and 300 were
randomly selected abstracts.

In the IE stage, an optimal model that maximizes F-measure of extract-
ing relation pairs was built using the IE corpus. The DDI or DGI rela-
tionship classifiers were built upon 60% of the true entity relation pairs
in the IE corpus (i.c., training data) and the remaining 40% were used for
performance evaluation (i.c., testing data). Finally, using the optimal IE
models, DDI and DGI pairs were extracted from their respective abstracts
retrieved in the IR stage.

IR model development

IR was implemented in Weka.? String attributes in each abstract were
converted into a set of attributes representing word occurrence infor-
mation from the text using “StringToWordVector” module. Within
the module, a set of word features converted from the normal text
were extracted using IteratedLovinsStemmer, stopwordsHandler,
NGramTokenizer (1-3), lowerCascTokens, and wordsToKeep (1,000).
The statistics for these word features, including term frequency-inverse
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document frequency and output word counts were prepared using
TFTransform, IDFTransfrom, and outputWordCounts. Subject to the
optimization of recall rate, Sequential Minimal Optimization was uti-
lized for the text classification.

IE model development
IE of the DDI and DGI pairs was achieved in two steps: entity recogni-
tion and normalization, and relation pair extraction.

Entity Recognition and Normalization. The relevant entities, includ-
ing drugs, enzymes, ADEs, and interaction terms, were tagged using
name-entity recognition by string-matching against the lexica. Extracted
drugs, enzymes, and ADEs were normalized to generic drug names, gene
symbol names, and preferred terms in MeDRA, respectively. Interaction
terms were normalized to their stemmed forms.

Relation pair extraction. The existing text mining methods recognize
a piece of text that contains a semantic property of interest and extracts
syntactic relations between entities in a single sentence using natural
language processing."””’ " Different from these works, we developed
a feature-based approach to extract DDI/DGI pairs from context in an
entire abstract. If N unique drug names are mentioned in an abstract,
there are N*(N-1)/2 possible drug combinations that may or may not
have interactions. Our IE model was built to predict the interaction re-
lationship between each drug combination and optimize the F-measure.

In our DDIIE models, 16 features were created. These features capture
syntactic, statistic, and scientific patterns from drug interactions present
in the text. They were mainly derived from three types of information
(entity location, entity statistics, and entity background knowledge). The
location features provided location information for drug entities and in-
teracting terms, or their co-occurrence (i.e. drug pairs co-occurringin the
title sentence or the same sentence or the relative distance between drug
pairs and interacting terms). The statistical features offer the frequency of
drugs, drug pairs, and drug co-occurrence in a sentence or cross sentences.

In addition, the knowledge features supply the background knowledge of
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drug pair relations, such as enzyme-substrate/inhibitor relationships and
anatomical therapeutic chemical (ATC) classification information.

To perform the DDI IE task, we customized 5 groups of feature
sets from the 16 features using different strategies (Tables $2 and S3).
Three manual (G1, G2, and G5) and two statistically (G3 and G4)
determined group sets were adopted for the three types of studies.
For G3 and G4, a stepwise regression model was used to determine
statistically significant features, with G4 also involving two-way
interaction terms. To maximize the F-measure for prediction, the
optimal combination of five feature groups and seven popular classi-
fiers (J48, Naive Bayes, Sequential Minimal Optimization, Logistic
Regression, Random Forest, Logistic Model Trees, and Iterative
Classifier Optimizer) were explored for each study type. The details
of the feature creation and selection are described in the section under
“Experimental settings” in the Supplemental File.

To perform DGI IE, all descriptive structures for the drug-gene re-
lationships were identified from PubMed abstracts.'® Based on their
findings, two important types of terms, including interacting verbs (e.g.,
inhibit) and mechanism terms (e.g., methylation), were included to char-
acterize all dependency paths for DGI presentations. Four types of fea-
tures (S0 features) were created: (i) 44 features were scored based on the

relative location, distance, and negation of each combination of 22 verb
or 22 mechanism terms; (i) co-occurrence frequency of cach combina-
tion or each combination with verb terms; (iii) relative position of the
bracket containing drugs or enzymes; and (iv) the order of the drug, gene,
and verb/mechanism terms present in the sentences (Table $4). For this
task, logistic regression was utilized for both feature selection and DGI
prediction.

Hypotheses generation

By integrating the DDI and DGI evidence discovered through screening
of the biomedical literature, and implementing a translational research
method to discover knowledge gaps in druginteraction studies, we gener-
ated research hypotheses to: (i) understand the hazards of specific drugs
given certain genetic polymorphisms and (ii) explore molecular mecha-
nisms of drug interactions (Figure 2).

Translate DDI signals into PG hypotheses. A knowledge discov-
ery method was used to translate DDI signals into PG hypotheses.
The process included the examination of evidence to determine
whether drug D1 changed drug D2 efficacy or ADEs (i.e., PD DDI),

(a)
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Figure 2 Hypotheses generation. (a) Translate drug-drug interaction (DDI) signals to predict genetic effects related to adverse drug events
(ADEs) and (b) translate drug-gene interaction signals to predict molecular mechanisms of DDI. PD, pharmacodynamic; PG, pharmacogenetic;

PK, pharmacokinetic.
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D2 exposure (i.e., PK DDI), or inhibited D2 metabolic enzyme E
(in vitro PK). If these DDI effects were noted, we then hypothesized that
the functional genetic polymorphisms of E may be associated with D2
efficacy or ADEs.

Translate DGI signals into DDI mechanistic hypotheses. To explore
unknown mechanisms involving drug interactions with only clinical PK
and PD evidence, a discovery method was proposed to translate DGI sig-
nals into DDI mechanisms. The process included the evaluation of both
drugs (D1 and D2) to discern their shared target genes and ADEs. If D1
and D2 were reported to interact and had common interacting genes, we
hypothesized that their interaction may be synergistic or antagonistic for
agiven ADE.

RESULTS

The number of abstracts from each type of study, as well as the re-
call, F-measure, and validity-related statistics, are presented below.
Figure 3 presents the number of DDI and PG abstracts retrieved
and the DDI and DGI pairs extracted from each type of study.
The Venn diagram in Figure 3 shows the overlap of drug pairs
from the three types of DDI studies to help identify potential
knowledge gaps between DDI and DGI evidence. The data re-
lated to the Venn Diagram and the DGI associated ADEs are pre-
sented in the Supplemental Excel Files “Venn diagram data and
statistics.xIsx” and “DGI-ADE information.xlsx,” respectively.

IR: Identifying DDI and DGI-relevant abstracts from
MEDLINE

Using our recently developed corpus, the optimal IR models were
built for each study type. The F-measures for the performance

of the IR models were 0.94, 0.84, 0.70, and 0.78, respectively;
and the recall rates were 0.98, 0.99, 0.86, and 0.97 for in vitro PK
DD, clinical PK DDI, clinical PD DDI, and PG, respectively
(Table SS). Using these optimally trained models, a large-scale
IR analysis of 25 million MEDLINE abstracts (1975-2015) was
conducted. Studies involving animal models were removed using
MeSH terms under the tree “B01.050” (Animal). We retrieved
5,199 in vitro PK, 17,048 clinical PK, 80,246 clinical PD DDI,
and 479,865 PG abstracts (Figure 3). To further demonstrate the
performance of these IR models, studies in the IE corpora (210,
218, 140, and 39S abstracts for iz vitro PK, clinical PK, clini-
cal PD, and PG studies) were used because there is no overlap
between the IR and IE corpora. Recall rates for these IE studies
were determined to be 1.00, 0.96, 0.99, and 0.94, respectively.

IE: Identifying DDI and DGI pairs from the MEDLINE
Abstracts

To extract DDI and DGI pairs from the MEDLINE abstracts
identified in the IR step, IE models were customized and opti-
mized. The DDI extraction performances for each of the iz vitro
PK, clinical PK, and clinical PD studies were compared across
five feature sets (G1-GS5) and seven classifiers and are presented
in Tables S6, S7, and S8, respectively. The optimal F-measure
for in vitro PK studies was 0.83 using feature group 5 (G5) and
the Naive Bayes classifier; the optimal F-measure for clinical PK
studies was 0.85 using feature group 1 (G1) and the Iterative
Classifier Optimizer; and the optimal F-measure for clinical PD
studies was 0.73 using feature group 1 (G1) and the Naive Bayes
classifier. For the DGI IE model, SO features were trained over a

Information Retrieval ‘

‘ Information Extraction

f 5,199
IN VITRO PK
Abstracts

80,246
CLINICAL PD
\ Abstracts

v

DDI Extraction

DGl Extraction

Drug Pairs
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Drug Pairs

{

|

| 479,865 SLE 217,562

i PG Difvg;gene Drug pairs
i Abstracts Pairs

Clinical PK In Vitro PK
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Need additional
molecular pharmacology
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*  Potential clinical utilities
******* *  Genetic hypotheses

o e e e e

Figure 3 Results from the information retrieval and information extraction stages accompanied by a Venn diagram illustrating the overlap
between the different DDI studies. DDI, drug-drug interaction; DGI, drug-gene interaction; PD, pharmacodynamic; PG, pharmacogenetic; PK,

pharmacokinetic.
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logistic linear regression classifier to reach the optimal F-measure
of 0.82 (Table S9). All four optimized IE models were then
applied to the relevant DDI/DGI abstracts retrieved from the
previous IR stage. The IE analysis focused on FDA approved and
withdrawn drugs, and identified 3,894, 3,920, and 17,315 unique
in vitro PK, clinical PK, and clinical PD DDI pairs, respectively,
and 3,173 unique DGI pairs (Figure 3). Using 3,173 retrieved
DGI pairs, 217,562 drug pairs were further generated when both
drugs shared enzyme relationships.

The overlap and knowledge gap among DDI evidence

With the drug pairs extracted in the IE stage, the Venn
diagram shown in Figure 3 was constructed to present the
overlapping DDIs. A total of 986 unique drug pairs were found
to overlap between all three study types. Another 2,157 DDIs
represented the overlap between clinical PK and clinical PD
studies. Last, 13,012 DDI pairs were found to only have clinical
PD evidence.

Another overlapping analysis was performed to compare
“extracted DDIs” from DDI IE to “predicted DDIs” from DGI IE.
In Table 2, 94.8% of the 986 DDI pairs shared by all 3 DDI study
types were predicted by DGI results. Other types of DDI evidence
that overlap well with DGI predicted DDIs include: “clinical PK -
in vitro PK” (95.9%), “clinical PD — iz vitro PK” (86.6%), and “iz

Table 2 Overlapping analysis for DDI studies

vitro PK” (85.2%). For the remaining DDIs without i vitro PK
evidence, DGI does not predict DDIs well, and the overlapping
percentages are below 70%. Only 42.7% of the clinical PD DDIs
were predicted from DGI results.

Comparing DDI text mining evidence to DDI data in the
DrugBank database

DDI text mining performance was also evaluated by compar-
ing the results with DDI data from the DrugBank database. For
our comparison analysis, we only focused on the FDA approved
and withdrawn drugs. Between 222,409 DrugBank DDIs and
19,695 text-mined DDIs, 9,587 DDIs overlapped. We compared
the overlapping DDIs under the subgroups defined by the three
DDI evidence types. In Table 2, DDI pairs with all three types of
evidence from our text mining analysis overlapped the most with
DrugBank DDIs (~ 88%), whereas DDI pairs with only clinical
PD evidence had the lowest overlapping rate (~ 40%).

To demonstrate the validity of our text mined DDI evidence,
the top 20 DDI pairs in each study type were evaluated manually
(Table 2). DDI pairs were ranked by their reporting frequencies in
different PubMed abstracts. Among the top 20 DDIs from iz vitro
PK, clinical PK, and clinical PD studies, 17, 20, and 19 pairs were
manually validated as true DDIs, respectively. However, only 9, 16,
and 13 of these DDIs were found to be reported in the DrugBank.

No. of DDIs No. of DDIs predicted No. of DDIs found in Top 20 DDIs (found in
Venn diagram area in LS result by DGI (%) DrugBank (%) DrugBank/validated DDIs)
Full in vitro PK area 3,894 3,443 (88.4) 2,594 (66.6) 9/17
Full clinical PK area 3,920 2,980 (76.0) 2,734 (69.8) 16/20
Full clinical PD area 17,315 8,991 (51.9) 8,296 (47.9) 13/19
Overlap of clinical PD — clinical PK — 986 935 (94.8) 867 (87.9) 19/20
in vitro PK
Overlap of clinical PK — in vitro PK 145 139 (95.9) 112 (77.2) 19/20
Overlap of clinical PD — in vitro PK 1,160 1,004 (86.6) 785 (67.7) 19/20
Overlap of clinical PD — clinical PK 2,157 1,494 (69.3) 1,406 (65.2) 13/19
Only clinical PK 632 412 (65.2) 349 (55.2) 13/14
Only in vitro PK 1,603 1,365 (85.2) 830 (51.8) 11/11
Only clinical PD 13,012 5,558 (42.7) 5,238 (40.3) 8/18
Venn diagram area No. of DDIs in Venn diagram area No. of DDIs found in Type of evidence
DrugBank (%)
Clinical PD - clinical PK — in vitro PK 6,683 3,271 (48.9) PK evidence
Clinical PK — in vitro PK
Clinical PD — in vitro PK
Clinical PD — clinical PK
Clinical PK
In vitro PK
Clinical PD - clinical PK — in vitro PK 17,315 4,016 (23.2) PD evidence

Clinical PK — in vitro PK
Clinical PD — in vitro PK
Clinical PD — clinical PK
Clinical PD

DDI, drug—drug interaction; DGI, drug—gene interaction; LS, literature search; PD, pharmacodynamic; PK, pharmacokinetic.
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Additionally, for the top 20 DDI pairs in the overlapping areas
among 2 or 3 evidence types, almost all them were validated in
our manual review but only a few of these DDIs were reported in
DrugBank. DDI pairs that did not overlap with DrugBank data
were also manually reviewed for validity. Among the top 20 DDIs
from our 119 three-way overlapped DDIs, 17 were found to have
confirmed DDI evidence in the literature. Similarly, all of the top
20 DDIs with overlapping clinical PD and clinical PK evidence
were confirmed to have DDI evidence in the literature.

Translate DDI signals into genetics hypotheses
The 986 DDI pairs shared among 3 types of DDI studies were trans-
lated into genetic hypotheses with respect to their ADEs. Among
these 986 DDIs, 865 (87.8%), 481 (48.8%), 193 (19.6%), 419 (42.5%),
and 365 (37%) were associated with CYP3A, CYP2D6, CYP2CS8,
CYP2C9, and CYP2Cl19, respectively, with some DDIs involving
more than one CYP450 enzyme. In our following genetic hypothe-
sis generation analysis, we focused on CYP34 and CYP2DG6 as they
were responsible for 88% and 49% of the 986 DDIs, respectively.
CYP3A-related DDIs had 68 distinctive substrates, and CYP2D6-
related DDIs had 25 different substrates. Based on these CYP3A and
CYP2D6 substrates, 552 and 192 ADE terms were found to co-occur
in their clinical PD DDI abstracts, respectively. Similarly, 199 and 57
ADE terms related with the 68 CYP3A and 25 CYP2D6 substrates
from DGI abstracts were retrieved. The common ADE terms from
both DDI and DGI abstracts were considered as potential CYP34 or
CYP2D6 gene-related ADEs. These common DDI and DGI ADEs
were further evaluated through manual review. Overall, 150 and 31
genetic hypotheses were generated from the 68 CYP3A substrates
and 25 CYP2D6 substrates, respectively. Of these, 31 CYP3A-related
and 13 CYP2Dé-related PG evidence were reported in published PG
studies (Table 3). As a result, 119 and 18 new PG hypotheses were
generated for CYP34 and CYP2DG6, respectively.

Translate DGI signals into DDI molecular mechanistic
hypotheses

Among the 2,157 DDIs shared between clinical PD and PK DDI
evidence, 1,497 DDI pairs shared the same metabolic enzymes (i.c.,
CYPs and uridine 5™-diphosphate glucuronosyltransferase) in their
DGIs. Therefore, these 1,497 DDI pairs potentially have a PK drug
interaction mechanism. Among the remaining 660 DDIs, 68 DDI
pairs were found to share the same molecular pathways, 38 DDI pairs
shared common genes, and 12 DDI pairs shared common genetic
variants. The 38 DDI pairs with shared genes were reviewed further
to determine if they elicit similar responses, whether the shared re-
sponses were modified by these DDIs, and whether any 77 vitro cell
culture studies had investigated their DDI mechanisms. After man-
ual review, 7 of 38 DDI pairs were validated to have DDI effects, and
3 had additional DDI evidence from 77 vitro experiments (Table 4).

DISCUSSION

ADE:s caused by drug interactions are a critical issue for prescrip-
tions. In clinical practice, prescription decision support typically
stems from 7z vivo and clinical evidence. However, there is high
variability in drug responses, which are affected by both genetic and
environmental factors. Therefore, studying genetic or molecular
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mechanisms underlying DDIs is essential to help: (i) understand the
hazards of specific drugs given certain genetic polymorphisms, and
(ii) explore molecular mechanisms of such interactions. Today, more
than 2,000 genetic tests are currently available, but not every drug is
covered and the tests can be c:xpensive.31 To address these challenges,
we introduced a translational research method to discover knowl-
edge gaps in drug interaction studies. Utilizing the results from our
large-scale screening, two sets of hypotheses were generated by (@)
translating DDI signals into genetic information for ADEs and (ii)
translating DGI signals into molecular mechanistic hypotheses.

To demonstrate the process of PG hypotheses generation, evalu-
ation, and validation, we use the example of tacrolimus, a CYP3A
substrate. Among 87 clinical PD DDI abstracts showing the inter-
action evidence between tacrolimus and CYP3A inhibitors, such as
ketoconazole, clarithromycin, cyclosporine, or ritonavir, 141 ADE
terms were identified and extracted. From these results, we assume
that 141 genetic hypotheses can be generated for tacrolimus. Another
153 ADEs were extracted from DGI abstracts related to tacrolimus
and CYP34. A total of 25 ADE terms were common between the
DDI and DGI abstracts. From these, three ADEs (nephrotoxicity,
hepatotoxicity, and hyperglycemia) were validated and found to be
associated with the CYP34S polymorphism, rs776746 (PharmGKB
level 2A or level 3 cvidc:nce).ﬂ_35 Thus, we were able to validate our
tacrolimus ADE-related genetic hypotheses, underscoring the ac-
curacy of our text mining algorithm. More importantly, the gener-
ation of 119 new PG hypotheses highlights the significance of our
translational research method in enabling the discovery of potentially
new genetic mechanisms that may otherwise not have been explored
through conventional DDI and PG research methods. An example of
this is simvastatin-induced rhabdomyolysis. Even though there are re-
ported evidence for the association between CYP344 and CYP345
genetic polymorphisms and simvastatin-induced mild myopathy
symptoms,” there is no reported study on the association between
CYP34 and the more severe form of myopathy (i.e., habdomyolysis).

Similar to the PG hypotheses, molecular mechanistic hypotheses
were validated or determined to be new through our manual review
process. For example, the combination of cisplatin and pemetrexed
showed improved response rate in mesothelioma patients in a ran-
domized phase IIT trial.>” Both drugs share the ABCC2, MTHFR,
and SLCI9AI target genes among them (PharmGKB level 4
evidence). Patients with ABCC2 152273697 (AA or AG genotype)
were reported to have improved overall and progression-free survival
when treated with cisplatin and pemetrexed compared with patients
with the ABCC2 GG genotype.38 The synergistic PD DDI between
cisplatin and pemetrexed has been demonstrated in i vitro studies
over multiple cancer cell lines (MCF7, A549, and PA1 cclls).39 In
particular, when MCF?7 cells were incubated with pemetrexed for
24 hours followed by cisplatin for 24 hours, synergistic inhibition
of cell proliferation was noted. Similar synergistic effects were also
observed in the A549 and PA1 cell lines. Another example is the
interaction between etanercept and methotrexate, which results in
improved response in patients with rheumatoid arthritis especially
with the ATPSE 151059150 (GG), HLA-E rs1264457 (AA), or
KLRCI 157301582 (CT or TT) variants (PharmGKB level 3 evi-
dence). However, no iz vitro experiments have been reported that
illustrate their DDI mechanisms. This etanercept/methotrexate
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example demonstrates that our translational discovery method can
also generate novel PD DDI mechanisms.

Our study has both strengths and limitations. Our text mining
algorithm enabled us to screen ~ 25 million MEDLINE abstracts
in order to retrieve DDI and DGI evidence. We were also able to
extract a substantial number of DDI and DGI pairs from the lit-
erature, and distinguish them based on the type of study involved.
However, we only focused on drug pairs and the CYP450-related
enzymes and genes. Therefore, we could not evaluate DDIs or
ADE:s associated with high dimensional drug combinations or
their interactions with other enzymes and drug transporters. Our
algorithm was also designed to identify co-occurrence of drugs
and ADE terms, as such, a manual review process was required
to verify and confirm these associations. Additionally, our algo-
rithm does not collect information on drug dosage or sample size
from individual studies at the moment but we are planning to add
this information along with the information on drug transport-
ers and other enzymes in the future. Despite these limitations, our
study provides a tremendous amount of information on DDIs,
DGlIs, and ADEs and allowed us to generate several novel genetic
hypotheses.

In conclusion, a text mining pipeline was developed to extract
DDI evidence from the biomedical literature in the current study.
Initially, golden standard corpora for DDIs and DGIs were created
to facilitate the text mining development. Subsequently, a large-
scale analysis was conducted to identify knowledge gaps in DDIand
DGl research, which were then used to generate hypotheses in order
to identify novel genetic mechanisms involving drug interactions
and predict potential molecular mechanistic DDI mechanisms.
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