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Translational Knowledge Discovery Between 
Drug Interactions and Pharmacogenetics
Heng-Yi Wu1, Aditi Shendre2,*, Shijun Zhang2, Pengyue Zhang2, Lei Wang2, Desta Zeruesenay3,  
Luis M. Rocha4,5, Hagit Shatkay6, Sara K. Quinney3,7, Xia Ning2,8,* and Lang Li2,*

Clinical translation of drug-drug interaction (DDI) studies is limited, and knowledge gaps across different types of 
DDI evidence make it difficult to consolidate and link them to clinical consequences. Consequently, we developed 
information retrieval (IR) models to retrieve DDI and drug-gene interaction (DGI) evidence from 25 million PubMed 
abstracts and distinguish DDI evidence into in vitro pharmacokinetic (PK), clinical PK, and clinical pharmacodynamic 
(PD) studies for US Food and Drug Administration (FDA) approved and withdrawn drugs. Additionally, information 
extraction models were developed to extract DDI-pairs and DGI-pairs from the IR-retrieved abstracts. An overlapping 
analysis identified 986 unique DDI-pairs between all 3 types of evidence. Another 2,157 and 13,012 DDI-pairs and 
3,173 DGI-pairs were identified from known clinical PK/PD DDI, clinical PD DDI, and DGI evidence, respectively. By 
integrating DDI and DGI evidence, we discovered 119 and 18 new pharmacogenetic hypotheses associated with 
CYP3A and CYP2D6, respectively. Some of these DGI evidence can also aid us in understanding DDI mechanisms.

Drug-drug interactions (DDIs) are one of the major causes of 
adverse drug events (ADEs) and have been demonstrated as a 
public health burden.1,2 With increasing rates of poly-pharmacy, 
the incidence of DDIs is most likely to increase, and, thus, drug 
interaction research remains essential.3 Current DDI studies 
investigate different but complimentary scopes of drug interac-
tions: in vitro pharmacokinetics (PK), clinical PK, and clinical 

pharmacodynamics (PD).4–6 In vitro PK studies investigate DDI-
related molecular mechanisms, such as metabolic enzymes or 
drug transporter proteins using recombinant systems or cell/
tissue models. Clinical PK studies, on the other hand, evaluate 
whether one objective drug’s exposure is changed due to the 
co-administrated precipitant drug. The molecular mechanisms 
of clinical PK DDIs are not necessarily known, unless the two 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Several studies have explored different informatics ap-
proaches to mine drug interactions data from the biomedical 
literature. However, none of them have distinguished the drug-
drug interaction (DDI) evidence into in vitro pharmacokinetic 
(PK), clinical PK, and clinical pharmacodynamic (PD) studies, 
which can impede the translational scope of drug interactions 
research.
WHAT QUESTION DID THIS STUDY ADDRESS?
 The goal of this study was to retrieve and extract DDI and 
drug-gene interaction (DGI) evidence from the biomedical  
literature and distinguish the DDI study types into in vitro 
PK, clinical PK, and clinical PD studies. Additionally, the inte-
grated DDI and DGI evidence were used to determine knowl-
edge gaps that could enable the generation of novel DDI or DGI 
and adverse drug event (ADE)-related hypotheses.

WHAT DOES THIS STUDY ADD TO OUR KNOW- 
LEDGE?
 This study adds to the existing knowledge by providing 
(i)  a novel algorithm that extracts drug interaction evidence 
from diverse DDI and DGI studies, (ii) a method to distinguish 
the different types of DDI studies, and (iii) an integrated drug 
interactions data that enables knowledge discovery through 
generation of novel genetic hypotheses or molecular DDI 
mechanisms.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 The integrated knowledge generated by our study is valuable 
for translational research in drug interaction studies. It can fa-
cilitate future studies that help in improving our understanding 
of DDI-related ADEs through the detection of novel genetic or 
molecular mechanisms. The validated hypotheses can then be 
evaluated for potential clinical applications in the future.
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drugs are either known substrates/inhibitors/inducers of an 
enzyme. Clinical PD studies investigate whether the objective 
drug’s efficacy or ADEs are changed because of the co-admin-
istrated precipitant.7 In vitro PK experiments can be easily con-
nected to pharmacogenetic (PG) studies because of their shared 
proteins and genes but this is not necessarily true in case of clini-
cal PK or PD DDI studies.8,9

The goal of translational research in relation to DDI and PG 
studies is to achieve a comprehensive understanding of the PD, 
PK, and molecular mechanisms underlying drug effects in order 
to ultimately achieve clinical utility. However, it usually takes 
a long time to accomplish this overarching goal because of ex-
isting barriers between different scientific domains.4 A salient 
example is tamoxifen, whose CYP2D6 metabolic pathway was 
initially discovered in vitro in 2004.10 The genetic effects of 
CYP2D6 on the exposure of tamoxifen and its active metabo-
lites was later published in 2007.11 The PK interactions between 
tamoxifen and selective serotonin reuptake inhibitors, such as 
paroxetine, were subsequently revealed in 2009.12 Finally, the 
combined effect of the CYP2D6 genotypes and drug inhibitors 
on tamoxifen efficacy and ADEs (hot flashes) was determined 
in 2012.13 This example clearly demonstrates the association be-
tween DDI and drug-gene interaction (DGI) studies; however, 
it also shows the extended duration of DDI and PG research 
needed to achieve translational goals.

The translational landscape of drug interactions research has 
created an enormous opportunity for the field of informatics. 
The diverse and independent scientific disciplines involved in 
DDI and DGI research make it difficult to provide compre-
hensive evidence for all drugs.4 Despite the existence of several 
databases, none of them have been successful in linking all the 
available information. DrugBank is probably the only database 
that comes close to identifying and including both DDI and 
DGI evidence.14 However, it’s PK and PD DDI evidence lack de-
tails on magnitude of drug exposure change and clinical pheno-
types, respectively. DGI evidence in DrugBank include a drug’s 
relationship with metabolic enzymes or transporter proteins but 
not the effect of PG on PK and PD effects. On the other hand, 
PharmGKB is designed to provide PG evidence on PK and 
PD outcomes, but no DDI evidence.15 The Drug Interaction 
Database includes a collection of in vitro PK and clinical PK 
DDI evidence, but very limited PD DDI and PG evidence.16 
Therefore, it is of greatest translational research interest to con-
solidate these evidence in order to promote discovery of knowl-
edge gaps between discordant DDI and DGI studies.5,6

Text mining, as an efficient knowledge discovery tool, has 
been extensively applied to mine drug interaction signals from 
the biomedical literature.17–21 For example, Percha and Altman 
have developed a novel classification model to map all DGIs in 
MEDLINE abstracts, and discover new drug-gene relation-
ships.18 Previously, our group generated new DDI pairs by mining 
the PubMed literature using known cytochrome P450 (CYP450) 
probe substrates and inhibitors, and identifying all existing 
CYP450 substrates and inhibitors from in vitro experiments.17 
Recently, we also developed a DDI and DGI corpus with the goal 
of developing a new text mining algorithm and evaluating the 

performance of the text mining analyses separately for in vitro and 
clinical PK DDI evidence.21 However, we did not investigate the 
overlapping or nonoverlapping evidence between the two. None 
of the existing informatics analyses have fully investigated the 
translational landscape of DDI and PG studies and the knowl-
edge gaps that exist between them, nor have they differentiated 
between in vitro and clinical PK, and clinical PD evidence in the 
published DDI studies.

In this paper, a text mining approach was utilized to differen-
tially screen in vitro PK DDI, clinical PK DDI, and clinical PD 
DDI, and DGI evidence, followed by an overlapping analysis. 
Our aim was to investigate and identify knowledge gaps among 
in vitro PK, clinical PK, and clinical PD studies, and translate 
the literature-based discovery evidence between DDI and DGI 
studies.

METHODS
A detailed description of the methods involved in the development of 
the text mining approach is presented in the Supplemental File. A brief 
description is included below.

Lexica construction
Lexica comprising of drug names, enzymes, action terms, and ADE terms 
were prepared. Based on the drug groups in DrugBank, the US Food and 
Drug Administration (FDA) approved and withdrawn drugs (2,403 ge-
neric names) were extracted for text mining. For drug enzyme terms, 94 
symbol names and synonyms (350 terms in total) were collected from 
Gene ontology,22 HUGO Gene Nomenclature Committee (HGNC),23 
and the Human Cytochrome P450 (CYP) Allele Nomenclature 
Database.24 The action terms that describe the drug and enzyme rela-
tionships (i.e., inhibition or induction) were collected from our PK ontol-
ogy21 and the recent work by Percha and Altman.18 The 19,550 preferred 
terms of adverse drug reactions were normalized from 70,177 lowest level 
terms in The Medical Dictionary for Regulatory Activity (MedDRA) 
database.25

Corpus construction
Two types of corpora, including information retrieval (IR) and in-
formation extraction (IE) were constructed for retrieving DDI and 
DGI abstracts and extracting DDI/DGI pairs, respectively. The IR 
corpus has 300 manually curated DDI abstracts in each one of the in 
vitro PK, clinical PK, and clinical PD studies. For PG studies, 3,429 
DGI-relevant abstracts were collected from PharmGKB. The IE cor-
pus consists of 210 in vitro PK DDI, 218 clinical PK DDI, 140 clin-
ical PD DDI, and 395 DGI abstracts. In the IE corpus, terms such 
as drugs, enzymes, and relationships between drug-drug/drug-gene 
pairs were annotated. The details of the data collection (Table  S1), 
text annotation, and annotation evaluation process are provided in the 
Supplemental File.

Text mining schemes
As shown in Figure 1, text mining for each type of DDI or DGI evidence 
was accomplished in two stages: IR and IE. In the IR stage, an optimal 
model that maximizes the recall rate of identifying relevant abstracts for 
each type of study was built using the IR corpus. The document-level 
classifier was trained upon N1-positive DDI abstracts and N2 randomly 
selected negative abstracts. In addition, the performance of the docu-
ment-level classifier was evaluated using the testing dataset (N3 DDI ab-
stracts and N4-negative abstracts). The data collection statistics for the 
IR models is shown in Table 1. After the optimal IR models were built, 
25 million abstracts were screened, and relevant DDI and DGI abstracts 
were identified.

ARTICLE



VOLUME 107 NUMBER 4 | April 2020 | www.cpt-journal.com888

In the IE stage, an optimal model that maximizes F-measure of extract-
ing relation pairs was built using the IE corpus. The DDI or DGI rela-
tionship classifiers were built upon 60% of the true entity relation pairs 
in the IE corpus (i.e., training data) and the remaining 40% were used for 
performance evaluation (i.e., testing data). Finally, using the optimal IE 
models, DDI and DGI pairs were extracted from their respective abstracts 
retrieved in the IR stage.

IR model development
IR was implemented in Weka.26 String attributes in each abstract were 
converted into a set of attributes representing word occurrence infor-
mation from the text using “StringToWordVector” module. Within 
the module, a set of word features converted from the normal text 
were extracted using IteratedLovinsStemmer, stopwordsHandler, 
NGramTokenizer (1–3), lowerCaseTokens, and wordsToKeep (1,000). 
The statistics for these word features, including term frequency-inverse 

document frequency and output word counts were prepared using 
TFTransform, IDFTransfrom, and outputWordCounts. Subject to the 
optimization of recall rate, Sequential Minimal Optimization was uti-
lized for the text classification.

IE model development
IE of the DDI and DGI pairs was achieved in two steps: entity recogni-
tion and normalization, and relation pair extraction.

Entity Recognition and Normalization. The relevant entities, includ-
ing drugs, enzymes, ADEs, and interaction terms, were tagged using 
name-entity recognition by string-matching against the lexica. Extracted 
drugs, enzymes, and ADEs were normalized to generic drug names, gene 
symbol names, and preferred terms in MeDRA, respectively. Interaction 
terms were normalized to their stemmed forms.

Relation pair extraction. The existing text mining methods recognize 
a piece of text that contains a semantic property of interest and extracts 
syntactic relations between entities in a single sentence using natural 
language processing.19,27–30 Different from these works, we developed 
a feature-based approach to extract DDI/DGI pairs from context in an 
entire abstract. If N unique drug names are mentioned in an abstract, 
there are N*(N-1)/2 possible drug combinations that may or may not 
have interactions. Our IE model was built to predict the interaction re-
lationship between each drug combination and optimize the F-measure.

In our DDI IE models, 16 features were created. These features capture 
syntactic, statistic, and scientific patterns from drug interactions present 
in the text. They were mainly derived from three types of information 
(entity location, entity statistics, and entity background knowledge). The 
location features provided location information for drug entities and in-
teracting terms, or their co-occurrence (i.e., drug pairs co-occurring in the 
title sentence or the same sentence or the relative distance between drug 
pairs and interacting terms). The statistical features offer the frequency of 
drugs, drug pairs, and drug co-occurrence in a sentence or cross sentences. 
In addition, the knowledge features supply the background knowledge of 

Figure 1  Text mining pipeline for the information retrieval and information extraction tasks. DDI, drug-drug interaction; DGI, drug-gene 
interaction; IE, information extraction; IR, information retrieval.

Table 1  Data collection statistics for IR models

Study types

Training data Testing data

Positive 
(N1)

Negative 
(N2)

Positive 
(N3)

Negative 
(N4)

DDI

In vitro PK 150a 10,000 150a 800b

Clinical PK

Clinical PD

DGI 1,700 1,700 1,729 8,300

DDI, drug–drug interaction; DGI, drug–gene interaction; IR, information 
retrieval; PD, pharmacodynamic; PK, pharmacokinetic.
aThe 150 abstracts were different for training and testing as well as each of 
the in vitro PK, clinical PK, and clinical PD DDI studies.bAmong 800 negative 
abstracts, 500 were single-drug or nutrition-related abstracts and 300 were 
randomly selected abstracts.
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drug pair relations, such as enzyme-substrate/inhibitor relationships and 
anatomical therapeutic chemical (ATC) classification information.

To perform the DDI IE task, we customized 5 groups of feature 
sets from the 16 features using different strategies (Tables S2 and S3). 
Three manual (G1, G2, and G5) and two statistically (G3 and G4) 
determined group sets were adopted for the three types of studies. 
For G3 and G4, a stepwise regression model was used to determine 
statistically significant features, with G4 also involving two-way 
interaction terms. To maximize the F-measure for prediction, the 
optimal combination of five feature groups and seven popular classi-
fiers (J48, Naïve Bayes, Sequential Minimal Optimization, Logistic 
Regression, Random Forest, Logistic Model Trees, and Iterative 
Classifier Optimizer) were explored for each study type. The details 
of the feature creation and selection are described in the section under 
“Experimental settings” in the Supplemental File.

To perform DGI IE, all descriptive structures for the drug-gene re-
lationships were identified from PubMed abstracts.18 Based on their 
findings, two important types of terms, including interacting verbs (e.g., 
inhibit) and mechanism terms (e.g., methylation), were included to char-
acterize all dependency paths for DGI presentations. Four types of fea-
tures (50 features) were created: (i) 44 features were scored based on the 

relative location, distance, and negation of each combination of 22 verb 
or 22 mechanism terms; (ii) co-occurrence frequency of each combina-
tion or each combination with verb terms; (iii) relative position of the 
bracket containing drugs or enzymes; and (iv) the order of the drug, gene, 
and verb/mechanism terms present in the sentences (Table S4). For this 
task, logistic regression was utilized for both feature selection and DGI 
prediction.

Hypotheses generation
By integrating the DDI and DGI evidence discovered through screening 
of the biomedical literature, and implementing a translational research 
method to discover knowledge gaps in drug interaction studies, we gener-
ated research hypotheses to: (i) understand the hazards of specific drugs 
given certain genetic polymorphisms and (ii) explore molecular mecha-
nisms of drug interactions (Figure 2).

Translate DDI signals into PG hypotheses. A knowledge discov-
ery method was used to translate DDI signals into PG hypotheses. 
The process included the examination of evidence to determine 
whether drug D1 changed drug D2 efficacy or ADEs (i.e., PD DDI), 

Figure 2  Hypotheses generation. (a) Translate drug-drug interaction (DDI) signals to predict genetic effects related to adverse drug events 
(ADEs) and (b) translate drug-gene interaction signals to predict molecular mechanisms of DDI. PD, pharmacodynamic; PG, pharmacogenetic; 
PK, pharmacokinetic.
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D2 exposure (i.e., PK DDI), or inhibited D2 metabolic enzyme E  
(in vitro PK). If these DDI effects were noted, we then hypothesized that 
the functional genetic polymorphisms of E may be associated with D2  
efficacy or ADEs.

Translate DGI signals into DDI mechanistic hypotheses. To explore 
unknown mechanisms involving drug interactions with only clinical PK 
and PD evidence, a discovery method was proposed to translate DGI sig-
nals into DDI mechanisms. The process included the evaluation of both 
drugs (D1 and D2) to discern their shared target genes and ADEs. If D1 
and D2 were reported to interact and had common interacting genes, we 
hypothesized that their interaction may be synergistic or antagonistic for 
a given ADE.

RESULTS
The number of abstracts from each type of study, as well as the re-
call, F-measure, and validity-related statistics, are presented below. 
Figure 3 presents the number of DDI and PG abstracts retrieved 
and the DDI and DGI pairs extracted from each type of study. 
The Venn diagram in Figure  3 shows the overlap of drug pairs 
from the three types of DDI studies to help identify potential 
knowledge gaps between DDI and DGI evidence. The data re-
lated to the Venn Diagram and the DGI associated ADEs are pre-
sented in the Supplemental Excel Files “Venn diagram data and 
statistics.xlsx” and “DGI-ADE information.xlsx,” respectively.

IR: Identifying DDI and DGI-relevant abstracts from 
MEDLINE
Using our recently developed corpus, the optimal IR models were 
built for each study type. The F-measures for the performance 

of the IR models were 0.94, 0.84, 0.70, and 0.78, respectively; 
and the recall rates were 0.98, 0.99, 0.86, and 0.97 for in vitro PK 
DDI, clinical PK DDI, clinical PD DDI, and PG, respectively 
(Table  S5). Using these optimally trained models, a large-scale 
IR analysis of 25 million MEDLINE abstracts (1975–2015) was 
conducted. Studies involving animal models were removed using 
MeSH terms under the tree “B01.050” (Animal). We retrieved 
5,199 in vitro PK, 17,048 clinical PK, 80,246 clinical PD DDI, 
and 479,865 PG abstracts (Figure 3). To further demonstrate the 
performance of these IR models, studies in the IE corpora (210, 
218, 140, and 395 abstracts for in vitro PK, clinical PK, clini-
cal PD, and PG studies) were used because there is no overlap  
between the IR and IE corpora. Recall rates for these IE studies 
were determined to be 1.00, 0.96, 0.99, and 0.94, respectively.

IE: Identifying DDI and DGI pairs from the MEDLINE 
Abstracts
To extract DDI and DGI pairs from the MEDLINE abstracts 
identified in the IR step, IE models were customized and opti-
mized. The DDI extraction performances for each of the in vitro 
PK, clinical PK, and clinical PD studies were compared across 
five feature sets (G1–G5) and seven classifiers and are presented 
in Tables  S6, S7, and S8, respectively. The optimal F-measure 
for in vitro PK studies was 0.83 using feature group 5 (G5) and 
the Naïve Bayes classifier; the optimal F-measure for clinical PK 
studies was 0.85 using feature group 1 (G1) and the Iterative 
Classifier Optimizer; and the optimal F-measure for clinical PD 
studies was 0.73 using feature group 1 (G1) and the Naïve Bayes 
classifier. For the DGI IE model, 50 features were trained over a 

Figure 3  Results from the information retrieval and information extraction stages accompanied by a Venn diagram illustrating the overlap 
between the different DDI studies. DDI, drug-drug interaction; DGI, drug-gene interaction; PD, pharmacodynamic; PG, pharmacogenetic; PK, 
pharmacokinetic.
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logistic linear regression classifier to reach the optimal F-measure 
of 0.82 (Table  S9). All four optimized IE models were then  
applied to the relevant DDI/DGI abstracts retrieved from the 
previous IR stage. The IE analysis focused on FDA approved and 
withdrawn drugs, and identified 3,894, 3,920, and 17,315 unique 
in vitro PK, clinical PK, and clinical PD DDI pairs, respectively, 
and 3,173 unique DGI pairs (Figure  3). Using 3,173 retrieved 
DGI pairs, 217,562 drug pairs were further generated when both 
drugs shared enzyme relationships.

The overlap and knowledge gap among DDI evidence
With the drug pairs extracted in the IE stage, the Venn  
diagram shown in Figure  3 was constructed to present the 
overlapping DDIs. A total of 986 unique drug pairs were found 
to overlap between all three study types. Another 2,157 DDIs 
represented the overlap between clinical PK and clinical PD 
studies. Last, 13,012 DDI pairs were found to only have clinical  
PD evidence.

Another overlapping analysis was performed to compare  
“extracted DDIs” from DDI IE to “predicted DDIs” from DGI IE. 
In Table 2, 94.8% of the 986 DDI pairs shared by all 3 DDI study 
types were predicted by DGI results. Other types of DDI evidence 
that overlap well with DGI predicted DDIs include: “clinical PK – 
in vitro PK” (95.9%), “clinical PD – in vitro PK” (86.6%), and “in 

vitro PK” (85.2%). For the remaining DDIs without in vitro PK 
evidence, DGI does not predict DDIs well, and the overlapping 
percentages are below 70%. Only 42.7% of the clinical PD DDIs 
were predicted from DGI results.

Comparing DDI text mining evidence to DDI data in the 
DrugBank database
DDI text mining performance was also evaluated by compar-
ing the results with DDI data from the DrugBank database. For 
our comparison analysis, we only focused on the FDA approved 
and withdrawn drugs. Between 222,409 DrugBank DDIs and 
19,695 text-mined DDIs, 9,587 DDIs overlapped. We compared 
the overlapping DDIs under the subgroups defined by the three 
DDI evidence types. In Table 2, DDI pairs with all three types of 
evidence from our text mining analysis overlapped the most with 
DrugBank DDIs (~ 88%), whereas DDI pairs with only clinical 
PD evidence had the lowest overlapping rate (~ 40%).

To demonstrate the validity of our text mined DDI evidence, 
the top 20 DDI pairs in each study type were evaluated manually 
(Table 2). DDI pairs were ranked by their reporting frequencies in 
different PubMed abstracts. Among the top 20 DDIs from in vitro 
PK, clinical PK, and clinical PD studies, 17, 20, and 19 pairs were 
manually validated as true DDIs, respectively. However, only 9, 16, 
and 13 of these DDIs were found to be reported in the DrugBank. 

Table 2  Overlapping analysis for DDI studies

Venn diagram area
No. of DDIs  
in LS result

No. of DDIs predicted 
by DGI (%)

No. of DDIs found in 
DrugBank (%)

Top 20 DDIs (found in 
DrugBank/validated DDIs)

Full in vitro PK area 3,894 3,443 (88.4) 2,594 (66.6) 9/17

Full clinical PK area 3,920 2,980 (76.0) 2,734 (69.8) 16/20

Full clinical PD area 17,315 8,991 (51.9) 8,296 (47.9) 13/19

Overlap of clinical PD – clinical PK – 
in vitro PK

986 935 (94.8) 867 (87.9) 19/20

Overlap of clinical PK – in vitro PK 145 139 (95.9) 112 (77.2) 19/20

Overlap of clinical PD – in vitro PK 1,160 1,004 (86.6) 785 (67.7) 19/20

Overlap of clinical PD – clinical PK 2,157 1,494 (69.3) 1,406 (65.2) 13/19

Only clinical PK 632 412 (65.2) 349 (55.2) 13/14

Only in vitro PK 1,603 1,365 (85.2) 830 (51.8) 11/11

Only clinical PD 13,012 5,558 (42.7) 5,238 (40.3) 8/18

Venn diagram area No. of DDIs in Venn diagram area No. of DDIs found in 
DrugBank (%)

Type of evidence

Clinical PD – clinical PK – in vitro PK 6,683 3,271 (48.9) PK evidence

Clinical PK – in vitro PK

Clinical PD – in vitro PK

Clinical PD – clinical PK

Clinical PK

In vitro PK

Clinical PD – clinical PK – in vitro PK 17,315 4,016 (23.2) PD evidence

Clinical PK – in vitro PK

Clinical PD – in vitro PK

Clinical PD – clinical PK

Clinical PD

DDI, drug–drug interaction; DGI, drug–gene interaction; LS, literature search; PD, pharmacodynamic; PK, pharmacokinetic.
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Additionally, for the top 20 DDI pairs in the overlapping areas 
among 2 or 3 evidence types, almost all them were validated in 
our manual review but only a few of these DDIs were reported in 
DrugBank. DDI pairs that did not overlap with DrugBank data 
were also manually reviewed for validity. Among the top 20 DDIs 
from our 119 three-way overlapped DDIs, 17 were found to have 
confirmed DDI evidence in the literature. Similarly, all of the top 
20 DDIs with overlapping clinical PD and clinical PK evidence 
were confirmed to have DDI evidence in the literature.

Translate DDI signals into genetics hypotheses
The 986 DDI pairs shared among 3 types of DDI studies were trans-
lated into genetic hypotheses with respect to their ADEs. Among 
these 986 DDIs, 865 (87.8%), 481 (48.8%), 193 (19.6%), 419 (42.5%), 
and 365 (37%) were associated with CYP3A, CYP2D6, CYP2C8, 
CYP2C9, and CYP2C19, respectively, with some DDIs involving 
more than one CYP450 enzyme. In our following genetic hypothe-
sis generation analysis, we focused on CYP3A and CYP2D6 as they 
were responsible for 88% and 49% of the 986 DDIs, respectively.

CYP3A-related DDIs had 68 distinctive substrates, and CYP2D6-
related DDIs had 25 different substrates. Based on these CYP3A and 
CYP2D6 substrates, 552 and 192 ADE terms were found to co-occur 
in their clinical PD DDI abstracts, respectively. Similarly, 199 and 57 
ADE terms related with the 68 CYP3A and 25 CYP2D6 substrates 
from DGI abstracts were retrieved. The common ADE terms from 
both DDI and DGI abstracts were considered as potential CYP3A or 
CYP2D6 gene-related ADEs. These common DDI and DGI ADEs 
were further evaluated through manual review. Overall, 150 and 31 
genetic hypotheses were generated from the 68 CYP3A substrates 
and 25 CYP2D6 substrates, respectively. Of these, 31 CYP3A-related 
and 13 CYP2D6-related PG evidence were reported in published PG 
studies (Table 3). As a result, 119 and 18 new PG hypotheses were 
generated for CYP3A and CYP2D6, respectively.

Translate DGI signals into DDI molecular mechanistic 
hypotheses
Among the 2,157 DDIs shared between clinical PD and PK DDI 
evidence, 1,497 DDI pairs shared the same metabolic enzymes (i.e., 
CYPs and uridine 5′-diphosphate glucuronosyltransferase) in their 
DGIs. Therefore, these 1,497 DDI pairs potentially have a PK drug 
interaction mechanism. Among the remaining 660 DDIs, 68 DDI 
pairs were found to share the same molecular pathways, 38 DDI pairs 
shared common genes, and 12 DDI pairs shared common genetic 
variants. The 38 DDI pairs with shared genes were reviewed further 
to determine if they elicit similar responses, whether the shared re-
sponses were modified by these DDIs, and whether any in vitro cell 
culture studies had investigated their DDI mechanisms. After man-
ual review, 7 of 38 DDI pairs were validated to have DDI effects, and 
3 had additional DDI evidence from in vitro experiments (Table 4).

DISCUSSION
ADEs caused by drug interactions are a critical issue for prescrip-
tions. In clinical practice, prescription decision support typically 
stems from in vivo and clinical evidence. However, there is high 
variability in drug responses, which are affected by both genetic and 
environmental factors. Therefore, studying genetic or molecular 

mechanisms underlying DDIs is essential to help: (i) understand the 
hazards of specific drugs given certain genetic polymorphisms, and 
(ii) explore molecular mechanisms of such interactions. Today, more 
than 2,000 genetic tests are currently available, but not every drug is 
covered and the tests can be expensive.31 To address these challenges, 
we introduced a translational research method to discover knowl-
edge gaps in drug interaction studies. Utilizing the results from our 
large-scale screening, two sets of hypotheses were generated by (i) 
translating DDI signals into genetic information for ADEs and (ii) 
translating DGI signals into molecular mechanistic hypotheses.

To demonstrate the process of PG hypotheses generation, evalu-
ation, and validation, we use the example of tacrolimus, a CYP3A 
substrate. Among 87 clinical PD DDI abstracts showing the inter-
action evidence between tacrolimus and CYP3A inhibitors, such as 
ketoconazole, clarithromycin, cyclosporine, or ritonavir, 141 ADE 
terms were identified and extracted. From these results, we assume 
that 141 genetic hypotheses can be generated for tacrolimus. Another 
153 ADEs were extracted from DGI abstracts related to tacrolimus 
and CYP3A. A total of 25 ADE terms were common between the 
DDI and DGI abstracts. From these, three ADEs (nephrotoxicity, 
hepatotoxicity, and hyperglycemia) were validated and found to be 
associated with the CYP3A5 polymorphism, rs776746 (PharmGKB 
level 2A or level 3 evidence).32–35 Thus, we were able to validate our 
tacrolimus ADE-related genetic hypotheses, underscoring the ac-
curacy of our text mining algorithm. More importantly, the gener-
ation of 119 new PG hypotheses highlights the significance of our 
translational research method in enabling the discovery of potentially 
new genetic mechanisms that may otherwise not have been explored 
through conventional DDI and PG research methods. An example of 
this is simvastatin-induced rhabdomyolysis. Even though there are re-
ported evidence for the association between CYP3A4 and CYP3A5 
genetic polymorphisms and simvastatin-induced mild myopathy 
symptoms,36 there is no reported study on the association between 
CYP3A and the more severe form of myopathy (i.e., rhabdomyolysis).

Similar to the PG hypotheses, molecular mechanistic hypotheses 
were validated or determined to be new through our manual review 
process. For example, the combination of cisplatin and pemetrexed 
showed improved response rate in mesothelioma patients in a ran-
domized phase III trial.37 Both drugs share the ABCC2, MTHFR, 
and SLC19A1 target genes among them (PharmGKB level 4 
evidence). Patients with ABCC2 rs2273697 (AA or AG genotype) 
were reported to have improved overall and progression-free survival 
when treated with cisplatin and pemetrexed compared with patients 
with the ABCC2 GG genotype.38 The synergistic PD DDI between 
cisplatin and pemetrexed has been demonstrated in in vitro studies 
over multiple cancer cell lines (MCF7, A549, and PA1 cells).39 In 
particular, when MCF7 cells were incubated with pemetrexed for 
24 hours followed by cisplatin for 24 hours, synergistic inhibition 
of cell proliferation was noted. Similar synergistic effects were also 
observed in the A549 and PA1 cell lines. Another example is the 
interaction between etanercept and methotrexate, which results in 
improved response in patients with rheumatoid arthritis especially 
with the ATP5E rs1059150 (GG), HLA-E rs1264457 (AA), or 
KLRC1 rs7301582 (CT or TT) variants (PharmGKB level 3 evi-
dence). However, no in vitro experiments have been reported that 
illustrate their DDI mechanisms. This etanercept/methotrexate 
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example demonstrates that our translational discovery method can 
also generate novel PD DDI mechanisms.

Our study has both strengths and limitations. Our text mining 
algorithm enabled us to screen ~ 25 million MEDLINE abstracts 
in order to retrieve DDI and DGI evidence. We were also able to 
extract a substantial number of DDI and DGI pairs from the lit-
erature, and distinguish them based on the type of study involved. 
However, we only focused on drug pairs and the CYP450-related 
enzymes and genes. Therefore, we could not evaluate DDIs or 
ADEs associated with high dimensional drug combinations or 
their interactions with other enzymes and drug transporters. Our 
algorithm was also designed to identify co-occurrence of drugs 
and ADE terms, as such, a manual review process was required 
to verify and confirm these associations. Additionally, our algo-
rithm does not collect information on drug dosage or sample size 
from individual studies at the moment but we are planning to add 
this information along with the information on drug transport-
ers and other enzymes in the future. Despite these limitations, our 
study provides a tremendous amount of information on DDIs, 
DGIs, and ADEs and allowed us to generate several novel genetic 
hypotheses.

In conclusion, a text mining pipeline was developed to extract 
DDI evidence from the biomedical literature in the current study. 
Initially, golden standard corpora for DDIs and DGIs were created 
to facilitate the text mining development. Subsequently, a large-
scale analysis was conducted to identify knowledge gaps in DDI and 
DGI research, which were then used to generate hypotheses in order 
to identify novel genetic mechanisms involving drug interactions 
and predict potential molecular mechanistic DDI mechanisms.
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