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A Sparse Representation
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Real-Time, Physics-Based
Functional Monitoring of Aerosol
Jet-Fabricated Electronics
Aerosol jet printing (AJP) is a direct-write additive manufacturing (AM) method, emerging
as the process of choice for the fabrication of a broad spectrum of electronics, such as
sensors, transistors, and optoelectronic devices. However, AJP is a highly complex
process, prone to intrinsic gradual drifts. Consequently, real-time process monitoring
and control in AJP is a bourgeoning need. The goal of this work is to establish an inte-
grated, smart platform for in situ and real-time monitoring of the functional properties of
AJ-printed electronics. In pursuit of this goal, the objective is to forward a multiple-
input, single-output (MISO) intelligent learning model—based on sparse representation
classification (SRC)—to estimate the functional properties (e.g., resistance) in situ as
well as in real-time. The aim is to classify the resistance of printed electronic traces
(lines) as a function of AJP process parameters and the trace morphology characteristics
(e.g., line width, thickness, and cross-sectional area (CSA)). To realize this objective, line
morphology is captured using a series of images, acquired: (i) in situ via an integrated
high-resolution imaging system and (ii) in real-time via the AJP standard process
monitor camera. Utilizing image processing algorithms developed in-house, a wide
range of 2D and 3D morphology features are extracted, constituting the primary source
of data for the training, validation, and testing of the SRC model. The four-point probe
method (also known as Kelvin sensing) is used to measure the resistance of the deposited
traces and as a result, to define a priori class labels. The results of this study exhibited
that using the presented approach, the resistance (and potentially, other functional proper-
ties) of printed electronics can be estimated both in situ and in real-time with an accuracy of
≥ 90%. [DOI: 10.1115/1.4047045]

Keywords: advanced manufacturing, aerosol jet printing (AJP), monitoring and control,
sparse representation classification (SRC), artificial intelligence, flexible and hybrid
electronics

1 Introduction
1.1 Objective and Motivation. The goal of this work is to

establish an integrated, smart platform for real-time estimation
and monitoring (and closed-loop control in the future) of the func-
tional properties—including but not limited to electrical and
mechanical properties, e.g., resistance, Young’s modulus, hardness,
and fatigue life—of aerosol jet-fabricated electronics. In pursuit of
this goal, the objective of the work is to forward a multiple-input,
single-output (MISO) intelligent learning model—established
upon sparse representation classification (SRC)—to estimate the
functional properties in situ and in near real-time. The aim is to clas-
sify the resistance of an aerosol jet (AJ)-printed electronic trace

(line) into an a priori class as a function of consequential parameters
of aerosol jet printing (AJP) process (i.e., sheath gas flowrate
(ShGFR) and exhaust gas flowrate (EGFR) in addition to print
speed) as well as a broad spectrum of the 2D and 3D morphological
characteristics of the printed line (e.g., line width, thickness, and
cross-sectional area (CSA)). To realize this objective, in situ and
real-time images are acquired from the deposited line using a
high-resolution charge-coupled device (CCD) camera and the AJP
process monitor camera, respectively. Subsequently, the acquired
images are analyzed using a range of digital image processing algo-
rithms, developed in-house, allowing for rapid quantification of the
morphological characteristics. These image-based, extracted char-
acteristics constitute the primary source of data for the training, val-
idation, and testing of the SRC model. A priori class labels are
defined based on the resistance of a set of AJ-deposited lines, mea-
sured using the four-point probe method. The performance of the
SRC model is assessed not only by performing a large number of
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simulations (with random data partitioning) and then observing
several performance measures, e.g., F-Score, but also by contrasting
the SRC model’s performance with that of several well-known clas-
sifiers, such as artificial neural network (ANN), k-nearest neighbors
(kNN, support vector machine (SVM), and ensemble of learners.
A direct-write additive manufacturing (AM) technique [1], AJP,

has been extensively used for the fabrication of a broad spectrum of
electronics, such as transistors [2–4], fine-pitch electronics [5],
sensors [6,7], organic light emitting diodes [8], and optoelectronic
devices [9]. This is, to a great extent, due to the unique capabilities
and advantages of AJP, including (i) deposition of fine microstruc-
tures with feature sizes as small as 10 µm; (ii) accommodation of a
wide range of ink viscosity, ranging from 0.7 to 2500 cP; and (iii)
having a variable, large standoff distance, which allows for material
deposition on nonplaner surfaces [1,10,11]. Note that the printing
resolution of other direct-write AM techniques (such as inkjet print-
ing and dispensing printing) does not reach that of AJP. This is
because AJP utilizes a sheath gas flow, which collimates the
aerosol flow prior to deposition. Furthermore, the pneumatic atom-
izer of AJP, working based on a high-pressure flow of an inert gas,
is capable of atomization of inks with high viscosity; such an aero-
dynamic characteristic is not embedded in other direct-write AM
techniques. Figure 1 exemplifies electronic devices, AJ-fabricated
at State University of New York (SUNY) at Binghamton.
Despite the aforementioned advantages and host of critical appli-

cations, AJP is intrinsically complex [12], prone to gradual drifts
and changes in machine behavior and deposited material. The
gradual drifts in AJP result from dynamic phenomena in the
process, e.g., changes in ink viscosity (due to solvent evaporation
and/or an increase in ink temperature) as well as accumulation of
ink in the aerosol transport tube. Such gradual changes in AJP
lead to process drift characterized, for example, by an increase in
the rate of material deposition, insufficient aerosol flow density,
and nozzle clog. All in all, the presence of inevitable process drift
in AJP results in deviation of both geometrical and electrical prop-
erties from their set design tolerances. Therefore, real-time process
monitoring and control is a burgeoning need.
As illustrated in Fig. 2, the authors’ prior works [13–15,17] paved

the way for implementation of image-based monitoring and control
of the functional properties of electronics in AJP process by intro-
ducing a broad range of image processing algorithms (allowing
for in situ quantification of the morphology) as well as closed-loop
control methods [18]. The purpose of this work is to bridge the gap
between image-based sensor data and process monitoring/control
by forwarding an intelligent learning model to estimate, monitor,
and ultimately control the functional properties of AJ-fabricated
electronics.
Resistance is an important functional property of electronics. If

the resistance of a printed electronic (or a component) exceeds
its design tolerances, it is considered defective. Traditionally,
line resistance measurements are carried out offline using, e.g.,

the four-point probe method. It would be challenging to measure
line resistance directly in situ, since the probe needles must physi-
cally be placed on unsintered, wet printed lines. Hence, in situ esti-
mation of line resistance allows for real-time monitoring of the
functional integrity of electronics and, in case of a drift, control
(correction) of the AJP process. This ensures continuous fabrication
of conformal electronics and reduces the amount of scrap and
rework. Note that this study focuses on conductive inks.
The following challenges are intrinsically associated with the

proposed method for real-time estimation and monitoring of the
functional properties of AJ-printed electronics. First, image acquisi-
tion should be performed at high frame rates; this allows for faster
detection of anomalies and process drift. Second, the image pro-
cessing algorithms, utilized to analyze the acquired images to
extract the morphological traits of the printed electronics, should
be computationally fast. Image windowing and development of
image processing algorithms in, for example, PYTHON or C++
could remarkably lessen the delay stemming from image process-
ing. Third, the classification algorithms used for the estimation of
the functional properties should be similarly fast as well as robust
over a range of class labels; we will demonstrate in Sec. 3.2 that,
for example, ANN fails to classify line resistance when the
number of a priori class labels is greater than six. Furthermore,
the classification algorithms should be able to handle nonstationary
and nonlinear data and/or data with autocorrelation, intermittency,
periodicity, and low signal-to-noise ratio; this is unavoidable
because monitoring of AJP process interracially entails complex
multivariate sensor data.
Overall, the outcomes of this work allow for dissemination of

knowledge concerning the performance of the SRC classifier, par-
ticularly in the area of additive manufacturing. Besides, it enables
AJP users to monitor the functional properties of AJ-fabricated elec-
tronics in near real-time. Finally, this work pays the way for imple-
mentation of closed-loop control of printed electronics’ functional
properties in the future.

1.2 Aerosol Jet Printing Process. Figure 3 illustrates the AJP
process, utilizing a pneumatic atomizer (PA) as the mechanism of
choice for aerosol generation. A high-pressure flow of an inert
gas—typically pure and dry N2 referred to as atomization gas
flow (AGF)—is injected into the ink reservoir via a constricted
tube positioned over a capillary. Based on the Venturi effect, the
ink is drawn upward in the capillary and then sheared by the atom-
ization jet passing through an orifice; consequently, a fine spray of
micro-droplets is generated. Larger droplets fall back into the reser-
voir, while smaller ones form a semi-uniform multiphase flow
toward the virtual impactor.
Depending on the ink of choice, the bubbler is filled with the ink

solvent/co-solvent, which provides a saturated flow prior to atomi-
zation, and thus minimizes the loss of solvent due to evaporation

Fig. 1 Examples of electronic devices, AJ-fabricated at SUNY-Binghamton. (a) A silver
nanoparticle-based hair-pin radio frequency filter, printed on Kapton. (b) Multilayer capac-
itors, composed of silver nanoparticle and dielectric inks (layer arrangement: conductor,
dielectric, conductor). (c) A 1-in. long co-planer waveguide structure, made of silver nano-
particles on Kapton; the ground lines are connected to a conductor layer via holes.
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from the ink (otherwise causing the ink viscosity to change). This
process of saturating the atomization gas utilizes a sparger, allowing
for an efficient gas–liquid contact. Wadhwa [19] studied the rate of
solvent loss from a co-solvent solution system as well as the rate of
solvent added back to the atomization gas flow when passed
through the bubbler. They demonstrated that adding solvent(s) to
the atomization gas flow would be an effective method to overcome
the loss of solvent (i.e., one of the root-causes of process drift in
AJP). They also illustrated that the loss of solvent due to evapora-
tion is a nonlinear function of temperature.
The virtual impactor aerodynamically separates the droplets that

have relatively low linear momentum and small size using an
exhaust gas flow (EGF), while allowing the rest to flow as a
uniform stream of aerosols toward the deposition head. In the
deposition head, a second gas flow, called the sheath gas flow
(ShGF), is concentrically introduced to collimate the aerosol flow
into a narrow beam. The rate ratio of the ShGF to the aerosol

flow is termed the focusing ratio [20]. The collimated aerosol
flow ultimately accelerates (while its pressure decreases) passing
through a fine, converging nozzle (made up of ceramic), and
impinges on a free surface. The aerosols additively constitute a free-
form structure, having experienced post-deposition phenomena of
spreading, receding, relaxation, and coalescence [21].

1.3 Sensor-Instrumented Setup

1.3.1 In Situ Monitoring Using a CCD Camera. As illustrated
in Fig. 4, an Optomec AJ-300 aerosol jet printer (Albuquerque,
NM) was instrumented with a high-resolution (5 MP) CCD
camera (Edmund Optics, Grasshopper, GS3-U3-50S5C-C, Barring-
ton, NJ), allowing for independent, in situ image acquisition. The
images acquired by this camera have a maximum window size of
2448 × 2048 pixels. Co-axial to the nozzle, the camera was
mounted on a 2.5 × –10 × variable magnification lens (Edmund
Optics, VZM 1000i, Barrington, NJ). The resolution of the
imaging system is approximately 0.36 × 0.36 µm/pixel in the x-
and y-directions, respectively. Illumination was provided by
an light-emitting diode (LED) light (AmScope, Irvine, CA); it has
a maximum brightness of 30,000–40,000 Lux and a color tempera-
ture of 6000 K. Note that in this study, the term “in situ” is used to
refer to in-process or on-demand process monitoring, while the term
“real-time” is used to refer to instantaneous process monitoring.

1.3.2 Real-time Monitoring Using the Process Monitor
Camera. Positioned inclined to the platen at about 45 deg, the
AJP process monitor camera is a 1.3 MP GigE color camera
(Point Grey Flea3, Richmond, BC, Canada), mounted on an
optical 1.0× lens as well as a 4.0× magnification module (Infinity
Photo-Optical InfiniStix™, Boulder, CO). The lens has a working
distance of 94 mm. Illumination for this camera was provided by
a fiber light (Dolan-Jenner PL-800, Boxborough, MA), mounted
opposite to the camera. The illumination position was adjusted
such that noise-free, saturated background images were obtained,
aiding in accurate detection of line edges (for example, see
Fig. 13). Being of raw12 data format, the images acquired by the
process monitor camera were saved as .tif file format.

Fig. 2 The concept behind the image processing algorithms used for in situ and real-time quantification of the
morphology characteristics of printed electronics. The quantified traits together with AJP process parameters
are fed as input features for the estimation of the functional properties using the SRC intelligent model (Source:
Refs. [13–16]). (a) 2D quantification of line topology and (b) 3D quantification.

Fig. 3 A schematic flow diagram of the aerosol jet printing
process. In this configuration, pneumatic atomization is the
mechanism of choice for aerosol generation. A uniform and col-
limated flow of aerosols is obtained with the aid of the virtual
impactor and the deposition head, respectively.
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The rest of the paper is presented as follows: Sec. 2 details the
development of the SRC intelligent learning model, including math-
ematical formulation as well as numerical implementation. In situ
and real-time experimental results—consisting of: (i) materials,
(ii) design of experiments, (iii) observations, and (iv) model assess-
ment—is delineated in Sec. 3. The conclusions and future works are
presented in Sec. 4.

2 Development of an Intelligent Learning Model
In this section, the development of a new supervised learning

model (based on SRC) is delineated. Generally, the aim of super-
vised learning—where there exists prior knowledge (history)
about the output values of a machine or a process—is to approx-
imate an input–output mapping function, capable of estimating
the future output values of the process correspondingly versus
input data. Similarly, in this study, the forwarded SRC model
is used with the aim to estimate the resistance (and potentially,
other functional properties as output variables) of printed elec-
tronics, as a function of input variables, i.e., (i) image-based
data streams of the morphology and (ii) AJP process parameters.
This requires real-time characterization of the morphology as well
as extraction of morphology features. Hence, the SRC classifier is
trained based on the history of the AJP process, relating morphol-
ogy features (e.g., line width, thickness, and cross-sectional area)
in addition to influential process parameters (e.g., ShGFR, EGFR,
and print speed (PS)) to resistance. Once trained and validated,
the classifier is capable of estimating and monitoring the resis-
tance of electronics, fabricated in situ (see Sec. 3.2) and in real-
time (see Sec. 3.3).

Artificial intelligence and deep learning have been extensively
utilized in a broad range of manufacturing applications. Kothuru
et al. [22] proposed an intelligent monitoring method, based on
SVM and convolutional neural network, with the aim to detect
and predict milling tool condition (particularly, cutting tool wear)
in machining of parts with hardness variation. Similarly, Wu
et al. [23] developed a cloud-based, parallel random forests (RF)
learning algorithm (capable of training large-scale predictive
models) for prediction of milling tool wear. The forwarded
method demonstrated a significant reduction in computation time,
while maintaining a high prediction accuracy. In a research work
by Khanzadeh et al. [24], unsupervised self-organizing map
(SOM) machine learning approach was used to characterize the
dimensional accuracy of complex geometries, fabricated using
fused filament fabrication process, on the basis of laser-scan point
cloud data. The presented SOM-based method was swift, requiring
less than 3% of over one million data points for the characterization
of part dimensional accuracy. A combined, decision tree
(DT)-based ensemble learning approach—composed of RF, gradi-
ent boosting trees, as well as extremely randomized trees algo-
rithms—was developed by Li et al. [25] for accurate prediction of
material removal rate in chemical mechanical planarization
(CMP) process with the aim to achieve uniform surface finish. Du
et al. [26] presented a novel sparse learning model (together with
a parameter estimation algorithm), with the goal to optimally
place actuators for shape adjustments in fuselage assembly
process. With the aid of a multimodal, deep-learning approach,
He and Jin [27] established a framework for prediction of failure
mechanisms, estimation of remaining life, and ultimately real-time
monitoring of ion mill etching process. The presented approach was

Fig. 4 Pictures of the AJP experimental setup, instrumented with a high-resolution CCD
camera mounted on a variable magnification lens, allowing for in situ image acquisition.
In addition, the standard process monitor camera is used for real-time image acquisition.
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based on RF classification in addition to long short-term memory
(LSTM), an artificial recurrent neural network architecture. Imani
et al. [28] introduced a computationally fast, machine learning
approach—established based upon a deep neural network,
capable of learning image-captured layerwise variant geometry—
to accurately detect fine flaws in additive fabrication of complex
parts. Utilizing shape-to-image registration, the proposed approach
proved to be efficient for interlayer variation reduction and thus in
situ correction of additive manufacturing processes. In a study by
Han et al. [29], an enhanced iterative learning method (also
known as iterative learning control) was used to optimize drilling
depth in deep hole drilling process (with an accuracy of >90%).
The presented iterative leaning method would further allow for pre-
diction of both drill life and machining efficiency.
The SRC [30,31] has emerged as an accurate and computation-

ally fast supervised classification approach [32,33] and been uti-
lized in a broad range of applications, such as computer vision
[34], healthcare [35], damage detection [36], and real-time monitor-
ing of advanced manufacturing processes [33]. Using the SRC,
Tootooni et al. demonstrated: (i) classification of global neurophys-
iological states from electroencephalography signals [37] and
(ii) classification of the dimensional variation of additively manu-
factured parts [38]. In addition, they showed that the SRC could
be successfully implemented for classification of nonstationary
and nonlinear data, similar to the AJP image-based sensor data, dis-
cussed in this study [37]. Furthermore, it has been demonstrated that
the SRC can handle data with autocorrelation, intermittency, peri-
odicity, and low signal-to-noise ratio [37,39,40].
Table 1 summarizes the main characteristics of several well-

known classifiers, including ANN, DT, discernment analysis
(DA), Naïve Bayes (NB), kNN, SVM, and ensemble of learners
(Ens), compared with some of the important characteristics of the

SRC classifier. It turns out that the SRC is a potentially suitable
and flexible classifier for in situ functional monitoring of AJ-printed
electronics that inherently comprises complex multivariate sensor
data. This hypothesis is experimentally tested in this study.

2.1 Sparse Representation Classification. There are several
SRC methods, reviewed in detail in Refs. [32,33]. The SRC has
been established, based on the fact that the sensor data streams
that belong to the same thermodynamic state of an open system
(such as AJP) under steady-state conditions, have stronger correla-
tion than the data streams that are collected from different thermo-
dynamic states of the system. The SRC formulates a supervised
classification problem as an underdetermined system of linear equa-
tions [31,32] where the input vector of classification features, Y∈
ℝm×1, is expressed as a linear combination of design data,
A ∈ Rm×N , which reflects the history of a process, as mathemati-
cally expressed by Eq. (1), where N stands for the total number
of already-collected samples and m stands for the total number of
classification features; in addition, ɛ represents the approximation
error [30,32]

Y = Aβ + ε (1)

In this study, the input vector of classification features (Y), which
contains image-based morphology traits as well as AJP process
parameters. The function of Y is twofold: (i) regarding model vali-
dation and testing, it contains already-collected values of the classi-
fication features; (ii) regarding process monitoring, it is composed
of instantaneously collected (dynamic) values of the classification
features. Note that in the latter case, Y reflects the most recent mor-
phology of an electronic being fabricated.

Table 1 A review of the main characteristics of several machine learning algorithms, whose performance is contrasted against that
of the forwarded SRCmethod in this study for in situ as well as near real-time estimation of the functional properties of AJ-fabricated
electronics

Method Abb. Characteristics

Sparse representation
classification

SRC • Accurate and computationally fast [32,33];
• Handles nonstationary and nonlinear data as well as data with autocorrelation, intermittency, periodicity, and low

signal-to-noise ratio [37,39,40].

Artificial neural network ANN • Detects complex relationships between multiple-inputs and multiple-outputs [41];
• Has limited ability to identify causal relationships [41];
• Prone to overfitting [41];
• Has relatively medium accuracy, medium computation speed, and medium computation difficulty [42];
• Sensitive to sample size, nonlinearity, high correlation, unequal covariance, in addition to multimodal

distribution [43].

Decision tree DT • Efficient and accurate, compared with conventional single-stage classification algorithms [44];
• Sensitive to noise in training data [45];
• Computationally fast learning [45];
• Supports incremental learning [46];
• Prone to overfitting [46];

Discernment analysis DA • Sensitive to non-normality and high correlation [43];
• Insensitive to unequal sample proportion [43].

Naïve Bayes NB • Requires short computation time for training [46];
• Progressively enhances performance via removing insignificant classification features [46];
• Requires a large number of samples for proper training [46].

k-Nearest neighbors kNN • Sensitive to sample size, unequal covariance, and multimodal distribution [43];
• Computationally fast learning [46];
• Insensitive to noise in training data as well as class size [46].

Support vector machine SVM • A semi-parametric (kernel function-based) method [47];
• Assumes that a priori class labels are linearly separable [47];
• High prediction accuracy vis-à-vis computation speed [42];
• Medium computation speed and difficulty [42].

Ensemble of learners Ens • High prediction accuracy and stability [42];
• Low computation speed [42];
• High computation difficulty [42].
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Known as the measurement matrix, the design matrix (A) relates
the classification features to line resistance, as follows. In this study,
it reflects the history, i.e., the previous thermodynamic states, of the
AJP process. Envisioned in Fig. 5, the design matrix takes the fol-
lowing form: A = [A1

m,n A
2
m,n . . . A

C
m,n], where C∈ {1, 2, 3,…} rep-

resents a priori classification labels. In this work, they were defined
based on four-point probe measurements (as discussed in Secs.
3.2.3 and 3.3.3). Note that in the expanded form of the design
matrix, the classification features (listed in Table 2) are placed in
the rows (i= 1…m), and individual observations or samples per
class (i.e., acquired individual images and/or segmented parts of
them) are placed in the columns ( j= 1…n). The total number of
samples (N ) is expressed as N= n×C.
As categorized in Table 2, the classification features include

(i) three AJP process parameters; (ii) 2D and 3D quantified charac-
teristics (traits) of line morphology, as discussed in detail in the
authors’ prior publications [13–15,17]; (iii) the first and last few
graph-theoretic Laplacian eigenvalues [16]; and (iv) image-based
texture measures [48]. Note that the texture measures are all statis-
tical features, directly extracted from an image.
The 2D line morphology characteristics are based on pixel inten-

sity gradients [13,14]. As depicted in Fig. 2, line width (LW) repre-
sents the average distance between the detected edges of the line;
line density (Lρ) is defined as the average intensity of all the pixels
forming the surface of the line; edge quality (LEQ) is the reciprocal
of the average distance between each edge and the mean line fitted

through the edge; overspray (LOS) is computed as the product of
the intensity of a pixel and its distance from a line edge (averaged
over the entire overspray space); line discontinuity (LDisc) is
defined as the average number of instanceswhere no edge is detected.
Demonstrated in Fig. 2, the 3D characterization of line morphol-

ogy is based on the concept of shape-from-shading (SfS). The 3D
profile of a printed electronic can be reconstructed based on an
image, illumination direction, as well as surface reflectivity. Once
the 3D profile has been recovered, 3D morphology traits, such as
line thickness (LT), cross-sectional area (LCSA), and surface rough-
ness, are quantified.
The images—acquired for the in situ and real-time monitoring of

line resistance, discussed in Secs. 3.2 and 3.3, respectively—are
additionally transformed into an undirected and unweighted
network graph [16,38], and subsequently, the first and last few
graph-theoretic Laplacian eigenvalues (i.e., λ2:λ6—λend-4:λend) are
extracted from the resulting graph. As delineated in Ref. [38], the
extraction of the eigenvalues involves: (i) calculation of the node
degree of the graph; (ii) formation of a degree vector and transfor-
mation of the vector into a diagonal (degree) matrix; and (iii) forma-
tion of the Laplacian matrix, based on which the eigenvalues are
extracted. In general, the Laplacian eigenvalues reflect various
aspects of the algebraic connectivity of the graph. Tootooni et al.
[37] showed that the eigenvalues could capture a significant
portion of the variability of sensor data in complex systems.
Subsequent to the formulation of the classification problem as an

underdetermined system of linear equations, mathematically
expressed by Eq. (1), the unknown vector of membership coeffi-
cients, β∈ℝN×1, needs to be estimated. Equation (1) implies that
if β is known, the product of Aβ ∈ Rm×1 estimates, with a certain
error (ɛ), the values of the classification features (stored in Y,
obtained from instantaneous image acquisition). Following Fig. 5,
note that the elements of β are associated with a priori class
labels. Since the classification problem is ill-posed (i.e., the
number of classification features is significantly less than the total
number of samples, m≪N), the classification problem, expressed
by Eq. (1), is converted to a minimization problem as shown in
Eq. (2), assuming β is sparse (meaning it has the smallest number
of nonzero elements [32])

min ‖β‖0
s.t.: f (Y − Aβ) ≤ δ

{
(2)

where ‖β‖0 represents the ℓ0-norm (i.e., the number) of the
unknown vector of membership coefficients to be minimized
subject to a function of the fit/residual error, Y − Aβ, being less
than or equal to a set threshold (δ) [32]. In other words, as repre-
sented by Eq. (2), β is estimated with a minimum number of ele-
ments that collectively result in a residual error, enforced to be
less than or equal to the threshold.
There are several works in the literature, dedicated to the direct

solving of the sparse estimation problem represented by Eq. (2),
which is inherently an non-deterministic polynomial-time
(NP)-hard minimization problem [49–51]. Besides, there are catego-
ries of methods [32,33], which can be utilized to indirectly solve the
aforementioned sparse estimation problem, including: (i) ℓ1-
-minimization or convex optimization methods [52–55]; (ii) greedy
methods [56–58]; and (iii) Bayesian methods [59–61]. The ℓ1-
-minimization methods convert the sparse estimation problem to a
convex optimization one, asmathematically expressed in Eq. (3) [32]

min ‖β‖1
s.t.: ‖Y − Aβ‖22 ≤ δ

{
(3)

In Eq. (3), ‖β‖1 and ‖Y − Aβ‖22, respectively, represent the
ℓ1-norm (i.e., the sum of absolute difference) of the unknown
vector of membership coefficients, and the ℓ2-norm (i.e., the sum
of squared errors) of the fit error.
The least absolute shrinkage and selection operator (LASSO)

[55] is an optimization method, which can be implemented based

Fig. 5 The structure of the design (A), validation (V), and testing
(T) matrices as well as of the vector of membership coefficients
(β). Each matrix/vector is a concatenation of submatrices/sub-
vectors over all class labels. Classification features are placed
in the rows and individual observations (samples) in the
columns.

Table 2 Input classification features, fed to the SRC model for
the in situ and real-time estimation of line resistance, which are
delineated in Refs. [13–17,48]

Feature type Component

1 Process parameter ShGFR, PS, and EGFR.
2 2D characteristics of line

morphology
LW, Lρ, LEQ, LOS, and LDisc.

3 3D characteristics of line
morphology

LT and LCSA.

4 Spectral graph-theoretic
Laplacian eigenvalues

λ2:λ6—λend-4:λend.

5 Texture measures (image
histogram)

Mean, standard deviation, smoothness,
skewness, uniformity, and entropy.

6 Texture measures (relative
position)

Contrast, correlation, energy,
homogeneity, and max probability.
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on the shooting algorithm [62], the coordinate descent algorithm
[63], and/or that of alternating direction method of multipliers
(ADMM) [64], among others. The ADMM was used as the algo-
rithm of choice in this work. Note that total variation regularization
[54], Dantzig selector [52], and basis pursuit de-noising [53], are
other convex optimization methods that can be used to solve the
sparse estimation problem indirectly.
The second category of methods, i.e., the heuristic (greedy)

methods—such as thresholding [58], regularized and stage-wise
orthogonal matching pursuit (OMP) [56,58], subspace pursuit
[65], least angle regression [57], and compressive sampling match-
ing pursuit [66]—are relatively less computationally expensive.
However, they may fail to reach the global minimum. Similar to
the optimization methods, the greedy methods use the ℓ2-norm of
the fit error, i.e., ‖Y − Aβ‖22 [32].
The third category of methods, i.e., the Bayesian methods,

enforce sparsity, assuming a posterior distribution or a Gaussian
likelihood function on the unknown vector of membership coeffi-
cients (β) [32,33]; they are unlike the convex optimization
methods or the greedy methods that provide point estimates of β.
Relevance vector machine (RVM) [59,60] as well as sparse Baye-
sian learning [61] are examples of the Bayesian methods.
Bastani et al. [33] proposed a combined greedy-Bayesian sparse

estimation approach, utilizing the advantages of RVM (a Bayesian
method) and OMP (a greedy method). Furthermore, they forwarded
a spatially correlated Bayesian learning algorithm [67]—established
based on RVM—for fault diagnosis (i.e., identification of dimen-
sional variation) and ultimately, part dimensional integrity in multi-
station assembly systems (in the inevitable presence of spatial cor-
relation among process errors). Barazandeh et al. [32] developed a
robust, hybrid SRC algorithm, capable of classifying sensor data in
the presence of outliers and non-Gaussian noises.
In this study, the convex optimization formulation, expressed by

Eq. (3), was expanded into a new combined form, demonstrated by
Eq. (4), with incorporation of not only

(i) the sum of squared errors of estimation, i.e., the ℓ2-norm of
the fit error, ‖Y − Aβ‖22, and

(ii) the sum of absolute difference, i.e., the ℓ1-norm, of the
vector of membership coefficients, β1, but also

(iii) the ℓ2-norm, of the vector of membership coefficients, ‖β‖22

min
1 − α

2
‖β‖22 + α‖β‖1

( )
for 0 < α ≤ 1

s.t.: ‖Y − Aβ‖22 ≤ δ

⎧⎨
⎩ (4)

The sparse estimation-based classification is a twofold approach:

(i) The first step is to estimate the unknown vector of member-
ship coefficients (β) as mathematically expressed by Eq. (5).
In this study, the estimation of βwas carried out using a com-
bination of the LASSO [55], elastic net (EN) [68], and ridge
regression (RR) [69].

(ii) The second step is to determine the class label, i.e., the resis-
tance range (in this study), of dynamically captured input sets
of the classification features (stored in Y) as mathematically
expressed by Eq. (6). As discussed, the classification features
reflect not only the most recent morphology of a printed elec-
tronic but also AJP process conditions

β̂ = argmin
β

‖Y − Aβ‖22
+ λ

1 − α

2
‖β‖22 + α‖β‖1

( )
⎛
⎝

⎞
⎠ (5)

In Eq. (5), λ∈ℝ is a regularization parameter, which controls the
overall contribution of the penalty term 1−α

2 ‖β‖22 + α‖β‖1
( )

. The
β̂ ∈ RN×1, i.e., the estimated vector of membership coefficients,
has been concatenated over all class labels, defined as
β̂N,1def[β̂

1
n,1

T
β̂2n,1

T
. . . β̂Cn,1

T ]T . α∈ℝ is a weighting parameter,

being between (0 1]; if α≈ 0, the problem is formulated based on
ridge regression; if α= 1, the problem is formulated based on the
LASSO; and if 0 < α< 1, it is based on elastic net.
Finally, as indicated by Eq. (6), the class label of an input vector

(Y) of the classification features is estimated to be
Ĉ ∈ {1, 2, 3, . . .}, if the corresponding membership coefficients
of that class, i.e., β̂Ĉ ∈ Rn×1, yield the minimum of the fit error
among other class labels. In Eq. (6), δc(β̂) is an operator which
creates a sparse vector of β̂ where all elements (coefficients) are
zero except those of class c for c= 1, 2, …, C; in other words,
δc(β̂) = [0 . . . β̂cn,1

T . . . 0]T

Ĉ = argmin
c

(Aδc(β̂) − Y) for c = 1, 2, . . . , C (6)

2.2 Numerical Implementation. Figure 6 illustrates a pseudo-
code for the numerical implantation of the proposed SRC model. It
comprises four steps: (i) initialization; (ii) data preparation; (iii) val-
idation (parameter optimization); and (iv) testing. The last two steps
run a common classification subroutine.

2.2.1 Initialization. The results of in situ and real-time image
processing and quantification of line morphology are stored in a
matrix, called the Grand Matrix, where the quantified morphology
traits along with AJP process parameters (which together form classi-
fication features) are placed in the rows and individual samples/obser-
vations in the columns. Depending on the trade-off between the depth
of learning versus computation time, a combination of the classifica-
tion features is selected and stored in a new matrix (called the
FeatureMatrix). Thismatrix is used as the primary source of data. Par-
titioning percentages are specified accordingly for the training, valida-
tion, and testing of the model. Corresponding to the number of
samples, a vector of a priori class labels is defined; the range of each
class is based on the objectives as well as the resolution of process
monitoring. Two ranges of values are defined for both the regulariza-
tion parameter (λ) and the weighting parameter (α), as well.

2.2.2 Data Preparation. The SRC model requires allocation of
an equal number of samples to each class. Therefore, if nC is the
number of samples in class C where ∈{1, 2, 3, …}, the overall
number of samples picked by the Data Preparation algorithm is:
min(n1, n2,…, nC). Subsequently, according to the partitioning per-
centages (defined in step I), the training (A), validation (V), and
testing (T) matrices are randomly constructed (and then normalized)
out of the feature matrix (as visualized in Fig. 5).

2.2.3 Validation (Parameter Optimization/Tuning). In this
step, the optimum values of λ and α are estimated, based on the
two ranges of values already defined in step I for these two parame-
ters. The parameter optimization is implemented using a grid spacing
(heuristic) approach, in which a 2D grid space is formed (established
upon the number of divisions of the ranges defined for λ and α); sub-
sequently, the performance of the Classification Subroutine is
assessed at each grid point, employing the design (A) and validation
(V) matrices. Once estimated, the optimal values of the regulariza-
tion andweighting parameters (i.e., λopt and αopt) are used, afterward,
to classify the testing dataset (T).
Note that the range of the classification parameters (i.e., the grid

dimensions) should be broad enough to ensure reaching the global
optimum; this results in an increase in the processing time. In addi-
tion, the grid spacing influences not only the accuracy of the valida-
tion process—the smaller the grid spacing, the more accurate the
parameter estimation—but also the processing time. As a result,
an optimal combination of the grid dimensions and spacing
should be adopted to obtain an efficient estimation of the classifica-
tion parameters (see Fig. 11 in Sec. 3.2.3 as an example, demon-
strating the parameter estimation process).

2.2.4 Testing. For the model testing, the classification subrou-
tine is executed to independently assess the performance of the
trained model, using the untouched matrix of testing (T). The
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classification subroutine ultimately forms a confusionmatrix and cal-
culates several performance measures of the classifier, such as
F-Score, the area under the receiver operating curve (AUROC), accu-
racy, recall, precision, specificity, informedness, markedness, and
likelihood ratios.

2.2.5 Classification Subroutine. The right pane of Fig. 6 exhib-
its a pseudo-code for the numerical implementation of the classifi-
cation subroutine. It is composed of three steps: (i) estimation of the
vector of membership coefficients, β̂; (ii) sparsification of the β̂; and
(iii) classification.
For each individual sample or observation per class, the input

vector of classification features is constructed as follows: Yc
(:, j) ∈

Rm×1 where c= 1, 2, …, C and j= 1, 2, …, n; note that c is a
class counter and j is a sample counter. Next, the vector of member-
ship coefficients, β̂c(j) ∈ RN×1, is estimated using the LASSO, EN,

or RR. The β̂c(j) is subsequently sparsified and saved as a new
vector (J∈ℝN×1), which has nonzero elements only for the called
class label, c. Then the approximation/fit error—called the norm
mathematically, i.e., the error between the input vector of classifica-
tion features, Yc

(:, j), and the product of A · J (∈ℝm×1)—is calculated
against all classes. The class, which leads to the lowest amount of
error, is marked as a predicted class, pcj . Finally, based on the
actual class (c) and predicted class (p), a confusion matrix is con-
structed, and then the main performance measures are calculated.

3 Experimental Results
In this section, we discuss experiments, designed and conducted

to systematically assess the performance of the proposed SRC
method for in situ and real-time estimation of line resistance, as
delineated in Secs. 3.2 and 3.3, respectively.
AJP process parameters along with their complex interactions—

which intrinsically and inevitably result in adverse phenomena,
such as drift—influence the morphology, the resistance, and ulti-
mately the functional integrity of printed electronics. This hierarchy
is further illustrated using the following chain: process parameters

(physical conditions) → line morphology (image captured) → line
resistance (SRC estimated). Having set the physical conditions for
material deposition, the morphology of an electronic trace, referred
to as a “line” in this study, is captured using a series of images (as an
image-based data stream) acquired in situ or in real-time. As dis-
cussed, these images reflect the most recent morphology of the
line after deposition. Once processed, the image-based data
stream (containing a wide spectrum of morphology traits) allows
intelligent models (such as the SRC) to learn the dynamics of
AJP and correlate the physical conditions (process parameters) as
well as the morphological characteristics of the printed line with
its functional properties (e.g., resistance). Incorporation of the phys-
ical knowledge behind the AJP process in the SRC model helps
identify significant classification features; this would aid in (i) effi-
ciently training the model, (ii) reducing computation time, and
(iii) increasing classification accuracy.
There are two pathways to validate the results of resistance esti-

mation using the SRC model: (i) directly via contrasting against
offline probe measurements (Kelvin sensing) after sintering;
(ii) via simulation of line morphology (instead of image acquisition)
as a function of AJP process parameters using physical models
(such as computational fluid dynamics (CFD)), and subsequently
estimation of line resistance based on the simulation results using
an intelligent model (such as the SRC).
According to Ohm’s law, expressed by Eq. (7), the resistance (R,

[Ω]) of an electronic is directly proportional to the length (L, [m])
and inversely proportional to the cross-sectional area (A, [m2]),
where the constant of proportionality is termed resistivity
(ρ, [Ω.m]). The results of the SRC estimation of resistance can be
linked to the physics of AJP and explained with a focus on the
parameters that significantly influence line morphology, particularly
line width, cross-sectional area, and perhaps line thickness

R = ρ
L

A
(7)

3.1 Materials. A dry and pure (4.8 Grade) stream of N2,
flowing at ambient temperature (21 °C), is the primary medium of
transport for both sheath and atomization gas flows.

Fig. 6 A pseudo-code for the numerical implementation of the proposed SRC model,
including the following steps: initialization, data preparation, validation (parameter optimi-
zation), and testing together with a classification subroutine. The subroutine is further
composed of estimation and sparsification of the vector of membership coefficients (β)
as well as of classification and computation of performance measures. LASSO, EN, and
RR, respectively, stand for least absolute shrinkage and selection operator, elastic net,
and ridge regression.
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For the in situ monitoring experiment (delineated in Sec. 3.2), a
two-component silver nanoparticle ink, composed of Micro-
PEPG007MOP and MicroPEPG007EG (Paru Co., Seoul, Korea),
was used to print four-point probe electronic structures (as schema-
tically demonstrated in Fig. 7). The two components were mixed
with a ratio of 5:1 by weight, accordingly. Both of the ink compo-
nents have a particle size of 80± 10 nm.

• The first component is composed of silver nanoparticles
(∼66 wt%) and 1-methoxy-2-propanol (MOP) as solvent; it
has a bulk density and viscosity of 1.5–2.5 g/ml and 50 cP,
respectively.

• The second component is composed of silver nanoparticles
(∼33 wt%) and ethylene glycol (EG) as solvent; it has a bulk
density and viscosity of 1.2–3.3 g/ml and 39 cP, respectively.

For the real-time monitoring experiment (delineated in Sec. 3.3),
a single-component ink, i.e., PG007-AP (Paru Co., Seoul, Korea),
was used. Composed of silver nanoparticles as well as
1-methoxy-2-propanol (MOP) as solvent, this ink has an average
size, particle loading, and viscosity of 100 nm, ∼60 wt%, and
100 cP, respectively.
The bubbler was filled with MOP to compensate for solvent

evaporation during atomization, and thus to stabilize the ink viscos-
ity. Prior to use, the ink was ultrasonically sonicated for approxi-
mately two minutes to obtain uniform dispersion of particles.
A sheet of polyimide (UPILEX125S, Ube Plastics, Tokyo,

Japan) was used as a flexible substrate, recommended for the man-
ufacturing of flexible and hybrid electronics.

3.2 n Situ Monitoring of Line Resistance

3.2.1 Design and Analysis of Experiments. As detailed in
Table 3, three single-factor factorial experiments were conducted
under identical experimental conditions to observe the effects of:
(i) ShGFR, (ii) EGFR, and (iii) PS on the morphological characteris-
tics and the resistance of deposited four-point probe structures. A
review of literature [13,20] reveals that ShGFR, PS, and carrier gas
flowrate (CGFR) are controllable process parameters that influence

line morphology significantly. The ShGFR aerodynamically colli-
mates the stream of aerosols in AJP and as a result, affects line
width as well as line thickness. PS controls the linear mass density
of the deposited material (defined as mass per unit length [g/mm])
[13]. In addition, the CGFR (mathematically expressed as CGFR=
AGFR − EGFR) controls the rate of aerosol transport and
deposition; note that AGFR stands for atomization gas flow rate.
When the pneumatic atomizer is utilized (like this study), the
CGFR can be set via a combination of the following mechanisms:
(i) using the AGFR and (ii) using the EGFR. Note that the AGFR
controls the rate of pneumatic aerosol generating. The experiments
presented in this study were designed and conducted under fixed
atomization conditions. Consequently, the AGFR remained
unchanged, and the EGFR was the controlling mechanism of the
CGFR. The ShGFR, EGFR, and PS were varied randomly in the
range of 40–100 sccm, 400–480 sccm, and 1–4 mm/s, respectively;
the AGFR was fixed at 500 sccm. An equilibration time of five
minutes was held between each set point change of ShGFR or
EGFR to ensure steady-state transport and deposition of aerosols.
Utilizing the pneumatic atomizer and a nozzle, which has an inter-

nal exit diameter of 300 µm, the silver nanoparticle four-point probe
structures (as schematically depicted in Fig. 7) were printed—
repeated three times for each treatment combination of the experi-
mental design—in a single pass on an unheated polyimide substrate.
The choice of nozzle size was on the basis of previous studies
[13,14,20] where pressure buildup and flow stagnation were identi-
fied as critical phenomena adversely influencing the stability of
aerosol deposition in AJP. The working distance or print standoff
(i.e., the distance between the nozzle and the substrate) was kept at
3 mm in all the experiments. The printed structures were oven-
sintered (Binder, Inc., Bohemia,NY) for 1 h at 200 °C.The line resis-
tance was measured using the four-point probe method via a source
meter (Keithley-2614B, Tektronix, Inc., Beaverton, OR).

3.2.2 Experimental Observations. The high-resolution
imaging system (introduced in Sec. 1.3.1) allows for in situ image
acquisition from the deposited electronic structures. Once a line
or a set of lines has been printed, the platen is rapidly translated
under the CCD camera, and then images are captured from some
or all parts of the printed structures as exemplified in Fig. 8. Subse-
quently, the acquired images are processed using processing algo-
rithms, developed in-house in the environment of MATLAB and
PYTHON; they are detailed in one of the authors’ prior publications
[13]. As categorized in Table 2, five characteristics of line morphol-
ogy—including: line width, line density, edge quality/smoothness,
overspray, and line discontinuity—in addition to 11 traits of
image texture—including mean, standard deviation, smoothness,
skewness, uniformity, entropy, contrast, correlation, energy, homo-
geneity, and max probability [48]—are extracted from the images.
Besides, having transferred the images to undirected and
unweighted network graphs, ten spectral graph-theoretic Laplacian

Fig. 7 The dimensions of the AJ-printed four-point probe elec-
tronic structures, composed of silver nanoparticles and depos-
ited on a flexible polyimide substrate

Table 3 AJP process parameters, materials, and experimental methods used to systematically
investigate the influence of each factor on the morphology and the resistance of printed
electronic structures

Parameter Part I (ShGFR study) Part II (EGFR study) Part III (PS study)

ShGFR (sccm) 40, 60, 80, 100 60 60
EGFR (sccm) 450 400, 430, 450, 480 450
PS (mm/s) 4 4 1, 2, 3, 4
AGFR (sccm) 500 500 500
Atomizer type Pneumatic Pneumatic Pneumatic
Nozzle size (µm) 300 300 300
Working distance (mm) 3 3 3
Ink Silver NP Silver NP Silver NP
Substrate Polyimide Polyimide Polyimide
Sintering type Oven (1 h at 200 °C) Oven (1 h at 200 °C) Oven (1 h at 200 °C)
Resistance measurement 4-point probe 4-point probe 4-point probe
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eigenvalues [16], i.e., λ2:λ6—λend-4:λend, are extracted. We note that
all of the aforementioned traits relate to the 2D morphology charac-
teristics of the printed structures.
As visually observed from Fig. 8, the line width decreases signif-

icantly as the ShGFR and the EGFR increase. Note that the rate of
decrease in the line width versus PS is relatively less prominent. No
significant amount of overspray is observed under the set printing
conditions (discussed in Table 3). The changes in the line width
can be attributed to the following physical phenomena correspond-
ingly, governing aerosol transport and deposition in AJP:

(i) The ShGFR directly influences collimation forces, which act
externally on the aerosol stream.

(ii) The virtual impactor aerodynamically removes the bulk of
the atomization gas and to a less significant extent, separates
the droplets having relatively low linear momentum from
the flow stream; as a result, a uniform dense stream of aero-
sols is delivered to the deposition head. The stronger the
EGFR, the less the rate of aerosol transport (delivery) to
the deposition head.

(iii) The PS inversely affects the linear mass density (mass per
unit length) of the deposited structures.

The line width—unlike the line thickness and the CSA—is
affected with the variation of the ShGFR, the EGFR, and the PS
in a similar fashion. This stems from the fact that the ShGFR
(unlike the EGFR and the PS) does not change the rate of material
deposition per unit length but just the magnitude of the deposition
collimation and thus density. As a result, denser and thicker lines
are deposited as the ShGFR increases; this implies that less resistive
lines are obtained. The trends reflected by the changes of the line
width versus the ShGFR and PS are consistent with our previous
observations [13,14], indicating the repeatability of the results.
It is expected that under the optimal experimental conditions (dis-

cussed in Sec. 3.2.1), the edge quality does not change significantly
with the ShGFR and the EGFR but with the PS [13]. However, Figs.
8(b-ii) and 8(b-iv) indicate formation of rough edges after the
aerosol deposition. An assignable cause was detected, revealing

that such an anomaly in the edge smoothness stemmed from the
presence of impurities on the surface.
Demonstrated in Fig. 8(c-i), the lines printed at the speed of 1 mm/

s are of the highest quality characterized by smooth and uniform
edges. The noticeable drop in the edge quality at the other PS’s is
due to the fact that the deposited aerosols do not completely reach
receding, relaxation, and wetting equilibrium [21].
In addition to the aforementioned traits and experimental trends,

two 3D morphology characteristics, i.e., the line thickness and the
CSA, were quantified in situ, having recovered the 3D profile of
the printed lines using the SfS image analysis [17], as exemplified
in Fig. 9.
We note that the formation of highly reflective (bright) edges at

the print speeds of 1 mm/s and 2 mm/s (see Figs. 8(c-i) and
8(c-ii)) results in the appearance of narrow valleys in their corre-
sponding recovered surfaces (see Figs. 9(c-i) and 9(c-ii), respec-
tively). In general, the adverse influence of the bright edges can
be removed by, for example, high dynamic range imaging or
diffuse illumination. We removed the background of the images
to obtain a uniform ground reference for the quantification of the
line thickness and the CSA.
The CSA was quantified by numerical integration of each 2D

cross section, averaged over the entire line length. The authors’ pre-
vious work regarding SfS [15] showed that Shah method [70] would
perform well particularly when the direction of light source is com-
parable with that of camera (like our imaging system). Conse-
quently, the Shah method was used in this study as the method of
choice for the in situ reconstruction of the 3D cross-sectional pro-
files. Although not used in this study, several other traits—such
as surface roughness parameters (Ra, Rq, and Rt)—were addition-
ally quantified. While aiding in obtaining more accurate classifica-
tion results, they would add more complexity to the model and thus,
would increase computation time.
To corroborate the veracity of the in situ characterization of line

morphology, the in situ (image-based) measurements of the width
and the thickness of the AJ-printed lines were contrasted against
offline measurements carried out using a white light interferometer
(WLI). Implied from Fig. 10, both the in situ and the offline

Fig. 8 A series of images captured in situ using the high-resolution CCD camera, demonstrating the effects of: (a)
the ShGFR varying at four levels of 40, 60, 80, and 100 sccm, (b) the EGFR varying at four levels of 400, 430, 450, and
480 sccm, and (c) the PS varying at four levels of 1, 2, 3, and 4 mm/s, on the morphology of the deposited electronic
traces. Note that sccm stands for standard cubic centimeter per minute.
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measurements demonstrate similar trends, characterized with a cor-
relation coefficient (ρ) of > 0.95. Note that the in situ thickness mea-
surements were based on the SfS-reconstructed cross sections
(illustrated in Fig. 9).

3.2.3 Classification of Line Resistance (LR). The design matrix
(A ∈ R34×720) is composed of 34 rows, i.e.,m= 34 (representing the
classification features, including the 31 line morphology traits, listed
in Table 2, in addition to the three AJP process parameters), by 720
columns, i.e., N= 720 (representing observations or samples). The
matrix is constructed as follows: there are four levels for each of
the three factors (ShGFR, CGFR, and PS), designed to be repeated

three times. From each of the 36 resulting experimental runs, an
image was acquired. Each image was, subsequently, divided to 20
segments to populate enough samples for the training, validation,
and testing datasets. Consequently, 720 samples were generated in
total. The full field of view of the imaging system allows for captur-
ing approximately 880 µm of the printed lines. The input vector of
classification features (Y∈ℝ34×1) is similarly composed of 34
rows, including all the 34 classification features.
Three class labels of line resistance,C∈ {1, 2, 3}, were defined as

follows; •Class 1: LR < 1.2 Ω; •Class 2: 1.2 Ω≤LR≤ 1.6 Ω; •Class
3: LR > 1.6 Ω. 60% of the data (stored in the feature matrix) was ran-
domly dedicated to training, 30% to validation, and 10% to testing.
As discussed in Sec. 2.2, the grid spacing approach was employed
to map a 2D space and thus to find the optimum values of λ and α,
using the validation dataset, as exemplified in Fig. 11.
The results of the in situ SRC estimation of the line resistance are

illustrated in Table 4 for a simulation run. The performance of the
SRC model was evaluated based on F-Score, defined as the har-
monic mean of precision and recall (sensitivity), as mathematically
expressed by Eq. (8) [71,72]

FScore = 2 ×
(�P · �R)
(�P + �R)

(8)

In Eq. (8), �P and �R stand for average precision and average recall,
respectively; this is to generalize Eq. (8) for multiclass classifica-
tion. Once a confusion matrix (CM) has been obtained (as exempli-
fied in Table 4), the average values of the recall (�R) and the
precision (�P) are calculated as detailed in Eqs. (9)–(12). Note that
m and n represent the number of rows and columns of the confusion

Fig. 9 Reconstruction of the 3D profile of the deposited electronic traces, using shape-from-shading analysis [17], allow-
ing for quantification of the 3Dmorphology characteristics, e.g., the thickness and the cross-sectional area, as a function of:
(a) the ShGFR varying at four levels of 40, 60, 80, and 100 sccm, (b) the EGFR varying at four levels of 400, 430, 450, and 480
sccm, and (c) the PS varying at four levels of 1, 2, 3, and 4 mm/s

Fig. 10 Validation of the in situ characterization of line morphol-
ogy, demonstrated as a comparison between in situ (image-
based) and offline (WLI-based) measurements of: (a) the width
as a 2D morphology trait, and (b) the thickness as a 3D morphol-
ogy trait of the AJ-printed lines, exhibiting similar trends (having
a Pearson’s correlation coefficient, ρ, of 0.96 and 0.98, respec-
tively). WLI stands for white light interferometry.
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matrix (CM), respectively. Furthermore, R∈ℝm×1 and P∈ℝ1×n are
the recall vector and the precision vector, correspondingly. R0 and
P0 represent the ℓ0-norm (i.e., the number of elements) of the recall
and precision vectors, respectively

R(i) =
CM(i,i)∑n

j=1
CM(i,j)

for i = 1, 2, . . . ,m (9)

�R =

∑m
i=1

R(i)

‖R‖0
(10)

P(j) =
CM( j,j)∑m

i=1
CM(i,j)

for j = 1, 2, . . . ,n (11)

�P =

∑n
j=1

P(j)

‖P‖0
(12)

The SRC model was run 100 times to avoid the intrinsic bias of
the model, resulting from the random partitioning of the training,
validation, and testing datasets. As a result, an average F-Score of
0.95± 0.005 was obtained with consideration of a significance
level of 0.05. This implies that the line resistance can be estimated
in situ with an accuracy of approximately 95%. The performance of
the model can be further improved by an optimal selection of the
classification features. While the selection of a larger number of
the features may result in improved performance, it adversely
increases computation time (particularly during the process of train-
ing and validation).

3.2.4 Overall Assessment of the Performance. As illustrated in
Fig. 12(a), the performance of the SRC model was contrasted sys-
tematically against that of seven well-known classifiers—including
ANN [73], DT [74], DA [75], NB [76,77], kNN [78], SVM [79–
82], and ensemble of learners (Ens) [83,84]—versus three to six
class labels of the line resistance.
Figure 12(a) demonstrates that as the number of class labels

increases, the performance of all the models decreases (in a dissim-
ilar fashion). Comparing the first and last class labels, a 27% reduc-
tion in performance was observed for the ANN; similarly, both the
NB and the SVM approximately exhibited a 25% reduction in their
performance. The reduction in the performance of the SRC model
was comparable with the DTs and the KNNs, being about 11%.
The Ens had the smallest performance reduction, i.e., approximately
8%. It is worth mentioning that the DA displayed a relatively mod-
erate performance reduction of about 18%.
It was observed that the ANN, unlike the other classifiers, was not

capable of classifying the line resistance when the number of class

Fig. 11 A 2D parameter optimization space, obtained using a
grid spacing (heuristic) approach, which indicates the optimal
values of the regularization parameter (λ) and the weighting
parameter (α). These two values are subsequently used to clas-
sify a testing dataset

Table 4 The results of a single classification simulation,
performed to estimate the resistance of printed electronic
structures, based on in situ image data

Sparse estimation classification
Estimated condition

Optimal method: LASSO Class 1 Class 2 Class 3

True condition Class 1 (24) 100% (24) 0% (0) 0% (0)
Class 2 (24) 0% (0) 96% (23) 4% (1)
Class 3 (24) 0% (0) 8% (2) 92% (22)

Classification
measures

Recall 100% 96% 92%
Precision 100% 92% 96%
False alarm 0% 4% 2%
Specificity 100% 96% 98%

Optimization λ (Opt) 0.0031
α (Opt) 1.00

Performance
evaluation

F-Score 95.9%

Note: In this simulation, the LASSO was automatically chosen by the
parameter optimization algorithm, based on the value of α = 1. The elastic
net and ridge regression methods would have been alternatively chosen,
had the weighting parameter been 0 < α < 1 and α ≈ 0, respectively. The
numbers in the parentheses demonstrate the number of classified samples
per class label.

Fig. 12 A comparison between: (a) the performance and (b) the
computation time of the SRC model and those of several other
well-known classifiers including ANN, DT, DA, NB, kNN, SVM,
and ensemble of learners (Ens). The error bars represent 95%
confidence intervals around the F-Score means.
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labels was greater than six (the trend is not shown); this is because
both the precision and the recall were zero, resulting in an undefined
value (NaN) in the calculation of the F-Score, expressed by Eq. (8).
The accuracy of the SRC model is comparable to that of the kNN
and the DT, following the accuracy of the Ens classifier. Note
that the Ens consists of a weighted combination of multiple classi-
fiers; such a combination leads to an increase in the predictive
performance.
In addition to the comparative performance assessment, all the

classifiers were relatively compared with respect to their computa-
tion times (including the three steps of training, validation, and
testing), as demonstrated in Fig. 12(b). The kNN, the DT, and the
DA had the smallest computation times (being in the order of a
few hundredths of a second per simulation run); note that the
kNN’s performance was comparable with the SRC’s (implied
from Fig. 12(a)). The SVM, the NB, and the ANN exhibited inter-
mediate computation times, i.e., approximately a few tenths of a
second, which were one order of magnitude smaller than those of
the SRC and the Ens. These computation times were obtained
from the classification of the same set of data into five a priori
class labels (as presented in Fig. 12(a)). This comparison is for-
warded here just to provide rough estimates about the computation
time of each model. Since their background algorithms are not opti-
mized at the same level, no strict conclusions can be further deduced
from the observed trends. Overall, based on the analysis of the per-
formance and the computation time of the aforementioned models,
it is concluded that the SRC model can be used as a robust high-
performance classifier for the in situ estimation of line resistance
in AJP process.
In real-time applications, only the computation time of “testing”

will be critical—reflecting the true computation time of a classifier
—since both training and validation are implemented prior to the
start of monitoring a process. Apropos of AJP process monitoring,
there are inevitable delays, which make the whole monitoring
process “near real-time,” stemming from image acquisition,
storage, processing, offset in observation [85], and stage translation
in addition to classification.

3.3 Real-time Monitoring of Line Resistance

3.3.1 Design and Analysis of Experiments. As discussed in
Sec. 1.3, the new experimental setup configuration—utilizing the
standard process monitor camera instead of the integrated CCD
camera—allows for image acquisition, processing, and ultimately
estimation of line functional properties in near real-time. Note
that the term “near real-time” is used to emphasize that due to the
inherent delays in the AJP process (as discussed in Sec. 3.2.4),
the SRC model is capable of estimating line resistance and/or
other functional properties near (not exactly at) the time of
aerosol deposition.
In order to further assess the robustness of the model, a two-factor

factorial experiment was designed where the print speed (PS) was
changed randomly at three levels of 2, 4, and 6 mm/s, each at two
ShGFR levels of 40 and 60 sccm. In addition, each treatment com-
bination of the experimental design was repeated five times (result-
ing in 30 runs, in total). The two pneumatic atomization parameters,
i.e., the AGFR and the EGFR, were set at 640 and 610 sccm,
respectively. A 200 μm nozzle tip was used to print enhanced four-
point probe structures, as schematically illustrated in Fig. 13(c),
where all of the four pads were post-deposited at the same horizon-
tal level with a speed of 4 mm/s to reduce the printing time and thus
to minimize the adverse, uncontrollable effects of the AJP process
drift.
Under constant illumination conditions, images were acquired

from the central line of the printed structures (15 mm long) while
the deposition of material, with a frame rate of 50 fps and exposure
time of approximately 1 ms, as exemplified in Figs. 13(a) and 13(b).
The field of view of the camera was narrowed to a window of 100 ×
300 px (which approximately corresponds to 100 × 300 µm using a
calibration factor of 1.01 µm/px) to: (i) restrict the image acquisition

window only to the depth of field and (ii) obtain an optimal image
size for characterization of the morphology of the printed structures.
This means that only 100 µm of the line length could be observed
per frame. However, based on the set frame rate of 50 fps as well
as the PS of 2, 4, and 6 mm/s, correspondingly 40, 80, and
120 µm of the line length are traveled between two consecutive
images. In other words, at the PS of 2 and 4 mm/s, oversampling
is occurring, while at the PS of 6 mm/s, image acquisition is influ-
enced by unavoidable undersampling (i.e., loss of information in
areas not imaged). Consequently, to prevent oversampling
between images, the oversampled areas were cropped before the
morphology characterization, adjusted according to their corre-
sponding PSs. The same image processing logic and routines, dis-
cussed in Sec. 3.2.2, were applied to the cropped images to
extract the morphology traits.
Integrated with the SRC model, the image processing algorithms

allow for morphology characterization of electronics with noncom-
plex geometrical features. The SRC model, itself, is computation-
ally fast and can handle image data streams with low
signal-to-noise ratio. The solution to the challenge of real-time
monitoring of the functional properties of electronics with
complex morphological traits is twofold: (i) more sophisticated
image processing algorithms need to be forwarded; (ii) use of
advanced image-based sensors, e.g., infrared and thermal cameras
(perhaps together with temporal sensors), would allow for more
accurate detection of the boundaries of a component (which
might overlap another previously deposited component), as well
as for monitoring the dynamics of material deposition in AJP, for
example, by image-based tracking of the amount of solvent evapo-
ration from deposited material. Furthermore, complex electronics
usually have simple interconnects (line traces) that represent the
overall morphology and thus may be potentially used for monitor-
ing the functional properties. Note that the use of interconnect fea-
tures or test coupons may adversely influence the frequency of
process monitoring (because of inherent delays, stemming from
stage translation for example); as a result, there is a trade-off
between feature simplicity and monitoring frequency.

3.3.2 Experimental Observations. Having deposited the
samples, they were baked in a convection oven at 200 °C for 1 h
(plus 20 min dedicated to temperature ramp-up). Subsequently,
the resistance of the printed structures was measured using the four-

Fig. 13 (a, b) True-color images captured in real-time using the
AJP process monitor camera with a frame rate of 50 fps and an
exposure time of 1 ms, windowed to a field of view of 100×
300 µm and (c) the dimensions of the modified four-point probe
electronic structures
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point probe method, as plotted versus PS at the two levels of the
ShGFR in Fig. 14.
Equation (7) can be rewritten with consideration of the volume

flowrate of material deposition (V̇) [m3/s]—expressed as
V̇ = PS · A, where PS stands for print speed [m/s], and A represents
the cross-sectional area of a deposited line [m2]—as follows:

R =
ρ · L · PS

V̇
(13)

If the ShGFR is constant, the volume flowrate of material deposi-
tion (V̇) will be constant as well—because both the AGFR and the
EGFR are constant in this experiment, as mentioned in Sec.
3.3.1—if we assume all other factors and experimental conditions
remain constant. Please also note that the length of the printed
lines (L) is fixed at 10 mm (see Fig. 13). Consequently, if V̇ is cons-

tant, Eq. (13) can be re-written, as follows, where ρ ·L
V̇

( )
represents

the slope

R =
ρ · L
V̇

( )
PS (14)

Such a linear relationship between R and PS is observed in Fig. 14
at the two ShGFR levels. If the ShGFR changes, V̇ changes to some
extent, and as a result, the slope changes (compare the dashed line
with the solid line). The demonstrated trends were juxtaposed with
the results of a study by Mahajan et al. [20], which corroborates
the veracity of the observed trends.
Figure 14 indicates that the PS has much more significant influ-

ence on the line resistance at the ShGFR of 40 sccm compared
with 60 sccm (i.e., almost a 30% increase in the line resistance
from 2 to 6 mm/s at 40 sccm versus only a 7% increase at
60 sccm). This is an implication of the fact that there is a strong inter-
action between the PS and the ShGFR. In other words, there exists a
nonlinear relationship between the line resistance (as the response
variable) and the two factors. This hypothesis was statistically
tested and affirmed using analysis of variance. The analysis demon-
strated that the ShGFR and the PS as well as their interactions were
statistically significant at 1% level of significance. Figure 14 aids in
locating the optimal values of the line resistance. For example, mate-
rial deposition at low levels of the PS and high levels of the ShGFR
results in the most conductive structures (characterized by narrow
and thick lines).
The effect of PS is to spread the same amount of material (under

fixed material deposition rate) over a longer distance when it
increases. While influencing line morphology and thus line resis-
tance, it does not directly affect the material deposition rate in the
same manner as the sheath and atomization gas flowrates; conse-
quently it should be considered as a second-order parameter to
resistance.
Due to the spreading effect of PS, the deposition and coalescence

of aerosols are affected significantly (at high PSs); this leads to for-
mation of discontinuous lines, characterized with poor edge quality
as well as low line density. To investigate this phenomenon, a

compressible, turbulent multiphase flowCFDmodel was forwarded.
We delineated the governingmathematical equations and the bound-
ary conditions behind the CFD model in details in Refs. [13,86]. As
demonstrated in Fig. 15, the line morphology is adversely affected
when the PS increases from 1 to 4 mm/s. This stems from the spread-
ing effect of the PS, which deprives the impinging aerosols of initial
wall film formation, subsequent coalescence, and ultimately forma-
tion of a continuous line trace. This phenomenon is evident when
Figs. 15(a)–15(d ) are compared. In addition, tracking the Weber
number (We) of the aerosols—defined as the ratio of the inertia of
a fluid to the surface tension—revealed that the aerosols contribute
to the formation of the thin wall film (and thus the line trace) less sig-
nificantly when the PS increases.

3.3.3 Classification of Line Resistance. Based on the measure-
ments of the resistance (falling in a wide range between approxi-
mately 44–62 Ω), five distinct class labels were defined, as
follows: •Class 1: 44.0 Ω≤ LR< 45.5 Ω; • Class 2: 45.5 Ω≤ LR <
47.0 Ω; •Class 3: 47.0 Ω≤ LR< 48.5 Ω; • Class 4: 50.0 Ω≤LR <
60.0 Ω; and • Class 5: LR≥ 60.0 Ω. Note that these labels were
defined to pose a real case study and subsequently, to assess the per-
formance of the SRC model. In this experiment, we followed the
same procedure for the setup and implementation of the SRC
model as the one used in the in situ monitoring experiment (detailed
in Sec. 3.2.3). As mentioned in Sec. 3.3.1, there are six treatment
(factor) combinations, each repeated five times, resulting in 30
experimental runs. From each of the 30 runs of the randomized
experimental design, 30 images were selected and subsequently
processed, leading to 900 samples (image-based data) available in
total for the analysis. As already discussed in Sec. 2.2, the SRC
model requires allocation of an equal number of samples per
class; consequently, this limitation reduced the total number of
samples to 750. As a result, 450 (60%), 225 (30%), and 75 (10%)

Figure 14 Line resistance versus print speed (PS), plotted
at two levels of the ShGFR (40 and 60 sccm). The error bars
are (±1σ) long where σ is the standard deviation of the
measurements.

Fig. 15 A CFD simulation of the influence of print speed (PS),
varying at four levels of: (a) 1 mm/s, (b) 2 mm/s, (c) 3 mm/s,
and (d) 4 mm/s, on AJ-printed trace morphology, demonstrating
the impingement and post-deposition coalescence of aerosols
on a moving free surface. An increase in the Weber number
(We) is indicative of the fact that that the aerosols contribute to
the line formation more significantly (by sticking to the wall film).
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samples were dedicated to the training, validation, and testing of the
model, respectively. Table 5 exemplify a confusion matrix, demon-
strating various measures of the performance of the model, includ-
ing recall (sensitivity), precision, false alarm rate, specificity
(selectivity), as well as F-Score for a single simulation. To avoid
the intrinsic bias of the model, resulting from the random partition-
ing of the data, the model was run 25 times (with random data allo-
cation per simulation), resulting in an F-Score of 0.92± 0.013.
Furthermore, a tenfold cross-validation procedure was used to

check the robustness of the model; an F-Score of 0.96± 0.017
was obtained. In addition to the F-Score, the AUROC—extended
to multilabel classification by calculating for all possible combina-
tions of class labels—was used as a second measure of classification
accuracy. Similarly, having run the SRCmodel 25 times, an average
AUROC of 0.96± 0.006 was obtained. Overall, both the F-Score
and the AUROC imply that the presented SRC model is capable
of estimating line resistance (and potentially, other functional prop-
erties) in near real-time with an accuracy of≥ 0.90.

4 Conclusion and Future Work
In this study, an intelligent learning model was forwarded, based

on the concept of sparse representation for classification (SRC), to
estimate the functional properties (e.g., resistance) of printed elec-
tronics. An integrated high-resolution CCD camera and the AJP
standard process monitor camera were used respectively for in
situ and real-time image acquisition. A wide range of image pro-
cessing algorithms, developed in-house, were also used to extract
2D and 3D line morphology traits; they together with AJP
process parameters constituted the classification features. The pre-
sented SRC model is based on a new convex optimization formula-
tion—consisting of not only the ℓ2-norm of the fit error but also the
ℓ1-norm and ℓ2-norm of the vector of membership coefficients—
solved using a combination of the LASSO, elastic net, and ridge
regression. The model was validated using in situ and real-time
designed experiments, where four-point probe electronic structures
were deposited as a functional of influential process parameters. A
priori class labels were defined based on the resistance of the printed
structures. The performance and computation time of the model was
contrasted against that of seven well-known classifiers. Overall, the
results of this study corroborated that the proposed SRC model
could accommodate the multivariate and heterogonous nature of
AJP sensor data and thus, be used for in situ as well as real-time esti-
mation of the resistance (and potentially, other functional proper-
ties) of printed electronics with an accuracy of≥0.90.

The following avenues for future work will be explained in the
forthcoming publications:

(1) The computer algorithms and routines, forwarded in this
work for both image processing and the SRC estimation of
line resistance, will be optimized for implantation of
closed-loop control of functional properties in AJP; the
goal will be to achieve controlled, conformal deposition of
electronics with uniform functional properties.

(2) Currently, there are approximately 60 2D and 3D morphol-
ogy traits, extracted from an acquired image. The perfor-
mance of the SRC model will be further optimized by an
optimal selection of the classification features, for example,
with the aid of dimensional reduction techniques (e.g., prin-
ciple component analysis) to avoid unnecessary processing
of large data sets.

(3) A CFD mode will be forwarded to explain the underlying
physical phenomena behind the experimental observations
discussed in this work. This allows for mapping of velocity
and pressure fields as well as particle trajectories, and thus
simulation of line morphology particularly in critical condi-
tions (e.g., at high atomization gas flowrates) where conduct-
ing an experiment is time-consuming and expensive.

(4) Finally, this study will be augmented to include other conse-
quential factors and process parameters (e.g., ink viscosity,
surface energy, and nozzle size).
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Table 5 The results of a single classification simulation, performed to estimate the resistance of
printed electronic structures, based on real-time image data

Sparse estimation classification
Estimated condition

Optimal method: LASSO Class 1 Class 2 Class 3 Class 4 Class 5

True condition Class 1 (15) 87% (13) 7% (1) 7% (1) 0% (0) 0% (0)
Class 2 (15) 0% (0) 100% (15) 0% (0) 0% (0) 0% (0)
Class 3 (15) 0% (0) 0% (0) 93% (14) 7% (1) 0% (0)
Class 4 (15) 0% (0) 0% (0) 0% (0) 93% (14) 7% (1)
Class 5 (15) 0% (0) 0% (0) 0% (0) 0% (0) 100% (15)

Classification measures Recall 86.67% 100% 93.33% 93.33% 100%
Precision 100% 93.75% 93.33% 93.33% 93.75%
False alarm 0% 1.67% 1.64% 1.64% 1.67%
Specificity 100% 98.33% 98.36% 98.36% 98.33%

Optimization λ (Opt) 0.005
α (Opt) 1.00

Performance evaluation F-Score 94.75%

Note: In this simulation, the LASSO was automatically chosen by the parameter optimization algorithm, based on
the value of α = 1. The numbers in the parentheses demonstrate the number of classified samples per class label.
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