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Abstract— Additive manufacturing (AM) is an increasingly
important enabler of smart manufacturing systems. Fused
deposition modeling (FDM) is an AM technology that uses layer-
wise extrusion to deposit material in 3D and most FDM ma-
chines run in open-loop. Due to the lack of feedback controllers,
disturbances in the process cause failures. Although there are
some spatial models for the FDM process, there are no layer-to-
layer spatial dynamics models to enable control applications.
This work proposes a novel modeling framework to capture
the in-layer and layer-to-layer spatial dynamics of the FDM
process utilizing a kernel basis approach. Individual kernels
represent the deposition cross-sections and the orientation
of the deposition. Layer-wise and layer-to-layer performance
measures and stability definitions are proposed for the layer-
to-layer spatial model. A simulation example is provided to
demonstrate the validity of the stability criteria.

I. INTRODUCTION AND BACKGROUND

Fused deposition modeling (FDM) is an additive manu-
facturing (AM) process in which a thermoplastic material is
extruded through a heated nozzle in a numerically controlled
deposition system. After a layer of material is deposited,
the deposition system changes its height to accommodate
the next deposition layer until all the layers of a 3D object
are deposited. Some interesting applications of the FDM
technology have been in advancing bone scaffold fabrication
research [1], composite reinforced fabrication [2], and big
area additive manufacturing [3].

FDM process dynamics shown in Fig. 1 can be separated
into two groups. Temporal dynamics, such as heating the
material [4], [5], volume flow through the nozzle [6] and
the motion of the deposition system [7] are time dependent
and constitute the transient response of the process. Spatial
dynamics, such as the material volume and location in space,
interactions with the build plate, and the geometry of the
deposited beads and the printed part [8]-[10] constitute the
spatial characteristics of the process.

A. Motivation and Problem Statement

A major concern with the FDM process is its reliabil-
ity [11]. Poor reliability in FDM is caused by a lack of
appropriate process models and feedback controllers, leading
to significant cost and time losses [12]. Due to the lack
of feedback controllers, disturbances in the printing process
often result in severe errors in the printed part geometry.
Since the current models do not capture the spatial dynamics
of the process under disturbances, an FDM process may
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Fig. 1. Schematic of the FDM process. F'fceq is the material feed force
for the extrusion process in the nozzle. Teyt is the heat supplied by the
extruder heater. () is the volumetric flow through the nozzle.

unexpectedly fail to manufacture the desired geometry or
part functionality.

Understanding the spatial dynamics of the individual lay-
ers and the relationship between layers will play a key role
in understanding process stability over the layer domain and
improving the reliability of the process. With the increasing
use of Internet of Things (IoT) technologies in manufac-
turing, large amounts of process data are accessible [13].
Models that can capture the state of the process and enable
predictions about the upcoming layers are needed to improve
reliability. Therefore, FDM models that can capture the
spatial dynamic states of the process at a given layer and
determine layer-to-layer stability of the process should be
developed. This work aims to address the reliability problem
of the FDM, by developing a control-oriented layer-to-layer
model to capture spatial dynamics of the process.

B. State-of-the-art in Spatial FDM modeling

An extensive review of the FDM modeling literature is
given in [14]. A model for partial sintering between the
deposited beads in FDM is proposed in [6], [15]. This model
estimates the dimensionless neck growth between adjacent
beads in transient and steady state conditions, but the spatial
dynamics of the beads after sintering and the geometry of
the beads are not given.

An ellipse cross-section model of the FDM process is
proposed in [9]. The authors reported high accuracy with
their model, but only modeled the surface roughness at
the end of the process and not the layer-to-layer spatial
dynamics. Hoelzle et al. proposed a circle with cut top and
bottom as the deposited bead cross-section in a micro-robotic
deposition process [16]. The authors used a computer vision



system to monitor the spatial distribution and the volume
of the deposited material, but focused only on the temporal
dynamics in their model development.

Comminal et al. proposed a computational fluid dynamics
(CFD) model to estimate the bead cross-section geometry
as a function of process parameters in FDM [17]. Their
study compared various cross-section assumptions with their
numerical analysis, but did not explore the layer-to-layer
deposition aspect. Xia et al. proposed a novel numerical anal-
ysis framework to model the FDM process in [8]. This model
captures the layer-to-layer spatial and temporal dynamics in
a CFD framework. The proposed method is computationally
expensive and not suitable for control applications. Cheng
and Jafari considered process signatures that characterize
surface defects through computer vision analysis, to model
the spatial irregularities in the fused deposition of ceramics
(FDC) process [18]. The model in [18] considered spatial
errors and control actions for compensation. However, the
model uses materials that spread into a rectangular cross-
section upon deposition, and thermoplastics in an FDM
process do not exhibit the same spreading behavior. Instead,
most FDM materials retain their cross-sectional geometry
after deposition.

In current literature, a method to derive a layer-to-layer
spatial dynamics model for FDM does not exist. Therefore,
this work aims to develop spatial dynamic models that can
be used to analyze layer-to-layer stability of the deposition
process. Three novel contributions of this work are: (1) a
spatial in-layer model for FDM using kernel bases, (2) a
spatial layer-to-layer dynamic model to understand spatial
process dynamics and determine layer-to-layer stability, and
(3) definitions of in-layer regularity and layer-to-layer stabil-
ity for the proposed model. The remainder of the paper is
structured as follows. Section II introduces the in-layer and
layer-to-layer spatial dynamic models. Section III presents
layer-to-layer stability measures. Section IV presents a sim-
ulation and case studies to demonstrate the proposed model.
Concluding remarks and future directions are provided in
Section V.

II. PROPOSED MODELING APPROACH

The modeling approach starts with a description of each
layer as it is deposited and then describes how the layers
build on each other.

A. In-Layer Deposition Model

In this model, we apply the bead geometry assumption
proposed in [17] (Fig. 2). While this assumption may lead to
oversimplifications in the geometry estimations under certain
process parameters, it serves as a foundation for the kernel
basis approach proposed in this paper. Extension to more
complex geometries will be explored in later work.

1) Bead Cross-Section: Crockett and Calvert proposed the
Hagen-Poiseuille flow for shear flow through the nozzle in
the FDM process [19].
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Fig. 2. Visualization of the ellipse bead model. The cross-sectional view
of the bead is shown in the call-out. hj is the height of the layer k (the total
height up to layer k), c is the intersection between the subsequent layers,
and ¢ is the hyperplane at which the bead of layer k + 1 sits on.

where R is the nozzle size, L; is the tip length of the
nozzle, AP is the pressure drop in the extruder, which can
be evaluated by similar work in [4], [16], v is the viscosity of
the extruded material, and Q is the volumetric flow rate. The
cross-sectional area of the extruded bead shown in Fig. 2 is
given as.

Q/Veut = mab, )

where, V., is the extruder speed, a is the radius of the ellipse
aligning with the deposited layer plane denoting the width
of the bead cross-section, and b is the radius of the ellipse
along the height of the bead as shown in Fig. 2. This physical
relationship captures the conservation of volume since the
flow is assumed to be incompressible with no mass loss.
Assumption 1: Cross-sections of deposited beads in the
FDM process can be approximated by ellipses with fixed
aspect ratio . = b/a, where a, b, are width and height radii
of the ellipse.
Similar shape assumptions to Assumption 1 have been
adopted in past work [6], [17]. Fixed aspect ratio used in
this work is practical since the shape assumption is derived
based on the conservation of volume in the extrusion process.
Using Assumption 1, we rearrange Eq. (2) to have the height
of the ellipse b as a function of the input pressure AP.

R'a
AP——— =b*
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Denote u as the control input to the system, which is the
square-root of the actual pressure at the extruder nozzle. i
is a constant gain that relates the input u to the height b.
2) Spatial Layer Model: We define the global frame
Fq:(ta,]a, I%A), where (i4,j4) are the in-layer deposition
directions and k. is the deposition height direction. Let
v(Ta,ya) € R? denote the in-layer deposition orientation
at point (z4,ya) € Fa. Then we define the local frame
Fp: ('ip,jp,kp), where ip is aligned with v(za,y4) and



k p is aligned with k A. Therefore, F'p can be defined at any
point in Fjy, given v(x4,y4). Continuous deposition of a
bead in a layer is represented as

S(l‘A, YA, ZA) = P(-%'Pa yP) + C(CL, b)‘(v(IAﬁyA))’ )

where S(za,ya,24) is the bead geometry of the in-
layer deposition, P(xp,yp) is a deposition path, and
C(a,0)|(v(xa,y4)) is the cross-sectional geometry of the bead
at point (x4, y4). According to the ellipsoid assumption, we
define the cross-section geometry as:
= )2 5 )2

C(a’b)lv(:EA,ﬂA) é (yA beA) + (ZA GQZA) (5)
which defines the estimated ellipse cross-section at the spatial
control point (Z4,7a4).

In most AM processes such as selective laser sinter-
ing, jetting-based processes, direct metal deposition, and
stereolithography there is a two dimensional (2D) spatial
correlation between adjacently deposited materials in a layer.
The spatial correlation is caused by coalescence of deposited
material, which changes the deposited material geometry. In
FDM, thermoplastic material does not spread upon extrusion
and only partially sinters. The change of geometry due to
partial sintering (e.g. [6], [20]) between adjacent beads in
a layer is negligible. Assumption 1 reduces the in-layer
modeling problem to a one dimensional problem where the
cross-sections of the ellipses along the deposition trajectory
are to be determined.

B. Discretized Spatial Dynamics in Control Form

The model given in Eq. (4) is not in a control affine
form. We want to model the spatial deposition height as the
spatial state and the material input as the control input. It
is convenient to represent the spatial state of the deposition
process on a fixed discretized spatial field region. Spatial
state (heightmap) based modeling for control of micro AM
in which deposition directionality has no effect on the
spatial state is presented in [21]. To capture the directional
orientation of the deposited beads with their cross-sections,
a kernel basis approach is presented here.

1) Kernel Basis for Directional Representation of Cross-
Sections: For the discretized model, we will assume that all
the in-layer (single layer) deposition is strictly on the spatial
grid L : (R™ x R™) with its points discretized by Az =
Ay = 7. We will abuse the notation and use L € Z™*™
for the matrix representation of the spatial grid with L;; as
the element at the i'" row and ;" column, equivalently at
coordinates (%, j).

Let Py, = [pk,ph,...
tion path of length n; for layer k, where p = [i, j]* denotes
the coordinates of the spatial control point on the grid and
superscript 7' is a matrix transpose. Since the path length
may vary between layers, we define n = n;m; as the size
of the bounding box for the deposition points throughout all
layers, where 7; and 7); are the edge lengths of the bounding
box. Therefore we have, n; = 7; + 2 and n; = n; + 2. Let

, pflk] denote the predefined deposi-

I; € R"*" be a difference operator for P, defined as

-I I 0 ... 0

o —-I I ... 0
Id: '..

0 0 —-I I

0 0 —-I I

where I € R? is the identity matrix. We evaluate D =
I vec(P), where vec(-) is the vectorization operator, as the
vector representation of the directions D € R*7*! between
the consecutive spatial control points (i.e. dp, = Pmt1 —
Pm, dm € D). These directions are unit directions such that
dy € E2, where E2 = {[+1, +£1]T, [£1,0]7, [0, £1]T}.

The orientation of deposition at the spatial control point
p and the geometry of the ellipse at the deposition point p
with its neighboring points is represented with the kernel
basis K, € R"*"™_ K, encodes information about the ge-
ometry deposited cross-section (Eq. (5)) and the orientation
of the deposited bead (v(za,y4)). The single layer spatial
deposition is represented as

n
S= Kp,tm, (6)
m=0
where u; is the input defined in Eq. (3b). For the layers with
n < 1, we have K, = u, = 0 for m > n,. We can
rewrite Eq. (6) equivalently in matrix form as:

Sk = KkUk (7a)
Ky = [vec(Ky, ), vec(Kp, ), . .., vec(Kp, )]k (7b)
Uy = [ug, u1, - .., uplf (70)

where, S € R"™", k is the layer index, K € R™" %",
and U € R". This matrix representation gives us a compact
spatial form for the in-layer deposition model with the ap-
propriate kernels. For the remainder of the paper, we will use
the following convention for K matrices. K Matrices with
tilde and standard font (e.g. f(?;, K ) denote kernel matrices
of dimension 3 X 3, corresponding K matrices without tilde
(e.g. K;, K,) denote the kernel basis matrices of full dimen-
sion n; x n;, and the boldface matrices (e.g. Kk,Kk,I_{i)
are matrices comprised of individual kernel basis matrices
for layer k. Kj denotes input kernel, K, denotes a kernel
identifier associated with output states gy, and K; denotes
a matrix for identifying the height distribution as a function
of spatial position.

2) Computation of Kernel Basis Matrices: The deposition
model in Eq. (4) has the deposition direction (P(zp,yp))
and the cross-section at a given point (C(a,b)|v(z4,54))-
Based on the discretization L, the height of the deposited
cross-section at spatial location L;; is evaluated using
Eq. (5). Since the deposition is on a grid point, the height
of the bead cross-section at a neighboring grid point is:

2Ay) = b2 (1 - <Ay)2> +b

a?

¢(b) = Pz(Ay)/2b

(8a)

(8b)
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Fig. 3. Proposed kernel basis approach to represent the deposition process.
The spatial grid L € Z%%®, with n = 12 is shown on left. Blue and
green filled circles and corresponding solid and dashed arrows show the
deposition coordinates for the first and second layers, respectively. P and
P> are the deposition points for the two layers respectively. Two kernels
(Kp, , Kps) from the first layer of the process are shown. Thin solid black
arrows show the adjacency of the deposition points between two layers,
which is represented by A(21).

We will further constrain the control as u € [Umin, Umax];
such that for a deposition at L;;, the effect of the cross-
section width is only observed on the neighboring points
L;j + ¢, where ¢ € E2. An example deposition process is
shown in Fig. 3. Therefore, we will define kernel matrices
of size K,,, € R3*3. Note that kernel matrices of different
sizes can be developed for various deposition materials and
length scales of interest. Depending on the orientation of the
deposition at a spatial control point, the ellipse height profile
of the bead cross-section can be represented by the following
kernel matrices.

i 0 0 0 o 0 () 0
Ky=|¢(b) ¢ ¢b)|, Ko=K ={0 ¢ 0
0 0 0 0 ¢b) 0

Additionally, for the points where the direction changes we
have the following kernel matrices, where ¢(b) = c.¢(b)
denotes the height evolution at the corner points where the
orientation changes (see Fig. 2). Due to the rapid change in
the velocity vector, excessive deposition at sharp curvatures
is reported in [22]. Constant ¢, € (0, 1] is a model parameter
to capture the excess deposition at corner points and can
be adjusted for various FDM controllers. If there is no
excess deposition, we evaluate ¢, = 0.29 using the geometric
relationship between the deposition points.

B o(b) () 0] 0 ¢(b) &(b)
Kzy=|¢(0) v 0|,Ka= |0 ¢ ¢(b)
0 0 0 0 O 0
R o R 0 0 0
KS = K4 ) KG =10 1/) (Z_S(b)
0 ¢b) o(b)
We define K for the spatial deposition path as
~ 0 0 0
K=1]0 1 0
0 0 O

Fig. 4. Mealy automaton M for the evaluation of the basis kernels.
([, -]/ K;) on each edge denote an input d,,, = [, -] and an output K; € A
corresponding to the state and the input.

Each kernel K; is related to the unit directions in E2.
Determining appropriate kernels for a set of deposition points
depends on the knowledge of current and previous unit
directions for the deposition point. We present a finite state
machine to algorithmically evaluate the appropriate kernels
for a deposition path Pj. Consider the Mealy automaton
M = (Z,20,%2,\,Tr,G), where Z denotes the deposition
direction as states, zq is the initial state, 3 is a set of inputs,
A is the set of outputs, T'r : Z x ¥ — Z is a transition
function, G : Z x 3 — A is an output function mapping the
input and the state to the corresponding output. Automaton
M is illustrated in Fig. 4. The vectors d,, € D are inputs
to this automaton, A = {K;,... K¢} are the outputs, and
G maps each d,,, and state pair to one of the kernels in A.
For example, appropriate kernels for the deposition path P
in Fig. 3 is evaluated by My = (Z,[-1,0],%1,A1,T7,G),
with ¥; = {[-1,0],[-1,0],[0,—1],[0,—1]}. The output
string is Ay = {f(l, K1, Ky, f(g}, which denotes appropriate
kernels for the deposition points in P;. Therefore, the
automaton M is used for determining the appropriate kernels
for the deposition points in each layer. After determining
appropriate kernels, the kernel basis for each deposition point
is evaluated. To evaluate a kernel basis K,,, with kernel f(m
at location L;;, we pad f(m with zeros; ¢ —1 above, n;—1—1
below, j—1 to the left and n;—j—1 to the right. The padding
is done to have the kernel basis at the right spatial location
L;; and dimensionality (n;,n;).

3) Adjacency of layer-to-layer deposition points: To de-
fine the relationship between the spatial deposition points
in subsequent layers, we define Ayx—1) € R"7 as the
adjacency matrix of the 7 deposition points from layer k£ — 1
to layer k. As shown in Fig. 3, with the change in number of
path points between layers, we need to identify the deposition
points in layer & — 1 that will affect the height of the
deposition points in layer k. Each row in A(x_1) encodes
the adjacency between two deposition points. If the height
of the deposition point p; = [i1,51]7 in layer k — 1 affects
the height of the deposition point py = [iz,j2]T in layer k,
we have Ay jp—1)(j2nj + iz, j1mj +i1) = 1.



C. State-space Representation of Layer to Layer Dynamics

The state-space representation is an extension of the
previous work in [10], for the FDM process. The FDM layer-
to-layer dynamics over a spatial field of interest L can be
represented as

k41 :Hggk-l—H;:Uk—Fch 9
where g, € R™™*! represents the spatial state of the
process at layer k. Spatial state for the deposition process
is the height of the deposition at each coordinate (i,5) € L.
HJ e R™™ ™" js a matrix that captures the effect of
the previous layer’s state on the subsequent layer, Uy, is the
input for layer k (Eq. (7¢)), Hp* € R™"™ " is the spatial
input matrix that captures the spatial dynamics of the in-layer
deposition, and Hf € R™"*" is the matrix that captures the
effect of bead intersection between successive layers.

To investigate the effect of the previous layer on sub-
sequent layers, it is important to recognize that deposited
beads of successive layers intersect each other at their
interfaces [9], [20]. As shown in Fig. 2, beads in different
layers (k, k 4+ 1) intersect, such that the bottom of the bead
of layer k + 1 is below the top of the bead of layer k.
We denote the height of intersection between layers with
¢ € R (shown in Fig. 2), and have ¢ = 17!, To
model the height evolution between the layers, we determine
the height of the hyperplane ¢ between successive layers.
Fig. 2 shows two successive layers, the hyperplane ¢ and the
height of intersection ¢, where hj denotes the height of the
cross-sections at the spatial deposition point. Height of the
hyperplane ¢ for layer k is defined as ¢; = hy — c.

Similar to Eq. (7), we define the kernel identifier associ-
ated with the spatial state at layer k as

K, = [vec(K,, ), vec(K,, ), ... ,vec(Kpn)]{ (10)

P P1
where K o is the kernel basis evaluated by the kf:rnel K at
location p,,. Additionally, we define the matrix Ky as

cr/nz([Kk]m)v Zf nz([Kk}m) > 1;
if nz([Kk]m) =1,
0, otherwise

(1)

where, n,([Kg]) is the number of non-zero entries of the
mt row of Ki (Eq. (7b)), and ¢, € (0,1] is a design
parameter to capture material deposition at the corners. The
parameter c, represents the height evolution at the inner
curvature of the corner. Choosing ¢, = 1 yields a height
equal to the average of heights ¢(b) of the contributing
kernels at the corner. We also define the matrix /K €
R™™X™" to consistently capture the height evolution of
the spatial points in layer % that have no deposition on them
in the subsequent layer.

1, ¢ Sl =0,
0K}, = diag(q;), ¢; = { if | k] 12)
0, otherwise.
Then, we construct the state matrix H ,-Z as follows.
H = KpAg—1)Ky_1 + 0K (13)

H,‘j is an operator on gy, such that I_(kA(k‘k,l)Kk,lgk gives
the height h; at the deposition points from the previous
layer and 0Ky gy, gives the height of the points that have no
deposition at layer k. By knowing hj, at layer k, we evaluate
the height of the plane /) at each spatial point, using the
operator Hy and add the input Uy, for the next layer using
the operator H;}. H;! and H for layer k are defined as

Hy =Ky, Hi=-K;. (14)

Since the deposition path is predefined for each layer in the
FDM process, matrices H}, Hj, Hf can be pre-calculated
for each layer.

III. LAYER-TO-LAYER STABILITY

Here we develop the tools to analyze the layer-to-layer
stability of the layer-to-layer spatial dynamic process given
in Eq. (9).

A. Layer-wise Regularity

Let g¢ € R™"*! denote the desired layer profile at
layer k£ and w € R denote the admissible deviation from
the desired profile such that we have w;, = H gg|’2 - w
and Wy = H g,‘i”2 + w as design limits. Following regularity
definition is proposed for the development of layer-to-layer
stability.

Definition 1: A process is layer-wise regular in layers
(k)o,k‘o + n} if Hgg — ng <w forall k € (ko,k‘o + TL]

B. Layer-to-layer Stability

We introduce g, = T (I — Sk)gx as the heights of spatial
points that had deposition on them in layer k. The elements
of gi are the heights of deposition points up to layer k
and T}, : R™™ — R™ is a uniform projection, where
ny = n.(Sk). Then we have g, > 0. Let min;(||gx(7)ll;)
denote the element-wise Lj-norm minimum of vector gg.
The process in Eq. (9) has a bounded input (i.e. deposition
input) and spatial state g is always bounded from above.
Additionally, we assume the layer height input (for a single
layer) is identical throughout the layers in the process.

Definition 2: A layer-wise spatially varying deposition
process of the form in Eq. (9) bounded from above as
llgr |l < P for some constant &5 > 0 is said to be:

(i) Layer-to-layer geometrically stable (L2LGS) if
lgk—1ll o < min;([|gx(s)l,) for all k € (1,m,],
(ii) layer-to-layer stable if it is L2LGS and layer-wise
regular for all k& € (1, ny],
An important remark is that the spatial state g; denotes the
height (top of ellipse cross-sections) of all the points in the
spatial domain L at layer k. Then, L2LGS states that the
minimum height of the spatial deposition points in layer k
must have a height that is greater than the maximum height
at the layer £ — 1. This geometric condition ensures that
newly deposited material at layer k is adding to the height
of the build and not falling onto the substrate or the prior
layers. Layer-to-layer stability condition states that a part
should be L2LGS and the height of individual layers should



be within the design tolerance bound (w). Thus, layer-to-
layer stability is as restrictive as the tightness of the design
dimension tolerances.

Next we will introduce the main theorem to ensure
the layer-to-layer geometric stability. Define Wj_; =
K 1K, _; with the structure W = [w!,... w™"i], where
w® are the columns of W. Then w® € span{v'}, where
{v"}]"™ € R™™ are the standard basis vectors for R""7.
Let V = {vi, ..., vin} denote the set of basis vectors
needed to construct the columns w? € Wj,_;.

Theorem 1: The spatial dynamic process in Eq. 9 is

L2LGS if and only if K} € span(V), where V is the set
of standard basis vectors in R™"7 to construct the invariant
transformation Wj,_; = Ky 1K, ;.
Theorem 1 states that in order to be L2LGS, a spatial input
point p should have some fraction of a bead deposited below
in the previous layer. In the current formulation, Theorem 1
dictates that there should be at least half a bead below a
spatial input point for L2LGS condition to hold. This is
a result of the fact that deposited material in layer k& will
fall onto the substrate or prior layers if there is no material
present in layer £ — 1 to support the deposition in layer k.

A sketch of the proof for Theorem 1 is given as follows.
Suppose a spatial point v € gf has material deposition by
Uy. If we have v € V, it means that there has been material
deposited at v from the previous layer, then the process in
Eq. (9) is L2LGS. Going the other direction, suppose for
an L2LGS process we have v € K{ and v ¢ V. Thus,
no material is deposited at v in the previous layer but there
is material deposited with Uy, which results in a condition
that contradicts with the definition of L2LGS since the newly
deposited material is not adding up to the height of the build.

Remark 1: The fraction of sufficient bead support is based
on the geometric assumptions in this work. Additional con-
siderations for material properties and process parameters
(speed, temperature) may be included in future work.

IV. CASE STUDY

A simulation of an FDM process is implemented in MAT-
LAB software. The spatial input for the simulation is shown
in Fig. 5. The 15 layer input in Fig 5 is an inverted pyramid
with successive layers moving outward and is L2LGS. The
L2LGS condition is ensured by designing the deposition path
according to Theorem 1 such that each deposition point is
supported from below by material in the previous layer.

A. Setup

An example of an FDM process is experimentally demon-
strated on an Ultimaker 3° printer with polylactic acid
(PLA) filament and 0.2mm layer height. In this experimental
demonstration, we consider three case studies: (1) L2LGS
part, (2) L2L geometrically unstable part, and (3) L2L unsta-
ble part that satisfies L2ZLGS but violates the layer regularity
condition. Process parameters for all three cases include:
Y = 3.87 [mm/Pal,p(b) = 0.5¢,n; = n; = 25,n =
529, ¢, = 0.98,c. = 0.6,c = 0.05 mm,w = 2. Desired layer
height is hg = 0.2mm and the identical deposition input is

(b)

Fig. 5. [Illustration of deposition path for designed case study geometry.
(a) Deposition starts at the first layer and moves up layer by layer. Bottom
five layers shown with blue dotted lines, mid five layers shown with red
dashed lines and the top five layers shown with green solid lines. (b) Image
of the printed inverted pyramid geometry.
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Fig. 6. (a) Illustration of the L2L geometric unstable process. Deposition
is not supported by material from below, along an edge at layer 6. As a
result, the deposited bead falls onto the substrate. (b) Filled circles show
the deposition points for layer 5 and layer 6. Unsupported edge deposition
points on layer 6 are shown in the black rectangle.

u = hg/1) for spatial input points throughout layers. A zero-
mean Gaussian process noise N'(0,02) with o, = 0.25, and
a, = 2/3 is applied to the input in the simulation. Case (2)
has been designed to violate L2LGS for demonstration pur-
poses, while case (3) demonstrates a high model disturbance
o4 = 1.75 at layer 7. An unexpected disturbance may occur
due to a power surge, a physical disturbance to the system
or due to inconsistencies in the material. A classification
of anomalies in manufacturing systems is given in [23] and
will not be discussed in detail here. We assume that the
disturbances in the process manifest themselves in height
variation and no spatial deposition variation is observed.

B. Results and Discussion

1) Case 1 - Layer-to-layer Geometrically Stable: The
deposition shown in Fig. 5 is designed such that it fits inside
a slot with a tolerance w. Since L2L stability implies that
the layers will be within the w bound, stable parts will fit
inside the slot whereas L2L unstable parts, although being
structurally sound, will not have the desired dimensions and
would fail to fit inside the slot. For this experimental study,
a, = 0.5. First five layers have 72 deposition points, second
five layers have 80 deposition points and last five layers have
88 deposition points (see Fig. 5).

2) Case 2 - Layer-to-layer Geometrically Unstable: Fig. 6
shows a layer-to-layer geometrically unstable process. The
deposition path at layer 6 is modified to violate the condition
given in Theorem 1. Half of the deposition points along an
edge at layer 6 are moved so that the moved deposition points
do not have any overlap with the previous layer bead along
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Fig. 7. Tllustration of the L2L unstable deposition process, caused by the
disturbance on layer 7. This condition continues for the remaining deposition
layers, resulting in a part that fails to meet the design requirements.

that edge (see Fig. 6 (b)). This change has been implemented
in the G-Code that runs the FDM printer. As a result, the
deposited bead at unsupported deposition points falls onto
the substrate during the deposition process.

3) Case 3 - Layer-to-layer Unstable: The Ly-norm of the
spatial states of the deposition process, desired state norms
and the tolerance limits are shown on the graph in Fig. 7. An
L2L stable process has state norms within the bounds over
all layers. A disturbance during the 7th iteration pushed the
height outside of the layer-wise regularity condition, thus
rendering the part L2L unstable. This condition continues
for the remaining deposition layers, resulting in a part that
fails to meet the design requirements. After the L2L unstable
condition is detected at layer 7, the deposition may be
stopped to save time and material.

V. CONCLUSION

Additive manufacturing is a key enabler of smart manufac-
turing, but the poor reliability of AM processes hinders their
utility in practical applications [24]. This work proposes a
novel spatial modeling approach to develop control-oriented
models for the fused deposition modeling process. A kernel
basis approach is proposed for capturing the cross-sectional
geometry of the deposited beads along with directionality.
Layer-wise regularity and layer-to-layer stability measures
are defined with the proposed model. These definitions play
an important role in assessing the geometric and spatial
stability of the FDM processes, which has not been proposed
before. The proposed modeling framework is demonstrated
through experimental and simulation case studies. Future
work will focus on model validation and controller design to
modify an L2L unstable process.
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