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COPULA-BASED QUANTILE REGRESSION FOR LONGITUDINAL DATA

HUIXIA JUDY WANG, XINGDONG FENG AND CHEN DONG

The George Washington University, Shanghai University of Finance and Economics

Abstract: Inference and prediction in quantile regression for longitudinal data are chal-

lenging without parametric distributional assumptions. We propose a new semiparametric

approach that uses copula to account for intra-subject dependence and approximates the

marginal distributions of longitudinal measurements, given covariates, through regression

of quantiles. The proposed method is flexible, and it can provide not only efficient estima-

tion of quantile regression coefficients but also prediction intervals for a new subject given

the prior measurements and covariates. The properties of the proposed estimator and pre-

diction are established theoretically, and assessed numerically through a simulation study

and the analysis of a nursing home data.

Key words and phrases: Copula; Estimating equation; Longitudinal data; Prediction;

Quantile regression.

1 Introduction

In many studies, it is common to observe longitudinal data where the outcomes

are measured at multiple times for each subject. One interest in longitudinal
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studies is to predict the response based on a set of covariates and its past trajec-

tory. Traditional projection methods focus on predicting the mean of the con-

ditional response distribution. However, in some applications, researchers are

interested in predicting tail quantiles, for instance, the low weight in children

growth studies (Abrevaya, 2001), high expenses in insurance studies (Shi and

Frees, 2010), or in modeling the entire conditional distribution, for instance, the

children growth and blood pressure study discussed in Wu and Tian (2013).

Quantile regression provides a convenient tool for studying tail behaviors

of the response conditional on covariates. Since its introduction by Koenker

and Bassett (1978), quantile regression has been extensively studied for cross

sectional data while less developed for longitudinal data. Some researchers con-

sidered marginal quantile regression models for analyzing longitudinal data; see

for instance, Jung (1996), He et al. (2003), Wei and He (2006), Wang (2009), Mu

and Wei (2009), Tang and Leng (2011), and Leng and Zhang (2014). Marginal

models focus on the covariate effects on the marginal distributions of the re-

peatedly measured responses and thus can not be used for modeling their joint

dependence. Considering a quantile regression model with a random intercept,

Koenker (2004) proposed a L1 regularization method to obtain a shrinkage esti-

mator of the random subject effects. Some other researchers proposed Bayesian

approaches for conditional quantile regression models, for instance, Geraci and

2

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



Bottai (2007), Yuan and Yin (2010), Wang (2012), Geraci and Bottai (2014),

Reich et al. (2010), Kim and Yang (2011). These methods all require some

parametric or semiparametric modeling of the likelihood, and a parametric dis-

tributional assumption on the random effects.

In this paper, we propose a semiparametric copula-based quantile regres-

sion method, where copula functions are employed to accommodate the tempo-

ral dependence of longitudinal data. Copulas have been applied to longitudinal

data analysis for generalized linear models (Meester and MacKay, 1994; Lam-

bert and Vandenhende, 2002; Sun et al., 2008; Song, 2000; Bai et al., 2014).

For time series data, Bouyé and Salmon (2008) and Chen et al. (2009) studied

nonlinear quantile autoregressive models implied by their copula specifications.

Noh et al. (2015) proposed a method for semiparametric quantile regression by

modeling the joint distribution of the response and covariates through copula.

In an empirical study of longitudinal data, Shi and Frees (2010) considered a

copula method for quantile regression by modeling the conditional marginals

of the responses with an asymmetric Laplace (AL) distribution, but the valid-

ity of the method was not discussed. The AL distribution has a close connection

with quantile regression because the maximum likelihood estimator under such a

model coincides with the usual quantile regression estimator for cross sectional

data. However, we shall show that the method based on asymmetric Laplace
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marginals is restrictive, and it could have detrimental effects on both quantile es-

timation and prediction under model misspecification; see numerical evidences

in Sections 3 and 4. We propose a more flexible and theoretically justifiable

approach, which approximates the conditional marginals through regression of

quantiles and models the dependence of the repeated measurements with copula

functions. Instead of making parametric assumptions on the marginals, the pro-

posed method only requires the marginal quantiles of the longitudinal responses

to be linear in covariates and thus can be regarded as a semiparametric method.

The proposed method can not only give efficient estimation of coefficients in the

marginal quantile regression model, but also provide prediction intervals of the

response of a new subject given the prior measurements and other covariates.

2 Proposed Method

2.1 Notations and models

Let yij and xij be the response and p-dimensional covariate for the ith subject

measured at the jth time point, i = 1, . . . , n, j = 1, . . . , Ji, where the subjects

are assumed to be independent but repeated responses from the same subject

may be dependent. Without loss of generality, we assume a balanced design

with Ji = J being finite. Throughout we assume that the first element of xij
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is one corresponding to the intercept. Denote yi = (yi1, . . . , yiJ)T and xi =

(xi1, . . . ,xiJ)T . Suppose {yi,xi, i = 1, . . . , n} is a random sample of {Y =

(Y1, . . . , YJ)T ,X}.

LetG(y1, . . . , yJ |x) denote the joint distribution of (Y1, . . . , YJ)T given X =

x with continuous conditional marginal distributions F1(·|x), . . . , FJ(·|x). By

Sklar’s theorem (Sklar, 1959), there exists a copula function C such that G can

be uniquely represented as G(y1, . . . , yJ |x) = C {F1(y1|x), . . . , FJ(yJ |x); x} .

Throughout the paper all analyses are conditional on X = x and we do not

model the X distribution. For model parsimony, we consider a parametric cop-

ula function C and simplify the copula function by dropping the dependence on

the covariates x. That is, we consider the following simplified copula model

G(y1, . . . , yJ |x) = C {F1(y1|x), . . . , FJ(yJ |x); θ0} , (2.1)

which assumes that the copula function is independent of covariates except through

the conditional marginals Fj(·|x). There are many ways to construct a cop-

ula function; see for instance Joe (1996). One way is to extract from any J-

dimensional joint distributionF(·). For example, ifF(·) is a multivariate normal

distribution NJ(0,Σ), where Σ is the correlation matrix with ones on the diag-

onal, then C(u1, . . . , uJ ; Σ) = F{Φ−1(u1), . . . ,Φ−1(uJ); Σ} is the Gaussian
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copula with correlation matrix Σ. More discussions can be found in Remark

3. Here the matrix Σ is not the standard Pearson correlation matrix but rather

some rank-based correlation measuring the nonlinear dependence of variables;

see Song (2000) for more detailed interpretation of elements in Σ.

The simplified copula assumption in model (2.1) was commonly used in the

copula literature for modeling multivariate distributions; see for instance Haff

et al. (2010), Smith et al. (2010). Haff et al. (2010) showed that the simplified

copula serves a good approximation even when the simplifying assumption is

far from being satisfied. Our numerical investigation in Section 3 also confirmed

the satisfying performance of the simplified copula even under some model mis-

specification. The framework and idea proposed in this paper can be extended

to more general copula functions; see Section 5 for some discussion.

Instead of making parametric assumptions on Fj(·|x), we propose to fit a

quantile process by assuming the linear quantile regression model,

Qτ (Yj|xij) = xTijβ0(τ), j = 1, . . . , J, for any 0 < τ < 1, (2.2)

where Qτ (Yj|xij) = inf{y : Fj(y|xij) ≥ τ} is the τ th (marginal) quantile of Yj

given the covariate xij . Model (2.2) was also considered in Jung (1996), He et al.

(2003), Mu and Wei (2009), Tang and Leng (2011) and so on for analyzing clus-
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tered or longitudinal data. The conventional estimator of β0(τ) that completely

ignores the intra-subject correlation can be obtained as

β̃(τ) = argmin
b∈Rp

n∑
i=1

J∑
j=1

ρτ (yij − xTijb), (2.3)

where ρτ (s) = s{τ − I(s < 0)}, and I(·) is the indicator function. Even

though β̃(τ) is a consistent estimator of β0(τ), its efficiency could be lost by

ignoring the intra-subject correlation. In addition, sometimes we are interested in

predicting the conditional quantiles of the response for a new subject, say at time

J . It would be beneficial to take into account not only the covariate information

but also the responses observed in the past time points, and such prediction is not

feasible without modeling the joint distribution G(y1, . . . , yJ |x). We propose to

employ copula functions to accommodate temporal dependence, which can help

not only the efficiency for estimating β0(τ) but also the prediction.

2.2 Three-step estimation

Note that we can link the density function of Fj(·|xij), denoted by f(·|xij), with

model (2.2) by the following equation:

f(y|xij) = lim
δ→0

δ

xTij{β0(uy + δ)− β0(uy)}
, (2.4)
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where uy = {υ ∈ (0, 1) : xTijβ0(υ) = y}. Here we write f(y|xij) as f{y|xij;β(τ)}

to reflect its dependence on the quantile process β(τ). The log likelihood func-

tion (conditional on {xij}) can thus be written as

l{β(τ),θ} =
n∑
i=1

J∑
j=1

log[f{yij|xij;β(τ)}] +
n∑
i=1

log[c(ui1, . . . , uiJ ;θ)], (2.5)

where c(·; θ) is the density associated with the copula C(·;θ), and uij = {υ ∈

(0, 1) : xTijβ(υ) = yij} = P (Yj ≤ yij|xij) = Fj(yij|xij).

We can estimate (β0(τ),θ0) by maximizing the log likelihood function

l{β(τ),θ}. However, direct maximization is challenging since l{β(τ),θ} in-

volves the entire quantile process β(τ) and does not have an explicit form. Al-

ternatively, we propose a three-step estimation procedure. In the first step, we

obtain the consistent but not necessarily efficient estimator β̃(τ) of the coeffi-

cient process β0(τ) by ignoring the intra-subject correlation. In the second step,

we estimate uij by ũij = {υ : xTijβ̃(υ) = yij} and then estimate θ0 by maximiz-

ing the copula likelihood. Finally, we obtain an efficient estimator of β0(τ) by

taking into account the intra-subject correlation based on the estimated copula

function. We need to point out that in this procedure β0(τ) is estimated at each

quantile level τ separately, and the resulting estimator of (β0(τ),θ0) is not the

maximum likelihood estimator. The details of the procedure are as follows.
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Step 1. Let 0 < τ1 < · · · < τκn < 1 be a grid of quantile levels, where τk =

k/(κn+1). For k = 1, . . . , κn, obtain β̃(τk) = argminb∈Rp

∑n
i=1

∑J
j=1 ρτk(yij−

xTijb).Define ũij = (1−α̃ij)τk+α̃ijτk+1, α̃ij = {yij−xTijβ̃(τk)}/xTij{β̃(τk+1)−

β̃(τk)}, where xTijβ̃(τk) ≤ yij < xTijβ̃(τk+1). In our implementation, we choose

κn = [4 + 3n0.4], where [v] denotes the integer part of v.

Step 2. Estimate θ0 by θ̂, the maximizer of the pseudo-copula log-likelihood,

θ̂ = argmax
θ

∑n
i=1 log {c(ũi1, . . . , ũiJ ;θ)} .

Step 3. For any 0 < τ < 1, define β̂(τ) as the solution to the estimating equation

Un(b) = n−1
n∑
i=1

xTi Γi{Vi(θ̂)}−1ψτ (yi − xTi b) = 0, (2.6)

where ψτ (yi − xTi b) =
(
ψτ (yi1 − xTi1b), . . . , ψτ (yiJ − xTiJb)

)T with ψτ (u) =

τ−I(u < 0), Vi(θ) = Cov
(
ψτ{yi − xTi β0(τ)}|xi

)
, and Γi = diag {si1, . . . , siJ}

with sij = f{xTijβ0(τ)|xij}.

Alternatively, one could iteratively update θ̂ and β̂(τ) in Steps 2 and 3 until

convergence, but this will not affect the asymptotic efficiency of β̂(τ).

Remark 1. In Step 1, one may use nonparametric approaches to estimate the

distributions Fj(·|x) and consequently uij = Fj(yij|xij). However, the nonpara-

metric conditional distribution estimation is subject to the curse of dimensional-

ity. We propose to estimate Fj(·|x) through modeling the conditional quantile
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process in model (2.2). Instead of assuming parametric distributions, this ap-

proach requires the conditional quantiles of Yij to be linear in x and thus can be

regarded as a semiparametric likelihood approach, which provides a balance be-

tween model parsimony and flexibility. Such global linearity assumptions were

also employed to facilitate analyses in different contexts; see for instance, Port-

noy (2003), Wei and Carroll (2009), Wang and Zhou (2010), Feng et al. (2015).

Remark 2. The estimated quantiles in Step 1 may have crossing issue in finite

samples, meaning that the conditional quantile Qτ (Yj|xij) = xTijβ0(τ) at some

upper quantile may be estimated to be smaller than that at a lower quantile. To

avoid quantile crossing issue, we employ the quantile rearrangement procedure

proposed in Chernozhukov et al. (2010) that constructs monotone quantile esti-

mates by sorting or monotone rearranging xTijβ̃(τk).

The quantity sij = f{xTijβ0(τ)|xij} measures the dispersion of εij(τ) =

yij − xTijβ0(τ). In our implementation, we estimate sij by using the quotient

estimation method of Hendricks and Koenker (1992): ŝij = 2hn/x
T
ij{β̃(τ+h)−

β̃(τ − h)}, where hn is a positive bandwidth such that hn → 0 as n → ∞. We

choose hn = 1.57n−1/3(1.5φ2{Φ−1(τ)}/[2{Φ−1(τ)}2+1])1/3 following the rule

suggested in Hall and Sheather (1988), where Φ(·) and φ(·) are the distribution

and density functions of the standard normal distribution.

The matrix Vi(θ) = Cov
(
τ − I(ui1 < τ), · · · , τ − I(uiJ < τ)

)
is the
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covariance for the score vector ψτ{yi − xTi β0(τ)}, capturing the intra-subject

correlation. Define λτ (uij, uik) = Cov{τ − I(uij < τ), τ − I(uik < τ)} =

P (uij < τ, uik < τ)−τ 2, which equals τ−τ 2 for j = k. For a given multivariate

copula C(·;θ), λτ (uij, uik) = Cjk(τ, τ ;θ) − τ 2 since uij and uik are uniformly

distributed on (0, 1), where Cjk(τ, τ ;θ) is induced by setting the jth and kth

elements of C(·;θ) to be τ and the rest to be 1.

Remark 3. Commonly used multivariate copulas include the elliptical and Archimedean

copulas. Elliptical copulas may incorporate a specific correlation structure, for

instance, the exchangeable, autoregressive, Toeplitz and unstructured correla-

tion structures, and thus can capture time-dependent intra-subject correlation, a

typical feature of longitudinal data. In contrast, Archimedean copulas can only

capture exchangeable correlation across time and may not be useful for longitu-

dinal studies with large time dimension. For high dimensional problems, we can

also consider vine copulas that are constructed from a series of bivariate copulas.

More discussions of multivariate copulas and vine copulas can be found in Joe

(1996), Aas et al. (2009), Smith et al. (2010).

2.3 Induced smoothed estimator of regression parameters

The estimating function Un(·) in Step 3 of the three-step estimation in Section

2.2 involves an indicator function. This nonsmoothness not only makes it dif-

11

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



ficult to solve the estimating equation but also challenges the estimation of the

asymptotic covariance of β̂(τ), which is often sensitive to the choice of smooth-

ing parameters involved in estimating the unknown density function f(·|xij). To

bypass these challenges, we consider an induced smoothed estimator. The in-

duced smoothing method was first proposed by Brown and Wang (2005) for ro-

bust regression, and later extended to quantile regression by Wang et al. (2009)

for cross sectional data, by Fu and Wang (2012), Leng and Zhang (2014) for

longitudinal data, and by Pang et al. (2012) for censored data. The idea of the

induced smoothing is as follows. By the asymptotic normality of β̂(τ) in The-

orem 2.1, we can regard β̂(τ) as a random perturbation of β0(τ) by writting

β̂(τ) = β0(τ) + n−1/2H1/2Z, where Z ∼ N(0, Ip×p) and H is defined in the

Assumption (A7). We consider the smoothed estimating function

Ũn(b,H) = EZ{Un(b + n−1/2H1/2Z)}

= n−1
n∑
i=1

xTi Γi{Vi(θ̂)}−1ψ̃τ (yi − xTi b,H), (2.7)

where ψ̃τ (yi−xTi b,H) =
(
τ − Φ

{
(xTi1b− yi1)/hi1

}
, . . . , τ − Φ

{
(xTiJb− yiJ)/hiJ

})T ,

and hij =
√

xTijHxij/n. When H is known, the induced smoothed estimator

β̂s(τ) can be obtained by solving Ũn(b,H) = 0. In practice, since H is un-

known, we estimate β̂s(τ) and H through the following iterating procedure.
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Step 3.1. Let β̂
(0)

s (τ) = β̃(τ), the estimator obtained by assuming working

independence, and Ĥ(0) = Ip, the p× p identity matrix.

Step 3.2. Given β̂
(k)

s (τ) and H(k) from the kth iteration, update β̂
(k+1)

s (τ)

and H(k+1) by

β̂
(k+1)

s (τ) = β̂
(k)

s (τ)−

{
∂Ũn(b, Ĥ(k))

∂b

∣∣∣
β̂
(k)
s (τ)

}−1
Ũn{β̂

(k)

s (τ), Ĥ(k)} and

Ĥ(k+1) =

{
∂Ũn(b, Ĥ(k))

∂b

∣∣∣
β̂
(k+1)
s (τ)

}−1
A{β̂

(k+1)

s (τ), Ĥ(k)}

{
∂Ũn(b, Ĥ(k))

∂b

∣∣∣
β̂
(k+1)
s (τ)

}−1
,

A(b,H) = n−1
n∑
i=1

xTi Γi{Vi(θ̂)}−1ψ̃τ (yi−xTi b,H)ψ̃
T

τ (yi−xTi b,H){Vi(θ̂)}−1Γixi.

Step 3.3. Repeat Step 3.2 till convergence. Denote the coefficient estimate

and the covariance estimate at convergence as β̂s(τ) and Ĥ, respectively.

For estimating β0(τ), we could solve the equation Ũn(b,M) = 0 for b with

any known positive definite matrix M such that ‖M‖ = O(1), so Ũn(b,M) can

be viewed as a smoothed estimating function with Gaussian kernel and subject-

specific bandwidth of order n−1/2. By the proof of Theorem 2.1 in the supple-

mentary file, this will also lead to an estimator that is asymptotically equivalent

to β̂(τ). However, in our procedure, we also solve for the unknown H iteratively

to obtain a consistent estimator for the asymptotic covariance of n1/2β̂(τ).

13

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



2.4 Prediction

The proposed copula regression can provide a predictive distribution of the re-

sponse variable Y incorporating the covariates and the prior Y measurements.

The predictive distribution can be used to predict the mean or any quantiles of

the future response, or to construct prediction intervals.

For instance, suppose that for a new subject we have observed x∗1, . . . ,x
∗
J

and y∗1, . . . , y
∗
J−1 at the first J − 1 time points. We would like to predict the

outcome at time J , y∗J . Under model (2.1), F (y∗1, · · · , y∗J−1, y∗J |x∗1, · · · ,x∗J) =

C
(
u∗1, · · · , u∗J−1, u∗J ;θ0

)
, where u∗j = Fj(y

∗
j |x∗j), j = 1, . . . , J. With some stan-

dard calculus derivations, we can show that

F (y∗J |x∗1, · · · ,x∗J , y∗1, · · · , y∗J−1) = h(u∗J |x∗1, . . . ,x∗J , u∗1, . . . , u∗J−1;θ0), where

h(u∗J |x∗1, . . . ,x∗J , u∗1, . . . , u∗J−1;θ0) =
∂J−1C(u∗1, · · · , u∗J−1, u∗J ;θ0)/∂u

∗
1 · · · ∂u∗J−1

∂J−1C(u∗1, · · · , u∗J−1, 1;θ0)/∂u∗1 · · · ∂u∗J−1
.

Under model (2.2), we can estimate u∗j by û∗j = {u : x∗Tj β̂(u) = y∗j},

j = 1, . . . , J , and estimate the predictive distribution by

F̂ (y∗J |x∗1, · · · ,x∗J , y∗1, · · · , y∗J−1) = h(û∗J |x∗1, . . . ,x∗J , û∗1, . . . , û∗J−1; θ̂).

For any τ ∗ ∈ (0, 1), the τ ∗th conditional quantile of y∗J can thus be estimated by
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numerically solving the equation

F̂ (y|x∗1, · · · ,x∗J , y∗1, · · · , y∗J−1) = τ ∗. (2.8)

For any 0 < α < 1, the (1 − α) prediction interval can be constructed by the

(α/2)th and the (1− α/2)th conditional quantiles of y∗J .

Remark 4. If the research interest is on the marginal quantiles as in model (2.2),

we could also estimate the intra-subject correlation directly based on the es-

timated residuals yij − xTijβ̃(τ) or approximate V−1i by a linear combination

of basis functions, and then obtain more efficient estimator of β(τ) by solving

weighted estimating equations similar to (2.6); see for instance Wang (2009),

Leng and Zhang (2014). The resulting estimators have similar properties with

our proposed estimator β̂(τ). The bigger advantage of the copula-based ap-

proach is that it provides a convenient way to model the joint distribution of

(Y1, . . . , YJ)T conditional on covariates, which can be used to obtain more accu-

rate prediction based on both covariates and responses in the past time points.

2.5 Asymptotic properties

Throughout, let β0(τ) and θ0 denote the true values of β(τ) and θ. Theorem 2.1

presents the asymptotic normality of β̂(τ) and β̂s(τ), and the consistency of Ĥ.
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Theorem 2.1. Under models (2.1)-(2.2) and Assumptions (A1)–(A8) in the sup-

plementary file, if κ2a+1
n /n1−2q → 0 and κn → ∞ as n → ∞, we have (i)

n1/2{β̂(τ) − β0(τ)} d→ N(0,H); (ii) n1/2{β̂s(τ) − β0(τ)} d→ N(0,H), and

(iii) Ĥ
p→ H, where H−1 = limn→∞ n

−1∑n
i=1 xTi Γi{Vi(θ0)}−1Γixi.

Remark 5. Consider the following weighted estimation equation UW(b) =

n−1
∑n

i=1 xTi Wiψτ (yi − xTi b) = 0, where Wi are any given J × J matrices.

Since E{ψτ (yi − xTi β0)|xi} = 0, UW(b) is an unbiased estimating function.

Consequently the resulting estimator, denoted by β̂W(τ), is consistent to β0(τ)

with asymptotic covariance matrix HW = limn→∞∆−1nWΛnW∆−1nW, where

∆nW = n−1
∑n

i=1 xTi WiΓixi, and ΛnW = n−1
∑n

i=1 xTi WiVi(θ0)W
T
i xi. We

can show that HW −H is nonnegative definite. Therefore, the estimator β̂(τ),

obtained with Wi = Γi{Vi(θ0)}−1 is optimal within such a class, including

the estimator β̃(τ) obtained by assuming working independence. The proof is

similar to that of Theorem 3 in Jung (1996).

Theorem 2.1 suggests that the induced smoothed estimator β̂s(τ) is asymp-

totically equivalent to the unsmoothed estimator β̂(τ). Since the computation

based on induced smoothing estimation equation is more efficient, we use the

induced smoothing estimator throughout our numerical studies.

With copula we can specify the joint distribution of responses from the same

subject, and thus obtain the conditional distribution of any measurement given
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the others for each subject, as discussed in Section 2.4. Theorem 2.2 shows that

the conditional distribution can be estimated consistently.

Theorem 2.2. Under the conditions of Theorem 2.1, for any y∗J ∈ R, we have

F̂ (y∗J |x∗1, · · · ,x∗J , y∗1, · · · , y∗J−1)
p−→ F (y∗J |x∗1, · · · ,x∗J , y∗1, · · · , y∗J−1).

Theorem 2.2 implies that the solution of (2.8), denoted by q̂J(τ ∗), converges

in probability to the τ ∗th conditional quantile of y∗J given x∗1, · · · ,x∗J , y∗1, · · · , y∗J−1,

denoted by qJ(τ ∗), the solution to F (y|x∗1, · · · ,x∗J , y∗1, · · · , y∗J−1) = τ ∗. This en-

sures the asymptotic validity of the prediction intervals constructed by q̂J(τ ∗).

Remark 6. The consistency of β̂(τ) requires the correct specification of model

(2.2) only at the quantile level τ of interest. The misspecification of the global

marginal linear quantile regression model (2.2) and the copula model (2.1) does

not affect the consistency of β̂(τ), but only its efficiency and the consistency of

the estimated conditional distribution in Theorem 2.2. However, our numerical

studies in Section 3 suggest that even under copula model misspecification, the

constructed prediction intervals still maintain the coverage probabilities well. In

practice, we can check the adequacy of model (2.2) by applying some goodness-

of-fit test, for instance, the method in He and Zhu (2003). Our experience sug-

gests that the proposed method performs reasonably well unless the global lin-
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earity assumption is severely violated, in which case more flexible models such

as polynomial quantile regression can be considered in Step 1.

3 Simulation Study

The data is generated from the following model

yij = −0.5 + 0.5xij1 + xij2 + (1 + γxij1)εij, i = 1, . . . , n = 500, j = 1, . . . , 4,

where xij1 are i.i.d. Bernoulli(1, 0.5), and xij2 are i.i.d. N(0, 1). We con-

sider three different cases: Case 1 (heteroscedastic normal error) with γ = 1,

εi = (εi1, . . . , εi4)
T ∼ N(0,Σ); Case 2 (homoscedastic t error) with γ = 0, εi

from a multivariate t3 distribution with covariance Σ; and Case 3 (heteroscedas-

tic lognormal error) with γ = 1, εi from a multivariate lognormal distribution

with mean zero and covariance Σi. In Cases 1–2, the covariance Σ is common

and covariate-independent, and it has an AR(1) structure in Case 1 and an ex-

changeable correlation structure in Case 2 with variance 1 and correlation %. In

Case 3, we let Σi = (σi,j,j′)
4
j,j′=1 with σi,j,j′ = %|j−j

′|+(xij1+xij′1)/2 for j 6= j′ and

σi,j,j′ = 1 for j = j′. We consider % = 0.3, 0.5 and 0.8. The assumed models

(2.1) and (2.2) hold in both Cases 1 and 2, but in Case 3 the copula model (2.1)

is misspecified as the true copula parameter θ is in fact covariate-dependent.
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3.1 Quantile coefficient estimation

We compare three different types of estimators ofβ(τ) = (β0(τ), β1(τ), β2(τ))T :

(1) the estimator β̃(τ) obtained by assuming working independence (WI); (2) the

parametric copula regression estimator assuming asymmetric Laplace marginal

distributions (AL); (3) the estimator proposed by Leng and Zhang (2014) (LZ);

(4) the proposed semiparametric copula-based quantile regression (CQR) esti-

mator β̂s(τ). For all copula-based methods, we consider multivariate Gaussian

copula and t-copula with exchangeable, first-order autoregressive AR(1) and un-

structured correlation structures. To save space, we only report the results from

Gaussian copula as t-copula gives similar results. For each scenario, the simula-

tion is repeated 500 times.

Table 1 summarizes the relative efficiency of the copula-based and LZ esti-

mators with respect to the WI estimator, and the coverage probabilities of 95%

confidence intervals in Cases 1–3 at τ = 0.25. Results for τ = 0.5 are in the

supplementary file. The confidence intervals are constructed based on normality

and the asymptotic variance estimated by the induced smoothing method for the

proposed estimator, and the Hessian matrix for the AL approach. Results show

that the proposed method is quite insensitive to the choice of correlation struc-

tures in the copula function, so here we only report the results based on copula

with an exchangeable correlation structure and leave the rest in the supplement.
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Across all scenarios considered, the proposed CQR estimator shows higher

efficiency than the WI estimator, and the efficiency gain is more obvious when

there is a stronger intra-subject dependence. The induced smoothing method

gives reasonable variance estimation; the coverage probabilities of the CQR in-

tervals are close to 95% in all three cases. The CQR method performs well even

under the misspecification of the copula function (Case 2) and of the copula

model (2.1) in Case 3. The AL estimator for β2(τ) appears to have competitive

efficiency, but its estimation for the other two coefficients can have very low ef-

ficiency in some scenarios, and the coverage probabilities are in general poor. A

closer examination shows that the AL estimator has large bias that is caused by

the misspecification of the marginal distributions. These results suggest that in-

ference of copula regression based on parametric marginals could be misleading

under model misspecifications. The LZ estimator performs similarly as CQR,

but the latter tends to be more efficient for estimating β2(τ) especially in Cases

1 and 3 with heteroscedastic errors.

3.2 Prediction

We assess the performance of the proposed method for predicting the τ th con-

ditional quantile of yn4 conditioning on the covariates and ynj, j = 1, 2, 3. For

comparison, we also include the prediction from copula regression assuming
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asymptotic Laplace marginals, and the methods from conventional linear quan-

tile regression and from Leng and Zhang (2014) that use only covariate informa-

tion for prediction. For copula-based methods, we use Gaussian copula with an

exchangeable correlation structure. For each method, we report the mean pre-

diction error at τ = 0.25 and 0.5, defined as 1/500
∑500

k=1 ρτ{yn4,k − q̂n4,k(τ)},

where yn4,k is the actual response of the nth subject at the fourth time point

from the kth simulation and q̂n4,k(τ) is the predicted τ th conditional quantile of

yn4,k. In addition, we consider the coverage probabilities and mean lengths of

90% prediction intervals, constructed by the predicted 5th and 95th percentiles

of yn4,k from different methods.

Table 2 summarizes the prediction results of four methods in Cases 1–3

with % = 0.5 (results for % = 0.3 and 0.8 are provided in the supplementary file).

The proposed CQR method gives more accurate predictions than the QR and

LZ methods in most scenarios, even when the correlation structure, or copula

function, or copula model are misspecified. The prediction intervals from QR,

LZ and CQR have coverage probabilities close to 90%, but the intervals from

the CQR method are in general narrower. On the appearance, the mean predic-

tion errors from the AL method are comparable to those from the CQR method,

but predictions from the AL method may be misleading, manifested by the low

coverage of the 90% prediction intervals in Cases 2–3.
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4 Analysis of the New Jersey nursing home data

To illustrate the proposed method, we analyze the New Jersey nursing home data

set from report years 2009 to 2013, available at Centers for Medicare and Medi-

caid Services (www.cms.gov). The data set contains the information from 286

nursing facilities. To quantify the utilization of nursing home care, we define the

annual occupation rate as the ratio of total residents and the number of certified

beds for each facility. We define the response variable yij as the logistic trans-

formed occupation rate of the ith facility at year j, where i = 1, . . . , n = 286

and j = 1, . . . , 5. We consider five covariates, including two indicator variables

indicating whether the facility is a non-profit or government-owned (with pri-

vate party being the baseline), the reporting year (after subtracting 2008) and the

reported total nurse staffing hours per resident per day (TOTHRS). Our prelimi-

nary analysis suggests that the data has temporal correlations above 0.6, so it is

important to accommodate such correlation in both estimation and prediction.

Before carrying out the copula quantile regression analysis, we check the

adequacy of model (2.2) by applying the lack-of-fit test of He and Zhu (2003)

at 19 quantile levels τ = 0.05, 0.1, . . . , 0.95. The minimum p-value is 0.03,

suggesting a reasonable fit of model (2.2) after multiple test adjustment. In ad-

dition, we examine the copula probability-probability plots from Gaussian cop-

ula and t-copula with exchangeable, first-order autoregressive or unstructured

22

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)

www.cms.gov


Fi g ur e 1: C o p ul a pr o b a bilit y- pr o b a bilit y pl ots fr o m G a ussi a n c o p ul a a n d t-
c o p ul a wit h diff er e nt c orr el ati o n str u ct ur es.
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c o p ul a pr o b a biliti es { C n (u i1 , . . . , ui5 ), i = 1 , . . . , n} , w h er e C n (u 1 , . . . , u5 ) =

n − 1 n
i= 1 I ( ũ i1 ≤ u 1 , . . . , ũ i5 ≤ u 5 ), ũ i j ar e o bt ai n e d as i n St e p 1 of S e cti o n

2. 2, a n d t h e y- a xis s h o ws t h e c orr es p o n di n g pr o b a biliti es fr o m t h e esti m at e d

p ar a m etri c c o p ul as. T h e d e p art ur e of a pr o b a bilit y- pr o b a bilit y pl ot fr o m t h e 4 5

d e gr e e li n e i n di c at es t h at t h e p ar a m etri c c o p ul a d o es n ot a gr e e wit h t h e e m piri c al

c o p ul a a n d t h us m a y n ot b e a g o o d c h oi c e ( M e n d es a n d D e M el o, 2 0 1 0). Fi g ur e

1 s u g g ests t h at t- c o p ul a ( d e gr e e of fr e e d o m esti m at e d as 1 1) wit h u nstr u ct ur e d

c orr el ati o n h as b ett er a gr e e m e nt wit h t h e e m piri c al c o p ul a. T h er ef or e, i n t h e

2 3

St atisti c a Si ni c a: N e wl y a c c e pt e d P a p er 
( a c c e pt e d v ersi o n s u bj e ct t o E n glis h e diti n g)



sequel we focus on t-copula with unstructured correlation.

Table 3 summarizes the estimated covariate effects on the τ th conditional

quantiles of yij from different methods at τ = 0.05, 0.5 and 0.95. Results from

the CQR method suggest that (1) compared to private facilities, non-profit facili-

ties tend to have higher occupation rate at all three quantiles, while government-

owned ones show no significant difference; (2) the occupation rate tends to be

decreasing over years and this effect is significant at median; (3) the total of

nurse staffing hours has a significantly negative effect at the median and the

lower quantile of the occupation rate, but the effect is not significant at τ = 0.95.

In general, the AL method gives estimates with larger standard errors, making

it miss the significance of the Non-profit and TOTHRS variables. Compared to

AL, the CQR gives estimation and significance results that are more in line with

those from QR and LZ, except that the LZ method misses the significance of the

Non-profit effect at τ = 0.95 due to a larger standard error.

To assess the prediction accuracy of different methods, we carry out a leave-

one-out cross validation. For each i = 1, . . . , n, we leave out the data from the

ith subject, obtain the parameter estimation based on the rest of the data and use

the estimation to predict the conditional quantiles of the response of the ith sub-

ject in year 2013 given the covariates and the responses in previous four years.

Table 4 summarizes the mean prediction error at median, the coverage probabil-

24

Statistica Sinica: Newly accepted Paper 
(accepted version subject to English editing)



ity and mean length of 90% prediction intervals formed by the predicted 5th and

95th conditional quantiles from three methods: the methods from conventional

linear quantile regression method and Leng and Zhang (2014) that use only co-

variates information for prediction, the copula regression method based on AL

marginals and the proposed copula-based CQR method. The proposed method

shows clear advantage; it gives more accurate median prediction than the QR and

LZ methods, and narrower prediction intervals than all the other three methods

with coverage close to 90%.

5 Discussion

For notational simplicity, we assumed in model (2.2) that β0(τ) is common

across measurement time j, but the proposed method can be easily modified

to allow time-dependent coefficients, and the estimation efficiency can still be

improved through the proposed three-step procedure as long as some elements

of β0(τ) are common across time. The proposed method can be easily extended

to accommodate unbalanced designs. For instance, suppose that one subject has

measurements obtained at time points 1, . . . , J − 1. Then the assumed copula

model (2.1) for the J−1 responses becomes P (Y1 < y1, . . . , YJ−1 < yJ−1|x) =

C{F1(y1|x), . . . , FJ−1(yJ−1|x), 1;θ0} and the corresponding density function is
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f(y1, . . . , yJ−1|x) = ∂J−1C{u1, . . . , uJ−1, 1;θ0}/∂u1 · · · ∂uJ−1
∏J−1

j=1 fj(yj|x).

In this paper, the dependence of longitudinal measurements is modeled through

copulas to perform prediction and improve the estimation efficiency. For model

parsimony, we considered a simplified copula in model (2.1), which assumes

that the copula function is independent of covariates except through the con-

ditional marginals Fj(·|x) and that the copula parameter θ is common across

x. For more flexibility, we can extend the proposed idea of semiparametric

marginals to accommodate more general copulas, for instance, copulas with θ

depending on x parametrically or nonparametrically, or nonparametric estima-

tion of covariate-dependent copulas, such as those studied in Tsukahara (2005),

Abegaz et al. (2012), Omelka et al. (2009) and Veraverbeke et al. (2011) for

two-dimensional responses and univariate x. Research in this direction for lon-

gitudinal data worths further investigation.

Some application may involve correlated outcomes of mixed types, includ-

ing both continuous and discrete outcomes, for instance the burn injury study

reported in Fan and Gijbels (1996). The proposed semiparametric method can

be extended to analyze such data by adapting the joint modeling idea in Song

et al. (2009). Specifically, we can model the marginal distributions of contin-

uous outcomes through fitting quantile regression processes, while model the

marginals of discrete outcomes through fitting generalized linear models.
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Table 1: Relative efficiency (RE) with respect to the working independence es-
timator β̃(τ) and coverage probability (CovP) of 95% confidence intervals from
different methods at τ = 0.25 in Cases 1–3.

RE CovP

Case % Method β0(τ) β1(τ) β2(τ) β0(τ) β1(τ) β2(τ)
1 0.30 LZ 1.09 1.06 1.06 0.94 0.94 0.94

AL 0.44 0.86 1.10 0.55 0.56 0.69
CQR 1.04 1.07 1.26 0.94 0.94 0.92

0.50 LZ 1.09 1.12 1.16 0.94 0.94 0.94
AL 0.21 0.54 1.32 0.27 0.41 0.71
CQR 1.08 1.11 1.29 0.95 0.92 0.91

0.80 LZ 1.14 1.40 1.68 0.93 0.93 0.94
AL 0.07 0.17 2.71 0.05 0.03 0.82
CQR 1.18 1.33 1.79 0.94 0.92 0.93

2 0.30 LZ 1.09 1.14 1.08 0.91 0.94 0.94
AL 0.08 1.34 1.50 0.02 0.72 0.78
CQR 1.07 1.11 1.18 0.94 0.93 0.94

0.50 LZ 1.09 1.27 1.23 0.91 0.94 0.93
AL 0.05 2.12 1.91 0.01 0.81 0.81
CQR 1.13 1.31 1.32 0.95 0.93 0.95

0.80 LZ 1.10 2.01 2.21 0.92 0.94 0.94
AL 0.03 5.02 5.16 0.00 0.90 0.90
CQR 1.25 2.01 2.10 0.95 0.94 0.94

3 0.30 LZ 1.05 1.04 1.03 0.92 0.95 0.94
AL 0.77 0.93 1.07 0.87 0.84 0.89
CQR 1.05 1.04 1.26 0.94 0.94 0.93

0.50 LZ 1.07 1.08 1.09 0.94 0.93 0.94
AL 0.52 0.94 1.12 0.78 0.82 0.88
CQR 1.07 1.08 1.26 0.94 0.93 0.92

0.80 LZ 1.07 1.28 1.47 0.92 0.94 0.95
AL 0.28 1.19 1.66 0.47 0.82 0.93
CQR 1.16 1.32 1.68 0.95 0.91 0.93

LZ: the method from Leng and Zhang (2014) based on quadratic inference assuming an
exchangeable working correlation structure; AL: copula regression method assuming
asymmetric Laplace marginal distributions; CQR: the proposed copula-based quantile

regression method. Both AL and CQR are based on Gaussian copula with exchangeable
correlation structure.
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Table 2: The mean prediction error (MPE) at τ = 0.25 and 0.5, and coverage
probability (CovP) and mean length (ML) of 90% prediction intervals in Cases
1–3 with % = 0.5. Values in the parentheses are standard errors.

MPE
Case Method τ = 0.25 τ = 0.5 CovP ML
1 QR 0.987 (0.041) 0.599 (0.023) 0.902 4.946 (0.074)

LZ 0.984 (0.041) 0.598 (0.023) 0.904 4.916 (0.074)
AL 0.907 (0.037) 0.559 (0.021) 0.892 4.727 (0.070)
CQR 0.925 (0.038) 0.564 (0.021) 0.908 4.640 (0.071)

2 QR 0.848 (0.039) 0.550 (0.026) 0.888 4.710 (0.013)
LZ 0.844 (0.039) 0.550 (0.026) 0.889 4.658 (0.012)
AL 0.678 (0.034) 0.438 (0.022) 0.857 3.027 (0.030)
CQR 0.708 (0.032) 0.444 (0.022) 0.910 4.594 (0.096)

3 QR 1.275 (0.085) 0.782 (0.050) 0.900 7.516 (0.116)
LZ 1.267 (0.085) 0.775 (0.049) 0.901 7.478 (0.116)
AL 1.181 (0.075) 0.742 (0.042) 0.631 5.210 (0.066)
CQR 1.236 (0.082) 0.782 (0.049) 0.912 7.941 (0.280)

QR: conventional quantile regression method that uses only covariate information for
prediction; LZ: prediction based on the estimator of Leng and Zhang (2014); AL: the copula

regression based on asymmetric Laplace marginals; CQR: the proposed copula-based quantile
regression method.
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Table 3: Estimated effects of covariates on the τ th conditional quantile of the
logit occupation rate from different methods. Values in the parentheses are stan-
dard errors.

Variable

τ Method Non-profit Government Year TOTHRS
0.05 QR 0.54 (0.16) 0.13 (0.26) -0.04 (0.03) -0.40 (0.11)

LZ 0.45 (0.13) 0.04 (0.23) -0.03 (0.03) -0.30 (0.09)
AL 0.19 (0.29) 0.20 (0.42) 0.01 (0.03) -0.15 (0.14)
CQR 0.51 (0.19) 0.17 (0.31) -0.06 (0.04) -0.30 (0.11)

0.5 QR 0.30 (0.10) 0.39 (0.28) -0.04 (0.02) -0.17 (0.08)
LZ 0.29 (0.10) 0.42 (0.28) -0.05 (0.02) -0.17 (0.07)
AL 0.39 (0.12) 0.64 (0.37) -0.05 (0.01) -0.12 (0.07)
CQR 0.28 (0.11) 0.44 (0.29) -0.04 (0.02) -0.17 (0.07)

0.95 QR 3.00 (0.84) 0.28 (0.35) -0.11 (0.08) -0.12 (0.22)
LZ 1.42 (0.94) 0.15 (0.31) -0.15 (0.07) -0.49 (0.23)
AL 0.48 (1.13) 0.90 (0.69) -0.10 (0.05) -0.08 (0.21)
CQR 3.00 (0.79) 0.28 (0.40) -0.11 (0.08) -0.12 (0.24)

QR: the conventional quantile regression estimator; LZ: the estimator of Leng and Zhang
(2014) based on quadratic inference assuming an exchangeable working correlation structure;

AL: the copula regression assuming asymmetric Laplace marginal distributions; CQR: the
proposed copula-based quantile regression estimator; TOTHRS: reported total nurse staffing

hours per resident per day.

Table 4: Results of the cross validation study of the nursing home data. The
values in the parentheses are standard errors.

MPE (τ = 0.5) CovP ML
QR 0.387 (0.025) 0.892 3.599 (0.048)
LZ 0.377 (0.025) 0.877 3.349 (0.053)
AL 0.115 (0.014) 0.727 1.288 (0.069)
CQR 0.163 (0.023) 0.883 0.869 (0.060)

MPE: the mean prediction error at median; CovP: the coverage probability of 90% prediction
intervals; ML: the mean length of 90% prediction intervals; QR: the standard quantile

regression method that uses only covariates information for prediction; LZ: prediction based on
covariates and the quantile coefficient estimator in Leng and Zhang (2014); AL: the copula
regression assuming asymmetric Laplace distribution; CQR: the proposed copula quantile

regression.
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