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COPULA-BASED QUANTILE REGRESSION FOR LONGITUDINAL DATA

HUIXIA JUDY WANG, XINGDONG FENG AND CHEN DONG

The George Washington University, Shanghai University of Finance and Economics

Abstract: Inference and prediction in quantile regression for longitudinal data are chal-
lenging without parametric distributional assumptions. We propose a new semiparametric
approach that uses copula to account for intra-subject dependence and approximates the
marginal distributions of longitudinal measurements, given covariates, through regression
of quantiles. The proposed method is flexible, and it can provide not only efficient estima-
tion of quantile regression coefficients but also prediction intervals for a new subject given
the prior measurements and covariates. The properties of the proposed estimator and pre-
diction are established theoretically, and assessed numerically through a simulation study

and the analysis of a nursing home data.

Key words and phrases: Copula; Estimating equation; Longitudinal data; Prediction;

Quantile regression.

1 Introduction

In many studies, it is common to observe longitudinal data where the outcomes

are measured at multiple times for each subject. One interest in longitudinal
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studies is to predict the response based on a set of covariates and its past trajec-
tory. Traditional projection methods focus on predicting the mean of the con-
ditional response distribution. However, in some applications, researchers are
interested in predicting tail quantiles, for instance, the low weight in children
growth studies (Abrevaya, 2001), high expenses in insurance studies (Shi and
Frees, 2010), or in modeling the entire conditional distribution, for instance, the
children growth and blood pressure study discussed in Wu and Tian (2013).
Quantile regression provides a convenient tool for studying tail behaviors
of the response conditional on covariates. Since its introduction by Koenker
and Bassett (1978), quantile regression has been extensively studied for cross
sectional data while less developed for longitudinal data. Some researchers con-
sidered marginal quantile regression models for analyzing longitudinal data; see
for instance, Jung (1996), He et al. (2003), Wei and He (2006), Wang (2009), Mu
and Wei (2009), Tang and Leng (2011), and Leng and Zhang (2014). Marginal
models focus on the covariate effects on the marginal distributions of the re-
peatedly measured responses and thus can not be used for modeling their joint
dependence. Considering a quantile regression model with a random intercept,
Koenker (2004) proposed a L, regularization method to obtain a shrinkage esti-
mator of the random subject effects. Some other researchers proposed Bayesian

approaches for conditional quantile regression models, for instance, Geraci and
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Bottai (2007), Yuan and Yin (2010), Wang (2012), Geraci and Bottai (2014),
Reich et al. (2010), Kim and Yang (2011). These methods all require some
parametric or semiparametric modeling of the likelihood, and a parametric dis-
tributional assumption on the random effects.

In this paper, we propose a semiparametric copula-based quantile regres-
sion method, where copula functions are employed to accommodate the tempo-
ral dependence of longitudinal data. Copulas have been applied to longitudinal
data analysis for generalized linear models (Meester and MacKay, 1994; Lam-
bert and Vandenhende, 2002; Sun et al., 2008; Song, 2000; Bai et al., 2014).
For time series data, Bouyé and Salmon (2008) and Chen et al. (2009) studied
nonlinear quantile autoregressive models implied by their copula specifications.
Noh et al. (2015) proposed a method for semiparametric quantile regression by
modeling the joint distribution of the response and covariates through copula.
In an empirical study of longitudinal data, Shi and Frees (2010) considered a
copula method for quantile regression by modeling the conditional marginals
of the responses with an asymmetric Laplace (AL) distribution, but the valid-
ity of the method was not discussed. The AL distribution has a close connection
with quantile regression because the maximum likelihood estimator under such a
model coincides with the usual quantile regression estimator for cross sectional

data. However, we shall show that the method based on asymmetric Laplace
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marginals is restrictive, and it could have detrimental effects on both quantile es-
timation and prediction under model misspecification; see numerical evidences
in Sections 3 and 4. We propose a more flexible and theoretically justifiable
approach, which approximates the conditional marginals through regression of
quantiles and models the dependence of the repeated measurements with copula
functions. Instead of making parametric assumptions on the marginals, the pro-
posed method only requires the marginal quantiles of the longitudinal responses
to be linear in covariates and thus can be regarded as a semiparametric method.
The proposed method can not only give efficient estimation of coefficients in the
marginal quantile regression model, but also provide prediction intervals of the

response of a new subject given the prior measurements and other covariates.

2 Proposed Method

2.1 Notations and models

Let y;; and x;; be the response and p-dimensional covariate for the ith subject
measured at the jth time point,z = 1,...,n, j = 1,...,J;, where the subjects
are assumed to be independent but repeated responses from the same subject
may be dependent. Without loss of generality, we assume a balanced design

with J; = J being finite. Throughout we assume that the first element of x;;
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is one corresponding to the intercept. Denote y; = (vi1, ..., ¥ J)T and x; =
(Xi1,...,%:7)%. Suppose {y;,X;,4 = 1,...,n} is a random sample of {Y =
(Yy,..., )T, X}.

Let G(yy, . . ., ys]|x) denote the joint distribution of (Y3, ..., Y;)? given X =
x with continuous conditional marginal distributions Fi(-|x),..., F;(:|x). By
Sklar’s theorem (Sklar, 1959), there exists a copula function C' such that GG can
be uniquely represented as G(y1, . .., ys|x) = C{F1(y1|x), ..., Fs(ys|x); x}.
Throughout the paper all analyses are conditional on X = x and we do not
model the X distribution. For model parsimony, we consider a parametric cop-
ula function C' and simplify the copula function by dropping the dependence on

the covariates x. That is, we consider the following simplified copula model

Gy, .- yslx) = C{F1(n[x), ..., Fs(ys1x); 00}, (2.1)

which assumes that the copula function is independent of covariates except through
the conditional marginals Fj(-|x). There are many ways to construct a cop-
ula function; see for instance Joe (1996). One way is to extract from any .J-
dimensional joint distribution F(-). For example, if (+) is a multivariate normal
distribution N;(0, ¥), where X is the correlation matrix with ones on the diag-

onal, then C(uy,...,u;Y) = F{® (u),..., 2 (us); L} is the Gaussian
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copula with correlation matrix Y. More discussions can be found in Remark
3. Here the matrix Y is not the standard Pearson correlation matrix but rather
some rank-based correlation measuring the nonlinear dependence of variables;
see Song (2000) for more detailed interpretation of elements in ..

The simplified copula assumption in model (2.1) was commonly used in the
copula literature for modeling multivariate distributions; see for instance Haff
et al. (2010), Smith et al. (2010). Haff et al. (2010) showed that the simplified
copula serves a good approximation even when the simplifying assumption is
far from being satisfied. Our numerical investigation in Section 3 also confirmed
the satisfying performance of the simplified copula even under some model mis-
specification. The framework and idea proposed in this paper can be extended
to more general copula functions; see Section 5 for some discussion.

Instead of making parametric assumptions on F;(-|x), we propose to fit a

quantile process by assuming the linear quantile regression model,

Q- (Yj|xi;) = x;80(7),j =1,...,J, forany 0 <7 < 1, (2.2)

where Q) (Y;|x;;) = inf{y : Fj(y|x;;) > 7} is the 7th (marginal) quantile of Y
given the covariate x;;. Model (2.2) was also considered in Jung (1996), He et al.

(2003), Mu and Wei (2009), Tang and Leng (2011) and so on for analyzing clus-



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

tered or longitudinal data. The conventional estimator of 3,(7) that completely

ignores the intra-subject correlation can be obtained as

n J
B(r) = argmin » Y p,(yi; — x5;b), (2.3)

beRr = 05

where p,(s) = s{r — I(s < 0)}, and I(-) is the indicator function. Even
though B(7) is a consistent estimator of B,(7), its efficiency could be lost by
ignoring the intra-subject correlation. In addition, sometimes we are interested in
predicting the conditional quantiles of the response for a new subject, say at time
J. It would be beneficial to take into account not only the covariate information
but also the responses observed in the past time points, and such prediction is not
feasible without modeling the joint distribution G (y, . .., ys|x). We propose to
employ copula functions to accommodate temporal dependence, which can help

not only the efficiency for estimating 3, (7) but also the prediction.

2.2 Three-step estimation

Note that we can link the density function of F}(-|x;;), denoted by f(-|x;;), with

model (2.2) by the following equation:

)
f(y|xi;) = lim 7 2.4)

50 Xij{ﬁo(uy +0) — ,Bo(uy)},
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where u, = {v € (0,1) : x;fpjﬂo(v) = y}. Here we write f(y|x;;) as f{y|x;;; B(7)}
to reflect its dependence on the quantile process 3(7). The log likelihood func-

tion (conditional on {x;;}) can thus be written as

HB(7),01 =D > log[f{yilxi; B(T)} + Z logle(uit, . . ., uis; 0)], (2.5)

i=1 j=1

where c(+; 6) is the density associated with the copula C(-;0), and u;; = {v €
(0,1) : x;8(v) = yi;} = P(Y; < yiylxij) = Fy(yis|xi5)-

We can estimate (3,(7),60y) by maximizing the log likelihood function
I{B(r),0}. However, direct maximization is challenging since [{3(7), 0} in-
volves the entire quantile process 3(7) and does not have an explicit form. Al-
ternatively, we propose a three-step estimation procedure. In the first step, we
obtain the consistent but not necessarily efficient estimator 3(7) of the coeffi-
cient process 3,(7) by ignoring the intra-subject correlation. In the second step,

we estimate u;; by @;; = {v : x;;8(v) = y;;} and then estimate 6, by maximiz-
ing the copula likelihood. Finally, we obtain an efficient estimator of 3,(7) by
taking into account the intra-subject correlation based on the estimated copula
function. We need to point out that in this procedure 3,(7) is estimated at each

quantile level 7 separately, and the resulting estimator of (3,(7), €o) is not the

maximum likelihood estimator. The details of the procedure are as follows.
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Step 1. Let0) < 13 < --- < 7,, < 1be a grid of quantile levels, where 7, =
k/(fin+1). Fork = 1,..., ky,obtain B(r;) = argming g, S0, ijl pr. (Yij—
x1;b). Define fis; = (1= )Tty Ths1, Qg = {yij—x58(mi) }/x5{B(Th1) —
B(1k)}, where X5 B(7y) < yij < XZB (Tk+1). In our implementation, we choose
Kn = [4 + 3n1], where [v] denotes the integer part of v.

Step 2. Estimate 8, by 6, the maximizer of the pseudo-copula log-likelihood,

A

0 = argmax y ., log{c(@, ..., 4:;0)}.
0

Step 3. Forany 0 < 7 < 1, define 3(7) as the solution to the estimating equation
Un(b) =n~" Y " x/Ti{Vi(6)} "4, (y: — x/b) =0, (2.6)
=1

where ¥_(y; — xI'b) = (¢r(yin — x4b), ..., U (yis — x%b))T with ¢, (u) =
T7—1I(u < 0), Vi(8) = Cov (¢ {y; — x] By(7)}|x;), and T'; = diag {s1, ..., sis}
with s;; = f{x];8,(7)[x;}.

Alternatively, one could iteratively update 6 and [‘3(7) in Steps 2 and 3 until

convergence, but this will not affect the asymptotic efficiency of B(T)

Remark 1. In Step 1, one may use nonparametric approaches to estimate the
distributions F}(-|x) and consequently u;; = F}(y;;|x;;). However, the nonpara-
metric conditional distribution estimation is subject to the curse of dimensional-

ity. We propose to estimate F(-|x) through modeling the conditional quantile
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process in model (2.2). Instead of assuming parametric distributions, this ap-
proach requires the conditional quantiles of Y;; to be linear in x and thus can be
regarded as a semiparametric likelihood approach, which provides a balance be-
tween model parsimony and flexibility. Such global linearity assumptions were
also employed to facilitate analyses in different contexts; see for instance, Port-

noy (2003), Wei and Carroll (2009), Wang and Zhou (2010), Feng et al. (2015).

Remark 2. The estimated quantiles in Step 1 may have crossing issue in finite
samples, meaning that the conditional quantile Q(Y;|x;;) = xJ;8,(7) at some
upper quantile may be estimated to be smaller than that at a lower quantile. To
avoid quantile crossing issue, we employ the quantile rearrangement procedure
proposed in Chernozhukov et al. (2010) that constructs monotone quantile esti-
mates by sorting or monotone rearranging xiTj B (T%).

The quantity s;; = f{x];B,(7)|x;;} measures the dispersion of €;;(7) =
Yij — xg;ﬂo(r). In our implementation, we estimate s;; by using the quotient
estimation method of Hendricks and Koenker (1992): §;; = 2h,, /x}; {B(T+h)—
B(r — h)}, where h,, is a positive bandwidth such that h,, — 0 as n — co. We
choose h,, = 1.57n~/3(1.5¢*{®1 (1)} /[2{® () }*>+1])'/3 following the rule
suggested in Hall and Sheather (1988), where ®(-) and ¢(-) are the distribution

and density functions of the standard normal distribution.

The matrix V;(8) = Cov(t — I(uy < 7),-+,7 — I(uyy < 7)) is the

10
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covariance for the score vector ¥ _{y; — x! 3,(7)}, capturing the intra-subject
correlation. Define A, (u;;, uix) = Cov{r — I(u;; < 7),7 — I(ujx, < 7)} =
P(ui; < 7,us < 7)—72, which equals 7 —72 for j = k. For a given multivariate
copula C'(+; 0), A\ (uij, uir,) = Cjx(7, 7;0) — 72 since w;; and w;, are uniformly
distributed on (0, 1), where Cj(7,7;0) is induced by setting the jth and kth

elements of C(-; @) to be 7 and the rest to be 1.

Remark 3. Commonly used multivariate copulas include the elliptical and Archimedean
copulas. Elliptical copulas may incorporate a specific correlation structure, for
instance, the exchangeable, autoregressive, Toeplitz and unstructured correla-
tion structures, and thus can capture time-dependent intra-subject correlation, a
typical feature of longitudinal data. In contrast, Archimedean copulas can only
capture exchangeable correlation across time and may not be useful for longitu-
dinal studies with large time dimension. For high dimensional problems, we can
also consider vine copulas that are constructed from a series of bivariate copulas.
More discussions of multivariate copulas and vine copulas can be found in Joe

(1996), Aas et al. (2009), Smith et al. (2010).

2.3 Induced smoothed estimator of regression parameters

The estimating function U, (-) in Step 3 of the three-step estimation in Section

2.2 involves an indicator function. This nonsmoothness not only makes it dif-

11
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ficult to solve the estimating equation but also challenges the estimation of the
asymptotic covariance of B(T), which is often sensitive to the choice of smooth-
ing parameters involved in estimating the unknown density function f(-|x;;). To
bypass these challenges, we consider an induced smoothed estimator. The in-
duced smoothing method was first proposed by Brown and Wang (2005) for ro-
bust regression, and later extended to quantile regression by Wang et al. (2009)
for cross sectional data, by Fu and Wang (2012), Leng and Zhang (2014) for
longitudinal data, and by Pang et al. (2012) for censored data. The idea of the
induced smoothing is as follows. By the asymptotic normality of B(T) in The-
orem 2.1, we can regard 3(7) as a random perturbation of 3,(7) by writting
B(1) = By(r) + n~/2H'/?Z, where Z ~ N(0, I,,,) and H is defined in the

Assumption (A7). We consider the smoothed estimating function

Uy(b,H) = Ez{U,(b+n"?HY?Z)}

= n' Y x/T{Vy(0)} "¢, (y: — x/b, H), (2.7)
=1

where ¢_(y;—x’b, H) = (r—@{(xib—ya)/hi},....,T—®{(xI)b - yu)/hu})T,
and h;; = 4 /xiTijij /n. When H is known, the induced smoothed estimator
3,(7) can be obtained by solving U, (b, H) = 0. In practice, since H is un-

known, we estimate BS(T) and H through the following iterating procedure.

12
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Step 3.1. Let Bio) (1) = B(7), the estimator obtained by assuming working

independence, and HO — I,, the p x p identity matrix.

~ (k+1)

Step 3.2. Given Bik)(T) and H® from the kth iteration, update 3, (7)

and H*+) by

o (k41 . J (k)
B =80 - {aUn—(g{oH(k )

-1
= ~ (k) ~
Bik)('r) } Un{IBs (T)a H(k)} and

—1
iiik“)(f)} ’

A(b.H) = 17 Y XITAVAO)} i ) (- H) (V. (0)) T

i=1

~ A —1 ~ ~
A oU, (b, H®)) S (k41), oU, (b, H®))
H“””z{—\éwm A{B. (), B} § =

Step 3.3. Repeat Step 3.2 till convergence. Denote the coefficient estimate
and the covariance estimate at convergence as BS(’T) and H, respectively.

For estimating 3, (), we could solve the equation U, (b, M) = 0 for b with
any known positive definite matrix M such that | M|| = O(1), so U, (b, M) can
be viewed as a smoothed estimating function with Gaussian kernel and subject-

specific bandwidth of order n~'/2

. By the proof of Theorem 2.1 in the supple-
mentary file, this will also lead to an estimator that is asymptotically equivalent

to B(T) However, in our procedure, we also solve for the unknown H iteratively

to obtain a consistent estimator for the asymptotic covariance of n'/23(7).

13
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2.4 Prediction

The proposed copula regression can provide a predictive distribution of the re-
sponse variable Y incorporating the covariates and the prior Y measurements.
The predictive distribution can be used to predict the mean or any quantiles of
the future response, or to construct prediction intervals.

For instance, suppose that for a new subject we have observed x7, ..., xJ
and yj,...,y7_, at the first J — 1 time points. We would like to predict the
outcome at time J, y%. Under model (2.1), F(y;, -,y 1, y5|x5, - ,x5) =
C’(u’{, cee Ul Ul 90), where v} = Fj(y;|x}),j = 1,...,J. With some stan-

dard calculus derivations, we can show that

F(Z/TJ’X? 7X?<]7yia"' 7y?}71) N h(u§|x>{>'"7XT77U>{7"-7UT]71;00)7 where

aJ_lc(“; C Uy, U 0o)/0u; - - - oy 4
AT 1C(uy, -+ uly_y,1;00)/0ut -+ - Ousy_ |

h(uj|xy, ... x5, ug, . uyg;60) =

Under model (2.2), we can estimate u} by @} = {u : x;‘TB(u) =yt

j=1,...,J, and estimate the predictive distribution by

~

F(y}|xf,~~ 7Xik77y1<7"' 7y§71) = h(ﬁ’mxi"'7XT77&T7"'7&;71;0>'

For any 7* € (0, 1), the 7*th conditional quantile of y* can thus be estimated by

14
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numerically solving the equation

F(y|x>{7 >X§7?JT7"’ ,y},l) =71 (28)

For any 0 < o < 1, the (1 — «) prediction interval can be constructed by the

(a/2)th and the (1 — «/2)th conditional quantiles of y/%.

Remark 4. If the research interest is on the marginal quantiles as in model (2.2),
we could also estimate the intra-subject correlation directly based on the es-

T
ij

timated residuals y;; — x;,3(7) or approximate V ! by a linear combination
of basis functions, and then obtain more efficient estimator of 3(7) by solving
weighted estimating equations similar to (2.6); see for instance Wang (2009),
Leng and Zhang (2014). The resulting estimators have similar properties with
our proposed estimator [3(7) The bigger advantage of the copula-based ap-
proach is that it provides a convenient way to model the joint distribution of

(Y1,...,Y;)T conditional on covariates, which can be used to obtain more accu-

rate prediction based on both covariates and responses in the past time points.

2.5 Asymptotic properties

Throughout, let 3,(7) and 6, denote the true values of 3(7) and 8. Theorem 2.1

presents the asymptotic normality of 3(7) and 3,(7), and the consistency of H.

15
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Theorem 2.1. Under models (2.1)-(2.2) and Assumptions (Al)—(A8) in the sup-
plementary file, if k2**'/n'=2¢ — 0 and k, — oo as n — oo, we have (i)
n!2{B(r) = By(r)} > N(0.H); (ii) n'/*{B,(r) — By(r)} + N(0,H), and

(iii) H % H, where H™' = lim,, oo n™" S0 X T:{V,(00)} " 'T';x;.

Remark 5. Consider the following weighted estimation equation Uw (b) =
nt Y xI Wi (y; — xi b) = 0, where W, are any given J x J matrices.
Since E{v_(y; — x! By)|xi} = 0, Uw(b) is an unbiased estimating function.
Consequently the resulting estimator, denoted by By (7), is consistent to 3 (7)
with asymptotic covariance matrix Hw = lim, . A;\I,VAHWA;‘IN, where
Apw =n Y0 xIWIix;, and Ayw = nt Y0 x!] W, V,(00) Wi x;. We
can show that Hyw — H is nonnegative definite. Therefore, the estimator B (1),
obtained with W; = T';{V;(6,)}~! is optimal within such a class, including
the estimator B (7) obtained by assuming working independence. The proof is

similar to that of Theorem 3 in Jung (1996).

Theorem 2.1 suggests that the induced smoothed estimator BS(T) is asymp-
totically equivalent to the unsmoothed estimator B(T) Since the computation
based on induced smoothing estimation equation is more efficient, we use the
induced smoothing estimator throughout our numerical studies.

With copula we can specify the joint distribution of responses from the same

subject, and thus obtain the conditional distribution of any measurement given

16
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the others for each subject, as discussed in Section 2.4. Theorem 2.2 shows that

the conditional distribution can be estimated consistently.

Theorem 2.2. Under the conditions of Theorem 2.1, for any y; € R, we have

F(y?”XT? 7Xj<]7yr7"' 7yj;71) i> F(y§|x>f7 7X*Jay1<7"' Jy;fl)'

Theorem 2.2 implies that the solution of (2.8), denoted by ¢, (7*), converges
in probability to the 7*th conditional quantile of y; given x7, - -+ , X%, y7, - - , Y7_1,
denoted by ¢;(7*), the solution to F'(y|x},--- ,x%,yi, - ,y5_,;) = 7. Thisen-

sures the asymptotic validity of the prediction intervals constructed by (7).

Remark 6. The consistency of B(T) requires the correct specification of model
(2.2) only at the quantile level 7 of interest. The misspecification of the global
marginal linear quantile regression model (2.2) and the copula model (2.1) does
not affect the consistency of B(T), but only its efficiency and the consistency of
the estimated conditional distribution in Theorem 2.2. However, our numerical
studies in Section 3 suggest that even under copula model misspecification, the
constructed prediction intervals still maintain the coverage probabilities well. In
practice, we can check the adequacy of model (2.2) by applying some goodness-
of-fit test, for instance, the method in He and Zhu (2003). Our experience sug-

gests that the proposed method performs reasonably well unless the global lin-

17
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earity assumption is severely violated, in which case more flexible models such

as polynomial quantile regression can be considered in Step 1.

3 Simulation Study

The data is generated from the following model

Yij = —0.5 + 0.511/’1']‘1 + Lij2 + (]_ + 'Yxijl)eijai = ]_, e, = 500,] = ]_, oo e ,4,

where ;;; are ii.d. Bernoulli(1,0.5), and x;;, are i.i.d. N(0,1). We con-
sider three different cases: Case 1 (heteroscedastic normal error) with v = 1,
€ = (€1,...,€4)T ~ N(0,%); Case 2 (homoscedastic ¢ error) with vy = 0, €;
from a multivariate ¢3 distribution with covariance >:; and Case 3 (heteroscedas-
tic lognormal error) with v = 1, €; from a multivariate lognormal distribution
with mean zero and covariance X;. In Cases 1-2, the covariance X is common
and covariate-independent, and it has an AR(1) structure in Case 1 and an ex-
changeable correlation structure in Case 2 with variance 1 and correlation p. In
Case 3, we let 3 = (0y,77)4,_, with 0y ;0 = ol =7 1H@20/2 for j £ j and
o,y = 1for j = j'. We consider o = 0.3, 0.5 and 0.8. The assumed models
(2.1) and (2.2) hold in both Cases 1 and 2, but in Case 3 the copula model (2.1)

is misspecified as the true copula parameter @ is in fact covariate-dependent.

18



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

3.1 Quantile coefficient estimation

We compare three different types of estimators of 3(7) = (8o(7), B1(7), B2(7))7:
(1) the estimator B (7) obtained by assuming working independence (WI); (2) the
parametric copula regression estimator assuming asymmetric Laplace marginal
distributions (AL); (3) the estimator proposed by Leng and Zhang (2014) (LZ);
(4) the proposed semiparametric copula-based quantile regression (CQR) esti-
mator BS(T). For all copula-based methods, we consider multivariate Gaussian
copula and t-copula with exchangeable, first-order autoregressive AR(1) and un-
structured correlation structures. To save space, we only report the results from
Gaussian copula as t-copula gives similar results. For each scenario, the simula-
tion is repeated 500 times.

Table 1 summarizes the relative efficiency of the copula-based and LZ esti-
mators with respect to the WI estimator, and the coverage probabilities of 95%
confidence intervals in Cases 1-3 at 7 = 0.25. Results for 7 = 0.5 are in the
supplementary file. The confidence intervals are constructed based on normality
and the asymptotic variance estimated by the induced smoothing method for the
proposed estimator, and the Hessian matrix for the AL approach. Results show
that the proposed method is quite insensitive to the choice of correlation struc-
tures in the copula function, so here we only report the results based on copula

with an exchangeable correlation structure and leave the rest in the supplement.

19
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Across all scenarios considered, the proposed CQR estimator shows higher
efficiency than the WI estimator, and the efficiency gain is more obvious when
there is a stronger intra-subject dependence. The induced smoothing method
gives reasonable variance estimation; the coverage probabilities of the CQR in-
tervals are close to 95% in all three cases. The CQR method performs well even
under the misspecification of the copula function (Case 2) and of the copula
model (2.1) in Case 3. The AL estimator for 3,(7) appears to have competitive
efficiency, but its estimation for the other two coefficients can have very low ef-
ficiency in some scenarios, and the coverage probabilities are in general poor. A
closer examination shows that the AL estimator has large bias that is caused by
the misspecification of the marginal distributions. These results suggest that in-
ference of copula regression based on parametric marginals could be misleading
under model misspecifications. The LZ estimator performs similarly as CQR,
but the latter tends to be more efficient for estimating 3,(7) especially in Cases

1 and 3 with heteroscedastic errors.

3.2 Prediction

We assess the performance of the proposed method for predicting the 7th con-
ditional quantile of y,4 conditioning on the covariates and y,,;, 7 = 1,2, 3. For

comparison, we also include the prediction from copula regression assuming
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asymptotic Laplace marginals, and the methods from conventional linear quan-
tile regression and from Leng and Zhang (2014) that use only covariate informa-
tion for prediction. For copula-based methods, we use Gaussian copula with an
exchangeable correlation structure. For each method, we report the mean pre-
diction error at 7 = 0.25 and 0.5, defined as 1/500 3o, pr{Ynar — Guar(7)},
where v, 1s the actual response of the nth subject at the fourth time point
from the kth simulation and g4 x(7) is the predicted 7th conditional quantile of
Ynak- In addition, we consider the coverage probabilities and mean lengths of
90% prediction intervals, constructed by the predicted Sth and 95th percentiles
of Y4 1, from different methods.

Table 2 summarizes the prediction results of four methods in Cases 1-3
with o = 0.5 (results for ¢ = 0.3 and 0.8 are provided in the supplementary file).
The proposed CQR method gives more accurate predictions than the QR and
LZ methods in most scenarios, even when the correlation structure, or copula
function, or copula model are misspecified. The prediction intervals from QR,
LZ and CQR have coverage probabilities close to 90%, but the intervals from
the CQR method are in general narrower. On the appearance, the mean predic-
tion errors from the AL method are comparable to those from the CQR method,
but predictions from the AL method may be misleading, manifested by the low

coverage of the 90% prediction intervals in Cases 2-3.

21



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

4 Analysis of the New Jersey nursing home data

To illustrate the proposed method, we analyze the New Jersey nursing home data
set from report years 2009 to 2013, available at Centers for Medicare and Medi-
caid Services (www . cms . gov). The data set contains the information from 286
nursing facilities. To quantify the utilization of nursing home care, we define the
annual occupation rate as the ratio of total residents and the number of certified
beds for each facility. We define the response variable y;; as the logistic trans-
formed occupation rate of the ¢th facility at year j, where : = 1,...,n = 286
and j = 1,...,5. We consider five covariates, including two indicator variables
indicating whether the facility is a non-profit or government-owned (with pri-
vate party being the baseline), the reporting year (after subtracting 2008) and the
reported total nurse staffing hours per resident per day (TOTHRS). Our prelimi-
nary analysis suggests that the data has temporal correlations above 0.6, so it is
important to accommodate such correlation in both estimation and prediction.
Before carrying out the copula quantile regression analysis, we check the
adequacy of model (2.2) by applying the lack-of-fit test of He and Zhu (2003)
at 19 quantile levels 7 = 0.05,0.1,...,0.95. The minimum p-value is 0.03,
suggesting a reasonable fit of model (2.2) after multiple test adjustment. In ad-
dition, we examine the copula probability-probability plots from Gaussian cop-

ula and t-copula with exchangeable, first-order autoregressive or unstructured
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Figure 1: Copula probability-probability plots from Gaussian copula and t-
copula with different correlation structures.
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EX: exchangeable correlation structure; AR(1): first-order autoregressive correlation structure;
UN: unstructured correlation.

correlation structures in Figure 1. In each plot, the x-axis shows the empirical
copula probabilities {C, (w1, . . ., us5),i = 1,...,n}, where Cy(uyq,...,us) =
n 'S " I(tn < ui,..., 05 < us), i;; are obtained as in Step 1 of Section
2.2, and the y-axis shows the corresponding probabilities from the estimated
parametric copulas. The departure of a probability-probability plot from the 45
degree line indicates that the parametric copula does not agree with the empirical
copula and thus may not be a good choice (Mendes and De Melo, 2010). Figure
1 suggests that t-copula (degree of freedom estimated as 11) with unstructured

correlation has better agreement with the empirical copula. Therefore, in the
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sequel we focus on t-copula with unstructured correlation.

Table 3 summarizes the estimated covariate effects on the 7th conditional
quantiles of y;; from different methods at 7 = 0.05, 0.5 and 0.95. Results from
the CQR method suggest that (1) compared to private facilities, non-profit facili-
ties tend to have higher occupation rate at all three quantiles, while government-
owned ones show no significant difference; (2) the occupation rate tends to be
decreasing over years and this effect is significant at median; (3) the total of
nurse staffing hours has a significantly negative effect at the median and the
lower quantile of the occupation rate, but the effect is not significant at 7 = 0.95.
In general, the AL method gives estimates with larger standard errors, making
it miss the significance of the Non-profit and TOTHRS variables. Compared to
AL, the CQR gives estimation and significance results that are more in line with
those from QR and LZ, except that the LZ method misses the significance of the
Non-profit effect at 7 = 0.95 due to a larger standard error.

To assess the prediction accuracy of different methods, we carry out a leave-
one-out cross validation. For each 2 = 1,...,n, we leave out the data from the
1th subject, obtain the parameter estimation based on the rest of the data and use
the estimation to predict the conditional quantiles of the response of the ith sub-
ject in year 2013 given the covariates and the responses in previous four years.

Table 4 summarizes the mean prediction error at median, the coverage probabil-

24



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

ity and mean length of 90% prediction intervals formed by the predicted Sth and
95th conditional quantiles from three methods: the methods from conventional
linear quantile regression method and Leng and Zhang (2014) that use only co-
variates information for prediction, the copula regression method based on AL
marginals and the proposed copula-based CQR method. The proposed method
shows clear advantage; it gives more accurate median prediction than the QR and
LZ methods, and narrower prediction intervals than all the other three methods

with coverage close to 90%.

5 Discussion

For notational simplicity, we assumed in model (2.2) that 3,(7) is common
across measurement time j, but the proposed method can be easily modified
to allow time-dependent coefficients, and the estimation efficiency can still be
improved through the proposed three-step procedure as long as some elements
of B,(7) are common across time. The proposed method can be easily extended
to accommodate unbalanced designs. For instance, suppose that one subject has
measurements obtained at time points 1,...,J — 1. Then the assumed copula
model (2.1) for the J — 1 responses becomes P(Y; < y1,...,Y; 1 <yj_1|x) =

C{Fi(n1]x), ..., Fy_1(ys-1|x), 1; 8¢} and the corresponding density function is
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Fn, - ysaalx) = 077 Clun, g, 1300} /Ous - Quy T12) fi(ys1%).

In this paper, the dependence of longitudinal measurements is modeled through
copulas to perform prediction and improve the estimation efficiency. For model
parsimony, we considered a simplified copula in model (2.1), which assumes
that the copula function is independent of covariates except through the con-
ditional marginals F}(-|x) and that the copula parameter 6 is common across
x. For more flexibility, we can extend the proposed idea of semiparametric
marginals to accommodate more general copulas, for instance, copulas with @
depending on x parametrically or nonparametrically, or nonparametric estima-
tion of covariate-dependent copulas, such as those studied in Tsukahara (2005),
Abegaz et al. (2012), Omelka et al. (2009) and Veraverbeke et al. (2011) for
two-dimensional responses and univariate x. Research in this direction for lon-
gitudinal data worths further investigation.

Some application may involve correlated outcomes of mixed types, includ-
ing both continuous and discrete outcomes, for instance the burn injury study
reported in Fan and Gijbels (1996). The proposed semiparametric method can
be extended to analyze such data by adapting the joint modeling idea in Song
et al. (2009). Specifically, we can model the marginal distributions of contin-
uous outcomes through fitting quantile regression processes, while model the

marginals of discrete outcomes through fitting generalized linear models.
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Table 1: Relative efficiency (RE) with respect to the working independence es-
timator 3(7) and coverage probability (CovP) of 95% confidence intervals from
different methods at 7 = 0.25 in Cases 1-3.

RE CovP

Case o  Method So(r) fi(r) Balr) Bo(r) fu(r) Ba(r)
1 030 LZ 1.09 1.06 1.06 094 094 094
AL 044 086 1.10 055 056 0.69

CQR 1.04 107 126 094 094 092

050 LZ 1.09 1.12 116 094 094 094

AL 021 054 132 027 041 071

CQR 1.08 1.11 1.29 095 092 0.91

0.80 LZ 1.14 140 168 093 093 094

AL 007 0.17 271 005 003 0.82

CQR 1.18 133 1.79 094 092 093

2 030 LZ 1.09 1.14 1.08 091 094 094
AL 008 134 150 0.02 072 0.78

CQR 1.07 1.11 1.18 094 093 094

050 LZ 1.09 127 123 091 094 0.93

AL 005 212 191 001 0.81 0.81

CQR 1.13 1.31 1.32 095 093 0.95

0.80 LZ 1.10 201 221 092 094 094

AL 003 502 516 000 090 0.90

CQR 125 201 210 095 094 094

3 030 LZ 1.05 104 103 092 095 094
AL 077 093 1.07 087 0.84 0.89

CQR 1.05 104 126 094 094 0093

050 LZ 1.07 108 109 094 093 094

AL 052 094 112 078 082 0.88

CQR 1.07 108 126 094 093 092

0.80 LZ 1.07 128 147 092 094 0095

AL 028 1.19 166 047 082 0093

CQR 1.16 132 168 095 091 0.93
LZ: the method from Leng and Zhang (2014) based on quadratic inference assuming an
exchangeable working correlation structure; AL: copula regression method assuming
asymmetric Laplace marginal distributions; CQR: the proposed copula-based quantile
regression method. Both AL and CQR are based on Gaussian copula with exchangeable
correlation structure.

34



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

Table 2: The mean prediction error (MPE) at 7 = 0.25 and 0.5, and coverage
probability (CovP) and mean length (ML) of 90% prediction intervals in Cases

1-3 with o = 0.5. Values in the parentheses are standard errors.

MPE

Case Method T=0.25 =205 CovP ML

1 QR 0.987 (0.041) 0.599 (0.023) 0.902 4.946 (0.074)
LZ 0.984 (0.041) 0.598 (0.023) 0.904 4.916 (0.074)
AL 0.907 (0.037) 0.559 (0.021) 0.892 4.727 (0.070)
CQR 0.925 (0.038) 0.564 (0.021) 0.908 4.640 (0.071)

2 QR 0.848 (0.039) 0.550(0.026) 0.888 4.710(0.013)
LZ 0.844 (0.039) 0.550 (0.026) 0.889 4.658 (0.012)
AL 0.678 (0.034) 0.438 (0.022) 0.857 3.027 (0.030)
CQR 0.708 (0.032) 0.444 (0.022) 0910 4.594 (0.096)

3 QR 1.275(0.085) 0.782 (0.050) 0.900 7.516(0.116)
LZ 1.267 (0.085) 0.775(0.049) 0.901 7.478 (0.116)
AL 1.181 (0.075) 0.742 (0.042) 0.631 5.210 (0.066)
CQR 1.236 (0.082) 0.782(0.049) 0.912 7.941 (0.280)

QR: conventional quantile regression method that uses only covariate information for

prediction; LZ: prediction based on the estimator of Leng and Zhang (2014); AL: the copula
regression based on asymmetric Laplace marginals; CQR: the proposed copula-based quantile

regression method.

35



Statistica Sinica: Newly accepted Paper
(accepted version subject to English editing)

Table 3: Estimated effects of covariates on the 7th conditional quantile of the
logit occupation rate from different methods. Values in the parentheses are stan-

dard errors.
Variable

T Method Non-profit Government Year TOTHRS

0.05 QR 0.54 (0.16) 0.13(0.26) -0.04 (0.03) -0.40(0.11)
LZ 0.45(0.13) 0.04 (0.23) -0.03 (0.03) -0.30(0.09)
AL 0.19(0.29) 0.20(0.42) 0.01 (0.03) -0.15(0.14)
CQR 0.51(0.19) 0.17(0.31) -0.06 (0.04) -0.30(0.11)

0.5 QR 0.30 (0.10)  0.39(0.28) -0.04 (0.02) -0.17 (0.08)
LZ 0.29 (0.10) 0.42(0.28) -0.05(0.02) -0.17 (0.07)
AL 0.39 (0.12) 0.64 (0.37) -0.05(0.01) -0.12(0.07)
CQR 0.28 (0.11)  0.44 (0.29) -0.04 (0.02) -0.17 (0.07)

095 QR 3.00 (0.84) 0.28 (0.35) -0.11(0.08) -0.12(0.22)
LZ 1.42(0.94) 0.15(0.31) -0.15(0.07) -0.49 (0.23)
AL 0.48 (1.13)  0.90 (0.69) -0.10(0.05) -0.08 (0.21)
CQR 3.00 (0.79) 0.28 (0.40) -0.11(0.08) -0.12(0.24)

QR: the conventional quantile regression estimator; LZ: the estimator of Leng and Zhang
(2014) based on quadratic inference assuming an exchangeable working correlation structure;
AL: the copula regression assuming asymmetric Laplace marginal distributions; CQR: the
proposed copula-based quantile regression estimator; TOTHRS: reported total nurse staffing
hours per resident per day.

Table 4: Results of the cross validation study of the nursing home data. The
values in the parentheses are standard errors.

MPE (7 = 0.5) CovP ML
QR 0.387(0.025) 0.892 3.599 (0.048)
LZ  0377(0.025) 0.877 3.349 (0.053)
AL 0.115(0.014) 0.727 1.288 (0.069)
CQR  0.163(0.023) 0.883 0.869 (0.060)

MPE: the mean prediction error at median; CovP: the coverage probability of 90% prediction
intervals; ML: the mean length of 90% prediction intervals; QR: the standard quantile
regression method that uses only covariates information for prediction; LZ: prediction based on
covariates and the quantile coefficient estimator in Leng and Zhang (2014); AL: the copula
regression assuming asymmetric Laplace distribution; CQR: the proposed copula quantile
regression.
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