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Abstract— Digital twin (DT) and additive manufacturing
(AM) technologies are key enablers for smart manufacturing
systems. DTs of AM systems are proposed in recent literature
to provide additional analysis and monitoring capabilities to the
physical AM processes. This work proposes a DT framework
for real-time performance monitoring and anomaly detection in
fused deposition modeling (FDM) AM process. The proposed
DT framework can accommodate AM process measurement
data to model the AM process as a cyber-physical system
with continuous and discrete event dynamics, and allow for
the development of various applications. A new performance
metric is proposed for performance monitoring and a formal
specification based anomaly detection method is proposed for
AM processes. Implementation of the proposed DT on an off-
the-shelf FDM printer and experimental results of anomaly
detection and process monitoring are presented at the end.

I. INTRODUCTION

Additive manufacturing (AM) is an important enabler
of smart manufacturing due to its ability to produce cus-
tomized products with complex geometries [1]. AM has
been increasingly utilized in the industry over the past
years. Even though AM has seen increased use in industrial
applications, key questions about monitoring AM systems,
collecting data, and system-level control of multiple AM
machines in a manufacturing system (AM Fleets) remain
important open questions [2]. Fused deposition modeling
(FDM) is an AM process in which a thermoplastic material is
extruded through a heated nozzle in a numerically controlled
deposition system in a bottom-up layer-by-layer fashion.
There has been recent work in modeling FDM processes,
developing measurement technologies, and establishing ver-
ification techniques to improve the quality and reliability
of AM manufactured parts [3]–[5]. Digital twins (DTs) are
proposed in recent literature to model the components of
AM machines and perform preliminary anomaly detection
tasks [6]. Most of the current literature relies on customized
sensing and measurement technologies to build DTs of AM
systems. There has been little DT work focused on a unified
approach to handle different types of data available through
the machine, control system, and the design data of an
AM process to model the cyber-physical nature of an AM
machine for anomaly detection and performance monitoring.

This work presents a DT architecture with appropriate
mathematical modeling formalisms and data structures for
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performance monitoring and anomaly detection of AM pro-
cesses. Focused examples of the presented approach on FDM
technology are presented to illustrate practical use cases of
the proposed DT. Experimental results with an off-the-shelf
FDM printer illustrates the proposed approach of translating
end-product design data into formal specifications to perform
anomaly detection and performance monitoring with DTs.

A. Literature Review and Research Gap

A DT is a software replica of a physical asset or process,
which combines modeling information with data analytics to
deliver additional monitoring and analysis capabilities to the
physical system [7]. In [8] the use of DTs in manufacturing
systems to support product design and process optimization
is presented. In [9], the importance of DTs in manufacturing
systems is motivated and conceptual examples of DTs in
smart manufacturing systems are presented. The concept
of cyber-physical manufacturing systems and the role of
DT based monitoring, simulation, and control is presented
in [10]. There has been recent work in developing DTs
for smart manufacturing systems for reconfiguration based
decision-making [11]. The development in [11] considers
the system interactions of multiple machines and does not
provide a modeling approach for AM processes. A functional
model for AM processes is presented in previous work [2],
but details of DT development are not provided. Additionally,
a layer-to-layer spatial dynamic model for FDM processes
is proposed in previous work [5], but the functional states
of the process are not considered and an anomaly detection
framework is not provided.

A computational models-based DT for the process dy-
namics of a directed energy deposition AM process is given
in [12]. Although this development has high accuracy with
respect to the actual AM process, the computational expense
of the provided model make the development infeasible for
run-time analysis. In [13], building blocks of a DT for pre-
dicting microstructure of the printed parts and estimating the
residual stress on parts are presented as a survey. The work
in [13] considers many different developments in literature
and conclude that a real-time analysis tool is not present in
current literature.

In [14], the use of functional models for quality mod-
eling in FDM is proposed. The quality of printed parts
are predicted using off-line and in-situ measurements, but
their modeling framework requires calibration of model
parameters for different AM processes and machines, which
may be labor intensive in practice. A DT structure with
cloud integration capabilities is proposed, and possible DT



applications in FDM printers are given in [15]. The DT
in [15] does not model the dynamics of the FDM process
or provide details on performance monitoring and anomaly
detection. A DT for FDM is given and an anomaly local-
ization scheme is proposed in [6]. The proposed DT in [6]
leverages side-channel informations to perform data-driven
analysis and localize anomalies in an FDM printed part with
promising accuracy, but their development does not leverage
a functional model of the FDM machine and requires model
training with specially placed sensors on the machine.

In [16], a reference DT architecture for cloud based
cyber-physical systems is given and applications on driving
assistance systems is presented. Their development focuses
on computational and network aspects of DT implementation
and does not consider the dynamic models of the underlying
physical system for anomaly detection and analysis. In cur-
rent literature, there does not exist a DT framework for AM
processes that can accommodate AM process models with
continuous and functional dynamics to leverage AM process
data from the physical system in real-time. Therefore, a
unified DT architecture for AM processes that can handle
multiple data streams to capture the cyber-physical dynamics
(continuous and functional) of an AM process and update the
dynamic model states in real-time must be devised.

B. Contributions and Paper Organization

To address the research gap identified in the previous sec-
tion, three major contributions of this work are the following:
1) Development of a multi-purpose DT for AM systems,

with a system model to capture the continuous and
functional dynamics of an AM process

2) Identification of a novel performance monitoring metric
for energy efficiency of an FDM process and derivation of
a formal specification-based anomaly detection approach

3) An experimental study on process monitoring and
anomaly detection for an off-the-shelf FDM printer via
the proposed DT

The remainder of the paper is structured as follows.
Section II presents the preliminaries for an AM process,
and illustrates a formal method to specify and monitor
specifications on an AM process. Section III presents a
DT architecture for AM and discusses possible uses for
performance monitoring and anomaly detection. Section IV
presents experimental results of anomaly detection and per-
formance monitoring on an off-the-shelf FDM 3D printer.
Concluding remarks and future work are given in Section V.

II. AM PROCESS PRELIMINARIES

This section provides definitions of the AM process,
and gives some of the theoretical background on formal
specifications for AM process data.

An AM process can be investigated by the constituent tem-
poral and spatial dynamics [5]. Temporal dynamics involve
the transient response of the time-dependent process states
while spatial dynamics define the space-dependent process
states. The dependence on time and space here are defined
in a layer-by-layer sense. For example, in the FDM process,

geometry of the deposited beads from one layer to another
constitute spatial dynamics. Thus, we classify the dynamics
of spatial variables from one layer to another as the spatial
dynamics and the dynamics of the deposition system within
a layer as the temporal dynamics.

A. Definitions

A build is the additively manufactured part in process. A
build is processed in a bottom-up layer-by-layer fashion. An
AM process consists of the build and the AM machine itself.

The AM-workflow is the procedure of going from a design
geometry to a manufactured part. The steps in the AM-
workflow have four levels with the top level as the end-
product specifications, followed by the process parameters,
a reference list, and the bottom level as the actuator inputs.

B. Formal Specifications for Process Data

The AM process is a cyber-physical system that has
both continuous and functional (discrete-events) dynamics.
Thus, a specification for the AM process should account
for both discrete events in the system and the evolution
of continuous dynamics during the process. In [17], global
operational states with continuous and discrete-event dynam-
ics are introduced for process specification and anomaly
detection in industrial manufacturing machinery. [17] uses
signal templates for finding events in a measured signal,
which requires expert knowledge that may not be reusable
in different systems.

To define reusable and generalizable formal specifications
on the AM process data, the use of a formal specification
language is proposed in this work. Signal temporal logic
(STL) is a formalism to specify propositions on a signal
measured from an underlying system. STL is widely used for
describing formal specifications on the output signals (traces)
of systems with discrete-event and continuous dynamics, thus
it is a suitable choice for formal specifications with an AM
process. While the use of STL for formal specifications is
not new in literature, the use of STL as a formal method for
anomaly detection with AM processes is a novel contribution
of this work. An STL formula is formed by the following:

φ , > | p | ¬φ | φi ∧ φj | φi U [a,b]φj

where, > is logical true, p is a predicate, ¬φ is the logical
negation of the proposition φ, φi∧φj is the logical conjunc-
tion of two propositions, and φi U [a,b]φj is the until operator
defined as the proposition φi being true at least until the
proposition φj is true in the time interval [t+a, t+b], where
t is the current time. A signal s(t) at time t is satisfied by a
predicate p if f(s(t)) > 0 for some function f (i.e. s(t) |=
p ⇐⇒ f(s(t)) > 0). Additionally, ⊥ = ¬> is the logical
false, the eventually operator is ♦[a,b]φ , > U [a,b]φ, and
the always operator is �[a,b]φ , ¬(♦[a,b]¬φ). Based on the
definition of until, eventually operator ♦[a,b]φ describes that
the proposition φ will be true after some time in the given
time interval. Similarly, globally operator �[a,b]φ describes
that the negation of φ will never be true in the given time
interval.



Time intervals of the propositions are used as sliding
windows over a given signal, where the satisfaction of a
proposition is checked. An extensive analysis and use of STL
is given in [18]. Using STL formulas, specifications on the
AM process can be expressed in a formal language so that a
DT can check these properties. An anomaly detection scheme
based on the satisfaction of specifications is formulated in the
case study.

A number of formal specifications can be described using
STL. Let Φ = {φ1, . . . , φns

} denote a finite set of STL for-
mulas defined for a specific AM process. For the propositions
in Φ, we investigate if a measured signal s(t) satisfies the
propositions. The signal s(t) in this work is defined as data
(measurement or state) about the underlying AM process.
The satisfaction condition is denoted as the following.

s(t) |=
∧
∀φj∈Φ

φj , (1)

where we require the signal s(t) to satisfy the conjunction of
ns propositions. If a measured signal s(t) satisfies Eq. (1),
we conclude that the underlying AM process satisfies the
formal specifications given by the set Φ.

Propositions for an AM process may specify properties
of the end-product. Additionally, a proposition may define
allowable working conditions of the AM machine or the
materials in the process. For example, an AM process
proposition φj may define allowable printing temperatures
specific to each material in an AM process. To check if
the proposition is satisfied, a measurement signal s(t) of
the corresponding material temperature may be monitored
in addition to other measurement data. An example of such
a proposition is given in the case study.

III. A DIGITAL TWIN ARCHITECTURE FOR AM

A DT for AM utilizes the parameters from AM-workflow
and updates the corresponding process models and param-
eters in real-time. In this section, an architecture of a DT
for AM along with a discussion of how different levels of
data are utilized for applications with the DT is presented.
Figure 1 illustrates the proposed DT architecture. Three main
components of the proposed DT are the DT Interface, DT
Functions, and DT Core. The reference list r = [r1, . . . , rnf

]
is the list of reference inputs for the AM plant. An example
of r is GCode instructions, used to prescribe actions for the
components of a numerically controlled machine, which are
commonly used in AM. Each line of a GCode file describes
a set of actions for the machine to execute using its actuators.
Consequently, rj denotes a single line of a GCode command
executed at time-step j.

A. DT Interface

Real-time data coming from the physical system is man-
aged by the DT Interface. A conceptual AM plant is shown
in Fig. 2. An AM plant in this work is considered as a closed-
loop controlled AM process in which the only allowable
input to the closed-loop AM plant is the reference list r . This
consideration is a practical one since most AM machines in

AM
Plant

DT 
Function

DT Interface

Database

DT Core

Physical System

Digital Twin

Fig. 1. Structure of the proposed DT

practice have OEM control systems and sensors that are not
accessible to the user during the AM process. The reference
list input (GCode) is interpreted by an interpreter and a
controller input r̂j is generated for the OEM controller of
the AM plant. The OEM controller uses the controller input
and the measurements from the AM process coming from
the OEM sensors to generate the actuator inputs uj . Based
on the actuator inputs, the AM process takes place and a
physical part is manufactured. The physical outputs of the
AM process is denoted with yj in Fig. 2. The OEM sensors
measure the physical output yj and send zOEMj back to
the OEM controller. External sensors such as cameras, laser
scanners, and temperature readers are often instrumented on
an AM machine to measure the physical output yj [4], [6].
External output measurements are shown with zextj in Fig. 2.
The output data zj = [zextj , zOEMj ]T is computed as a vector
output of measurements from OEM sensors and external
sensors, at the output of the AM Plant. In practice, some
of the OEM sensor measurements may be unobservable to
the user, in which case zOEMj represents a partial data stream
from the OEM sensor measurements.

The output data zj can be collected in real-time, during
the printing of a single layer (temperature measurement) and
in between layers (layer-to-layer metrology). The presented
framework can accommodate measurements with different
time scales. For consistency of presentation, this work will
focus on real-time data collected continuously during the
printing of layers. As an illustrative example, FDM machines
have heating actuators for the extruders and the heated print
bed. A GCode command at time-step j (rj) is interpreted
and a reference temperature for an extruder (r̂j) is sent to the
OEM controller. The OEM controller has a control algorithm
that takes the control input and the measurement zOEMj from
the OEM sensors to compute an appropriate actuator input uj
which, in turn changes the temperature of the extruder (yj).
External sensors can be used to measure this temperature
change (zextj ).

The output data zj of an AM Plant is transferred through
a predefined transmission protocol (e.g. TCP/IP) in real-
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Fig. 2. Block diagram for an AM plant using GCode reference list inputs.

time (at a sampling rate) to the DT Interface. In theory, the
reference list r, the current-time (j) reference to the AM
plant rj , and the inputs for the actuators of the AM plant
uj are communicated through the DT Interface. However, in
practice, the continuous states of the machine (e.g. position
and extruder temperature), controller input r̂j , and the actua-
tor inputs uj are generally not observable from the AM plant.
For this purpose, pre-processing, filtering, state estimation,
and event detection on the original data streams zj ,uj , and
r (based on the availability on a specific AM plant) are
implemented in the DT interface, to generate useful data for
the models in the DT Core. An example of the different data
streams and their use in a DT is shown in the case study.

Streaming data are sampled at a sampling rate τ and the
data at time-step j are prepared as a state xj = [qj ,x

r
j ]
T ,

where the real-valued continuous states are denoted with
xrj ∈ Rnr , and the discrete states denoted with qj ∈
{q1, . . . , qnd

}. State estimation and event detection on the
data streams from the AM plant is used for evaluating xj .
The data streams from the AM plant and the state xj are
shared with a database at the sampling rate τ .

B. DT Core

The most important purpose of a DT is to provide models
of the physical system with real-time updated state infor-
mation. For this purpose, an AM hybrid automaton (AM-
HA) model that captures both the continuous and discrete-
event dynamics of the AM process is included in the
DT core. A hybrid system model for the continuous and
discrete-event dynamics of a micro-AM deposition system
is proposed in [19]. Here, we propose a general-purpose
hybrid automaton for DT development with various AM-
processes. Definition of the AM-HA extends the definition
of the functional state model in [2].

Definition 1. [AM-Hybrid Automaton] An AM-HA is a tuple
H = (Q,X,U,Σ, f,G,R, Init) where:
• Q = {q1, . . . , qnd

} is the set of discrete states
• X ⊆ Rnr is the space of real-valued states
• U ⊆ Rnu is the space of admissible actuator inputs
• Σ ⊆ Q×Q is the set of discrete transition events (edges)
• f : Q × X × U → Rnr is a vector field for the

discrete time dynamics of the system ,such that xj+1 =
f(qi,x

r
j ,uj), qi ∈ Q,xrj ∈ X,uj ∈ U

• G : Σ→ 2X is a set of guards
• L : Σ×X → 2X is a reset map for the continuous states
• Init = {(q̃, x̃)| q̃ ∈ Q, x̃ ∈ X} is the initial state.

The hybrid state of H at time instant j is given as xj ∈
Q × X . Streaming data (with the estimated and observed

states) from the DT Interface is pushed to the DT Core
and the state xj is updated in each time-step j to track
the discrete and continuous states of the system. The hybrid
states of H are assumed to be observable. By updating
the hybrid state of the system in real-time, transitions of
the model (ej ∈ Σ) are also tracked. If some events are
observable through the output zj , the events are used for
updating the hybrid state as well. The hybrid system H, is
encoded in a predefined format (e.g. XML, JSON). The H
is shared with the DT Function and the up-to-date state xj
is shared every time-step with the DT Function (Fig. 1).

The AM-HA in the DT Core has the capability to predict
the future state progression {xj+1}nh

j=1 for a horizon of
length nh based on the current state, given that rj and uj
are provided for the prediction horizon. The prediction task
for a given horizon is done by evaluating traces of H, with
the initial condition as Init = xj and the actuator inputs uj
derived from the reference list r. A detailed analysis on the
simulation of the AM-HA H is subject for future work.

DT Core includes a database to store the evolution of state
trajectories xj as well as the data in the AM-workflow. The
reference list r of the AM process is also stored in the
database. This way, DT Function may request a real time
data stream and the reference data from the DT Core.

C. DT Function

DT Function makes use of the data from the DT Core
to perform various tasks including performance analysis and
anomaly detection. DT Function allows various applications
to be integrated with the DT, given that proper data types
are defined. Based on the available data streams inside the
DT, a generic DT Function g has the following data streams
available.
• Φ =

∧
∀φj∈Φ φj : a conjunction of ns propositions for the

AM process
• x̄ = {xi}t0+j+nh

i=t0
: sequence of hybrid states starting from

initial (initialization of the DT) time-step t0 up to current
time-step j and the prediction horizon nh

• z̄, ū: sequences of measured AM process outputs and
actuator inputs between time-steps [t0, j]

Utilizing the available input data streams, DT function out-
puts Θ. Depending on the specific application, the structure
of Θ may differ. Two illustrative DT Functions are discussed
in the case study. A DT Function g may use all the available
data streams although it is not required to do so. The
applications in this work lay the foundation for decision
making and in-situ control of FDM process using DTs.

1) Performance Monitoring: The AM process is subject
to exogenous disturbances, such as material impurities, noise
in the environment, and mechanical wear of the AM plant
and actuators. To understand the performance of the AM
process, certain key performance indicators (KPIs) must
be devised. By evaluating KPIs in real-time and between
different runs of an AM plant, the performance of the AM
plant is analyzed.

A KPI may be evaluated during a layer deposition, per
layer, or per process to keep track of historical performance



Fig. 3. The Ultimaker 3 used in the case study (left). Printer part using
dual extrusion FDM (right top) and the resulting chain geometry with the
support material removed (right bottom).

of an AM process. A DT Function evaluates the KPIs of the
AM process and reports the progression of a certain KPI in
the output Θ. An example KPI and its evaluation utilizing
DT Function is given in the case study.

2) Formal Logic-based Anomaly Detection: Though it is
possible to monitor the output of the AM plant z, functional
dynamics information is not apparent from the data streams
in z. For this purpose, the traces of the states of AM-HA
H are monitored by the DT Function (s(t) is taken as x̄) to
check the satisfaction of STL formulas given in Φ. In this
work we assume that a subject matter expert specifies the
correct STL formulas for the desired behavior of a system.
Examples of simple STL specifications, such as allowable
working temperature ranges for specific material selections
such as polylactic acid (PLA) and (polyvinyl alcohol) PVA
for an FDM process, are given in the case study.

A simple STL monitoring scheme is proposed in this work.
Based on the maximum window size (b− a, for the window
[a, b]) of a certain property φi, the signal-batch size β ∈ N for
the monitoring task is computed off-line. As a signal-batch, a
sequence of hybrid states {xj}j+τβj starting at initialization
time t0 becomes available, the STL properties are checked
on each signal-batch, and an anomaly is flagged if any STL
specification is violated. The batch processing induces a
delay between the estimation and STL monitoring task, thus
the batch size should be chosen according to the application
type and computational capacity. If β is large, satisfaction
of global properties may lead to issues due to the noise
and disturbances in the measured signal. A global property
must be satisfied for the window size in the specification,
thus if the signal-batches and the window sizes are too big,
the measured signal is prone to faulty violations due to
measurement noise. On the other hand, small β may cause
faulty violations of eventually properties. If there are delays
in some of the measurement signals, an eventually property
with small β may result in a premature violation of the
property. Note that, different φi ∈ Φ may have different
βi, and specification violation can be checked in parallel.
Efficient implementations and computation of batch sizes for
monitoring is subject for future work.

IV. CASE STUDIES IN FDM

A. Setup

An Ultimaker 3 printer is used for the case study, shown
in Fig. 3. The printer has two extruders. Left extruder in
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Fig. 4. The AM-HA model for dual extruder printer used in the case study.

the picture, ext0, extrudes the structural material (PLA),
while the right extruder, ext1, extrudes the support material
(PVA). A 3D chain geometry is printed for the case study,
which requires the use of both structural and support material
during the process (Fig. 3). Process data is collected from the
Jedi API of Ultimaker1. A real-time data collection pipeline
is set up using ADEPT2 framework of Applied Dynamics
International (ADI). A data server is set up to collect data
during the print via the API at a fixed sampling rate of
τ = 200 ms. The sampling rate is set based on the rate of
data availability through the Ultimaker API. The ADI data
collection framework is used for collecting material usage
and temperature data about the two extruders shown in Fig. 3.

1) AM Plant: The AM-HA for the experimental setup
is shown in Fig. 4. The system is initialized as idle (q1),
and as real-time data is streamed through the DT Interface,
the hybrid state xj of the hybrid automaton is updated. The
super-state Printing has two sub-states that model the use of
two extruders shown in Fig. 3. The model shown in Fig. 4
has eleven transitions Σ = {e1, . . . , e11} and five discrete
states Q = {q1, . . . , q5}.

For an FDM process, let M = {m1, . . . ,mn} be the
set of materials (mi) available for a specific machine. In
addition, define T i(t) ∈ R as the temperature reading at the
ith extruder, where t ∈ R is the time argument. Discrete
time readings of the temperature are denoted with subscripts
e.g. T ij , t ∈ jτ, j = 0, 1, . . .. Then the continuous states for
the temperature of two extruders are given as xrj = [T 0

j T
1
j ]T ,

and the inputs to heating actuators of two extruders are
given as uj = [u0

j u1
j ]
T . The heating dynamics of the

FDM machine are given by xj+1 = f(qj ,x
r
j ,uj), where

qj ∈ Q. Since the temperature readings of the two extruders
are directly measurable using the data collection framework,
the heating dynamics of the FDM machine can be computed,
meaning that we can directly evaluate the states xrj and the
heating input uj of the system from the output zj . The state
and input measurements are used in this case study for KPI
and STL monitoring.

There is no heating input in the Idle state (q1), thus the
dynamics of q1 is the autonomous cooling dynamics with
uj = 0. Similarly, the system has no dynamics in the Down
state (q5).

2) KPI Monitoring: A novel KPI to track the energy
efficiency of the AM plant is proposed in this work. Define

1http://software.ultimaker.com/jedi/api/
2https://www.adi.com/products/adept-framework/



µi[k] = [ui(t0), ui(t0 + τ), . . . , ui(tf )]T as the vector of
actuator input sequence in t ∈ [t0, tf ] for the ith extruder at
layer k. Additionally, define `i(mj , k) as the total length of
material mj used by the ith extruder at layer k. Then the
energy efficiency KPI for extruder i at layer k is defined as
Ei[k] =

∥∥µi[k]
∥∥

1
/`i(mj , k).

The majority of the energy consumption in an FDM
process is due to the heating of materials. The KPI Ei[k]
measures how much energy is consumed for heating versus
the amount of actual material extruded for the printing
process. Experimental results of this KPI with the case study
FDM setup are given below.

3) STL Monitoring: The β in this case study is chosen to
represent the smallest time interval for the activity of either
extruder. For the signals shown in Fig. 6, the batch size β
is chosen as 250τ = 50sec. Note that horizon lengths for
individual STL properties may differ. The bounds on the
STL properties can be set according to different physical
phenomena such as a desired viscosity of a material in a
certain temperature range, or the maximum temperature that
a certain extruder system allows. The STL properties in this
case study are defined based on the preferred working ranges
of temperatures for the structural and support materials m1

and m2 respectively. Additional STL properties are defined
for the performance of the heating actuators on the two
extruders as the following.

φ1 = �[0,β]

[
q3 → |∆T 0| ≤ α1(m1)

]
φ2 = �[¬q3 U [0,β]q3 → ♦[0,τ1

s ]

(
�[0,τ2

s ]|∆T 0| ≤ α2(m1)
)
]

φ3 = �[0,β]

[
q4 → |∆T 1| ≤ α3(m2)

]
φ4 = �[¬q4 U [0,β]q4 → ♦[0,τ1

s ]

(
�[0,τ2

s ]|∆T 1| ≤ α4(m2)
)
]

where ∆T k = T p(mi) − T kj is the temperature error for
extruder k at time j, T p(mi) is the printing temperature for
the material mi, τ1

s = 10 is the settling time, τ2
s = 15 is the

steady-state time, |·| is the L1-norm (absolute value), m1,m2

are the materials used in extruders 0 and 1 respectively,
and αi(·) are material dependent bounds for the satisfactory
execution of the FDM process. The printing temperature for
the structural material is T p(m1) = 205◦C, and the printing
temperature for the support material is T p(m1) = 225◦C.

The property φ1 reads as; whenever the extruder 0 is
active, the L1 norm between the temperature reading and the
printing temperature should be always bounded by α1(m1).
The bound on the structural material (PLA) is set as 10◦C,
thus α1(m1) = 10◦C. The property φ3 defines the same
bound for the support material as α3(m2) = 10◦C.

The property φ2 describes that whenever the extruder
0 is switched from inactive to active in the time interval
[0, β], the temperature of the extruder should eventually reach
the bound α2(m1) within τ1

s seconds and stay within the
bound for τ2

s seconds. This property is similar to the rise-
time and settling time of a dynamic system. The bound
α2(m1) is defined based on the 2% bound around the
printing temperature, thus α2(m1) = 4.1◦C. Similarly, we
have α4(m2) = 4.5◦C. The temperature evolution of the
FDM is measured during the case study and the satisfaction
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Fig. 5. Star markers show the KPI (on the left) and cumulative material
usage (on the right) for the ext0. Triangle markers show the KPI (on the
left) and cumulative material usage (on the right) for the ext1.

of the conjunction of all the STL properties are evaluated for
the measured signal.

Note that tracking the STL properties from the time-series
measurement of the AM process is not trivial. The proposed
DT framework (Fig. 1) with the hybrid model is required
to monitor the data with the discrete event and continuous
states to detect anomalies. STL properties with the hybrid
model define a formal infrastructure between the temporal
arguments, discrete states, and continuous states to perform
an efficient anomaly detection. Various STL specifications
may be devised for specific needs in an anomaly detection
application, utilizing the DT framework proposed in this
work.

B. Results

1) Performance monitoring: Fig. 5 shows the energy effi-
ciency KPI Ei[k] for the layers k ∈ [4, 26] in the experiment.
The signal µi[k] is calculated using the heater input signal
monitored using the ADI data extraction framework. The
heater input signal is normalized to be in the range of [0, 1]
and divided by the material use of the certain extruder in
a layer to compute the KPI Ei[k] for each layer, for both
extruders.

From the analysis of results shown in Fig. 5, it is con-
cluded that the fluctuation of Ei[k] between layers is largely
affected by the changing lengths of material used in each
layer and the energy consumed for reheating of materials
between material changes. Thus, using the same material for
longer in a single layer is more efficient since less re-heating
energy is consumed per length of printed material in a layer.
The value of the Ei[k] for both extruders are presented to
a user through the output of the DT. By tracking this KPI
between different runs of the same AM plant, it is possible to
get insight on degradation in the heating system. Degradation
will lead into lower efficiency, which results in an increasing
trend of Ei[k] between different runs of the AM plant.

2) Anomaly detection: Figure 6 shows the signals
T i(t), i = 1, 2 from the data collected during the experi-
ments, and the evolution of discrete states q3 and q4 with
respect to time. A pre-processing step is implemented in
the DT Interface to detect the times when each extruder is
active. The events that result in transition between discrete
states, temperature readings, and bounds are shown on the



Fig. 6. Top: Discrete states and transitions of the hybrid system given
in Fig. 4. Middle/Bottom: The temperature of ext1/ext0 versus time with
inactive periods grayed-out and printing temperatures are shown with red
dashed lines. Temperature bounds are shown with green fills. Violation of
φ3 is shown with the red triangle markers.
top plot of Fig. 6. As shown in Fig. 6, the measured signals
are analyzed in the time intervals on which each extruder
is active based on the STL specifications. Bounds shown in
green are set by α2 and α4, and the printing temperatures
are shown with red dashed lines.

The intervals on times [118.4, 120] and [190.8, 191.2]
violate the proposition φ3, as shown in Fig. 6. The violation
is caused by the temperature of extruder 1 being outside
of the bounds set by α3(m2). Note that the bounds set by
α3(m2) are violated multiple times through the experiment,
but since the STL properties define the time intervals in
which a property must be satisfied with respect to the states
of the hybrid model, an anomaly is accurately detected. The
detected anomaly is reported to the user through the output Θ
of the DT. Measurement signals in the case study satisfy the
heating dynamics conditions set by propositions φ2 and φ4,
which are not explicitly illustrated due to space constraints.

V. CONCLUSION

A DT architecture for performance monitoring and
anomaly detection in AM processes is presented in this work.
The proposed DT has a hybrid automaton model in its core,
that is able to capture both the functional and the continuous
dynamics of an AM process, and a flexible function block
that may be utilized for multiple purposes such as anomaly
detection and performance monitoring. The use of STL spec-
ifications for anomaly detection in AM processes is proposed
as a novel contribution. Additionally, a new KPI metric is
proposed for performance monitoring in FDM processes. The
proposed DT is implemented on an off-the-shelf FDM 3D
printer, and experimental results on performance monitoring
and anomaly detection are presented. Experimental results
show that the proposed DT provides additional monitoring
and analysis capabilities to the physical system.

Future work will focus on the development of efficient
techniques for real-time data processing and STL monitoring.
Leveraging the architecture presented in this work, efficient
schemes for system monitoring and control for multiple AM
machines will be investigated in future developments.
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