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Abstract
Large-scale electricity outages have the potential to result in substantial business interruption
losses. These losses can be reduced through a number of tactics within the broader strategies of
mitigation and resilience. This paper presents a methodology for analyzing the tradeoffs
between mitigation and three categories of resilience. We derive optimality conditions for
various combinations of strategies for a Cobb-Douglas damage function and then explore
implications of a less restrictive Constant Elasticity of Substitution damage function. We also
calibrate the model and perform Monte Carlo simulations to test the sensitivity of the results
with respect to changes in major parameters. Simulation results highlight the possibility that
substitution away from mitigation towards resilience may lower total expected costs from
large-scale outages for a given level of risk reduction expenditure when the marginal benefit of
resilience is high relative to the expected marginal benefit of mitigation.

Keywords Electricity outages . Economic losses . Reliability . Mitigation . Resilience . Risk
reduction trade-offs

Introduction

The issue of electricity reliability is a serious one because this utility service is so critical to
human health and well-being. Moreover, the trend of electricity dependence and outages are
both on the rise (Eto et al. 2012). Reliability has been widely studied, and technologies and
market innovations have been developed and implemented to improve it. Nearly all of these
solutions, however, focus on the supply-side by reducing the frequency and magnitude of the
initial outage. For example, by identifying and addressing weaknesses in critical nodes of
electricity systems, reliability of electricity grids during a cascading failure can be greatly
enhanced (Chang and Wu 2011). Also, electricity systems can be designed to recover more
quickly from unplanned outages.
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What is often overlooked is the behavioral response on the customer side to partial or
complete electricity outages. These responses basically involve tactics to cope with electricity
shortages and have been brought under the heading of resilience (Rose et al. 2007a, b;
Greenberg et al. 2007). From an economic perspective, resilience pertains to actions taken to
use resources as efficiently as possible to maintain production in the face of a disruption of
critical inputs and to accelerate recovery (Rose 2004, 2017; Xie et al. 2018). It is actually a
process where resilience capacity can be built up in advance to be implemented when needed
(inherent resilience), as well as various improvisations once the disruption has begun (adaptive
resilience).1 Prime tactics in the electricity arena to minimize business interruption (BI) are:
conservation, backup generators, distributed generation, relocation, and production
rescheduling. Formal modeling at the microeconomic level has been done in the context of
economic production theory to analyze the optimal mix of tactics, i.e., to create an overall
optimal resilience strategy (Rose and Liao 2005; Dormady et al. 2018a). Analyses have been
undertaken to examine the effectiveness of these tactics at the level of the individual business
and the broader supply-chain implications in relation to the Northridge Earthquake power
outages, post-regulation electricity shortages of the early 2000’s, and simulated disasters such
as a terrorist attack (Rose and Lim 2002; Rose et al. 2005; Rose et al. 2007a). Many resilience
tactics have already been implemented, and insurance companies have been known to
reimburse policy-holders for the purchase of back-up generators (Eto et al. 2001). More
recently, progress has been made in actually measuring the cost, in addition to the effective-
ness, of various resilience tactics (Dormady et al. 2018b).

A critical gap in our understanding of how to cope with electricity disruptions is the
optimal mix of pre-event activities (generally categorized as mitigation) and post-event
activities (resilience). As electricity reliability is usually couched in terms of mitigation,
we can also refer to this as the Breliability-resilience trade-off.^2 The purpose of this
paper is to develop an analytical model to examine these trade-offs under various
conditions relating to characteristics of individual mitigation and resilience strategies
and matters of timing. More specifically, we develop and calibrate a theoretical model in
which expected BI from electricity outages can be decreased using a combination of
mitigation and resilience strategies. In order to calibrate the model, we use a benefit-cost

1 Dozens of definitions of resilience have been offered along several dimensions. One important distinction is
between definitions that consider resilience to be any action that reduces risk (e.g., Bruneau et al. 2003),
including those taken before, during and after an unforeseen event, such as a power outage, and those that use
the term narrowly to include only actions taken after the event has commenced, acknowledging, however, that
resilience is a process. The latter definition does not ignore pre-event actions, but prefers to refer to them as
mitigation, and emphasizes that the intent of these actions is to make a system more resistant, robust or reliable
(in standard engineering terminology). Our definition simply chooses to focus on the basic etymological root of
resilience, Bto rebound^, and thus emphasizes system or business continuity in the static sense and recovery in the
dynamic one (see also Greenberg et al. 2007). The distinction between reliability (as promoted by mitigation) and
resilience is poignantly stated in a recent NRC report: BResilience is not the same as reliability. While minimizing
the likelihood of large-area, long-duration outages is important, a resilient system is one that acknowledges that
such outages can occur, prepares to deal with them, minimizes their impact when they occur, is able to restore
service quickly, and draws lessons from the experience to improve performance in the future^ (NRC 2017, p. 10)
2 Keogh and Cody (2013; p. 1) have suggested that the term Bresilience^ might be considered as covering both
Brobustness and recovery characteristics of utility infrastructure and operations, both of which avoid or minimize
interruptions of service during an extraordinary and hazardous event.^ As such, it is intended to be broader than
the term Breliability ,̂ in that they do not consider reliability to be sufficiently meaningful to handle large-scale
disruptions. However, we contend that this juxtaposition is confusing, and prefer to refer to reliability as a goal of
pre-event mitigation and resilience as activities to be implemented to reduce losses once the event has
commenced.
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ratio for each strategy to reflect the total expected BI loss reduction from an electricity
outage as a function of spending on each. By minimizing the sum of total expected losses
and expenditures on risk reduction strategies, we calculate the optimal mix of risk
reduction strategies for a given level of total expenditure.

Overview of Strategies

We specify a set of risk reduction strategies and the pathway through which they reduce
total losses from an outage in Table 1. We define this set to include: 1) ex-ante mitigation
strategies intended to reduce the magnitude of electricity outages, 2) ex-ante customer
investments in inherent resilience that reduces the need for electricity in the event of an
outage, 3) ex-post customer adaptive resilience expenditures that reduce the BI from losing
electricity, and 4) ex-post dynamic resilience that reduces the duration of the recovery of the
utility and hence increases the speed3 of recovery of business activity. We also note several
characteristics of each strategy that may be relevant to assessing particular models of
outage costs. Not all of these delineations are highlighted in the models presented in this
paper but are intended to serve as guidance for which particular cases can be considered in
future research.4

This paper presents a theoretical model in which a benevolent social planner selects an
optimal portfolio of mitigation and resilience in order to minimize expected electricity
outage losses. While there are important considerations related to externalities (e.g.,
whether consumer-level optimization decisions affect BI for other consumers), the assump-
tion that decisions are made by a single social planner allows us to abstract from game
theoretical components of the mitigation/resilience tradeoff. We explore a range of models
in which mitigation and resilience can reduce BI losses. In each case, we assume that
mitigation and inherent static resilience require expenditures before it is possible to know
whether or not an outage will occur within a given timeframe, while adaptive static
resilience and dynamic resilience are undertaken ex-post.5 We develop this framework in
both one-period and multi-period frameworks, and employ a Monte Carlo simulation
centered on the uncertainty in the efficacy of mitigation and resilience.

3 BSpeed^ here is short-hand for the entire time-path of the recovery. This has two important dimensions: the
shape of the entire time-path and its duration. Jump-starting the recovery and shortening its duration can both
reduce BI losses, though the former is likely to have the greater effect (see Xie et al. 2018).
4 Note that this paper encompasses only the electricity generation and utilization stages of electricity. It omits the
distribution aspect, where several tactics, including many market-oriented ones such as dispatchable ancillary
services and black start services, could reduce losses. While these are beyond the scope of our paper, the
modeling framework can be adapted to include various alternative mitigation and resilience tactics.
5 While mitigation and inherent static resilience expenditures are often large investments that are paid for over
many years, the decision to make these investments is made prior to the realization of whether an outage occurs
so the costs can be viewed by discounting the stream of future payments to the time that the investment decision
was made. Further, while utilities can recoup some of these costs through rate of return regulation we abstract
away from these details because their inclusion does not alter our analysis. While there are complex situations
related to electricity storage where modification in investment timing are possible during the course of an outage,
these complications are beyond the scope of our paper.
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Baseline Theoretical Model: Tradeoff Between Mitigation (Reliability)
and Resilience

Background

In our model, planners seek to minimize the sum of expected losses contingent on a certain
total level of expected mitigation and resilience expenditure. Damages occur only if an outage
takes place, which happens with probability P. Losses are a function of mitigation and
resilience expenditures as well as an underlying parameter that reflects the inherent disaster
risk. We assume that planners have decided on a targeted overall expenditure level for disaster
loss reduction.6,7

6 This problem could also be formulated based on minimizing expenditure given a targeted level of loss
reduction. The resulting optimal levels of mitigation and resilience would be equivalent to the model that we
present according to duality theory.
7 While we focus on business interruption as measured by decrease in GDP (Sanstad 2013), there are several
alternative ways to measure losses from electric power outages including Value of Lost Load (VOLL), System
Average Interruption Duration Index (SAIDI), and expenditure on backup generation (See, e.g., Keogh and Cody
2013, Matsukawa and Fuji 1994; Beenstock et al. 1997). There are also distinction between Bdirect^ and
Bindirect^ losses, where the former term refers to losses in revenue and lost consumer output while the latter
term refers to supply chain losses. Our modeling framework is sufficiently general to cover these alternative
definitions of losses.

Table 1 Strategies for reducing BI

Mitigation Dynamic Resilience Adaptive Static
Resilience

Inherent Static
Resilience

Example Smart
Meters/

Regulatory
Tariffs

Dispatching
Replacement
Equipment
Quickly

Production Re-Routed to
Non-Affected Areas

Purchase & then Use
Backup Generator

Decision-making
Entity

Utility Utility Customer Customer

Affects Magnitude X
Affects Frequencya Someb

Affects Duration of
Recovery

X

Affects Speed of
Recovery

X X X

Public Good or Private
Good

Public Public Private Private

Period when
Expenditure Takes
Place

Before
Outage

After Outage
Begins

After Outage
Begins

Before Outage

Period when
Implementation
Takes Place

During
Outage

After Outage
Begins

After Outage Begins After Outage Begins

Time Periods in
Analysis

At least 1 At least 2 At least 1 At least 2

a Frequency refers to how often outages occur rather than the electrical frequency (Hertz) associated with the
electricity
b Some types of mitigation will reduce the frequency with which outages take place, but for the purpose of the
analysis presented in the paper, we abstract away from this effect
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Mitigation tactics - such as installing stronger transformers and replacing existing solar
inverters with technologically-advanced smart inverters – reduce the likelihood of a major
outage, while advanced metering infrastructure can reduce the duration of an outage. Resil-
ience tactics, such as shifting production to unaffected areas or substituting alternative
production inputs, also reduce the magnitude of disaster damages. There are two key distinc-
tions between mitigation and resilience that influence the optimal mix of the two general
strategies. First, some inherent and all adaptive resilience only occurs, and resilience costs are
typically only incurred, if an outage takes place. Mitigation, on the other hand, is paid for up-
front, and costs are incurred even if an outage does not happen.

The planner’s general problem is to minimize:

min
m;r

PD γmrð Þ þ P prr þ pmm s:t:P prr þ pmm ¼ c

We denote mitigation and resilience allocation quantities with m and r, respectively. pr and pm
are the price of resilience and mitigation per unit, and the parameter γ is the underlying risk
exposure. c is the level of expenditure to be allocated towards risk reduction.

Note that in the budget constraint the expenditure on resilience, pr*r, is multiplied by the
probability of an outage, P. This is the case because resilience expenditure will only take place
when the outage occurs (with probability P). The budget constraint can therefore be concep-
tualized as holding only in expectation. When an outage takes place and resilience expendi-
tures occur, spending will exceed c. When an outage does not take place, total realized
expenditure is equal to expenditure on mitigation (which is below c), and if an outage does
take place, total realized expenditure is equal to expenditure on mitigation plus expenditure on
resilience (which exceeds c).

Below, we define the loss function in a Cobb-Douglas specification, i.e., D(γ,m,
r ) = γmαrβ, where α and β are elasticity parameters reflecting the efficacy of the loss reduction
strategies. γ is the level of economic losses from outages given current levels of mitigation and
resilience. A larger γ parameter indicates greater disaster damages at all levels of mitigation
and resilience.

An alternative formulation would be a linear production function, where mitigation and
resilience are purely additive, and which implies the two are perfect substitutes. However, we
have pursued a Cobb-Douglas (power function) formulation for two major reasons. First, the
linear production function is likely to result in corner solutions in an optimization problem (all
one strategy or the other). Second, the linear production function implies a constant marginal
product. This is inconsistent with the existence of diminishing returns that have been found to
be prevalent in empirical analyses of both mitigation and resilience. For example, studies
indicate a declining schedule of benefit-cost ratios (BCRs) for mitigation alternatives, as
measures of efficacy (Rose et al. 2007a, b). While empirical analyses of resilience are still
in their infancy, preliminary indications are that BCRs vary across individual resilience tactics,
such as conservation or substitution for critical inputs, use of inventories, and excess capacity
for business relocation. The constant marginal rate of technical substitution associated with the
linear production function would require either constant marginal products or perfectly
offsetting percentage changes in marginal products of the two inputs (risk reduction strategies),
so that the ratio of the two would remain constant.

There are several notable shortcomings of the Cobb-Douglas framework that should be
considered when interpreting these results. Most notably, the cost shares for each risk reduction

Economics of Disasters and Climate Change (2019) 3:61–77 65



strategy are constant and entirely determined by the relative exponential parameters. This
specification also precludes the possibility of corner solutions (i.e., using only either mitigation
or resilience). While electricity-oriented mitigation expenditure may in fact be zero for
consumers, it is unlikely that corner solutions will exist when viewed from the meso- or
macro-level. Similarly, the Cobb-Douglas formulation suggests that, if the expenditure target is
equal to zero, damages will be infinite. Again, while particular customers may not allocate
expenditure towards risk reduction, this is unlikely to be the case at an aggregated level.

Analytics of Mitigation vs. Adaptive Resilience

First, we consider the simplest case: a single period in which we analyze the trade-offs between
reliability and resilience, where the probability of an outage is exogenous with respect to the
mitigation to promote reliability and resilience to reduce business interruption. In essence, the
model minimizes the allocation of expenditure across these two broad strategies. More specif-
ically, this case examines the trade-off between mitigation that reduces themagnitude of the loss
from the outage and adaptive resilience that reduces the ensuing BI. Adaptive resilience refers
to customer actions that result from improvisation after the outage begins, with no pre-outage
expenditure. Examples would include: conservation, re-routing production to branch plants that
have electricity, making up lost production at a later date,8 etc. This can be treated as a one-
period model because of the anticipation of the amount of adaptive resilience, which itself takes
place in only one period (in contrast to the 2-period nature of inherent resilience).

Given our Cobb-Douglas framework in which disaster damage is given by D(γ,m,
r ) = γmαrβ, the planner’s problem is given by the following explicit production function and
expenditure constraint:

min
m;r

P γmαrβ þ P prr þ pmm s:t:P prr þ pmm ¼ c

Solving this cost-minimization problem yields the optimal level of mitigation:

m* ¼ cα
pm β þ αð Þ

r* ¼ cβ
P pm β þ αð Þ

Note that both the optimal level of mitigation, m*, and the optimal level of resilience, r*, are
functions of each exponential parameter, α and β, as well as the budget constraint. Only
resilience is dependent on the frequency with which a disaster occurs.

The invariance of each risk management alternative to the price of the other options is
driven by the assumption that damages are determined according to a Cobb-Douglas function.
This functional form assumes a constant elasticity of substitution (equal to unity). The
functional form also calls for the share, but not the absolute level, of total expenditure for
each input (strategy) to be driven by the Cobb-Douglas parameters. The optimal level of
expenditure on each risk management alternative is strongly affected by the benefit-cost ratios

8 Production rescheduling would best be modeled with 2 periods following the onset of the outage.
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in relation to their marginal productivities, and the absolute levels of mitigation and resilience
are determined by their costs. Similarly, the relationship between the probability of an outage
and adaptive resilience is a result of the fixed expected expenditure on resilience. As the
probability of an outage decreases, the amount of adaptive resilience rises in order to hold
expected expenditure constant. Note, however, that this suggests lower overall losses from
outages, in part, because adaptive resilience expenditures are less likely to be needed.

By taking the derivative of m* and r* with respect to each of the parameters, one can
show the effect of parameter changes on optimal levels of mitigation and resilience. The set
of these partial derivatives are given below. The probability of a disaster P must fall between
0 and 1, and the parameters α and βmust be less than zero if mitigation and resilience reduce
losses:

∂m*

∂c
¼ α

pm αþ βð Þ > 0

∂m*

∂α
¼ c β

pm αþ βð Þ2 < 0

∂m*

∂β
¼ −

cα

pm αþ βð Þ2 > 0

∂r*

∂c
¼ α

prP αþ βð Þ > 0

∂r*

∂α
¼ −

c β

prP αþ βð Þ2 > 0

∂r*

∂β
¼ cα

prP αþ βð Þ2 < 0

Both the optimal level of mitigation and the optimal level of resilience are increasing in the
budget constraint, c. The optimal level of each strategy is decreasing in its own exponential
parameter (e.g. the optimal level of mitigation is decreasing in α). This occurs because of the
underlying structure of the damage function. Note, for example, that if α were to equal −1, the
exogenous level of damages, γ would be multiplied by 1/m. If instead, α were to equal −0.5, γ
would instead be multiplied by 1ffiffiffi

m
p . Similarly, the optimal level of each tactic is increasing with

the other tactic’s exponential parameter (e.g. the optimal level of mitigation is increasing in β).
As a given strategy becomes less effective at reducing damages, the alternative strategies
become relatively more attractive by the assumption of substitutability between the two.

As a numerical example, suppose that an entity would experience outage costs of $100
million if a disaster struck at baseline levels of mitigation and resilience. Further suppose that
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an electricity service disruption occurs with probability P = 0.25, and that the entity is currently
spending $10 million on mitigation and $5 million on resilience. The entity wishes to increase
its risk reduction expenditure by 10% to $16.5 million total.

We can parameterize the values α and β based on beliefs about the marginal effectiveness
of remaining mitigation and resilience strategies. Suppose, for example, that the next best
remaining mitigation tactics (given the existing level of $10 million in mitigation) provides
benefits in relation to costs of 4:1, and the best remaining resilience tactics provides benefits of
5:1.9 We would require α such that a 10% increase in mitigation expenditure (a $1 million
increase) results in a reduction in disaster losses of $4 million. Similarly, we require β such that
a 20% increase in resilience expenditure (a $1 million increase) results in a reduction in
disaster losses of $5 million. In each case, we hold the level of the alternative risk reduction at
current levels. The resulting values are α = −0.428 and β = −0.281.

The optimal mitigation and resilience levels are m = 0.996 and r = 1.308. The interpretation
here is that current levels of mitigation should be decreased slightly from the assumed baseline
of $10 million to $9.96 million, while resilience levels should be increased from the assumed
baseline of $5 million to $6.54 million. Note that total expenditure meets the new expenditure
goal of $16.5 million. Electricity outage losses have been reduced from the $100 million
baseline to $92.89 million. Expected losses have fallen from $25 million to $23.2 million.

There is, of course, uncertainty in each of the assumptions underlying the parameterization.
To investigate the sensitivity of the results to these assumptions we conducted a simple Monte
Carlo analysis by assuming that each parameter is a random variable. The optimal levels of
mitigation and resilience are defined deterministically as a function of the price of resilience,
the price of mitigation, the probability of an outage, the budget constraint, and the Cobb-
Douglas parameters. The relevant BCR and the existing levels of mitigation and resilience in
turn determine the Cobb-Douglas parameters.

We took 10,000 draws of each of these variables and re-evaluated the optimal level of
mitigation and resilience according to the solution derived in the analytical model. Because
there is little evidence by which to determine the appropriate range and distribution for these
variables, we choose a relatively wide range for our Monte Carlo draws. Moreover, because
our primary motivation is in understanding the relationship between each variable and the
mixture of mitigation and resilience, we are generally unconcerned with the particular values
of mitigation and resilience in the parameterizations themselves. In each case, we draw from a
triangular distribution. This distribution allows us to specify the minimum, maximum, and
modal values fromwhich variables are drawn, and to guarantee the non-negativity of variables.
Table 2 presents the range of each randomized variable in the Monte Carlo analysis.

In Fig. 1, we show the correlation between mitigation and adaptive resilience in turn with:
1) the BCR of adaptive resilience, 2) the BCR of mitigation, 3) the probability of an outage,
and 4) the risk reduction expenditure target. The primary discernible patterns are the relation-
ships between adaptive resilience and the probability of an outage, and between mitigation and

9 The mitigation BCR stems from Rose et al. (2007a, b), and the resilience BCR from Dormady et al (2018a). We
note a major distinction between the benefits of investment in mitigation and dynamic resilience versus benefits
of investment in inherent and adaptive static resilience. The former has public good attributes, in that reducing the
magnitude or duration of the outage benefits all customers. However, the latter is a private good, in that it only
directly benefits the firm undertaking the investment. Our BCRs factor this into their numerical values (see Rose
2017). Note also that distinctions made above pertain to partial equilibrium analyses; general equilibrium
analysis, which would include supply-chain effects, include spillover effects that cannot be captured by either
the utility or individual firms (see also Sue Wing and Rose 2018).
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the BCR of mitigation. The former occurs because the Cobb-Douglas specification implies the
share of expected expenditure allocated to adaptive resilience remains constant regardless of
how frequently adaptive resilience actually takes place. The BCR of mitigation has a relatively
strong impact because the BCR of mitigation tends to be relatively low, resulting in a larger
alpha parameter.

Refinements of the Base Case Model

The Base Case model can be modified to represent any given combination of mitigation and
resilience strategies and tactics.

For example, in the case of comparing the optimal portfolio of mitigation to reduce outage
frequency and dynamic resilience to recover in accelerated manner, the probability of an
outage would need to depend on ex-ante mitigation expenditure, while BI would need to occur
for multiple periods, with the duration and magnitude of BI in post-outage periods
being dependent on resilience.

The social planner’s problem in this case would be:

min
m;ra;rd

P mð Þ γmαrβa
� �þ P mð Þ I rd ¼ 0ð Þ D2 þ pmmþ P mð Þ prara þ prd rd

� �

s:t:pmmþ P mð Þ pra ra þ prd rd
� � ¼ c

Note that now BI occurs in two periods. BI in the first period is determined by mitigation
expenditure and resilience expenditure. BI in the second period, however, is determined by
whether or not dynamic resilience takes place. The probability of an outage is determined by
the amount of mitigation that is undertaken. This not only affects the expected BI due to
electricity outages but also the expected optimal expenditure on resilience (because resilience
expenditure only takes place in the event of an outage).

In Table 3 we present a set of cases that provide a robust understanding of the various risk
management options and how they would be incorporated into a model of optimal risk
strategies.

Table 2 Variable Ranges in Monte Carlo Analysis

Minimum Mode Maximum

BCR Mitigation 3 4 5
BCR Inherent Resilience 8 10 12
BCR Dynamic Resilience 6 8 10
BCR Adaptive Resilience 7 9 11
Mitigation Price 5 10 15
Resilience Price 5 10 15
Probability of Outage 0.01 0.25 0.5
Damages from Outage 50 100 150
Damages in Second Period (Dynamic Resilience Case Only) 5 10 15
Expenditure Target 10 15 20
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Case II. Include Inherent Resilience

Some resilience strategies require ex-ante expenditures. For example, while portable genera-
tors can reduce the amount of time that a business goes without power during an outage, the
generator, and often the fuel, must be purchased beforehand. Such strategies are referred to as
inherent resilience (Rose 2004, 2017).

In order to incorporate this type of resilience, we introduce a new component to the damage
function. Like mitigation, funds are expended on inherent resilience regardless of whether an
outage takes place. The augmented social planner’s problem is thus:

min
m;ra;ri

P γmαrβa r
η
i þ P prra þ prri þ pmm

s:t: Ppr r þ prra þ pmm ¼ c

where the α and i subscripts of r refer to adaptive and inherent types of resilience, respectively.
We again utilize the fact that the ratio of the marginal productivities must equal the ratio of

the prices of the loss reduction strategies, but now exploit two additional such expressions (the
ratio of mitigation to inherent resilience and the ratio of mitigation to adaptive resilience).

Inherent resilience in this case is similar in nature to mitigation - it occurs with certainty and
yields benefits according to its underlying parameter. The major difference, of course, as noted
earlier in the paper, is that mitigation is undertaken by the electric utility, and most resilience is
undertaken by its customers.

By substituting these values into the budget constraint, we find:

m* ¼ cα
pm β þ αþ ηð Þ

r*a ¼
cβ

Ppra β þ αþ ηð Þ

r*i ¼
cη

pri β þ αþ ηð Þ

Fig. 1 Sensitivity of Mitigation and Adaptive Resilience to Parameter Assumptions
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The key results are largely unaffected by the introduction of inherent resilience. The optimal
allocation of each risk management option increases as its associated parameter falls (be-
comes more negative) and decreases as the parameters for the other risk management options
fall. Because inherent resilience expenditures in this model formulation occur with certainty
(rather than occurring only if an outage takes place, as is the case with adaptive resilience),
the optimal allocation of spending on mitigation and inherent resilience is essentially
identically motivated though the actual levels depend on BCR levels. Indeed, inherent
resilience functions look much like mitigation. The major difference is that mitigation
reduces losses for all customers, but inherent resilience reduces losses just for the customers
that implement it.

In Fig. 2, we present the results of a Monte Carlo analysis with the inclusion of inherent
resilience. The primary relationships remain unchanged. It is important to note the similarity
between mitigation and inherent resilience (rows 2 and 3). The variations in these risk
strategies are similar because the level of ex-ante inherent resilience expenditure is modeled
identically to that of mitigation in the confines of our model.

Case III. Include Dynamic Resilience

We also consider the possibility of dynamic resilience. Dynamic resilience takes place after an
outage and, in our simplified example, reduces the duration of the outage, thereby reducing the
losses incurred. In this case, we treat subsequent damages as binary. If dynamic resilience is
undertaken, then damage will not occur in the second period; but if dynamic resilience does
not take place, then there will be damages in a second period. In our initial formulation,
dynamic resilience can only take on a value of zero (there is no dynamic resilience, and losses
occur in the second period) or one (there is dynamic resilience, and no second period losses
occur).

The optimization problem for the social planner in this case is:

min
m;ra;rd

P γmαrβa þ I rd ¼ 0ð Þ*D2 þ P prra þ P*I rd ¼ 1ð Þ*pd þ pmm

s:t: Ppr r þ Ppd*I rd ¼ 1ð Þ þ pmm ¼ c

The key difference between this formulation and the Base Case is the introduction of an
indicator function I(.), which takes on a value of one only if the associated conditions are met.
For example, if there is no dynamic resilience allocation I(rd = 0), then D2 is added to the
baseline losses, but, if dynamic resilience takes place, I(rd = 0) is false and takes on a value of
zero.

Table 3 Modifications to Base Case Model for Each Strategy

Mitigation Dynamic Resilience Adaptive Resilience Inherent Resilience

I. Base Case X X
II. Include Inherent Resilience X X X
III. Include Dynamic Resilience X X X
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This results in two optimization problems: one in which dynamic resilience takes place, and
one in which dynamic resilience does not take place. The final allocation decision is deter-
mined by whether expected losses are higher with or without dynamic resilience.

First, we consider the scenario in which dynamic resilience does not take place (i.e., rd = 0).
In this case the problem reduces to the Base Case because no dynamic resilience expenditure
takes place and the additional damage is additive:

m* ¼ cα
pm β þ αð Þ

r*a ¼
cβ

Ppra β þ αð Þ

r*d ¼ 0

If dynamic resilience does take place, mitigation and adaptive resilience allocations are
reduced through the mechanism of the budget constraint. The optimal levels of mitigation
and adaptive resilience (contingent on paying for dynamic resilience) can again be calculated
using the ratio of marginal products and the ratio of the prices.

The optimal risk reduction levels are:

m* ¼ c−Pprd
� �

α

pm β þ αð Þ

r*a ¼
c−Pprd
� �

β

Ppra β þ αð Þ

r*d ¼ 1

Fig. 2 Sensitivity of Mitigation, Inherent Resilience, and Adaptive Resilience to Parameter Assumptions
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The social planner will compare the expected total damages in each case and choose whether
or not to pursue dynamic resilience as a risk reduction strategy. In the former case, the total
expected expenditure is:

Expenditure ¼ P γ
cα

pm β þ αð Þ
� �α cβ

Ppra β þ αð Þ
� �β

þ D2 þ P pr
cβ

Ppra β þ αð Þ
� �

þ pm
cα

pm β þ αð Þ
� �

If, on the other hand, dynamic resilience takes place, total expected expenditure is:

Expenditure ¼ P γ
c−prd
� �

α

pm β þ αð Þ
� �α c−prd

� �
β

Ppra β þ αð Þ
� �β

þ Ppd þ P pr
cβ

Ppra β þ αð Þ
� �

þ pm
cα

pm β þ αð Þ
� �

Whether or not it is optimal to allocate resources to dynamic resilience depends on several key
components. First, as the price of dynamic resilience increases, the likelihood that dynamic
resilience is in the optimal risk reduction set decreases. Similarly, as the damage in subsequent
periods decreases, the likelihood that dynamic resilience will take place falls. This extends to
the case of dynamic resilience affecting multiple periods, as well. If losses from an outage are
expected to continue for multiple periods or if losses are viewed as a continuous flow, these
damages can simply be aggregated into a single net present value of losses that can be offset
with dynamic resilience.

The attractiveness of dynamic resilience also decreases with the efficacy of mitigation and
adaptive resilience. Because we assume a fixed budget constraint, allocating additional
expenditures to dynamic resilience limits the amount of mitigation and adaptive resilience
that can take place. If these alternative risk reduction strategies yield large enough benefits, the
social planner would prefer to absorb the losses in later periods in order to reduce damages in
the main outage period.

We again present a Monte Carlo analysis in Fig. 3. Dynamic resilience introduces
additional complexity into the model. It should only take place when its cost is relatively
low or when the losses from the outage in subsequent periods are relatively high. If
dynamic resilience is justified, the total amount of mitigation and adaptive resilience
declines because funding must be allocated to pay for the dynamic resilience. This

Fig. 3 Sensitivity of Mitigation, Adaptive Resilience, and Dynamic Resilience to Parameter Assumptions
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complicates the formulation of the optimal level of mitigation and adaptive resilience by
inducing relationships between these risk management strategies that do not exist in the
simple Cobb-Douglas formulation. For example, mitigation expenditure is not correlated
with the cost of adaptive resilience in the base case, but they are related when dynamic
resilience is introduced because the cost of adaptive resilience influences the attractive-
ness of dynamic resilience.

Case IV: Alternative Damage Function

The results so far have assumed that damages follow a Cobb-Douglas functional form. While
the Cobb-Douglas specification simplifies the cost-minimization problem it also places
specific constraints on the relationship between mitigation and resilience. For example, the
Cobb-Douglas form implies that the quantity of mitigation is invariant to the price of
resilience and vice versa. In order to explore these relationships, we consider a generalization
of the Cobb-Douglas functional form: Constant Elasticity of Substitution (CES). The CES is
more general in that it does not require fixed expenditure shares for each of the risk reduction
strategies.

In the CES specification the social planner’s optimization problem is:

min
m;r

P*γ αmρ þ βrρð Þ1ρ þ Pprr þ pmm

s:t: Ppr r þ pmm ¼ c

The new parameter, ρ, relates to the elasticity of substitution between mitigation and
resilience. Specifically 1

1−ρ is the elasticity of substitution between mitigation and

resilience. When ρ is equal to 1, mitigation and resilience are perfect substitutes
and as ρ approaches zero, the damage function approaches the Cobb-Douglas
specification.

The solution to this problem is:

m* ¼ c pm
α

� � 1
ρ−1

pm
pm
α

� � 1
ρ−1 þ Ppr

pr
β

	 
 1
ρ−1

r* ¼
c Ppr

α

	 
 1
ρ−1

pm
pm
α

� � 1
ρ−1 þ Ppr

pr
β

	 
 1
ρ−1

In contrast to the Cobb-Douglas solutions, the optimal level of mitigation depends on
the price of resilience, and the optimal level of resilience depends on the price of
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mitigation. As in the Cobb-Douglas case, the optimal level of each risk reduction
strategy declines as its own price increases, but in the CES functional form the budget
shares change as well as the absolute quantity. As a result, there is a substitution
effect towards the other risk reduction strategy as prices increase. As ρ increases, the
substitutability between mitigation and resilience rises, so that changes in prices result
in larger changes in the mix between mitigation and resilience.

Figures 4 and 5 show the relationship between the optimal level of mitigation and
resilience and each of the key parameters under assumptions of ρ = 0.5 and ρ = 1.5,
respectively. When ρ = 0.5, price effects are quite modest for resilience and larger for
mitigation. When ρ = 1.5, the optimal level of resilience is much more responsive to
changes in mitigation and resilience prices. Note that because expenditures on resil-
ience are only made with probability, P, the effect of a change in the price of
resilience is scaled by P - a $1 increase in the price of resilience would only result
in a $1*P increase in ex ante resilience expenditure. As a result, mitigation is much
more responsive to relative price changes than resilience though this effect declines as
the ρ parameter rises.

Fig. 4 Sensitivity of Mitigation and Adaptive Resilience to Parameter Assumptions with ρ = 0.5

Fig. 5 Sensitivity of Mitigation and Adaptive Resilience to Parameter Assumptions with ρ = 0.5
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Conclusion

This study created a framework for assessing tradeoffs between various risk management
strategies and applied this framework to consider mitigation, adaptive resilience, inherent
resilience, and dynamic resilience. We have derived the conditions for optimizing the mix of
various combinations of risk reduction strategies. We have also run sensitivity tests to gain
further insight and test the robustness of the results.

The key conclusions from this paper pertain to the relationship between the relative marginal
benefits of each risk management strategy and their relative marginal costs. Because the Cobb-
Douglas functional form resulted in a number of simplifying assumptions (e.g., constant elasticity
of substitution equal to unity between each combination of two strategies), this relationship will
not change. If the loss function were relaxed by treating mitigation and resilience as additive or by
considering alternative functional forms, the relationship between optimal levels of risk manage-
ment alternatives would obviously change. However, the conclusion holds that policy makers
should holistically consider the relative benefits each risk management strategy. Policy makers
who pursue extensive levels of mitigation may be over-mitigating if there are still alternative risk
management strategies such as resilience that will yield larger expected marginal benefits.

There are several important extensions of this paper that should be considered. First, it would be
useful to further generalize the assumed damage function and to instead rely on fully specified
production functions for mitigation and resilience. There is little empirical research on the
complementarity of mitigation and resilience though. It would also be useful to consider a
distribution of outage types in order to better reflect the range of potential outages. This could be
achieved by allowing for heterogeneous γ parameters that are drawn from a probability distribu-
tion. Finally, this paper assumed a single benevolent social planner sets the levels of mitigation and
resilience in order to minimize total expected damages, subject to an expenditure constraint. While
this assumption allows mitigation and resilience to be aggregated across heterogenous actors (e.g.,
utilities and consumers), in reality different actors make their optimization decisions separately and
with uncertainty about other actors’ decisions. It would be useful to reconsider the mitigation and
resilience tradeoff in the context of a game-theoretic model, in cases where utilities and their
customers consider purchasing mitigation and resilience with public goods attributes.
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