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ABSTRACT

Traffic demand prediction has been a crucial problem for the planning, scheduling, and optimization in
transportation management. The prediction of traffic demand counts for origin-destination (OD) pairs has
been considered challenging due to the high variability and complicated spatiotemporal correlations in
the data. Though several articles have considered estimating traffic flows from counts observed at specific
locations, existing traffic prediction models seldom dealt with spatiotemporal demand count data of certain
OD pairs, or they failed to effectively consider domain knowledge of the traffic network to enhance the
prediction accuracy of traffic demand. To tackle the aforementioned challenges, we formulate and propose
a multivariate Poisson log-normal model with specific parameterization tailored to the traffic demand
problem, which captures the spatiotemporal correlations of the traffic demand across different routes and
epochs, and automatically clusters the routes based on the demand correlations. The model is further
estimated using an expectation-maximization algorithm and applied for predicting future demand counts
atthe subsequent epochs. The estimation and prediction procedures incorporate Markov chain Monte Carlo
sampling to overcome the computational challenges. Simulations as well as a real application on a New York
yellow taxi data are performed to demonstrate the applicability and effectiveness of the proposed method.
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1. Introduction

In the past decades, intelligent transportation system (ITS) has
brought advanced technology that enables a data-rich environ-
ment and many opportunities for traffic research. Collected
from a large number of auxiliary instruments (e.g., cameras,
inductive-loop detectors, Global Positioning System (GPS)-
based receivers, and microwave detectors), a massive quantity of
data can be acquired to provide useful information and generate
new functions and services (Zhang et al. 2011). With massive
traffic data readily available, it offers unprecedented opportu-
nities for traffic prediction, which is considered as one of the
most prevalent issues facing ITS (Li et al. 2015) and provides
crucial inputs for the planning, scheduling, and optimization in
transportation management.

In this article, we are interested in the online prediction of
the origin-destination (OD) demand count in traffic networks,
which represents the number of trips between certain combi-
nations of an origin and a destination. Indeed, the study of
OD demand prediction based on count data has a growing
impact on many traffic control and management policies (Ashok
1996; Ashok and Ben-Akiva 2002; Li 2005; Hazelton 2008; Shao
et al. 2014). For example, dynamic OD demand prediction is
critical in planning for the charging services of the electrical
vehicles (EVs; Zhang, Kang, and Kwon 2017). As an important
type of new-emerging clean energy vehicles, a well-designed

charging facility network is necessary to extend the vehicle
range and popularize the use of EVs. In particular, the dynamic
demand between nodes of the traffic network plays a key role in
determining the availability of the charging facilities, planning
the multi-period charging schedules, and meeting the customer
needs at the maximum extent (Brandstatter, Kahr, and Leitner
2017; Zhang, Kang, and Kwon 2017). In another example, OD
taxi demand prediction has been shown very important to help
dynamically allocate resources to meet travel demand and to
reduce empty taxis on streets which waste energy and worsen
the traffic congestion (Yao et al. 2018). In addition, the online
OD demand prediction is especially desired in the car-sharing
system for making optimal dispatch decisions (Agatz et al.
2011).

There are numerous studies concerning traffic prediction,
which can be categorized in the following two types. The first
category considers predicting some traffic-related values for a
specific location or independently for multiple locations, by
applying temporal prediction techniques such as Kalman filter
(Okutani and Stephanedes 1984), regression (Liu et al. 2017),
time series (Ishak and Al-Deek 2002; Moreira-Matias et al.
2013), functional data analysis (Zhou and Mahmassani 2007;
Chen and Miiller 2014; Wagner-Muns et al. 2018), or incorpo-
rating new data sources (Ashok 1996; Carrese et al. 2017). The
second category predicts traffic-related quantities at numerous
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locations while considering the spatial interactions among the
traffic network for modeling and prediction. Chen et al. (2017)
provided a traffic forecasting method that introduced a belief-
desire-intention model into agent-based simulations, which can
simulate traffic activities under different scenarios considering
human psychological characteristics. Though it regards the traf-
fic network as a whole system and considers the spatial inter-
actions, this method is not data-driven and requires detailed
model inputs which are hard to obtain in practice. Data-driven
prediction methods, on the contrary, find the spatiotemporal
correlations using the historical demand data without explicitly
detailed knowledge of the entire system. In the literature of
data-driven traffic prediction methods, Sun, Zhang, and Yu
(2006) modeled traffic flows among adjacent road links in a
transportation network as a Bayesian network and considered
the joint probability distribution for spatially adjacent nodes.
Deng et al. (2016) proposed a latent space model that applies
matrix decomposition on road networks to capture the spatial
correlation within the system. Tong et al. (2017) adopted a
simple unified linear regression method with regularizations
that smooths the prediction differences for locations and time
points with similar features. Yao et al. (2018) proposed a deep
learning framework to model the complex nonlinear spatial and
temporal relations among the traffic network. These studies,
however, do not take into consideration of the stochastic nature
of traffic demands, and thus have to require frequent model
redesigns (Tong et al. 2017). Moreover, these methods focus on
either flow data or demand associated with the origins, instead
of OD demand count data. Currently, there is still a literature
gap in collectively modeling and predicting OD demand count
data considering both the spatial and temporal correlations.

The challenges for modeling and predicting OD demand
count lie in several aspects. First, most existing traffic prediction
methods work with only traffic flow data at specific locations
(Ashok and Ben-Akiva 2002; Ishak and Al-Deek 2002; Moreira-
Matias et al. 2013; Deng et al. 2016); however, these meth-
ods ignore the natural characteristics of the demand that are
count data and correlate in both spatial and temporal domains
(Wemegah and Zhu 2017), and thus they are not suitable for
modeling OD demand counts. Though methods dealing with
spatiotemporal correlations among count data are developed
in different application contexts, such as public health and
ecology (Achcar et al. 2011; Conn et al. 2015; Flaxman et al.
2015), these methods are still inapplicable for modeling OD
pair traffic demand as they do not consider the unique direc-
tionality of the traffic data, thus failing to appropriately model
the spatiotemporal correlation structure in the traffic network.
Figure 1 shows a toy example of a small traffic network with
four OD pairs (i.e., a—b, a—c, d—e, e—d). It can be observed
that the demand at origin a is only associated with and influ-
enced by destinations b and c. Therefore, unlike the conven-
tional spatiotemporal count data, the OD demand is directional
and associated with the features of both the origin and the
destination.

Second, existing literature that deals with count data models
the traffic demand count data separately for different OD pairs
without considering spatial correlations and domain knowl-
edge (Bera and Rao 2011; Perrakis et al. 2012). Some traffic
network features, for example, region characteristics of origins

Origin or destination
Route direction
Population dense area
Hospital

Scenic spot
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Figure 1. Anillustrative example of traffic network.

or destinations, maximum speed limit on a route, and travel
distance, are demonstrated to play important roles in trip gen-
eration and distribution analysis (Fotheringham and O’Kelly
1989; de Grange, Ibeas, and Gonzalez 2011), and are easy to
obtain from the traffic network offline. Following the example
in Figure 1, although the presence of some traffic network
information may relate to traffic demands, it is not clear how this
information can be effectively used. Third, collectively modeling
the spatiotemporal correlations in a traffic network involves
estimating a large number of correlation parameters, which may
lead to computational issues and affect the estimation accuracy.
For example, to predict the demand of the traffic network in
Figure 1 at 8 time epochs, it may involve up to hundreds of
parameters in the covariance matrix. Therefore, to provide accu-
rate estimations and avoid overfitting, it is crucial to incorporate
physical knowledge of the traffic network and consider the
sparsity of the correlation structure.

The objective of this study is to appropriately model the
stochastic OD traffic demand counts considering the spatiotem-
poral correlations between different routes and epochs, while
incorporating physical knowledge of the traffic network in the
estimation. The estimation results are expected to enhance the
prediction accuracy and robustness of the online traffic demand
prediction for future epochs. In particular, we investigate a
multivariate Poisson log-normal model with a block-diagonal
covariance matrix and incorporate domain knowledge of the
traffic network features to account for spatial correlations. In
this way, we can fully explore the complicated spatiotempo-
ral correlation structure of the traffic network demand and
automatically cluster the routes with high correlations, with-
out introducing a large number of parameters that impact
the estimation accuracy. Besides transportation systems, the
proposed method can be easily extended to other network
applications with count data through little modifications, such
as communication systems, supply chain management, smart
grid, or even three-dimensional networks (Wang, Liu, and
Zhang 2019). The remainder of this article is organized as
follows. Section 2 provides a detailed mathematical formu-
lation of the OD traffic demand problem. Section 3 intro-
duces the main idea of the proposed method for the offline
parameter estimation and online prediction. Section 4 conducts
simulation experiments and Section 5 performs a real case
study on a New York yellow taxi dataset to thoroughly eval-
uate and compare the proposed method with existing bench-
marks. Section 6 concludes the article and discusses future
studies.



2. Model Formulation

In this section, we provide detailed model formulations and
assumptions.

Let Njj; denote the observed traffic demand (i.e., the count of
vehicles) for route j (j = 1,..., J)ondayi (i = 1,..., I), at
epocht (t = 1,..., T). Please note that the routes are directed
as shown in Figure 1. Based on the natural characteristics of the
demand counts, it is reasonable to model each observation Nj;
with a Poisson log-linear model (Perrakis et al. 2012; Xian, Li,
and Liu 2018) such that

Nij¢ ~ Poisson (Aijt) ,

uijr = log Ajjt.

Here Aji; is the intensity of the Poisson process, and u;j; is the
log transformation of the intensity. It should be noted that the
demand count can be regarded as Poisson distributed since the
occurrence of two vehicles can be considered independent in
a large system. To characterize the spatiotemporal correlations
across different routes and time points, we model u;;; as a mixed-
effect Gaussian process based on K basis functions By (¢) that

K

wie = Wi + Y vikBk (8) + Zij. (1)
k=1

Here p = [un,ulz, . ,u]T]/ is the fixed effect coeflicient
that models the common characteristics of the whole traffic net-
work, and y; = [ylk, Voks +-n» y]k] is the random effect coeffi-
cient with prior distribution y, ~ N(0, Ry,) that characterizes
the uniqueness of different routes. Here Ry, is the correlation
matrix which takes into consideration of the traffic network

2
= 0j,j, exp—0 ’y» —yi
v J1>J2 R rgit ]2
In this expression, y; denotes the unique features of route j, such

as information about the origin and destination, the maximum
speed limit on a route, and the travel distance. The squared

information, where [Rg ]

2
between features Vi, and ¥, 1s defined

distance ‘yjl — ¥

as y ’)’jl,l — Vi 1 ?, where the distance ’)’jl,l —yjz,l’ for each
feature [ is standardized to have unit variance. According to the
expression of Ry, the correlations between routes ji and j, are
higher if they are associated with more similar features y; and
¥j,5 by is a nonnegative tuning parameter for the effect of traffic
network features; and oj,, j, is a binary coefficient indicating
whether the demands of route j; and route j; correlate or not.
Here, the coefficient ¢ = [0j,, j,] Jxj accounts for the sparsity
of the correlation matrix Ry, and zeros out the elements if no
strong correlations are observed, and thus it helps to obtain an
accurate parameter estimation.

The term Zjj; in model (1) is the random error that follows a
Gaussian distribution which has the covariance structure

|

T2 exp{—6; |t — 2]} )

cov(Zijit,» Zijty) = O, eXP{ —y ‘yﬁ ~ ¥

It should be noted that the covariance between Zj; ;, and Zj,;,
depends on both the features of routes j; and j,, and the time
points #; and t,, which we refer to as the spatial and temporal
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covariance structures, respectively. Specifically, the spatial struc-
ture of Z;j; remains the same as that in Ry,. In Equation (2), t2
is a constant parameter which is the variance for Zjj;, and 0; is a
nonnegative tuning parameter for the effect of time lag.

Based on the above model and the covariance structure, we
can derive the distribution of the log-transformed intensities.
Denote the log-transformed intensity of the OD traffic demand

!
ondayiasu; = (u,-u, Uil2s - o> ui]T) . From the above model
formulation, we can further derive that conditioning on param-
eters (/L, 6y, 61, 0, 12), u; follows normal distribution N (g, X),
where

/

H= (Mlb/ilz, s M]T) > 3)
T =Ry, ® [Rg+ 7Ry, ].

Here, the symbol ® denotes the Kronecker product, Rp is
a fixed T x T matrix with the (#,f,) element equal to
2115:1 Bi(t1)Bi(t2), and Ry, isa T'x T matrix with the (#1, t2) ele-
ment equal to exp {—0;|t; — 2|}. Therefore, the large covariance
matrix is parametrized based on only the parameters 6,, 6,0,
and 2. This parsimonious model has several advantages, such
as high interpretability tailored to the traffic demand count
data, increased stability of the estimation results, and reduced
computational burden for parameter estimation. Please note
that though there may be some weekly or monthly trends in
the demand, such trend information can be easily estimated and
addressed based on the historical demand data. Without loss of
generality, here we assume the trend information has already
been removed and we focus on modeling the residuals parts.
As aresult, u, ..., ur can be considered as independently and
identically distributed Gaussian random vectors. In addition, it
is assumed that here the demand counts are fully observable
for specified OD pairs, which typically holds true for certain
fleet vehicles such as taxis, last-mile EVs, and shared rides.
In these applications, the pick-up and drop-off locations are
naturally specified or recorded, where the proposed method can
be directly applied.

3. Methodology

In this section, we propose a method to estimate the model
parameters introduced in Section 2 based on historical obser-
vations, and further online predict the traffic demand for future
epochs. The details of the parameter estimation framework are
presented in Section 3.1. Then Section 3.2 demonstrates the
online prediction scheme based on the estimated parameters.

3.1. Parameter Estimation

Denote the parameter set as @ = {u, 6,,6;,¢, T}, which are
the parameters to be estimated in model (1). As the observed
traffic demand counts N; = (N,-H,N,-lz,...,N,-]T) follow a
multivariate Poisson-lognormal distribution, the likelihood of
the data given parameter ® can be derived as

p(N1©) Z/P(Nlu)P(uIQ)du
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:[ [TTTT [Poisson (Niielusi) [ T uil, %) du

w it i
1/ M

lul

— exp u,]t)) exp (Nijtu,jt)

X exp (—5 (i — )" 27 (ui — u)) 12172 du;.

For the estimation and prediction, we need to have a positive
definite covariance matrix X as it requires to take the inverse of
¥ in the likelihood function. To ensure this property, Propo-
sition 1 provides a sufficient condition for ¥ to be positive
definite.

Proposition 1. 1If ¢ is equivalent to a block diagonal binary
matrix after permutations, then the matrix X in Equation (3) is
positive definite. Here, a block diagonal binary matrix A refers
to a square block matrix of which the elements in the main
diagonal block square matrices are all one, and the oft-diagonal
blocks are zero matrices, that is,

A; 0 e 0
0 A, e 0

A: . . )
0 0 An

where A; (i = 1,...
equal to 1.

, n) is a square matrix with all elements

The proof can be found in Appendix A. According to Propo-
sition 1, we will focus on finding a block diagonal o' to guarantee
the positive definiteness of the covariance matrix X. Please note
that estimating the block diagonal matrix ¢ is equivalent to
clustering the routes into a list of blocks, where only the routes
within a block highly correlate with each other. It can also be
regarded as a sparse estimation approach because for the routes
not in the same block, their correlation is considered zero if
the correlation is not high. Based on the parameterization, the
covariance matrix X is also a block diagonal matrix.

For parameter estimation, we need to obtain the parameter
set ® by solving the following minimization problem

© = argmin (— logp (N|®)) ,

s.t. 0 is a symmetric matrix that can be permuted to a block
diagonal matrix.

However, it is very challenging to directly minimize this
objective function. The closed form solution of Poisson log-
normal likelihood has been discussed in the literature, and it is
shown that the integration part of the likelihood cannot be sim-
plified directly (Stewart 1994). To tackle this challenge, here we
apply data augmentation techniques to work around the direct
integral (Chib, Greenberg, and Winkelmann 1998; Ma, Kockel-
man, and Damien 2008). In statistical analysis, data augmen-
tation techniques regard unobservable variables as unknown
parameters to be estimated, which can greatly simplify the orig-
inal problem (Tanner and Wong 1987; Ye and Tang 2016). Here
we treat the unobserved intensity u# as an unknown parameter,
which is to be estimated simultaneously with the parameter set

O. Consequently, we can write the log of joint density of the
observations N and the intensity u as

logp (N, u|®) :Z (ZZ — exp (ujjt) + Nijeusijt)

1
- 5 wi—m"Z i —p) - 510g|2|>-

In this way, we circumvent the intractable integral and sim-
plify the original likelihood function. From now on, we treat
u as a latent variable and further employ the Expectation-
Maximization (EM) algorithm to obtain the maximum likeli-
hood estimation (MLE) for the parameters, which is elaborated
in the following subsections.

3.1.1. TheE-Step
The conditional expectation of the log-likelihood function of @
with respect to u given N, O at iteration s is

Q(©10Y) =E,y o0 (logp (N, ul©®)).

Here @ represents the current estimates of the parameters at
iteration s, and p (u|N, ®®)) is the conditional distribution of u.
However, it is very challenging to directly obtain the analytical
expression of Q (®|®(s)) given the complicated form of the
likelihood. To tackle this issue, here we employ a Monte Carlo
EM algorithm that incorporates Markov chain Monte Carlo
(MCMC) sampling methods (Hung, Joseph, and Melkote 2015)
to draw random samples of u to approximate the expected log-
likelihood function Q (@|@).

In particular, OV is a constant at a given iteration s, and
thus the conditional probability p (u|N, ®) is proportional
to p(u, N |®(5)). Therefore, we draw m random samples of
u;: {ugl),ugz), ul(m)} from density p (u, N|®(S)) via the
Metropolis—-Hastings algorithm. The details of the Metropolis—

Hastings algorithm are provided in Appendix B. Then we
approximate the expected log-likelihood function with

Z Z log p (N u® ||®<S>)

i=1 i=1

o(010)-

3.1.2. The M-Step

In the M-step, we maximize the expected log-likelihood to
obtain the estimation of the parameters for the new iteration.
According to the formulation of the E-step, the parameter esti-
mation at iteration s + 1 is acquired by

0+ = argmax (Q(©10))

I
= argmin (—% Z i logp (N, ulﬂl)|®(3)>> .

i=1 =1
The objective function can be further derived as



Denote = XL and ¥ = [u(l) n, ugz) s ooy u(m) -
1 2 1 2

u,,ug)—u,ug)—;/,,...,ugm) /,L,...,u§) [L,u§)

n, ..., (m) [L] Note that |X| = ||}, the objective

function is then

—Z

1 1
= —tr (WTQW) — ~Tlog (|R)).
2mr( ) 3 og (|€2])

1
v/ Qw) - 5110g(|$2|)

The challenge here lies in the fact that the above objective func-
tion is not convex with regard to all the parameters due to the
special parameterization rooted in the unique traffic problem.
To estimate @ = {[l,, 0,00, rz}, we first estimate g and X
using the MLE. Then, the parameters o, 8,0, > are further
estimated based on the estimated covariance matrix X.

1. To estimate u, it is the same as minimizing
1 Iy O\ o (y®
T _ _ —
(i) = L3 (Z () 2 (u u)) .
= 1

m

The solution is equivalent to the MLE i = -, Z > (l).
=1 i

2. To estimate X, we minimize

1 1
—tr (PWTR) — ~Ilog (|R)).
Str (V7€) — S110g (12)

Then this problem is equivalent to finding the MLE of the
normal covariance matrix with scatter matrix WW7 /m. In other
words, the updated sample covariance matrix is

vl
ml ~

i:

3. Next, we estimate the matrix o based on the estimated sample
covariance matrix ¥. Practically, identifying the nonzero
structure of o is equivalent to finding out the clusters of
routes such that the demands of routes in the same cluster
are strongly correlated.

To reduce the computation complexity, we propose an algorithm
to determine o. The main idea is to first estimate a numeric
(continuous-valued) matrix & which is a direct approximation
of 0, based on the structure of 3. Then, the algorithm evaluates
the clusters in the rows and columns of &, and assign the
elements of o in the same cluster as 1. The details and property
of this algorithm are elaborated in Appendix C.

4. Update the parameters 6,,6;, and 7 such that the
Ry, ® (Rg + t%Ry,) is the
nearest to the estimated covariance matrix X. In particular,

we apply the Frobenius norm here which leads to the
following objective function

. .50
parametrized matrix X =
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~ 0 A2
(9)55“),9[(5+1), ‘[($+1)> = arg min (E — EF>

9)”9“1’
JT JT
=argmin | 210 (58 -5,)
ggy,eb
=1 j=1

This optimization problem can be solved by the first-order
optimization method. The detailed derivation of the objec-
tive function and the optimization method is discussed in
Appendix D.

3.2. Online Prediction of OD Traffic Demand at Future
Epochs

In this subsection, we propose a method for online predicting
the future OD traffic demand counts based on both the esti-
mated model parameters (as detailed in Section 3.1) and the
online observations. For a test day, denote all observations on
and before time ¢ as N.,t = {N]T T<tLj=12, - ,I}, a set
of future observations at time ¢ + k as N. 1, k > 1, and their
corresponding log-transformed intensities as #_; and u., ;.
First, according to the properties of Gaussian processes,
[it,, u,¢1k] jointly follows a normal distribution

T . .
N([M., R t+k] 3 (@t tR), (1t 140) )

superscript refers to the subsets of the corresponding arrays.
Then the conditional distribution of u. ;y|u s, which is the
future intensity conditioned on the current ones, follows
a normal distribution with mean ., iy, = Mg +

Z(t+k,1;t)):(1:t,1:t)—1 (ﬁ.,t _ “.,t) vy Pk + L (fl.,t _ M.,t)
and covariance matrix X, ; = XTUTRHD _ Py b,
where L = Z(H—k, l:t)z(l:t, I:t)—l'

By the tower property of expectations and the expectation
of lognormal distributions, the conditional expectation of the
future traffic demand counts at time ¢ + k can be derived as

E (N.,,+k|1§7.,t) =E (E (N-,t+k|u~,t+k) |Nt)
=E (exp (u‘,tJrk) |Nt)
=K (E (exp (. t4k) |i2.r) |N~,t)

1 -
=E (exp (M»,H—kh + Edlag (zt+k|t)> 'N.)[) .

Then each element in the above expectation can be further
derived as

E (Nl ) @)
1 X
=K exp pLj,t+k|t + 52t+k|t |N~,t
1 "
=exp <Mj,t+k + EE;]H”) E <exp ((L (u t— )) ) )

N.
1 ..
=exp (/Lj,H_k + EEJtJJrk\t — LﬂL,),) E (exp L u.; )

where the

The last term in Equation (4) can be calculated as

/ exp L ” 1_[ H exp —exp (“kt)) exp (Nietikt)

u
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1
X exp (—5 w—mw' =7 (- u)) AR

o</ exp ((Lj—i—NT) u— lTexp(u)

u

1
-5 = WIE (- u)) IZ|7Y2 du.

Therefore, the last term is equivalent to a likelihood of lognor-
mal distribution, which cannot be obtained analytically. Instead,
we again propose to use Monte Carlo approximation to evaluate
the quantity. Based on the estimated parameters, we can gen-
Y

ﬁ(lt)

erate | samples { ) } of the intensity u_ ; based on normal

i=1
distribution N (., ;, 4 1:0). Then we can approximate the
conditional distribution by

E (exp(Ljﬁ.,t) |N‘,t) - f exp (Ljii.() p (a.,tuv.,t) din, (5)

_ Xiew (i) p (Wil p (2)
Shp(Nada?)p ()

The Monte Carlo procedure can be done offline before the
online prediction, and thus it will not lead to high computational
burden in the online prediction process.

Combining Equations (4) and (5), we can predict the traffic
demand counts in the future epochs utilizing the current obser-
vations at the maximum extent. Besides the mean prediction, we
can also derive the variance of the predicted values. First of all,
the expected squared demand count of route j at time t + kon a
test day given the observed demand counts can be calculated as
follows:

L
E (Nj,t+k|Nuf)
= E (E (N2 il ) IN..)

=E (exp (wjek) + exp (2u,11k) |N.,z)

=K <Nj,t+k|N~,t) +E (exp (2Mj,t+k|t + E]t]—i-kh‘) |N-,t>
=E (I\]j,t+k|N-,t) +exp (2Mj,t+k + Eﬂk“ - 2Ljﬂ.,t>
x E (exp (2L ) |N.,t> .

Similar to Equation (5), the quantity E (exp (2Ljf4,,,) IN., t) can
be approximated by the Monte Carlo procedure as

E (exp (2L]fl7t) |1~V.)t) = / exp (ZL]ﬁ)[)p (ﬁ-,t|N~,t) dﬁ.)t (6)

3yl e (2 p (R1i2) p (29)
Sl (M) p (a2)

Then the variance of the predicted values can be calculated as
var (Nj,t+k|N-,t) =E <N]%¢+k|N»,t) - (E (I\rj,t+k|1~v»,t)>2 7)
=E (Nj,t+k|N~,t) - (E (I\]j,t+k|N~,t)>2
+exp (2uieeke + T — 2Lk

x E (exp (2Lja.;) |N4,t) .

4. Computational Experiments

In this section, we present the results of numerical experiments
on a simulated traffic network. We assume that there are | =
10 routes, and traffic network features are randomly generated
from normal distribution N (0, 1) for each route. We observe
and predict the travel demand counts for each route at an
interval of 2 hr, and thus there are T = 12 epochs within a
day. The simulated data is generated from the lognormal distri-
bution with the following approach. First, the log-transformed
intensities #; on a day i is randomly generated from the normal
distribution N (u, X) where the distribution parameters are
formulated as in Equation (3). The values of the parameters are
set as follows. We take the Fourier basis as the basis function
with K = 8. For the mean vector, we suppose that all routes
share the same mean it (i.e., ¢ = 1; ® f and 1; refers to an all-
one column vector with length J), which is shown in Figure 2.
The other parameters are set as follows: 6, = 0.15,6; = 1,
7 = 0.9, and the binary coefficient matrix is
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This matrix refers to a scenario that the first three routes are
closely correlated to each other, the sixth and the seventh routes
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Figure 2. Mean estimation of & with 90% confidence intervals.



are closely correlated, and so on. Then, the traffic demand
counts on day i for the n routes at T epochs are randomly
generated from Poisson distributions based on the exponential
of u;. In the estimation part, we fix the number of historical
observations at I = 30days, and m = 200 random samples
in the E-step.

4.1. Ideal Case

We first show the parameter estimation results in the ideal
case that the traffic network features y is perfectly known and
applied in the study. Specifically, we assume that there are five
traffic network features randomly generated from the normal
distribution N (0, 1), and they are the only features that are
related to the traffic demand. Based on the perfect knowledge
of this information, the proposed estimation and prediction
method is applied to the training data. The reported results are
summarized based on 100 simulation runs.

Figure 2 shows the estimation of the mean function it for
a route with 90% confidence interval, from which it can be
seen that the estimation is very close to the true values. The
averaged estimated value of ¢ is demonstrated in the heat map in
Figure 3(b). Comparing to the true value shown in Figure 3(a),
there are uncertainties in estimating the off-diagonal nonzero
elements in o. For example, as the estimated values of 65
and &3 are less than one, there is a certain chance that the
first route may not be clustered correctly in its true underlying
subgroup. A possible reason for this phenomenon is that the
randomly generated features of the first route are a little far from
routes 2 and 3, and thus the actual correlations between the first
route and the other two routes are not strong enough, which
leads to high randomness in the estimation process. Table 1
further shows the mean and 90% confidence interval of the
estimations for the scalar parameters 6), 6;, and 7. It can be
observed that the estimations for all three parameters are close
to their true underlying values, and the true values all lie in the
90% confidence interval of the estimation.

Next, the traffic demand counts of I = 100 test days are
simulated with the same approach as for the training data. We

(a) (b)

Figure 3. Heat maps of the (a) true and (b) averaged estimated values of o.

-

Table 1. Parameter estimation results in the ideal case.
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conduct the proposed traffic demand prediction method for
the test days, with | = 500 random Monte Carlo samples for
approximation. Then the prediction performance is compared
with three competitive methods that can also be applied for
the online prediction of Poisson data: (1) Poisson regression on
observations of the same epoch with the traffic network features
as the covariates, (2) Poisson regression on observations of the
same epoch without covariates, and (3) an intuitive method
that predicts the demand using historical means. At an epoch ¢
(t > 2), we apply the above four methods on observations from
epochs 1,2, ..., t — 1 to predict the demand count at epoch t. To
measure the prediction accuracy, we define the daily prediction
error at day i as the L>-norm of the difference between the
predicted demand and the actual demand, that is,

N, —N;
JT

Figure 4 shows the boxplot of the prediction errors e; in the
100 test days. For all four methods, the prediction errors exhibit
long tails as there may be outliers generated from the Poisson
distributions. The proposed method in general achieves the
least prediction error, comparing to the other three methods.
The other three competitive methods have roughly the same
median in the prediction error, but using the historical mean
leads to slightly more outliers than the other two methods based
on Poisson regression. This is expected as the historical mean
method is a naive approach that only averages the historical
observations. The methods based on Poisson regression, on the
other hand, take the similarity of the routes into consideration
(as the traffic demand counts for all routes have the same mean
in this simulation study) and thus lead to enhanced prediction
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Figure 4. Boxplots of prediction errors for the competitive methods on the test
data. The average prediction errors for the four methods are 0.721, 0.894, 0.900,
and 0.904, respectively.
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accuracy. Another interesting observation lies in the compari-
son between the two Poisson regression methods. By incorpo-
rating the traffic network information in the Poisson regression,
it even leads to a higher prediction error or more outliers.
This observation shows us that incorporating relevant domain
knowledge is not always helpful if it is not used appropriately. In
this case, the misused model may have led to overfitting by using
the traffic network information as the regression covariates. In
comparison, the proposed method is more flexible in modeling
both the mean and covariance structure of the spatiotemporal
patterns and correlations in the traffic demand data. Moreover,
the proposed method automatically clusters the routes such that
the prediction of traffic demand is based on the sparse spatial
structure, which avoids the overfitting.

4.2. Feature Variations

Unlike the ideal case in Section 4.1, we test the performance
of the proposed method under the cases when the traffic net-
work information y is not perfectly known. Specifically, we
still assume that there are five true underlying traffic network
features that have an impact on the traffic demand, and then
consider the following two cases. Suppose we collect and apply
(i) inadequate features (only three of the five true features are
available), and (ii) excessive features (two additional irrelevant
features besides the true features are misused). In the two cases,
the proposed estimation and prediction method is applied to the
training data to test the performance of the proposed method.
Other than the traffic network information y, the simulation
settings in this case are identical to the ones in Section 4.1.

We focus on the estimation results of parameters relevant
to the covariance matrix X as the variations of traffic network
information have a direct influence on X. In particular, the
averaged estimated value of o is demonstrated in heat maps
in Figure 5. Compared to the ideal case estimation, the results
in Figures 5(a) and 5(b) demonstrate similar patterns but are
slightly noisier. When using imperfect y, the probability of
correctly identifying nonzero elements in o generally decreases,

i
08
06
04
02
0
(@) (b)

Figure 5. Heat maps of the averaged estimated values of o when applying (a)
inadequate features and (b) excessive features.

Table 2. Parameter estimation results with imperfect traffic network features.

which can be explained by the increased uncertainties in the
MCMC sampling and thus in determining ¢ in the M step.
Table 2 shows the mean and 90% confidence interval of the
estimations for the scalar parameters Oy, 61, and 7. It can be
observed that when the traffic network features are not perfect,
it has the most influence on the estimation of ). This result
makes sense as ¢, is the tuning parameter for the effect of the
traffic network features. When using inadequate features, the

2

Yii = Vj ) is
less than the underlying truth. Therefore, as compensation, the
estimation of 6, tends to be larger and has a longer upper tail.
On the contrary, the estimated value of 6, is generally less than
the true values when excessive features are applied. It should
be noted that using excessive features may lead to worse results
than using inadequate features, as we can observe that the true
value of 6, lies outside of the 90% confidence interval of the
estimation when using excessive features. Irrelevant features
may exhibit higher randomness and dominate the feature dif-
ferences between routes, and thus results in larger estimation
bias. There is little evidence that the variation in features causes
large estimation bias of 6; and t, though it introduces higher
variations than the ideal case.

It should be noted that although the estimation may be
biased when using imperfect traffic network features, it does not
seriously compromise the accuracy of the resulted covariance
matrix X as the estimation of 6, changes with y to approximate
the covariance matrix. Due to the parameterization tailored to
the traffic network, the proposed problem formulation regulates
the covariance structure and ensures the overall estimation
accuracy of X, in spite of using imperfect traffic network features
and data variability. Figure 6 shows the prediction errors of the
test data when using inadequate and excessive traffic network
features. It can be observed that the prediction results in the
three cases are very similar, though using imperfect data results

distance between the features of two routes (i.e.,
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Figure 6. Boxplots of the prediction errors when using imperfect traffic network
features.
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in slightly larger medians in the prediction error. There are
larger prediction errors when using excessive features, as irrele-
vant features can be noisy and dominate the feature differences.

4.3. Scalability Analysis

In this section, we study the performance of the proposed
method to the size of the traffic network. In particular, we
consider traffic networks with J = 5, 10, 20, 30, 50 routes
and compare the computational time and estimation errors.
The results are shown in Figure 7. For different values of J,
the black line with round dots represents the estimation time
offline, and the blue line with triangular dots represents the
prediction time for one day online, where the unit of time is
second. It is evident that the proposed method is effective for
online prediction though expensive in the estimation procedure.
The red line with squared dots represents the estimation error
under different values of J, where the estimation error is defined
as

-~

B—R+G—0+6,—0,+6,—6,+1—1,

and the * mark denotes the averaged estimated value of a
quantity over 10 simulation runs.

5. Application and Results

In this section, we apply the proposed method to a real New York
yellow taxi dataset which is collected from June Ist to July 31st
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in 2017. The data were collected by technology providers autho-
rized under the Taxicab and Livery Passenger Enhancement
Programs (TPEP/LPEP) and made publicly available online
(NYC Taxi 2017). The dataset records all yellow taxi trips dur-
ing the aforementioned time period including the pick-up and
drop-off dates and times, pick-up and drop-off locations, trip
distances, and payment information about the trips. To illustrate
the main idea of the proposed method, we focus on the trips
between the four busiest zones in Manhattan and investigate
the structure of the travel demand counts on these zones as OD
pairs. The details of the four taxi zones are shown in Figure 8.
Considering the above 4 taxi zones as origins and destina-
tions, there are in total n = 16 routes corresponding to the OD
pairs. Denote a route with origin o and destination d as (o, d),
the routes can be written as (1, 1), (1, 2), (1, 3), (1, 4), (2, 1),
(2,2),(2,3),2, 4,3, 1),3,2),3,3), 3, 4, (4 1), (4 2),
(4, 3), and (4, 4). For each route, we collect the traffic network
information including the origin, destination, zone areas for
both the origin and destination, average travel distance, and
the number of route selections between the zones (number of
major street paths connecting two zones). The zone areas are
obtained from the New York City taxi zones data from the NYU
Spatial Data Repository. The average travel distance information
is directly calculated using the trip distances which are recorded
in the data. The number of route selections between the zones is
directly observed from the zone maps. These features are shown
to play important roles in trip generation and spatial interac-
tions (Fotheringham and O’Kelly 1989; de Grange, Ibeas, and
Gonzalez 2011). Among the features, the origin and destination
are considered to be categorical variables, which are encoded
using their indices as shown in Figure 8, and discrete metric is
applied to calculate the distances between categorical features of
two routes. The discrete metric is defined such that the distance
between two routes with the same categorical feature is 1 and
between two routes with different categorical features is 0. To
make sure the categorical features and the numerical features
are standardized in the same scale, the distances | Vil — yj2,1|
for each feature [ are standardized to have unit variance. For
the time scope, we focus on the rush hours between 6:00 p.m.
and 8:00 p.m. and observe the trip counts every 15 min (T = 8
epochs), as the rush hour traffic demand prediction has been an
essential topic in alleviating the traffic burden and responding
to sudden rises in traffic demand. We use the data in June 2017

Borough Zones
Manbhattan Lincoln Square East
Manhattan | Times Square/Theatre District
Manbhattan Upper East Side North
Manbhattan Upper East Side South

Figure 8. lllustration of the taxi zones in the case study.
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Figure 9. Heat map of the estimated values of o.

as the training data and the July data as the test data. There are in
total 44,727 and 34,251 taxi trips for the June training data and
the July testing data, respectively. The counts are aggregated to
15 min intervals, so in June 2017, this translates to (8 epochs)
x (30 days) x (16 routes) = 3840 counts, and in July 2019,
there are (8 epochs) x (31 days) x (16 routes) = 3968 counts.
Again, we take the Fourier basis as in the simulation. In the
estimation and prediction procedures, the number of Monte
Carlo random samples for approximations are fixed at m =
200 and /| = 500. The values of the model parameters in the
data are estimated as follows: éy = 0.1472, ét = 0.1407,
T = 0.3577, and the estimated binary coefficient matrix &
is shown in Figure 9, which is ordered lexicographically. This
result means that the routes are automatically clustered into
7 subgroups by the proposed method. Specifically, the clus-
ters represented by & can be rewritten as {(1, 1)}, {(1, 2)},
{1 LA DL D, G, DL{2,2), (3,2), (4 2)},and
(2, 3),2,4), 3,3), 3, 4), 4, 1), (4, 3), (4, 4)}. There
are some interesting observations from the clusters. First, the
clustering results are highly affected by the destination of the
routes. Second, zones 3 and 4 as origins or destinations are quite
similar in terms of the clustering. In another word, a route that
starts from (or ends at) zone 3 to (or from) zone k is very likely
to be clustered together with a route that starts from (or ends
at) zone 4 to (or from) zone k. This makes sense as they are
two parts of the neighborhood Upper East Side and thus may
share more similarities in the demand. Third, the routes from
origin 1 exhibit very different patterns from the other routes and
are thus clustered as individual groups. Therefore, the structure
of 6 provides an interesting explanation of the similarity and
correlations between the routes, which is essential for gaining
a better understanding and ensuring accurate estimation and
prediction of the traffic network.

Based on the above parameter estimation, the prediction
results are calculated according to the methodology detailed
in Section 3.2 and compared with the baseline methods. The
boxplots of the daily prediction errors for the test data are
shown in Figure 10. It is obvious that the proposed method
yields the prediction results with the least errors. The percentage
reduction in the mean prediction error of the proposed method
over the competing methods is uniformly over 25%, which
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Figure 10. Prediction results for all considered prediction methods.

demonstrates the superiority of our method. Comparing to the
other three prediction methods, the proposed method considers
the spatiotemporal correlations between the observations in
the traffic network and can dynamically adapt to the online
observations.

Figure 11 further shows the specific taxi demand prediction
results of the routes (4, 3) and (4, 4) for four test days. The
solid black line in this figure represents the true dynamic traffic
demand counts, where it can be observed that the true taxi
demand indeed exhibits high spatial and temporal variation
and strong correlations for observations between the routes and
across different epochs as we expect. On day 3, for example,
the taxi demands for both two routes are far lower than the
average and show similar patterns over different epochs. This
observation agrees with our assumption of the spatiotemporal
correlations hidden in the traffic network. The solid red line
in is the predicted demand using the proposed method, and
the dashed error bars show the 90% confidence interval of the
prediction based on the variance derivation in Equation (7).
There are several interesting observations about the predicted
values and confidence intervals. First, the prediction results of
the proposed method dynamically adapt to the characteristics
of the online observations and align with the true observations,
as the proposed prediction method exploits the spatiotemporal
correlation structures learned from the training data and col-
lectively utilizes the online observations of the routes within
the same cluster. Second, for the same epochs, the confidence
interval is generally wider for larger predicted values, which is
expected according to the property of the Poisson log-normal
distribution. For example, comparing the observations on day 1
and day 4 at the same epochs, the confidence intervals for
day 4 is narrower than day 1, given that the demand counts
observed on day 4 are generally much smaller. Third, the width
of the confidence intervals generally grows narrower as time
evolves because more and more observations are available. In
particular, the predicted value for the first epoch of each route
is a fixed prediction based on historical data only (instead of
the online observations) and thus has the widest confidence
interval. Other than the initial prediction on the first epoch,
it can be observed that most of the true observations fall into
the 90% confidence interval. The dotted line in Figure 11 is
the historical mean, which shows an unsatisfactory predic-
tion result. The Poisson regression based predicted results are
omitted in this figure since they are similar to the historical
mean.
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Figure 11. Taxi demand prediction results for routes (4, 3) and (4, 4).

6. Conclusion and Discussion

The modeling and prediction of traffic demand counts in a
traffic network have been a challenging task in the literature con-
sidering the complex model formulation, the need for effective
domain knowledge integration, and the exploitation of acquired
knowledge. In this article, we have formulated and proposed
a multivariate Poisson log-normal model with a parametrized
covariance matrix tailored to the traffic problem formulation.
With the specific parameterization, the proposed method can
automatically account for the integration of the traffic net-
work domain knowledge and achieve a sparse estimation based
on the clustering of the routes. By developing an EM algo-
rithm incorporated with MCMC sampling, we can estimate the
parameters of the model with high accuracy, which are then
applied for traffic demand count prediction by exploiting the
online observations. The results of the simulation studies and
a real application to New York yellow taxi data demonstrate
that the proposed method achieves a much better estimation
and prediction performance than a list of existing baseline
methods.

There are several related topics that worth studying as
future works. First, more advanced optimization techniques
can be applied in the M-step to learn the covariance matrix,
which may increase the estimation accuracy and decrease

20:00 18:

20:00

19:30

19:00

the computational time. Second, the current method is still
challenging when it is applied to very large traffic networks.
However, according to expert knowledge, the correlation matrix
between routes can be sparse in a very large traffic network.
Thus, to increase the scalability of the method, it is worth
developing sparse correlation screening techniques that can
decompose a large network to several small networks first.
Then the proposed method can be applied to each small and
closely related network separately and in parallel to reduce the
computational time. Another practical issue is that the OD
demand might not always be fully observable or easily speci-
fied in some contexts (Tebaldi and West 1998). An important
future work is thus to estimate and predict the OD demand
counts based on partially observed count data. Last but not least,
it is important to incorporate advanced learning techniques
in the estimation to automatically select the most relevant
and informative traffic network features for better prediction
results.

Supplementary Materials

“Appendix.pdf” shows the appendices of the article. “Estimation.R” and
“Prediction.R” are the code for the proposed method. It also contains all
necessary dataset to run the code. All of the supplemental files are contained
in a single archive.
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