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Abstract

Robustness is a key requirement for widespread deployment of machine learning algorithms,
and has received much attention in both statistics and computer science. We study a natural
model of robustness for high-dimensional statistical estimation problems that we call the
adversarial perturbation model. An adversary can perturb every sample arbitrarily up to
a specified magnitude δ measured in some `q norm, say `∞. Our model is motivated by
emerging paradigms such as low precision machine learning and adversarial training.

We study the classical problem of estimating the top-r principal subspace of the Gaussian
covariance matrix in high dimensions, under the adversarial perturbation model. We design
a computationally efficient algorithm that given corrupted data, recovers an estimate of
the top-r principal subspace with error that depends on a robustness parameter κ that we
identify. This parameter corresponds to the q → 2 operator norm of the projector onto the
principal subspace, and generalizes well-studied analytic notions of sparsity. Additionally, in
the absence of corruptions, our algorithmic guarantees recover existing bounds for problems
such as sparse PCA and its higher rank analogs. We also prove that the above dependence
on the parameter κ is almost optimal asymptotically, not just in a minimax sense, but
remarkably for every instance of the problem. This instance-optimal guarantee shows that
the q → 2 operator norm of the subspace essentially characterizes the estimation error under
adversarial perturbations.

1. Introduction

An important and active area of research in machine learning is the design of algorithms that
are robust to modeling errors, noise and adversarial corruptions of different kinds. There
is a rich body of work in the field of statistics, machine learning and theoretical computer
science studying different models of robustness and the associated tradeoffs (e.g. Huber, 2011;
Tukey, 1975; Hampel et al., 1986; Diakonikolas et al., 2019; Lai et al., 2016). In the context
of statistical estimation problems the most widely studied model is Huber’s ε-contamination
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model (Huber, 2011). In Huber’s model it is assumed that a small ε fraction of the data set
is corrupted arbitrarily. The remaining portion of the dataset that is left uncorrupted is
assumed to be generated from a structured distribution such as a Gaussian. Other notions
of robustness that have been explored in unsupervised learning include distribution closeness
of different kinds (Gao et al., 2019) and different semi-random models (Blum and Spencer,
1995; Feige and Kilian, 2001; Makarychev et al., 2012). Please see Appendix A for more
detailed comparisons.

However there are several existing and emerging scenarios, where the data corruptions
are not captured by these existing models of robustness. In many practical settings every
data point is likely to perturbed with some small amount of noise, arising from various
complex sources of errors. The reliability and security of learning algorithms could also be
compromised by small imperceptible perturbations to the samples that are adversarial in
nature (data poisoning). Moreover, adversarial training has emerged as a popular training
paradigm where at each stage, the given training set is corrupted by adding (imperceptible)
adversarial perturbations (typically measured in `∞ or `2 norm) (Madry et al., 2017), before
performing stochastic gradient descent updates. This is empirically known to lead to more
robust algorithms and also has implications for fair classification (Madras et al., 2018).

Data corruptions also arise naturally in popular emerging paradigms like low-precision
machine learning (De Sa et al., 2017, 2018). Low precision computation gives substantial
savings in time and energy costs by storing and processing only a few most significant
bits e.g., 8-bit arithmetic is a popular choice. The lower memory utilization from low
precision allows for processing of more training examples at the cost of quantization noise.
This quantization noise is naturally captured as a small adversarial perturbation to every
co-ordinate of the data point to an amount that depends on the number of bits used in the
arithmetic (an `∞ norm bound). These adversarial perturbations lead to new tradeoffs in
the estimation accuracy that are not well understood for many basic statistical tasks. In
this work we take a step in this direction by studying a model of adversarial perturbations
aimed at capturing the above scenarios.

Adversarial Perturbation model. We consider a natural model of robustness where
every sample can be perturbed adversarially up to a bounded amount δ, say in `∞ norm
(more generally, in `q norm where q ∈ (2,∞] ). In our model the input data Ã ∈ Rm×n
consisting of m samples in Rn is generated as follows:

1. The uncorrupted samples A1, . . . , Am ∈ Rn are drawn i.i.d. from a Gaussian N (µ,Σ),
with unknown mean µ ∈ Rn and Σ ∈ Rn×n.

2. An adversary can observe the samples A1, . . . , Am, and perturb them arbitrarily to
form Ã1, . . . , Ãm ∈ Rn such that for each j ∈ [m], ‖Ãj −Aj‖q ≤ δ. These adversarial
perturbations can be correlated.

We study the classical unsupervised learning problem of estimating the top-r principal
subspace of the covariance matrix Σ, and the best rank-r approximation to Σ, for a specified
r ∈ [n]. For r = 1, this corresponds to recovering the principal component of Σ.

In the above model, the adversarial perturbations are measured in `q norm where
q ∈ (2,∞]. As q goes to ∞, the perturbations become larger in magnitude and less
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constrained. When q =∞, every co-ordinate of every point can get perturbed adversarially
up to δ in magnitude. For the sake of exposition, we will focus on the case of q =∞ and
present results for general q ∈ (2,∞] in the respective sections.

Our algorithms and guarantees will depend on certain quantity that we will call the
robustness parameter κ, which captures the q → 2 operator norm of the projector on to
the target rank-r subspace, and generalizes analytic notions of sparsity. Surprisingly, we
will see that this robustness parameter will be crucial in characterizing the estimation error
under our model. To understand why sparsity (and the ∞→ 2 operator norm) is related to
robustness under adversarial perturbations, let us first consider the simpler setting of mean
estimation.

Warm up: Mean Estimation. Consider the problem of mean estimation where the
uncorrupted data in Rn is generated from N (µ, I). A valid `∞ adversarial perturbation
is moving each of the samples by the same vector z = δ(1, 1, . . . , 1), thereby moving the
mean to µ′ with ‖µ′ − µ‖22 = δ2n. In this case no estimator can tell apart µ, µ′ from the
data, hence this error of δ2n is unavoidable in the worst-case. Suppose however that mean
µ was k-sparse i.e., it is supported on the set S of size at most k � n. If the support S
is known beforehand, then by taking the empirical mean after projecting all the samples
onto the support S, we can find an estimate µ̂ with ‖µ̂− µ‖22 ≤ δ2k � δ2n asymptotically
(as the number of samples goes to infinity). While we do not know the the sparse support
of µ beforehand1. the following proposition shows that one can indeed achieve the above
improved rate when the mean is sparse in an analytic sense (the ratio of norms `1/`2 ).

Proposition 1 (Mean Estimation under Adversarial Perturbations) Suppose we
have m samples drawn according to the Adversarial Perturbation model with mean µ, covari-
ance Σ � σ2I and q =∞. There is a polynomial time algorithm (Algorithm 3) that outputs
an estimate µ̂ for the (unknown) mean µ such that with probability at least (1− 1/n),

‖µ̂− µ‖22 ≤ 4 min
{
‖µ‖1(δ + η), n(δ + η)2

}
, where η := 2σ

√
(log n)/m. (1)

See Proposition 39 for general statement for all `q norms. If we use κ = ‖µ‖1
‖µ‖2 to denote

the analytic sparsity of µ, the first error term becomes κ · (δ + η) · ‖µ‖2. In fact, the above
error of Ω(κδ‖µ‖2) is unavoidable for every instance for a broad range of parameters i.e.,
for every instance of the problem, there exists an adversarial perturbation that makes it
statistically impossible to recover the mean with error o(δ‖µ‖1) (see Proposition 41).

Robustness Parameter κ. Similarly the estimation rates for finding the top-r principal
subspace (or best rank-r approximation) of Σ will be characterized by the robustness
parameter κ that is given by the ∞→ 2 operator norm:

‖Π‖∞→2 = max
y:‖y‖∞≤1

‖Πy‖2,

where Π is the (orthogonal) projection matrix onto the subspace spanned by the top-r
eigenvectors of Σ (for general q, the robustness parameter will correspond to ‖Π‖q→2 operator

1. This estimation problem is interesting even in the absence of adversarial perturbations, and corre-
sponds to the sparse mean estimation problem that has been studied extensively in high-dimensional
statistics Johnstone et al. (1994); Donoho et al. (1992); Donoho and Johnstone (1994).
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norm). This robustness parameter generalizes analytic notions of sparsity (the ratio of
`1/`2 norms) to projection matrices of subspaces2. Note that κ takes values in [1,

√
n]. The

∞→ 2 operator norm is also related to the famous Grothendieck inequality from functional
analysis (Grothendieck, 1952; Alon and Naor, 2004). These parameters have also been used
recently to characterize robustness to adversarial perturbations at test-time (Awasthi et al.,
2019a) (see Section A for more discussion). Similar to mean estimation, the case of r = 1
for covariance estimation corresponds to the well studied sparse PCA problem (Johnstone
et al., 2001; Amini and Wainwright, 2009; Ma et al., 2013; Vu and Lei, 2012, 2013; Berthet
and Rigollet, 2013). Extensions of sparse PCA to estimating top r “sparse” subspaces have
also been widely studied in the statistics community (Vu and Lei, 2013; Wang et al., 2014).

As we will see soon, our guarantees are not only minimax optimal in terms of these param-
eters, but they are essentially instance-optimal! Our upper bound and lower bound guarantees
will work for every instance and will be tight up to logarithmic factors asymptotically (as
number of samples becomes large). Hence our results give a surprising characterization of
the estimation error under adversarial perturbations in terms of these robustness parameters
(measured in ∞ → 2 norm), and highlight new robustness benefits of sparsity in high
dimensional estimation.

1.1. Our Results

We now state our main results on recovering the principal subspace (and the best rank-
r approximation) of the covariance Σ∗ in terms of the ∞ → 2 operator norm of the
corresponding rank-r projection matrix. The samples are drawn from the Adversarial
Perturbation model where the covariance of the uncorrupted samples Σ∗ has eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The unknown covariance matrix is split into Σ = Σtop + Σbot,
where Σtop corresponds to the best rank-r approximation of Σ i.e., the truncation of the
SVD to the top-r eigenvalues λ1, . . . , λr. Let Π∗ be the orthogonal projection matrix onto
the span of Σtop. We will assume that ‖Π∗‖∞→2 ≤ κ. We will measure the estimation error
in squared Frobenius norm. For the case of projection matrices, this is equivalent (up to a
factor of 2) to the standard notion of subspace sin Θ distance (see Appendix B).

Theorem 2 [Algorithm] Suppose we have m samples drawn according to the the above
Adversarial Perturbation model with (unknown) covariance Σ∗ satisfying ‖Π∗‖∞→2 ≤ κ.

Assuming that κδ ≤ O(λr−λr+1)√
rλ1

, there exists an algorithm (Algorithm 2) that for any

ε > 0 uses m ≥ Cr2κ4
( λ21

(λr−λr+1)2

)
log n/ε2 samples and outputs a rank-r projection Π̂ with

‖Π̂‖∞→2 = O(κ), and an estimate Σ̂top (restricted to the subspace Π̂) such that

‖Π̂−Π∗‖2F ≤ ε1 :=
√
λ1

(λr−λr+1) ·O
(√
r · κδ

)
+ ε and ‖Σ̂top − Σtop‖2F ≤ O(λ2

1ε1 + λ1κ
2δ2).

See Theorem 6 for the general statement for q > 2 and the proof. To interpret the results
let’s consider the case when Σ∗ = θΠ∗ + I (hence Σtop = (1 + θ)Π∗), and θ = Θ(1).3 The
above theorem shows that there is an efficient algorithm that obtains a rank-r projection Π̂

2. For the special case of a 1-dimensional subspace along the vector v, the orthogonal projector Π1 = 1
‖v‖22

vv>

satisfies ‖Π‖∞→2 = ‖Π‖2→1 = ‖v‖1/‖v‖2. See Fact 14 for details.
3. When r = 1, this special case is the sparse PCA setting where the principal component has `1 sparsity κ.
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that is O(
√
rκδ) close to Π∗ in squared Frobenius norm, for sufficiently large polynomial m

(Π̂ also has robustness parameter O(κ)). On the other hand, a random subspace of rank
r will incur an error of Ω(r). Our algorithm can achieve an error of o(1) while tolerating
an additive perturbation that is as large as δ = o(1/(

√
rκ)) (which could be n−0.21/

√
r if

κ = n0.2). On the other hand, if the top-r subspace has no special structure (robustness
parameter κ ≈

√
n), then one requires δ = o(n−1/2/

√
r) for achieving similar error rates.

Next, we give a computational inefficient algorithm that achieves a better statistical rate
in terms of the sample complexity.

Theorem 3 [Statistical upper bound] Given m samples drawn according to the Adversarial
Perturbation model with covariance Σ∗ satisfying ‖Π∗‖∞→2 ≤ κ, there exists an algorithm

that for any ε > 0 uses m ≥ Cr2κ2
( λ21

(λr−λr+1)2

)
log n/ε2 samples and outputs a rank-r

projection Π̂ with ‖Π̂‖∞→2 ≤ κ, and an estimate Σ̂top (restricted to the subspace Π̂) s.t.

‖Π̂−Π∗‖2F ≤ ε1 :=
√
λ1

(λr−λr+1) ·O
(√
r · κδ

)
+ ε and ‖Σ̂top − Σtop‖2F ≤ O(λ2

1ε1 + λ1κ
2δ2).

See Theorem 31 for the guarantees for general q > 2. The dominant error of O(
√
rκδ) is the

same for both Theorems 2 and 3, and represents the asymptotic error (error as m→∞). The
main difference however is the number of samples m needed as a function of κ to drive the
error to within ε of this asymptotic error. This gap of κ4 vs κ2 represents a computational vs
statistical tradeoff that is unavoidable even when r = 1 (and q =∞), assuming the hardness
of the Planted Clique problem. This follows directly from computational lower bounds for
sparse PCA with a k = κ2-sparse vector (combinatorial sparsity) assuming Planted Clique
hardness (Berthet and Rigollet, 2013; Gao et al., 2017). For smaller q ∈ (2,∞), there is
an extra polynomial factor gap of n2/q in the sample complexity between Theorem 6 and
Theorem 31 that would be interesting to resolve. Finally the estimation error in the absence
of any adversarial errors is comparable to the existing state of the art results that are known
to be tight (minimax optimal) (Vu and Lei, 2013; Awasthi et al., 2019a).

The following lower bound shows that our asymptotic error guarantees are almost optimal
for every instance.

Theorem 4 [Lower Bound] Suppose we are given parameters r ∈ N, κ ≥ 2r and δ > 0.
In the notation of Theorem 3, for any Σ∗, given m samples A1, . . . , Am generated i.i.d.
from N (0,Σ∗) with κ = ‖Π∗‖∞→2 satisfying

√
rλ1(κ/n) ≤ δ ≤

√
rλ1/κ, there exists a

covariance matrix Σ′ with a projector Π′ onto its top-r principal subspace, and an alternate
dataset A′1, . . . , A

′
m drawn i.i.d. from N (0,Σ′) satisfying ‖Π′‖∞→2 ≤ (1 + o(1))κ, and

‖A′j −Aj‖∞ ≤ δ ∀j ∈ [m],

but ‖Π∗ −Π′‖2F ≥
( Ω(1)√

λ1 log(rm) logn

)
·
√
rκδ, and ‖Σ′top − Σtop‖2F ≥

(λ21+···+λ2r)
r · ‖Π′ −Π∗‖2F

In particular, when Σtop = (1 + θ)Π∗ then Σ′top = (1 + θ′)Π′ with θ′ = (1 + o(1))θ.

See Section 4 for more details and proof of the construction, and Theorem 29 for the
extension to general `q norms. Consider the previous setting where λr − λr+1 = Ω(λ1)
and think of m as being any large polynomial in n. The above lower bound on the error
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‖Π′−Π∗‖2F = Ω̃(
√
rκδ) nearly matches the error bound obtain by our algorithm in Theorem 2

(as m becomes a sufficiently large polynomial and hence ε ≈ 0) up to logarithmic factors,
for every instance (i.e., every Π∗,Σ∗) i.e., our bounds are nearly instance-optimal. Note that
this is much stronger than minimax optimality, which only requires the lower bounds to
be tight for a specific choice of Σ∗,Π∗. Hence, Theorem 2 and Theorem 4 together show
that the ∞→ 2 norm of the projection matrix essentially characterizes the robustness to
training errors bounded in `∞ norm.

Discussion of the characterization. Our characterization of the robustness to adver-
sarial perturbations is in terms of the robustness parameter κ = ‖Π∗‖∞→2 (‖Π∗‖q→2 for
general q), which generalizes analytic notions of sparsity. For a r = 1-dimensional subspace,
this exactly corresponds to the `1 sparsity of the unit vector v in that subspace. For
higher-dimensional subspaces, there are several other notions of sparsity that have been
explored (Vu and Lei, 2013; Wang et al., 2014). For a fixed orthonormal basis V ∈ Rn×r of
the subspace (so Π∗ = V V >), some of the notions that have been considered include the
entry-wise norm ‖V ‖1 (the sum of the `1 norms of the basis vectors), the maximum `1 norm
among the columns of V , the sparsity of the diagonal of Π∗ and the sum of the row `2 norms
of V , among other quantities. Many of these quantities are the same for r = 1 but may vary
by factors of

√
r or more depending on the quantity. On the other hand, our robustness

parameter κ is a property only of the subspace and is basis independent. The ‖Π∗‖∞→2

of a projector is the largest `1 norm among unit vectors (in `2 norm) that belong to the
subspace.

Consider three different subspaces (or projectors) given by the orthonormal basis
V1, V2, V3 ∈ Rn×r of the following form (think of κ =

√
k, r � κ); assume that the signs

of the entries are chosen randomly in a way that also satisfies the necessary orthogonality
properties (e.g., random Fourier characters over {±1 }k).

V1 =



±1√
k

±1√
k
· · · ±1√

k
±1√
k

±1√
k
· · · ±1√

k
...

...
. . .

...
±1√
k

±1√
k
· · · ±1√

k

0 0 · · · 0
...

...
...

...
0 0 · · · 0


, V2 =



±
√
r√
k

0 · · · 0

· · · · · ·
±
√
r√
k

0 · · · 0

0 ±
√
r√
k
· · · 0

· · · · · ·
0 ±

√
r√
k
· · · 0

0 0 · · · 0
...

...
. . .

...


, V3 =



±1√
r
±1√
r
· · · ±1√

r
±1√
k

· · · · · · ·
±1√
r
±1√
r
· · · ±1√

r
±1√
k

0 0 · · · 0 ±1√
k

· · · · · · ·
0 0 · · · 0 ±1√

k

0 0 · · · 0 0
...

...
. . .

...
...


The main difference between V1, V2 is that in V2 the sparse basis vectors have disjoint support,
whereas in V1 they are commonly supported. However, there is an alternate basis for the
subspace V2 which looks like V1, but basis dependent quantities like the maximum `1 norm
among columns get very different values for V1, V2. In the third example, the first r− 1 basis
vectors are extremely sparse with `1 norm O(

√
r), whereas only one of the basis vectors has

`1 sparsity
√
k. Many aggregate notions of sparsity like ‖V ‖1 or sum of the row `2 norms

have very different values for V1 and V3 that differ by a
√
r factor. On the other hand, our

robustness parameter κ ≈
√
k; this is because each of these subspaces are supported on

at most k co-ordinates (and a spread out vector of this form exists), so the maximum `1
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length among unit `2 norm vector is
√
k. Hence, while our robustness parameter ‖Π∗‖∞→2

characterizes the asymptotic error that can be obtained in all of these different cases (using
Theorem 2 and Theorem 4), many other natural notions of sparsity are off by factors of

√
r

or more in at least one of these cases.
Finally, our robustness parameter κ also satisfies other useful properties like monotonicity

(see Lemma 13), that will be very useful in the algorithm and analysis (this is not satisfied by
various other norms like ‖·‖1 etc.). While the ∞→ 2 operator norm is NP-hard to compute
for PSD matrices, there exists polynomial time algorithms that can compute it up to a
small constant factor (that corresponds to the Gröthendieck constant for PSD matrices) (see
Nesterov, 1998; Alon and Naor, 2004).

Comparison to Prior Work and Related Work. There are several other notions of
robustness that have been explored in both unsupervised and supervised learning. We place
our work in the context of these existing works in Section A. The work that is closest to this
paper is the recent work of Awasthi et al. (2019a). Our work is inspired by Awasthi et al.
(2019a) and builds on some of those techniques. However, our work differs significantly from
Awasthi et al. (2019a) both in terms of the problem focus, and the nature of the results,
as we explain below. The main problem considered in Awasthi et al. (2019a) is finding a
low-rank projection of a given data matrix A that achieves low approximation error, and is
also robust to adversarial perturbations at testing time. Robustness at test time naturally
places an upper bound constraint on the q → 2 operator norm of the projection matrix. The
paper also consider this problem under adversarial perturbations at training-time, and use
these results as a black-box to obtain some guarantees for mean estimation and clustering in
the presence of adversarial perturbations. The paper mainly studies the worst-case setting
which is computationally hard, and hence focus on multiplicative approximation guarantees
for an objective (like low-rank approximation error), as opposed to estimation or recovery.

On the other hand, the main focus of this paper is adversarial perturbations at training
time; there is no requirement of robustness at testing-time. Hence, it is not clear why
κ = ‖Π‖q→2 is a relevant parameter at all. The main message of this paper is that this
parameter κ indeed characterizes the robustness to adversarial perturbations at training
time as well (this is even if test-time robustness is not a consideration)! Moreover we focus
on high-dimensional statistical estimation tasks where there is an underlying distribution
for the uncorrupted data, and allows us to obtain the strong statistically optimal recovery
guarantees. Hence the guarantees in the two works are incomparable.

2. Preliminaries

Norms. For a vector v ∈ Rn and any q ≥ 1, we use ‖v‖q to denote the q-norm:(∑n
i=1 |v(i)|q

)1/q
. For any fixed q ≥ 1, we use `q∗ to denote the dual of `q, where 1/q+1/q∗ =

1. We also apply Hölder’s inequality extensively: ∀q ≥ 1 and u, v ∈ Rn,
∣∣〈u, v〉∣∣ ≤ ‖u‖q∗‖v‖q.

A direct corollary is that ‖v‖q ≤ |support(v)|1/q−1/p · ‖v‖p for any vector v and any q < p.
In particular, ‖v‖1 ≤

√
k for a unit vector v of sparsity k.

For a matrix A ∈ Rn×m and q ≥ 1, we will use ‖A‖q to denote the entry-wise `q norm

of A:
(∑

i,j |A(i, j)|q
)1/q

. When q = 2, we will also use the Frobenius norm ‖A‖F
def
= ‖A‖2

equipped with trace inner product 〈A,B〉 = tr(A>B).

7



p→ q norms. For any p and q, we define the operator p→ q norm for a matrix A ∈ Rn×m:

‖A‖p→q = max
v∈Rm\{ 0 }

‖Av‖q/‖v‖p.

For convenience, let ‖A‖ denote the operator norm ‖A‖2→2. A variational definition of
the operator norm is as follows (See Section 4 in Awasthi et al. (2019a) for proofs).

Fact 5 For any p and q, ‖A‖p→q = max
u∈Rn\{ 0 },v∈Rm\{ 0 }

u>Av/(‖u‖q∗‖v‖p). Also, ‖A‖p→q =

‖A>‖q∗→p∗ and ‖A>A‖q→q∗ = ‖A‖2q→2. In particular, ‖Π‖∞→2 = ‖Π‖2→1 and ‖Π‖q→q∗ =

‖Π‖2q→2 for projection matrices.

Due to the space constraint, we defer a few properties of the operator norm to Appendix B.

3. Computational Upper Bound

In this section we present our computationally efficient algorithm for estimating the top-r
principal subspace. We state our main claim regarding the error guarantees associated with
the algorithm and describe the key ideas used in the analysis. All the proofs are deferred to
Appendices D and E. A key subroutine in our algorithm is the following convex program that
was proposed in Awasthi et al. (2019a). We use the program will be run on the corrupted
data Ã and the bulk of our analysis will involve showing that the solution output by the
program can be used for estimation in spite of adversarial perturbations. The program takes
in as parameters the rank r and an upper bound for the robustness parameter κ, whose
target solution is the projection Π∗ of Σ∗.

min
1

m
‖Ã‖2F −

1

m
〈ÃÃ>, X〉 (2)

subject to tr(X) ≤ r (3)

0 � X � I (4)

‖X‖q ≤ rκ2 (5)

‖X‖q→q∗ ≤ κ2 (6)

One can use the Ellipsoid algorithm to efficiently solve the program above via an efficient
separation oracle (See Lemma 15). We briefly discuss the last two constraints in the above
program and refer to Awasthi et al. (2019a) for a more detailed discussion: The constraint (5)
is based on the fact that the projection Π∗ =

∑r
i=1 viv

>
i has each ‖vi‖q∗ ≤ κ. At the same

time, the last constraint (6) is based on the monotonicity of q → q∗ norms from Lemma 13.
Below is the algorithm that uses the SDP solution above to outputs a robust projection

matrix Π̂ of rank at most r.

Algorithm 1 Finding Robust Low-Rank Projection

1: function RobustProjection(data matrix Ã ∈ Rm×n, rank r, robustness κ, norm q)
2: Solve (2) on Ã with parameters κ, q, r to find a solution X̂ � 0 (see Lemma 15).
3: Use SVD on X̂ to find the subspace spanned by the top-r eigenvectors of X̂. Output

Π̂, the orthogonal projection matrix onto this subspace.
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Finally, our algorithm for estimating the principal components of the covariance matrix
in the presence of adversarial perturbations, described below, just uses RobustProjection
as an additional pre-processing step to find a suitable robust subspace for computing the
empirical covariance.

Algorithm 2 Principal Subspace Estimation under Adversarial Perturbations

1: function AdvRobustPCA(4m samples Ã1, . . . , Ã4m ∈ Rn, rank r, robustness κ, q)
2: Split samples into two equal parts. Let A(1), A(2) denote these two datasets.
3: For each j ∈ [m], let A′j = 1√

2
(Ãj − Ãm+j) and let A′′j = 1√

2
(Ã2m+j − Ã3m+j).

4: Run RobustProjection(A′, r, κ, q) to find a r-dimensional projection matrix Π̂.
5: Output Σ̂r to be empirical covariance of Π̂A′′.

Next, we state our main theorem regarding the estimation error associated with the
algorithm above. We state the guarantee for a general q ≥ 2. Substituting q =∞ recovers
the guarantee stated in Theorem 2.

Theorem 6 Given q ≥ 2, r, and κ, let Ã ∈ Rn×m be a δ-perturbation (in `q norm) of data
points generated from N (0,Σ∗). Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the covariance
matrix Σ∗ and Π∗ be the projection matrix on to the top r eigenspace of Σ∗. There exists a
universal constant C such that for any ε > 0, and κδ ≤ λr−λr+1

C
√
rλ1

, Algorithm 2 when provided

with m ≥ Cr2κ4 · λ21
(λr−λr+1)2

log n · n4/q

ε2
samples, outputs with probability at least 0.99 Σ̃top

of rank r and the projector onto its subspace Π̃ that satisfies ‖Π̃‖q→2 = O(κ),

‖Π̃−Π∗‖2F ≤ O
(√λ1r · κδ
λr − λr+1

)
+ ε and ‖Σ̃top − Σtop‖2F ≤ O

(
λ2

1‖Π̃−Π∗‖2F + λ1κ
2δ2
)
.

We describe the key ideas and supporting claims that are used in our analysis. Due
to the space constraint, we will defer the formal proof of Theorem 6 to Appendix D.1.
The proof consists of three main steps. We first argue about the error of the estimated
projection matrix Π̃ with respect to Π∗. One can show that the optimal solution to the
convex program (2) (that we will refer to as the SDP) on the ideal instance E[AA>] in fact
recovers the projection Π∗. However the SDP is solved on the given instance E[AA>] + E
where E is the error matrix defined as E := 1

mÃÃ
>−E[AA>] involving both the adversarial

perturbations and sampling errors. The first part of the argument for the robustness of
the SDP to adversarial perturbations is by providing an upper bound on |〈E,X〉| over all
feasible SDP solutions X. Lemma 7 that is stated below crucially uses the constraints on
‖X‖q→q∗ and ‖X‖q∗ to provide the required bound.

Lemma 7 Let Ã be a δ-perturbation (in `q norm) of the original data matrix A where
E[AA>] = Σ∗. Let E := 1

mÃÃ
> − E[AA>] denote the error matrix and define

Pc(q) = {X ∈ Rn×n : tr(X) = r, 0 � X � I, ‖X‖q∗ ≤ rκ2, ‖X‖q→q∗ ≤ c(q) · κ2}

as the set of all solutions that can be obtained by solving the SDP in (2) via the Ellipsoid
Algorithm (see Lemma 15). With high probability, ∆ := supX∈Pc(q)

|〈E,X〉| satisfies

∆ ≤ O
(√

r · λmax(Σ∗)κδ + κ2δ2 +
rκ2 · λmax(Σ∗)

√
log n · n2/q

√
m

)
.
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A key technical lemma that helps to establish the above bound is stated below.

Lemma 8 Let A1, A2, . . . , Am ∈ Rn be generated i.i.d. from N (µ,Σ∗). Let A be the n×m
matrix with the columns being the points Ai. Let X be a solution to the SDP in program (2)
and let B be any matrix, potentially chosen based on A, with ‖Bj‖q ≤ δ ∀j ∈ [m]. Then
with probability at least 1− 1

poly(n) we have that

1

m

∣∣∣〈(A− E[A])BT , X〉
∣∣∣ ≤ O(

√
r‖Σ∗‖κδ) +O(κ2δ2) +O

(rκ2‖Σ∗‖
√

log n · n2/q

√
m

)
. (7)

We defer the proof of Lemma 7 to Section D.2. The second step of the proof lower
bounds the correlation of the SDP solution to Π∗ in terms of the value obtained by the SDP
solution on the ideal instance Σ∗ = E[AA>]. This is established in following claim whose
proof is deferred to Section D.3.

Claim 9 Given a PSD matrix Σ∗, let Π∗ be the projection matrix on to the top r eigenspace
of Σ∗. For any matrix X with tr(X) = r and 0 � X � I, it holds that

〈X,Π∗〉 ≥ r − 〈Π
∗,E[AA>]〉 − 〈X,E[AA>]〉

λr − λr+1
= r − 〈Π

∗,Σ∗〉 − 〈X,Σ∗〉
λr − λr+1

.

where λr and λr+1 denote the rth and the (r + 1)th largest eigenvalues of Σ∗ respectively.

The above claim helps us argue that by truncating X to its top-r subspace we get a good
approximation to Π∗. Finally, in the theorem below we show how to recover the top-r
principal component Σ∗ given Π̃ that is a good estimate of Π∗.

Theorem 10 Let A1, . . . , Am be data points drawn independently from N (0,Σ∗) where the
covariance matrix Σ∗ =

∑n
i=1 λiviv

>
i with λ1 ≥ λ2 ≥ · · · ≥ λn. Let Σtop =

∑r
i=1 λiviv

>
i and

Π∗ denote the projection matrix on to the eigenspace of Σtop. Furthermore, let Π be a rank
r projection matrix with ‖Π−Π∗‖2F ≤ ε. Then given a delta perturbation Ã1, . . . , Ãm, with

probability at least 0.99 (over A1, . . . , Am), the matrix Σ̃top = Π 1
m(
∑m

i=1 ÃiÃ
>
i )Π satisfies

‖Σ̃top − Σtop‖2F = O(λ2
1ε+

λ2
1r

2

m
+ κ4δ4 + λ1 · κ2δ2) when m = Ω(λ2

1r
2).

Due to the space constraint, we defer the proof of Theorem 10 to Appendix D.4 and the
proof of our main result, Theorem 6, to Appendix D.1.

4. Statistical Lower Bound and Instance-Optimality

We now describe the construction that establishes Theorem 4, the instance-optimal lower
bound for recovering the principal subspace of a covariance matrix under adversarial pertur-
bations. Recall that we have an arbitrary covariance matrix Σ∗ with eigendecomposition
Σ∗ =

∑n
i=1 λiviv

>
i and Π∗ =

∑r
i=1 viv

>
i being the projection matrix onto its top-r subspace.

We construct based on Π another rank-r projection matrix Π′ (and a corresponding Σ′) s.t.

‖Π′ −Π∗‖2F ≥
c
√
rκδ√

λ1 log(rm) logn
and ‖Σtop − Σ′top‖2F = Ω

(λ2
1 + · · ·+ λ2

r

r
· ‖Π′ −Π∗‖2F

)
,
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and ‖Π′‖∞→2 ≤ (1 + o(1))κ. Moreover, for any data matrix A composed of m samples
generated from N (0,Σ), we prove that with high probability, ∃ a coupled data matrix
A′ ∈ Rn×m generated from N (0,Σ′) satisfying ‖Aj −A′j‖∞ ≤ δ.

We remark that our construction also extends in a straightforward fashion to general `q
norms to also give the same asymptotic lower bound of Ω̃(

√
r/λ1 · κδ), where the Ω̃ hides

polylogarithmic factors. We sketch the differences in the intermediate claims between the
`∞ and general `q norm in the appendix (see Section F.3.1). To interpret the results, let
λ1 = O(1), and let κ� r (say κ = n0.2 and r = n0.1). The theorem gives a lower bound of
Ω̃(
√
rκδ), which is meaningful when κδ ≤

√
r; also δ can not be too small. The range of δ is

quite natural (for e.g., it is [n−0.85, n−0.15] for the above setting). Theorem 4 shows that the
upper bounds are optimal up to poly-logarithmic factors for every principal subspace Π∗

with ‖Π∗‖∞→2 = κ. The lower bound does not have the optimal dependence in terms of the
gap between the eigenvalues (λr − λr+1)/λ1. Please also see Theorem 25 in the appendix
for a simpler minimax lower bounds that achieves the correct dependence on the eigengap
as well.

Construction. To construct Π′ we take the basis vectors v1, . . . , vr and add carefully
chosen small perturbations u1, . . . , ur to them to get a new basis v′1, . . . , v

′
r. Set k′ :=√

λ1
r ·
(
κ
δ

)
and ε := c

log(rm) logn(δκ/
√
rλ1) for a small constant c > 0. Note that ε ∈ [0, 1

4) and

2r ≤ k′ ≤ n/r from our choice of parameters. Let S1, S2, . . . , Sr ⊂ { 1, . . . , n } be arbitrary
disjoint subsets of size k′ each. Let for each ` ∈ [r], T` denote the subspace of dimension
d` ≥ k′ − r ≥ k′/2 that corresponds to the subspace of RS` that is orthogonal to Π∗ and
let Π⊥` ∈ Rn×n be its projector. Then we define the eigenvectors v′1, . . . , v

′
r of Σ′, while

v′r+1 = vr+1, . . . , v
′
n = vn.

∀` ∈ [r], u` =
( 1√

d`

)
Π⊥` g`, where g` ∼ N(0, In×n) independently. (8)

Define, ∀` ∈ [r], v′` = (1− ε)v` +
(√2ε− ε2

‖u`‖2

)
u`. (9)

Let Π′ be the orthogonal projector on the subspace spanned by v′1, . . . , v
′
`. Recall ∀j ∈

[m], Aj =
∑n

`=1 ζ
(j)
`

√
λ` · v` where ζ

(j)
` ∼ N(0, 1). We construct the alternate dataset A′:

A′j =
r∑
`=1

ζ
(j)
`

√
λ` ·

(
v` +

( √2ε− ε2

(1− ε)‖u`‖2

)
u`

)
+

n∑
`=r+1

ζ
(j)
`

√
λ` · v`. (10)

(Note that the randomness inAj andA′j are coupled using the random variables { ζ(j)
` : ` ∈ [r] } , j ∈

[m].) Observe that each sample A′j is also drawn independently from N (0,Σ′) with

Σ′ =

r∑
`=1

λ`

(
v` +

( √2ε− ε2

(1− ε)‖u`‖2
)
u`

)(
v` +

( √2ε− ε2

(1− ε)‖u`‖2
)
u`

)>
+

n∑
`=r+1

λ`v`v
>
` .

Its best rank-r approximation is Σ′top := 1
(1−ε)2

∑r
`=1 λ`v

′
`(v
′
`)
>, where v′` is defined in (9).

Moreover v′1, . . . , v
′
r are orthonormal (since u1, . . . , ur are mutually orthonormal and orthogo-

nal to Π∗). Hence Π′ =
∑r

`=1 v
′
`(v
′
`)
>, and the top r eigenvalues of Σ′ are {λ`/(1− ε)2 : ` ∈ [r] }.
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For our construction to work the ui vectors must simultaneously satisfy a few properties.
They must be (i) orthogonal to the given Π∗, (ii) have disjoint support, (iii) be sufficiently
sparse, and (iv) and have sufficiently small `∞ norm. Ensuring these properties requires a
careful balancing act, and the following lemma gives an appropriate random distribution
that satisfies these properties.

Lemma 11 The vectors u1, u2, . . . , ur ∈ Rn have disjoint supports S1, S2, . . . , Sr ⊂ [n],
and Π∗u1 = Π∗u2 = · · · = Π∗ur = 0. Moreover given k′ ≥ 2r, for any η < 1, with probability
at least (1− η) we have

∀` ∈ [r],
∣∣∣‖u`‖22 − 1

∣∣∣ ≤ 3
√

log(r/η)/k′ + 4 log(r/η)/k′ (11)

‖u`‖∞ ≤ 3
√

log(rk′/η)/k′. and ‖u`‖1 ≤ 2
√
k′. (12)

The final hurdle in the construction comes from arguing that ‖Π′‖∞→2 is comparable to
‖Π‖∞→2. We argue this by analyzing the related ‖Π′‖∞→1 norm instead which is known to
have good monotonicity properties (see Lemma 13), and by using properties of v1, . . . , vr
that follow from ‖Π∗‖∞→2 = κ. Please see Section F.3 for the proof of the theorem, and
Section F.1 for proofs of the related lemmas.
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Appendix A. Related Work

Robustness in Supervised Learning. In the context of supervised learning problems
such as classification and regression various models of robustness have been studied in the
literature. These include the classical random classification noise model (Angluin and Laird,
1988), the statistical query model (Kearns, 1998), and the agnostic learning (Kearns et al.,
1994) framework for modeling corruptions to the training labels. Model such as malicious
noise (Kearns and Li, 1993) and nasty noise (Diakonikolas et al., 2018c) study settings where
both the training data and the training labels could be corrupted. Typically these models
assume that only a small ε fraction of the training data can be corrupted by an adversary.
The study of these models has been very fruitful leading to a variety of algorithmic insights
(Blum et al., 1998; Dunagan and Vempala, 2008; Kalai et al., 2008a; Klivans et al., 2009;
Kalai et al., 2008b, 2012; Awasthi et al., 2014; Diakonikolas et al., 2018c).

Recently, motivated from properties of deep neural networks, there has also been a lot
in interest in modeling robustness to adversarial perturbations of the test input (Madry
et al., 2017; Schmidt et al., 2018; Nakkiran, 2019; Khim and Loh, 2018; Yin et al., 2018;
Tsipras et al., 2018; Awasthi et al., 2019b). While these works also model the noise as `p
perturbations to the input, the theory of test time robustness is poorly understood and we
lack provably robust algorithms for many fundamental tasks.

Robustness in Unsupervised Learning. There is a large body of literature in the
machine learning and statistics community on the design and study of robust algorithms
for unsupervised learning tasks. Perhaps the most popular and widely studied model in
this context is Huber’s ε-contamination model (Huber, 2011). Here is it assumed that a
given data set is generated from a mixture: (1− ε)P + εQ where P is the true distribution
about which we want to reason and Q is an arbitrary distribution. Various works have
studied the computational and statistical tradeoffs under Huber’s model for fundamental
tasks such as mean/covariance estimation (Yatracos, 1985; Chen et al., 2016; Diakonikolas
et al., 2019, 2018a; Charikar et al., 2017; Steinhardt et al., 2017; Balakrishnan et al., 2017;
Li, 2017), regression (Prasad et al., 2018; Klivans et al., 2018) and more general stochastic
convex optimization (Prasad et al., 2018; Diakonikolas et al., 2018b). Dutta et al. (2017)
consider a notion of additive perturbation stability for Euclidean k-means clustering, where
the optimal clustering is stable even when each point is perturbed by a small amount in `2
norm. Our results together indicate that the ∞→ 2 norm of the principal may analogously
capture a notion of stability for the subspace estimation problem when the perturbations
are measured in `∞ norm (or `q for q > 2).

Principal Subspace Estimation in High Dimensions. The results of our paper char-
acterize the robustness to adversarial perturbations for estimating the top r-principal
subspace of the covariance matrix in terms of the sparsity of the subspace. In the area of
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high dimensional statistics questions of estimating mean and covariance with rates depending
on various notions of sparsity have been widely studied. These works however assume that
the dataset is indeed generated from the idealized model. There is a long line work on the
classical problem of sparse mean estimation in high dimensions (Donoho et al., 1992; Donoho
and Johnstone, 1994). For the case of covariance estimation the sparse PCA formulation
has been well studied and essentially corresponds to estimating the top principal component
assuming that it is `0 or `1 sparse (Johnstone et al., 2001; Berthet and Rigollet, 2013; Amini
and Wainwright, 2009). The works of Vu and Lei (2012, 2013); Ma et al. (2013); Wang et al.
(2014) extend this to estimating the top-r principal subspace with rates depending on certain
notions of sparsity of the subspace. Similar to our work, semidefinite programming (SDP)
based approaches have been proposed for such sparse estimation problems (d’Aspremont
et al., 2005).

Another related setting is the robust PCA formulation that has received significant
interest in recent years (De La Torre and Black, 2003; Candès et al., 2011; Chandrasekaran
et al., 2011). Here one assumes that a given data matrix is the sum of a low rank matrix
and a sparse matrix, i.e., the one with very few non-zero entries. In this case it can be
shown that if true signal (the low rank component) is well spread out then estimation is
possible. In contrast, in our setting every data point could be corrupted and hence the data
matrix Ã cannot be written as the sum of low rank plus a sparse component. In fact, our
characterization implies that under our model of perturbations, estimation is possible if and
only if the signal is localized, i.e., is sparse.

Robustness in Combinatorial Settings. There is also a large body of work in the
theoretical computer science community studying robust algorithm design for various combi-
natorial problems such as graph partitioning, independent set etc. A popular framework that
is used in such contexts is semi-random models (Blum and Spencer, 1995). Semi-random
models assume that the input is generated from an ideal distribution and then perturbed
by an adversary in a non-worst case manner. The study of such models has led to the
design of robust algorithms for many problems such as coloring (Blum and Spencer, 1995),
independent set (Feige and Kilian, 2001), graph partitioning (Makarychev et al., 2012)
and lately for machine learning problems as well (Moitra et al., 2015; Vijayaraghavan and
Awasthi, 2018; Cheng and Ge, 2018; Awasthi and Vijayaraghavan, 2018).

Appendix B. Preliminaries

We discuss a few properties about the operator p→ q norm, robust projections, and sin Θ
distance between subspaces and projections in this section.

A useful fact of the operator norms is the efficient approximation algorithms.

Lemma 12 (Nesterov (1998); Steinberg (2005)) For any q ≤ 2 ≤ p, there exists an
efficient randomized algorithm with an input matrix A that approximates ‖A‖p→q within a
constant factor Cp,q ≤ 3. Moreover for any q ≥ 2, and for PSD matrices M , there exists
polynomial time algorithms that approximates ‖M‖q→q∗ within a 1/γ2

q∗ factor where γq∗ is
the expected `q∗ norm of a standard normal r.v. In particular for q =∞, this gives a π/2
approximation.
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One crucial property in the rounding algorithm of the convex program (2) is the mono-
tonicity of q → q∗ norm stated below (See Section 5 in Awasthi et al. (2019a) for a proof,
and counter examples for other norms).

Lemma 13 For any q > 2, q → q∗ norm is monotone for PSD matrices: for any A,B � 0,
‖A+B‖q→q∗ ≥ ‖A‖q→q∗.

Robust projections. We show basic properties of a projection matrix Π in terms of its
q → 2 norm.

Fact 14 Given any projection matrix Π with ‖Π‖q→2 ≤ κ for q > 2, we have the following
properties.

1. For any δ and vectors u and v with ‖u− v‖q ≤ δ, ‖Πu−Πv‖2 ≤ κδ.

2. Any vector v in this subspace has ‖v‖q∗/‖v‖2 ≤ κ. Moreover ‖Π‖q∗ ≤ rank(Π) · κ2.

Proof The first property follows from the definition of q → 2 norm.
For the second property, ‖v‖q = ‖Πv‖q ≤ κ‖v‖2 by definition. Morever, we could choose a

orthonormal basis v1, . . . , vr for Π such that ‖Π‖q∗ = ‖
∑r

i=1 viv
>
i ‖q∗ ≤

∑r
i=1 ‖viv>i ‖q∗ = rκ2.

The constraint (5) in the convex program essentially comes from the 2nd property in the
above fact.

sin Θ distance of subspaces. Given two subspaces S and S∗ of the same dimension, we
always measure their distance in terms of the Frobenius norm of the sin Θ(S, S∗) matrix,
where Θ corresponds to the principal angles between the subspaces. This has a simple
expression in terms of the projection matrices Π,Π∗ when both have the same rank:

sin Θ(S, S∗) = Π⊥Π∗. Hence ‖sin Θ(S, S∗)‖2F = ‖Π⊥Π∗‖2F = ‖Π∗‖2F−〈Π,Π∗〉 = 1
2‖Π−Π∗‖2F .

In particular, when we measure the distance between two projection matrices Π and Π∗ of
rank r, we will also use the following form

‖sin Θ(Π,Π∗)‖2F = ‖Π⊥Π∗‖2F = r − 〈Π,Π∗〉. (13)

Appendix C. Solving the convex program (2)

Lemma 15 For any q ≥ 2, there exists a constant c = c(q) ≥ 1 such that the following
holds. There is a randomized polynomial time algorithm that given an instance A ∈ Rn×m
with an optimal solution X∗ to the relaxation (2)-(6), with high probability finds a solution
X̂ that is arbitrarily close in objective value compared to X∗ such that ‖X̂‖q→q∗ ≤ cκ2.

Proof We first observe that the feasible set of the program is convex. We now show how to
use the Ellipsoid algorithm to approximately it. We will design an approximate hyperplane
separation oracle for (6) and (5). The constraint (6) can be rewritten as 〈yz>, X〉 ≤ κ2 for
all y, z ∈ Rn such that ‖y‖q, ‖z‖q ≤ 1. As described in Lemma 12, there exists SDP-based
polynomial time algorithms that give constant factor c = c(q) approximations for computing

19



the q → q∗ matrix operator norm. Such an approximation algorithm immediately gives a
c(q)-factor approximate separation oracle; when ‖X‖q→q∗ > cκ2, the solution y′, z′ output
by the algorithm gives a separating hyperplane of the form 〈y′(z′)>, X〉 ≤ κ2. Finally, the
constraint (5) is also convex and can be efficiently separated using the gradient at the given
point X.

Appendix D. Computational Upper Bounds

In this section we provide proofs of the supporting clams that were used in establishing
our main theorem (Theorem 6). We start with proving our main result — Theorem 6.
Then we prove Lemma 7 in Appendix D.2, Claim 9 in Appendix D.3, and Theorem 10 in
Appendix D.4.

D.1. Proof of Theorem 6

We finish the proof of our main theorem (Theorem 6) using the supporting claims.

Proof of Theorem 6. Recall that we define E = 1
mÃÃ

> − E[AA>]. Let X be the
solution to the SDP in (2). From the optimality of X we have that

〈X,Σ∗ + E〉 ≥ 〈Π∗,Σ∗ + E〉.

We bound 〈X,E〉 and 〈Π∗, E〉 by ∆ := O
(√

rκδ
√
λ1+κ2δ2+ rκ2·λ1

√
logn·n2/q
√
m

)
using Lemma 7.

Hence we get that 〈X,Σ∗〉 ≥ 〈Π∗,Σ∗〉 − 2∆. Then we apply Claim 9 to obtain

〈X,Π∗〉 ≥ r − 2∆/(λr − λr+1) = r − 2∆/θ, (14)

where θ := λr − λr+1. Let X =
∑n

i=1 λi(X)uiu
>
i be the eigendecomposition of X with

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) and let Π̃ =
∑r

i=1 uiu
>
i . Since Π∗ is a projection matrix,

equation (14) implies that

〈Π∗, X〉 =

n∑
i=1

λi(X) · ‖Π∗ui‖22 ≥ r − 2∆/θ and 〈Π∗, Π̃〉 =

r∑
i=1

‖Π∗ui‖22.

Similarly since 〈Π̃, X〉 ≥ 〈Π∗, X〉 ≥ r − 2∆/θ, we have that

r∑
i=1

λi(X) = 〈Π̃, X〉 ≥ r − 2∆/θ.

At the same time from the constraints of the SDP
∑n

i=1 λi(X) = tr(X) = r. Hence

n∑
i=r+1

λi(X) · ‖Π∗ui‖22 ≤
n∑

i=r+1

λi(X) ≤ 2∆/θ.
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Using the above we get

〈Π∗, Π̃〉 =

r∑
i=1

‖Π∗ui‖22 ≥
r∑
i=1

λi(X)‖Π∗ui‖22

=
∑
i

λi(X)‖Π∗ui‖22 −
n∑

i=r+1

λi(X)‖Π∗ui‖22 ≥ r −
4∆

θ
.

This establishes ‖Π̃⊥Π∗‖2F = 1
2‖Π̃−Π∗‖2F is at most 4∆/θ.

Finally we note λr(X) ≥ 1 − 2∆/θ since
∑r

i=1(1 − λi(X)) ≤ 2∆/θ, which implies

‖Π̃‖q→2 ≤ ‖X‖q→2/(1 − 2∆/θ) = O(κ). The correctness of Σ̃top then follows from Theo-
rem 10. Note that λ2

1r
2/m and κ4δ4 are always less than λ2

1ε and λ1 · κ2δ2 separately given
our parameters.

D.2. Bounding Error over SDP Solutions

Here we provide the proof of Lemma 7. We first state and prove a few useful claims.

Claim 16 For any X in Pc(q) and let Ã be an δ-perturbation of A. Then we always have
that

‖X1/2(Ã−A)‖F ≤
√
c(q)m · κδ

and
〈(Ã−A)(Ã−A)>, X〉 ≤ c(q)m · κ2δ2.

Proof Define B = (Ã−A). The norm bound ‖X‖q→q∗ ≤ c(q)κ2 along with the fact that

for any matrix M , ‖M>M‖q→q∗ = ‖M‖2q→2, implies that ‖X
1
2 ‖q→2 ≤

√
c(q) · κ. Denoting

Bi to be the ith column of B, we get that ‖Bi‖q ≤ δ and that

‖X
1
2B‖2F =

m∑
i=1

‖X
1
2Bi‖2 ≤

m∑
i=1

c(q) · κ2δ2 = m · c(q)κ2δ2.

Next, note that 〈(Ã−A)(Ã−A)>, X〉 = 〈BB>, X〉 = ‖X1/2B‖2F ≤ c(q) ·mκ2δ2.

We will also use the following standard fact extensively.

Fact 17 For any two PSD matrices A and B, λmin(A) · tr(B) ≤ 〈A,B〉 ≤ λmax(A) · tr(B).

Proof We rewrite 〈A,B〉 = ‖A1/2B1/2‖2F , which is sandwiched by λmin(A1/2)2 · ‖B1/2‖2F =
λmin(A) · tr(B) and λmax(A1/2)2 · ‖B1/2‖2F = λmax(A) · tr(B).

We will use the following standard concentration bound on the moments of the covariance
matrix of Gaussian random variables (see Lemma 8.12 in Awasthi et al. (2019a) for a proof).

Lemma 18 Let A1, A2, . . . , Am ∈ Rn be generated i.i.d. from N (0,Σ∗). Let A be the n×m
matrix with the columns being the points Ai. Then with probability at least 1− 1

poly(n)∥∥∥ 1

m
AA> − E[AA>]

∥∥∥
∞
≤ c‖Σ‖

√
log n√
m

and ‖ 1

m
AA> − Σ∗‖q ≤ c

‖Σ‖ · n2/q
√

log n√
m

. (15)
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We now proceed to the proof of the main lemma that upper bounds |〈E,X〉|.

Proof of Lemma 7. Using that fact that E[A] = 0 and B = Ã−A we rewrite

E =
1

m
(A+B)(A+B)> − E[AA>]

=
1

m

(
BB> +B(A− E[A])> + (A− E[A])B> +AA>

)
− E[AA>].

Hence we get that

|〈E,X〉| ≤ 1

m
〈BBT , X〉︸ ︷︷ ︸

T1

+
2

m

∣∣∣〈(A− E[A])BT , X
〉∣∣∣︸ ︷︷ ︸

T2

+

∣∣∣∣〈 1

m
AA> − E[AA>], X

〉∣∣∣∣︸ ︷︷ ︸
T3

. (16)

Next we separately bound each of the terms above. Using Claim 16,

T1 =
1

m
〈BBT , X〉 =

1

m
‖X1/2B‖2F ≤ c(q)κ2δ2.

Using the concentration bound from Lemma 18 on ‖ 1
mAA

> − E[AA>]‖q, t3 can be
bounded as

T3 =
〈 1

m
AA> − E[AA>], X

〉
≤ ‖ 1

m
AA> − E[AA>]‖q · ‖X‖q∗

= O
(λmax(Σ∗) · n2/q

√
log n · rκ2

√
m

)
.

The second term T2 in (16) is the crucial term to upper bound, and contributes the
dominant term of

√
λ1rκδ in the guarantees of Theorem 6. A naive upper bound on T2

can be obtained by |〈M1,M2〉| ≤ ‖M1‖q∗‖M2‖q as we did for T3, but this leads to sub-
optimal bounds that are off by factors involving r. The following technical claim which is a
restatement of Lemma 8 from Section 3 crucially uses the constraint on ‖X‖q→q∗ . Its proof
is deferred to Appendix E.

Lemma 19 Let A1, A2, . . . , Am ∈ Rn be generated i.i.d. from N (µ,Σ∗). Let A be the n×m
matrix with the columns being the points Ai. Let X be a solution to the SDP in program
(2) and let B be any matrix, potentially chosen based on A, with ‖Bj‖q ≤ δ ∀j ∈ [m]. Then
with probability at least 1− 1

poly(n) we have that

1

m

∣∣∣〈(A− E[A])BT , X〉
∣∣∣ ≤ O(

√
r‖Σ∗‖κδ) +O(κ2δ2) +O

(rκ2‖Σ∗‖
√

log n · n2/q

√
m

)
. (17)

Combining the above bounds and using the fact that ‖X‖q→q∗ ≤ c(q)κ2 we get that

∆ ≤ c(q) ·O
(
κ2δ2 +

√
rλmax(Σ∗)κδ +

rκ2λmax(Σ∗)
√

log n · n2/q

√
m

)
.
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D.3. Bounding Correlation with the Subspace [Proof of Claim 9]

In this section we provide the proof of Claim 9. For convenience, let ε denote the gap
ε := r − 〈X,Π∗〉. Hence the goal is to show ε ≤ (〈Π∗,Σ∗〉 − 〈X,Σ∗〉)/(λr − λr−1). To show
this we will obtain an upper bound 〈X,Σ∗〉 in terms of ε, (λr − λr+1) and 〈Π∗,Σ∗〉.

Given the eigen-decomposition Σ∗ =
∑n

i=1 λiviv
>
i with λ1 ≥ · · · ≥ λn, we define

Σtop =
∑r

i=1 λiviv
>
i and Σbot =

∑n
i=r+1 λiviv

>
i . Note 〈Π∗,Σ∗〉 = 〈Π∗,Σtop〉 = tr(Σtop).

We will upper bound 〈X,Σ∗〉 as 〈X,Σtop +Σbot〉 given 〈X,Π∗〉 = r−ε. Let V = [v1, . . . , vn]
denote the matrix with columns being the eigenvectors of Σ∗. For convenience, we rewrite

Σ∗ =
n∑
j=1

λjvjv
>
j = V diag[λ1, . . . , λn]V >,

Σtop = V diag[λ1, . . . , λr, 0, . . . , ]V
>,

Π∗ = V diag[1, . . . , 1, 0, . . . , ]V >.

The above implies that

r − ε = 〈X,Π∗〉 = 〈X,V diag[1, . . . , 1, 0, . . . , ]V >〉 = 〈X ′, diag[1, . . . , 1, 0, . . . , ]〉

where X ′ = V XV >. Similarly, 〈X,Σ∗〉 = 〈X ′, diag[λ1, . . . , λr, 0, . . .]〉. Since X ′ also satisfies
0 � X ′ � I, we have that

〈X,Σtop〉 = 〈X ′, diag[λ1, . . . , λr, 0, . . .]〉 ≤ tr(Σtop)− ε · λr

as 〈X ′, diag[1, . . . , 1, 0, . . . , 0]〉 = r − ε. Similarly, we have 〈X ′,diag[0, . . . , 0, 1, . . . , 1]〉 = ε,
so

〈X,Σbot〉 = 〈X ′, diag[0, . . . , 0, λr+1, . . . , λn]〉 ≤ ε · λr+1.

The above two bounds show that

〈X,Σ∗〉 ≤ tr(Σtop)− ελr + ελr+1.

Hence we get that

〈X,Σ∗〉 ≤ 〈Π∗,Σ∗〉 − ε(λr − λr+1),

ε ≤ 〈Σ,Π
∗〉 − 〈Σ∗, X〉
λr − λr+1

.

D.4. Covariance Matrix Recovery

We end the section by showing how to recover a good approximation to the top-r subspace
of Σ∗ given a good approximation to Π∗. As stated before this is formalized in Theorem 10
which we prove below. We first state the following standard fact to bound the Frobenius
error of the covariance estimation (see Theorem 4.7.1 in Vershynin (2018) for a proof).

Fact 20 Let Σ∗ be a covariance matrix of rank r and largest eigenvalue λ1. For any
m, and vectors A1, . . . , Am ∼ N(0,Σ∗), it holds with probability at least 1 − 10−3, that
‖Σ̃− Σ∗‖ = λ1 ·O(

√
r/m+ r/m) for Σ̃ = 1

m

∑
iAiA

>
i . Moreover, if m = O(λ2

1r
2/β) then

with prob. at least 1− 10−3, ‖Σ̃− Σ‖2F ≤ β for β < r.
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We also use the following lemma showing how to recover a good approximation to the
top-r subspace of Σ∗ in the absence of noise.

Lemma 21 For any covariance matrix Σ∗ =
∑n

i=1 λiviv
>
i with eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λn, let Σtop =
∑r

i=1 λiviv
>
i and Π∗ be the projection matrix on to the top r eigenspace of Σ∗.

Given any rank r projection matrix Π with ‖Π∗−Π‖2F ≤ ε, and m = Ω(λ2
1 · r2), we have that

with probability at least 1−10−3, ‖Σ̃−Σtop‖2F = O(λ2
1 ·ε+

λ21r
2

m ) for Σ̃ = Π( 1
m

∑m
i=1AiA

>
i )Π

and A1, . . . , Am are generated i.i.d. from N(0,Σ∗).

The above lemma is an extension of Lemma 8.2 in (Awasthi et al., 2019a). For completeness,
we provide the proof in Appendix E. Next we establish Theorem 10 showing covariance
recovery in the presence of adversarial perturbations.

Proof of Theorem 10. For the estimate Π( 1
m

∑m
i=1 ÃiÃ

>
i )Π output by the algorithm

we have that

‖Π(
1

m

m∑
i=1

ÃiÃ
>
i )Π−Π∗Σ∗Π∗‖2F

≤2‖Π(
1

m

m∑
i=1

ÃiÃ
>
i )Π−Π(

1

m

m∑
i=1

AiA
>
i )Π‖2F + 2‖Π(

1

m

m∑
i=1

AiA
>
i )Π−Π∗Σ∗Π∗‖2F

≤2‖Π(
1

m

m∑
i=1

ÃiÃ
>
i )Π−Π(

1

m

m∑
i=1

AiA
>
i )Π‖2F +O(λ2

1ε+
λ2

1r
2

m
),

where we use Lemma 21 in the last step. Let Ãi = Ai +Bi such that Bi is the perturbation
of the ith data point. We can rewrite the first term above as

‖Π(
1

m

m∑
i=1

ÃiÃ
>
i )Π−Π(

1

m

m∑
i=1

AiA
>
i )Π‖F

=‖Π(
1

m

m∑
i=1

(Ai +Bi)(Ai +Bi)
>Π−Π(

1

m

m∑
i=1

AiA
>
i )Π‖F

≤‖Π(
1

m

m∑
i=1

BiB
>
i )Π‖F + ‖Π(

1

m

m∑
i=1

AiB
>
i )Π‖F + ‖Π(

1

m

m∑
i=1

BiA
>
i )Π‖F .

Now we bound each Frobenius norm separately. For the first term we have

‖Π(
1

m

m∑
i=1

BiB
>
i )Π‖F ≤

1

m

m∑
i=1

‖ΠBiB>i Π‖F = O(κ2δ2)

where we have used the fact that ΠBi is a vector of norm at most O(κδ). We bound the
second term ‖Π( 1

m

∑m
i=1AiB

>
i )Π‖F (and similary for the third one), by

1

m
‖ΠA‖ · ‖B>Π‖F ≤

1

m
·
√
λ1m ·O(1 +

√
r/m) ·

√
mκδ =

√
λ1 ·O(

√
r/m+ 1)κδ
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where we bound ‖B>Π‖2F ≤
√
mκδ from the above bound on ‖Π( 1

m

∑m
i=1BiB

>
i )Π‖F and

‖ΠA‖ ≤
√
λ1m · (1 +

√
r/m) as follows: rank(ΠA) = r and Fact 20 implies that with

probability at least 1 − 10−3, ‖Π 1
mAA

>Π − E[(ΠA) · (ΠA)>]‖ ≤ O(λ1 ·
√
r/m). Since

‖E[(ΠA) · (ΠA)>]‖ ≤ ‖E[AA>]‖ ≤ λ1, ‖Π 1
mAA

>Π‖ ≤ λ1 + λ1 ·O(
√
r/m).

Combining the above bounds we get that ‖Π( 1
m

∑m
i=1 ÃiÃ

>
i )Π − Π∗Σ∗Π∗‖2F can be

bounded by
O(λ2

1ε+ λ2
1 · r2/m) +O(κ4δ4) +O(λ1 · (1 + r/m) · κ2δ2).

Appendix E. Additional Proofs from Section 3

Proof of Lemma 19. We use the fact that for matrices M1,M2, Q1, and Q2, it holds
that

〈M1M2, Q1Q2〉 ≤ ‖M>1 Q1‖F ‖M2Q
>
2 ‖F

to rewrite

1

m
〈(A− E[A])BT , X〉 =

1

m
〈(A− E[A])BT , X

1
2X

1
2 〉

≤ 1

m
‖(A− E[A])>X

1
2 ‖F ‖X

1
2B‖F

By Claim 16, ‖X
1
2B‖F ≤

√
mκδ. Note that ‖(A − E[A])>X

1
2 ‖2F = 〈AA>, X〉 given

E[A] = 0. Then we split it into

〈AA>, X〉 = 〈AA>−m·E[AA>], X〉+〈m·E[AA>], X〉 = O
(
rκ2 · ‖Σ∗‖

√
log n · n2/q ·

√
m+ ‖Σ∗‖ · rm

)
,

where the first bound comes from the above proof of Lemma 7 for the last term in (16) and
the second bound comes from Fact 17.

We finish the proof by combining the above bounds:

2

m
〈(A− E[A])BT , X〉 ≤ 1

m
·
√
mκδ ·O

(
‖Σ∗‖ · rm+ rκ2 · ‖Σ∗‖

√
log n · n2/q√m

)1/2

= O(
√
r‖Σ∗‖κδ) + κδ ·O

(
‖Σ∗‖rκ2

√
log n · n2/q

√
m

)1/2

≤ O(
√
r‖Σ∗‖κδ) +O(κ2δ2) +O

(
‖Σ∗‖rκ2

√
log n · n2/q

√
m

)
.
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E.1. Proof of Lemma 21

We will use the following fact to apply triangle inequality.

Fact 22 Given a rank r covariance matrix Σ∗ with all eigenvalues upper bounded by λmax

and projection matrix Π∗, for any rank r projection Π with ‖Π∗ −Π‖2F ≤ ε and any Σ̃ (not
necessarily rank r), we have

‖Σ∗ −ΠΣ̃Π‖2F ≤ 8λ2
max · ε+ 2‖ΠΣ∗Π −ΠΣ̃Π‖2F .

Proof At first, we have ‖Σ∗ −ΠΣ̃Π‖2F ≤ 2‖Σ∗ −ΠΣ∗Π‖2F + 2‖ΠΣ∗Π −ΠΣ̃Π‖2F .
Since Π∗ is the projection matrix of Σ∗, we have

‖Σ∗ −ΠΣ∗Π‖2F = ‖Π∗Σ∗Π∗ −ΠΣ∗Π‖2F ≤ 2(‖Π∗Σ∗Π∗ −ΠΣ∗Π∗‖2F + ‖ΠΣ∗Π∗ −ΠΣ∗Π‖2F ).

Since ‖AB‖2F ≤ ‖A‖2op · ‖B‖2F , we further simplify it as

2(‖Π∗ −Π‖2F · ‖Σ∗‖2op + ‖Σ∗‖2op · ‖Π∗ −Π‖2F ) ≤ 4λ2
max · ε.

We finish the proof of Lemma 21.

Proof of Lemma 21. Given Ai ∼ N(0,Σ∗), we know ΠAi is a random vector generated
by N

(
0,ΠΣ∗Π

)
. So we apply Fact 20 to bound ‖ΠΣΠ−Π( 1

m

∑m
i=1AiA

>
i )Π‖2F ≤ δ. Then

we consider Σtop:

‖ΠΣΠ−ΠΣtopΠ ‖F = ‖ΠΣbotΠ‖F ≤ ‖(Π−Π∗)ΣbotΠ‖F + ‖Π∗ΣbotΠ‖F .

Since Π∗ is the projection matrix of Σtop, Π∗Σbot = 0 such that the second term becomes 0.
For the first term ‖(Π−Π∗)ΣbotΠ‖F , we upper bound it by

‖(Π−Π∗)ΣbotΠ‖F ≤ ‖Π−Π∗‖F · ‖Σbot‖op · ‖Π‖op ≤ λ1 ·
√
ε.

From the above discussion, we have

‖ΠΣtopΠ−Π(
1

m

m∑
i=1

AiA
>
i )Π‖2F ≤ 2‖ΠΣΠ−Π(

1

m

m∑
i=1

AiA
>
i )Π‖2F+2‖(Π−Π∗)ΣbotΠ‖2F = O(δ+λ2

1ε).

The final bound follows from Fact 22 with Σ∗ = Σtop there.

Appendix F. Statistical Lower Bound on the Error and
Instance-Optimality

F.1. Auxiliary claims and Proofs.

Proof [Proof of Lemma 11] By construction u1, . . . , ur have disjoint supports, and for each
` ∈ [r], Π∗Π⊥` = 0; hence Π∗u` = 0. We now show (11). Note that Π⊥` g` is distributed
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according to the Gaussian N (0,Π⊥` ). Hence E[‖Π⊥` g`‖22] = tr(Π⊥` ) = d`. For a fixed ` ∈ [r],
using concentration bounds for χ2 distributions we have for any t > 0

P
[∣∣‖u`‖22 − 1

∣∣ > 2

√
t

d`
+ 2

t

d`

]
= P

[∣∣‖Π⊥` g`‖22 − d`∣∣ > 2
√
d`t+ 2t

]
≤ exp(−t).

Substituting t = log(r/η), along with d` ≥ k′ − r ≥ k′/2 and a union bound over all ` ∈ [r]
establishes (11). Then the last property of ‖u`‖1 ≤ 2

√
k′ follows from the Cauchy-Schwartz

inequality with the fact that the support size of u` is at most k′.
Now we upper bound ‖u`‖∞. For each coordinate i and `,

u`(i) =
1√
d`
〈Π⊥` (i, :), g`〉 where Π⊥` (i, :) represents the ith row of Π⊥` .

This is a Gaussian random variable. Hence for a fixed ` ∈ [r], with probability at least 1− η
r ,

‖u`‖∞ =
1√
d`

max
i∈[n]
|〈Π⊥` (i, :), g`〉| ≤ 2

√
log(rk′/η) ·

maxi∈[n]‖Π⊥` (i, :)‖
√
d`

≤ 2
√

log(rk′/η) · 1√
k′/2

,

since Π⊥` is an orthogonal projection matrix. After a union bound over ` ∈ [r], (12) follows.

Proof [Proof of Lemma 24] The proof just uses norm duality and relations between different
norms. ∥∥∥∑

`

u`v
>
`

∥∥∥
q→q∗

= max
x,y:‖x‖q≤1
‖y‖q≤1

r∑
`=1

〈x, u`〉〈v`, y〉 ≤
∑
`

‖u`‖q∗ |〈v`, y〉|

≤ max
`
‖u`‖q∗ ·

∑
`

|〈v`, y〉| = max
`∈[r]
‖u`‖q∗ · ‖V >‖q→q∗

= max
`∈[r]
‖u`‖q∗ · ‖V ‖q→q∗ ≤ r1/2−1/q‖V ‖q→2 ·max

`∈[r]
‖u`‖q∗ .

The last inequality follows since ‖V y‖q∗ ≤ r1/2−1/q‖V y‖2 for any y ∈ Rn since V has r
columns (see Section 2).

For the second statement, we have ‖UU>‖q→q∗ = ‖U>‖2q→2 = ‖U‖22→q∗ using the
variational characterization of operator norms and norm duality (see Section 2). We now
upper bound ‖U‖2→q∗ . Consider any y ∈ Rr with ‖y‖2 = 1. Then because of the disjoint
supports of the columns of U

‖Uy‖q
∗

q∗ =
( r∑
`=1

|y`|q
∗‖u`‖q

∗

q∗

)
≤ max

`∈[r]
‖u`‖q

∗

q∗ · ‖y‖
q∗

q∗

‖Uy‖q∗ ≤ ‖y‖q∗ ·max
`∈[r]
‖u`‖q∗ ≤ r1/q∗−1/2‖y‖2 ·max

`∈[r]
‖u`‖q∗ ≤ r1/2−1/q max

`∈[r]
‖u`‖q∗ .

Hence the lemma holds.

The following simple lemma will be in upper bounding the magnitude of the perturbation
for each sample point.
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Lemma 23 Given any u1, . . . , ur ∈ Rn with disjoint support, and any α1, . . . , αr ∈ R, we
have ∥∥∥ r∑

`=1

α`u`

∥∥∥
q
≤ r1/q max

`∈[r]
|α`|‖u`‖q.

Proof Since u1, . . . , ur have disjoint support,∥∥∥ r∑
`=1

α`u`

∥∥∥q
q

=
r∑
`=1

|α`|q‖u`‖qq ≤ r
(

max
`∈[r]
|α`|‖u`‖q

)q
, as required.

The following lemma is also useful to upper bound the ∞ → 2 operator norm of the
alternate subspace projector Π′.

Lemma 24 Given any vectors u1, . . . , ur and vectors v1, . . . , vr that form the columns of
U, V ∈ Rn×r separately, then for any q ≥ 1∥∥∥UV >∥∥∥

q→q∗
≤ ‖V ‖q→q∗

(
max
`∈[r]
‖u`‖q∗

)
≤ r1/2−1/q‖V ‖q→2

(
max
`∈[r]
‖u`‖q∗

)
. (18)

Moreover if u1, . . . , ur have disjoint support then

‖UU>‖q→q∗ = ‖U‖22→q∗ ≤ r1−2/q
(

max
`∈[r]
‖u`‖2q∗

)
. (19)

F.2. Warmup: Min-max lower bound

We now give a min-max optimal lower bound. While Theorem 4 is much more general,
we include this argument since it is simpler and helps build intuition, and also gives the
correct dependence on the eigengap. The lower bound will apply for Σ∗ = θΠ∗ + I; hence
Σtop = (1 + θ)Π∗ and Σbot = (I −Π∗) = (Π∗)⊥.

Theorem 25 Suppose we are given parameters n, m, θ > 0, r ∈ N, κ, and δ > 0 satisfying√
rλ1(κn) < δ ≤

√
rθ/κ. There exist orthogonal projection matrices Π∗,Π′ both of rank r

with ‖Π∗‖∞→2 ≤ κ and ‖Π′‖∞→2 ≤ κ such that:

• We have the coupling data matrices A and A′ ∈ Rn×m with their columns generated
i.i.d. from N (0, I + θΠ∗) and N (0, I + θΠ′) respectively, such that ‖A−A′‖ ≤ δ with
high probability.

• ‖Π′ −Π∗‖2F = Ω
(

1√
θ
·
√
rδκ/ log nm

)
.

We now prove the above theorem. We first show the constructions of Π′ and A′. Choose
k to be a power of 2 in [κ2/3, 2κ2/3]. Let S := {1, 2, · · · , k} ⊂ [n] and v1, v2, · · · , vr be any r
orthonormal vectors of the form v`(i) = ±1/

√
k if i ∈ S and 0 otherwise. For example, there

are k Fourier characters v` in {0, 1}log k that are orthogonal to each other with ‖v`‖∞ ≤ 1/
√
k:

For each i ∈ [k], let
−→
i ∈ {0, 1}log k be its binary form. Then each Fourier character is

v`(i) = (−1)〈
−→
` ,
−→
i 〉/
√
k.
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Let k′ ∈ [1
4 ,

1
2 ] ·
√
θκ/(δ

√
r) be a power of 2 to denote the support size of the perturbation

vector. Let u1, . . . , ur be unit vectors supported on a disjoint set of k′ coordinates each from
[n] \ S with ‖u`‖∞ = 1/

√
k′ for each ` ∈ [r] using the same construction of v1, . . . , vr. Set

ε := c4
δκ√

rθ log(nm)
for some small constant c4 > 0 such that ε ≤ 1/10 from the parameters

given in the statement. Finally, let

∀` ∈ [r], v′` := (1− ε)v` +
√

2ε− ε2u`,

and let Π′ be the orthogonal projection onto the subspace spanned by v′1, . . . , v
′
r. Now the

original data point Aj and its coupling data point A′j (for j ∈ [m]) for matrices A,A′ are
drawn i.i.d. as follows:

Aj =

r∑
`=1

ζ`v` + g, and A′j =

r∑
`=1

ζ`v
′
` + g, (20)

where ∀` ∈ [r], ζ` ∼ N (0, θ) and g ∼ N (0, I). (21)

Then we bound the ∞→ 2 norm of Π∗ and Π′.

Claim 26 ‖Π∗‖∞→2 ≤ κ and ‖Π′‖∞→2 ≤ κ.

Proof of Claim 26. We have Π∗ =
∑r

`=1 v`v
>
` , since v1, . . . , vr is an orthonormal basis

for the subspace given by Π∗, and

‖Π∗‖∞→2 = ‖Π∗‖2→1 = max
y:‖y‖2=1

‖Π∗y‖1 ≤
√
k‖Π∗y‖2 ≤

√
k ≤

√
2

3
κ,

where the first inequality follows from Cauchy-Schwartz inequality and the support size
being bounded by k. Now we compute the ∞→ 1 norm of Π′.

Π′ = Π∗ +
∑
`∈[r]

(−2ε+ ε2)v`v
>
` + (2ε− ε2)

∑
`

u`u
>
` +

√
2ε− ε2(1− ε)(v`u>` + u`v

>
` )

‖Π′‖∞→1 ≤ ‖Π∗‖∞→1 + 2ε‖
∑
`

u`u
>
` ‖∞→1 + 2

√
2ε‖
∑
`

u`v
>
` ‖, (22)

due to triangle inequality and using the monotonicity of the ∞→ 1 norm (Lemma 13).
For the second term, we note ‖

∑
` u`u

>
` ‖2→1 ≤

√
r ·max` ‖u`‖1 ≤

√
rk′.

We now bound the third term using (18) of Lemma 24.∥∥∥∑
`

u`v
>
`

∥∥∥
∞→1

≤
√
r · ‖V ‖∞→2 ·max

`
‖u`‖1 ≤

√
rk′ ·

√
2

3
κ ≤ 1√

3
(rθ)1/4

√
κ

δ
· κ

given k′ ≤ 1
2 ·
√
θκ

δ
√
r
. Hence substituting in (22), and using (19) we have

‖Π′‖∞→1 ≤
2

3
κ2 + 2ε · rmax

`
‖u`‖21 + max

`
‖u`‖1 · ‖V ‖∞→1 ≤ κ2 + 2ε · rκ′ +

√
8ε/3 · (θr)1/4

√
κ

δ
· κ

≤ 2κ2

3
+ 2 ·O

( δκ√
rθ log nm

)
· r ·

√
θκ

2δ
√
r

+
√

8/3 ·

√
δκ√

rθ log nm
·
√
rθ · κ/δ · κ ≤ κ2,

given ε = Θ
(

δκ√
rθ·lognm

)
. Hence ‖Π′‖∞→2 ≤ κ.
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Claim 27 ‖Π∗ −Π′‖2F = Ω(
√
r·δκ√

θ·lognm
).

Proof of Claim 27. We lower bound the distance between the projections using the
orthogonality between u1, . . . , ur and v1, . . . , vr:

Π′ −Π∗ =

r∑
`=1

v′`(v
′
`)
> − v`v>`

=
∑
`∈[r]

(−2ε+ ε2)v`v
>
` + (2ε− ε2)

∑
`

u`u
>
` +

√
2ε− ε2(1− ε)(v`u>` + u`v

>
` )

So, ‖Π′ −Π∗‖2F ≥ r(4ε− 2ε2) = Ω

( √
rδκ√

θ log nm

)
.

Claim 28 With high probability, the coupling data matrix A′ satisfies ‖A−A′‖∞ ≤ δ.

Proof Note that
∑

` ζ`vj is a Gaussian with co-variance N (0, θΠ∗), and each co-ordinate
of this vector is a normal R.V. with mean 0 and variance at most ‖vj‖2∞

∑
` ζ

2
` .

‖Aj −A′j‖∞ ≤ ε
∥∥∥ r∑
`=1

ζ`v`

∥∥∥
∞

+
√

2ε− ε2
∥∥∥ r∑
`=1

ζ`u`

∥∥∥
∞

First, ε
∥∥∥ r∑
`=1

ζ`v`

∥∥∥
∞
≤ 2ε

√
θ · r log(nm) max

`
‖v`‖∞

≤ 2 ·Θ
( δκ√

rθ · log nm

)
·
√
θr log(nm)

1

κ
≤ δ

2
,

when c4 in ε is a small constant, and since ‖v`‖∞ ≤ 1/κ. Bounding the second term uses
the fact that the u1, . . . , ur have disjoint support, along with the upper bounds for ‖u`‖∞.

√
2ε− ε2

∥∥∥ r∑
`=1

ζ`u`

∥∥∥
∞
≤ 2
√
θ · ε log(nm) max

`
‖u`‖∞

≤ O

(√
θ log(nm) · δκ√

rθ · log nm

)
·

√
δ
√
r√
θκ
≤ δ

2
.

Combining the two bounds, we see that ‖A−A′‖∞ ≤ δ with high probability.

The correctness of Theorem 25 now follows from Claim 26, Claim 27 and Claim 28.
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F.3. Asymptotic Instance-Optimal Lower Bound: Proof of Theorem 4

Proof of Theorem 4. We now establish the required properties of Π′. Firstly u1, . . . , ur
are orthogonal to each other and to Π∗ (i.e., v1, . . . , vr). So, v′1, v

′
2, . . . , v

′
` are orthonormal.

Hence

Π′ −Π∗ =

r∑
`=1

v′`(v
′
`)
> − v`v>`

=

r∑
`=1

−(2ε− ε2)v`v
>
` +

∑
`

(2ε− ε2)

‖u`‖22
u`u
>
` +

∑
`

(1− ε)
√

2ε− ε2

‖u`‖2

(
u`v
>
` + v`u

>
`

)
(23)

Since each of the terms in (23) are orthogonal (w.r.t. the trace inner product) we have

‖Π′ −Π∗‖2F =
r∑
`=1

(2ε− ε2)2 +
r∑
`=1

(2ε− ε2)2

‖u`‖42
+

r∑
`=1

2(2ε− ε2) · (1− ε)2

‖u`‖22

≥ rε = Ω(

√
rκδ√
λ1

), with probability at least 1− n−ω(1), (24)

for our choice of parameters (here we used (11)). Then we lower bound the distance between
Σ and Σ′:

Σ′ − Σ∗ =
r∑
`=1

λ`

(
v` +

( √2ε− ε2

(1− ε)‖u`‖2
)
u`

)(
v` +

( √2ε− ε2

(1− ε)‖u`‖2
)
u`

)>
− λ`v`v>`

=
r∑
`=1

λ`

√
2ε− ε2

(1− ε)‖u`‖2
(v`u

>
` + u`v

>
` ) + λ`

2ε− ε2

(1− ε)2‖u`‖22
u`u
>
` .

Because v` and u` are orthogonal and using (11), ‖Σ∗ − Σ′‖2F is with high probability at
least ( r∑

`=1

λ2
`

)
ε =

(λ2
1 + · · ·+ λ2

r

r

)
‖Π′ −Π∗‖2F ).

We now show that A′ is a valid δ-perturbation of A. Recall the definition of Aj , A
′
j in

(10) respectively. For each fixed j ∈ [m], by Lemma 23, we have with probability at least

1−m−2 (over the randomness in { ζ(j)
` : ` ∈ [r] }) that

‖Aj −A′j‖∞ =
∥∥∥∑

`

√
λ`ζ

(j)
` ·

√
2ε− ε2

(1− ε)‖u`‖2
u`

∥∥∥
∞

≤
2
√

log(rm)

(1− ε)
·max
`∈[r]

√
2ελ`

‖u`‖∞
‖u`‖2

,

where the second term uses the fact that u1, . . . , ur are disjoint and the concentration of

Gaussian random variables (over ζ
(j)
` ). See also Lemma 23 for general q. After a union
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bound over all j ∈ [m], and using our bounds on ‖u`‖2 and ‖u`‖∞ from Lemma 11 along
with our definition of ε, we get with probability at least 1− η − 1

m ,

max
j∈[m]
‖Aj −A′j‖∞ ≤

2
√

log(rm)

(1− ε)
·
√

2ελ1 · 2

√
log(rk′n)

(k′ − r)
· 1

1/2

= O
(√log(rm) logn√

k′
·
√
ελ1

)
≤ δ,

since ε = cδ2k′/(λ1 log(rm) logn) for a small constant c (and ε < 1/2).
Upper bound on ‖Π′‖∞→2: The proof will follow the same outline as for Theorem 25. We
compute the ∞ → 1 norm of Π′; recall that the ∞ → 1 norm satisfies the matrix norm
monotone property (Lemma 13). From (23), triangle inequality and monotonicity,

‖Π′‖∞→1 ≤ ‖Π∗‖∞→1︸ ︷︷ ︸
equal to κ2

+ 2
∥∥∥∑

`

εu`u
>
`

∥∥∥
∞→1︸ ︷︷ ︸

bound using (19)

+ 2
∥∥∥∑

`

√
2ε− ε2u`v

>
`

∥∥∥
∞→1︸ ︷︷ ︸

bound using (18)

. (25)

We first bound the third term using (18) of Lemma 24.∥∥∥∑
`

√
2ε− ε2u`v

>
`

∥∥∥
∞→1

≤
√

2ε
√
r‖V ‖∞→2 ·max

`
‖u`‖1 ≤ κ

√
2rk′ε

≤ κ2

(log n logm)1/2
,

by substituting the values for k′, ε and using rk′ε = O(κ2/(log n logm)). Hence substituting
in (25) and using (19),

‖Π′‖∞→1 ≤ κ2 + 2ε‖U‖22→1 + κ2 · 1

(log n logm)1/2

≤ κ2 + 2rεmax
`
‖u`‖21 + κ2 ·

( 1

(log n logm)1/2

)
≤ κ2 + 4r · εk′ + o(κ2) ≤ (1 + o(1))κ2.

F.3.1. Extension to general `q norm

Theorem 4 extends in a straightforward fashion to also hold for `q norms.

Theorem 29 Suppose we are given parameters r ∈ N, q ≥ 1, κ ≥ 2r1−2/q and δ > 0.
In the notation of Theorem 3, for any Σ∗, given m samples A1, . . . , Am generated i.i.d.
from N (0,Σ∗) with κ = ‖Π∗‖q→2 satisfying

√
rλ1(κ/n1−2/q) ≤ δ ≤

√
rλ1/κ, there exists a

covariance matrix Σ′ with a projector Π′ onto its top-r principal subspace, and an alternate
dataset A′1, . . . , A

′
m drawn i.i.d. from N (0,Σ′) satisfying ‖Π′‖q→2 ≤ (1 + o(1))κ, and

‖A′j −Aj‖q ≤ δ ∀j ∈ [m],

but ‖Π∗ −Π′‖2F ≥
( Ω(1)√

λ1 log(rm) logn

)
·
√
rκδ, and ‖Σ′top − Σtop‖2F ≥

(λ21+···+λ2r)
r · ‖Π′ −Π∗‖2F

In particular, when Σtop = (1 + θ)Π∗ then Σ′top = (1 + θ′)Π′ with θ′ = (1 + o(1))θ.
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In fact the same construction holds using u1, . . . , ur that are picked randomly but with
disjoint support. However, there is a minor change in the parameters of the construction.
We will set ε as before (and hence this will give the same lower bound on ‖Π′ −Π∗‖2F and
‖Σ′ − Σ∗‖2F ). We will set

ε =
cκδ√

rλ1 log(rm) logn
and (k′)1−2/q :=

( r2/qελ`
δ2 log(rm) logn

)
,

for some constant c > 0. The assumptions of the theorem ensure that 2r ≤ k′ � n/r as
required for the construction.

We will need an additional simple claim that just extends Lemma 11.

Lemma 30 In the notation of Lemma 11 for any η < 1, with probability at least (1− η)
we have

∀` ∈ [r], ‖u`‖q ≤ 3
√

log(rk′/η)(̇k′)−1/2+1/q. (26)

‖u`‖q∗ ≤ 2(k′)1/2−1/q. (27)

The proof follows directly from Lemma 11 and using the relation between the `q, `∞ norms,
and `q∗ , `1 norms.

Completing the proof of Theorem 29. The proof follows the same argument as the
proof of Theorem 4. As mentioned before, since we choose the same ε, it suffices to argue
about maxj∈[m]‖Aj −A′j‖q and ‖Π′‖q→q∗ .

To establish the upper bound on ‖Π′‖q→q∗ we use the bounds in Lemma 24 and (26).
We have from Lemma 24

‖Π′‖q→q∗ ≤ ‖Π∗‖∞→1 + 2ε‖UU>‖q→q∗ + 2
√

2ε− ε2‖UV >‖q→q∗

≤ κ2 + 2εr1−2/q
(

max
`∈[r]
‖u`‖q∗

)2
+ 2
√
εr1/2−1/q

(
max
`∈[r]
‖u`‖q∗

)
· ‖V ‖q→2

≤ κ2 + 2εr1−2/q(k′)1−2/q + 2
√
εr1/2−1/q(k′)1/1−1/q · κ

≤ κ2 + o(κ2) + o(κ) · κ = κ2(1 + o(1)),

since from our choice of parameter k′, we have εr1−2/q max`‖u`‖2q∗ = (ε2rλ1)/(δ2 log(rm) log n) =
o(κ2).

Finally, for the upper bound on maxj∈[m]‖Aj − A′j‖q ≤ δ we use Lemma 23 and (27).

For each fixed j ∈ [m], by Lemma 23, we have with probability at least 1−m−2 (over the

randomness in { ζ(j)
` : ` ∈ [r] }) that

‖Aj −A′j‖q =
∥∥∥∑

`

√
λ`ζ

(j)
` ·

√
2ε− ε2

(1− ε)‖u`‖2
u`

∥∥∥
q

≤ r1/q 2
√

log(rm)

(1− ε)
·max
`∈[r]

√
2ελ`

‖u`‖q
‖u`‖2

≤ r1/q ·
√

log(rm)(k′)−1/2+1/q ≤ δ,

for our choice of parameters and k′. This establishes the statement of Theorem 29 for general
q.
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Appendix G. Statistical Upper bounds (computationally inefficient
algorithm)

We show the statistical upper bounds on the recovery of principle components in this section.
By symmetrization (shown in Algorithm 2), we assume all data points are generated from
N (0,Σ∗) rather than N (µ,Σ∗) in this section.

Theorem 31 Given q > 2, n, r, and κ, let P =
{

projection matrix Π
∣∣rank = r and ‖Π‖q→2 ≤

κ
}

. Let Σ be an unknown covariance matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn whose
projection matrix Π∗ of the top r eigenspace is in P.

Let Ã ∈ Rn×m be the δ-perturbed (in `q norm) data matrix where each original column
comes from N (0,Σ∗) for any δ > 0, ε > 0 and m ≥ C · λ2

1 · r2κ2 log n · n2/q/ε2. Then

Π̃
def
= arg min

Π∈P
{‖Ã‖2F − ‖ΠÃ‖2F }

satisfies ‖Π̃⊥Π∗‖2F ≤
1

λr−λr+1
· O
(
δ2κ2 +

√
λ1r · δκ+ ε

)
with probability 0.99. Moreover,

one can obtain Σ̃top satisfying ‖Σ̃top − Σtop‖2F ≤ O(λ2
1 · ‖Π̃⊥Π∗‖2F + λ1κ

2δ2 + κ4δ4) where

‖Π̃⊥Π∗‖2F is upper bounded above.

Remark 32 Comparing to the computational upper bound in Theorem 6, the main difference
is the dependency of m on κ: it becomes κ2 here.

We state the direct corollary in the spiked covariance model with q =∞.

Corollary 33 Given n, r, and κ, let P =
{

Π
∣∣rank = r and ‖Π‖∞→2 ≤ κ

}
. For any θ and

Π∗ ∈ P, let Ã ∈ Rn×m be the δ-perturbed data matrix where each original column comes
from N (0, I + θΠ∗). For any δ > 0, ε > 0 and m ≥ C · (1 + θ)2 · r2κ2 log n/ε2,

Π̃
def
= arg min

Π∈P
{‖Ã‖2F − ‖ΠÃ‖2F }

satisfies ‖Π̃⊥Π∗‖2F ≤
1
θ ·O

(
δ2κ2 + (1 + θ)1/2√r · δκ+ ε

)
with probability 0.99.

We show two technical results to prove the main theorem. The first one bounds the
deviation of the inner product between all projection matrices and the original data matrix
(before perturbation), whose proof is defered to Section G.1.

Lemma 34 For any covariance matrix Σ∗ whose eigenvalues are at most λmax, let A ∈
Rn×m be a data matrix where each column is generated from N (0,Σ∗).

Given n, q, r and κ, let P =
{

Π
∣∣rank = r and ‖Π‖q→2 ≤ κ

}
. Then for any m ≥

Cλ2
max · κ2 log n · n2/q with a sufficiently large constant C, we have that with probability 0.99,∣∣∣∣〈 1

m
AA> − Σ∗,Π

〉∣∣∣∣ = r ·O

(
λmax · κ ·

√
log n · n1/q

√
m

)
for all Π ∈ P.

Then we bound the deviation of the inner product between all projection matrices and
the actual data matrix (after perturbation) from the expectation.
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Claim 35 Given n, r, and κ, let P =
{

Π
∣∣rank = r and ‖Π‖q→2 ≤ κ

}
. For an unknown

covariance matrix Σ∗, let λ1 denote the largest eigenvalue of Σ∗.
Let A ∈ Rn×m be the original data matrix where each column generated from N (0,Σ∗)

and Ã be its δ-perturbation (`q norm in every column) for m ≥ Cλ2
1 · κ2 log n · n2/q with a

sufficiently large constant C. With probability 0.98,∣∣∣∣〈 1

m
Ã · Ã> − Σ∗,Π

〉∣∣∣∣ = O

(
λ1 · rκ ·

√
log n

m
· n1/q + δ2κ2 +

√
λ1r · δκ

)
for all Π ∈ P.

Proof of Claim 35. We rewrite the left hand side as∣∣∣∣〈 1

m
ÃÃ> − Σ∗,Π

〉∣∣∣∣
≤
∣∣∣∣〈 1

m
AA> − Σ∗ +

1

m
(Ã−A)A> +

1

m
Ã(Ã−A)>,Π

〉∣∣∣∣
≤
∣∣∣∣〈 1

m
AA> − Σ∗,Π

〉∣∣∣∣+

∣∣∣∣〈 1

m
(Ã−A)A>,Π

〉∣∣∣∣+

∣∣∣∣〈 1

m
Ã(Ã−A)>,Π

〉∣∣∣∣
≤
∣∣∣∣〈 1

m
AA> − Σ∗,Π

〉∣∣∣∣+ 2

∣∣∣∣〈 1

m
(Ã−A)A>,Π

〉∣∣∣∣+

∣∣∣∣〈 1

m
(Ã−A)(Ã−A)>,Π

〉∣∣∣∣
By Lemma 34, the first term

∣∣∣∣〈 1
mAA

>−Σ∗,Π
〉∣∣∣∣ is upper bounded byO

(
r · λ1κ ·

√
logn
m · n1/q

)
with probability 0.99. Since ‖Ãi−Ai‖q ≤ δ and ‖Π‖q→2 ≤ κ, the last term is upper bounded
by

1

m

∣∣∣∣〈(Ã−A)(Ã−A)>,Π2
〉∣∣∣∣ =

1

m
‖Π(Ã−A)‖2F ≤ δ2κ2.

We bound the second term here.

1

m

∣∣∣∣〈(Ã−A)A>,Π
〉∣∣∣∣ =

1

m

∣∣∣∣〈Π(Ã−A),ΠA〉
∣∣∣∣ ≤ 1

m
‖Π(Ã−A)‖F · ‖ΠA‖F .

The first part ‖Π(Ã − A)‖F is always ≤
√
mδκ from the definition of Π. For the second

part, notice that

‖ΠA‖2F = 〈AA>,Π〉 ≤ 〈mΣ∗,Π〉+
∣∣∣∣〈AA>−mΣ∗,Π〉

∣∣∣∣ ≤ λ1·rm+O
(
rλ1 · κ ·

√
m log n · n1/q

)
,

where the two bounds come from Fact 17 and Lemma 34 separately. So the second term is
upper bounded by

1

m
·
√
mδκ·

(
λ1 · rm+ C0 · rλ1 · κ ·

√
m log n · n1/q

)1/2
≤
√
rλ1·δκ+λ

1/2
1 ·C

1/2
0 ·δκ·(

rκ
√

log n · n1/q

√
m

)1/2.

So the total error is

O

(
r · λ1κ ·

√
log n

m
· n1/q

)
+ δ2κ2 +

√
λ1 · rδκ+λ

1/2
1 ·C1/2

0 · δκ · (rκ
√

log n · n1/q

√
m

)1/2. (28)
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Finally we simplify the error terms. The last term

λ
1/2
1 C

1/2
0 · δκ · (rκ

√
log n · n1/q

√
m

)1/2 = O

(
δ2κ2 + λ1 ·

rκ
√

log n · n1/q

√
m

)
,

which are the first two terms in the total error (28).

Finally, we finish the proof of Theorem 31.

Proof of Theorem 31. Notice that the output projection Π̃ could also be defined as
arg max

Π∈P
{‖ΠÃ‖2F } and for any projection matrix Π,

1

m
‖ΠÃ‖2F =

1

m
〈ÃÃ>,Π〉.

By Claim 35, every Π has 1
m〈ÃÃ

>,Π〉 around 〈Σ∗,Π〉 ±∆ for

∆ := O

(
rλ1 · κ ·

√
log n

m
· n1/q + δ2κ2 +

√
rλ1 · δκ

)
(the error in Claim 35).

Since Π̃ attains a better objective value than Π∗, we have

〈Σ∗, Π̃〉 ≥
〈 1

m
ÃÃ>, Π̃

〉
−∆

≥
〈 1

m
ÃÃ>,Π∗

〉
−∆ (using the definition of Π̃)

≥ 〈Σ∗,Π∗〉 − 2∆.

Next, we apply Claim 9 to conclude 〈Π∗, Π̃〉 ≥ r− 2∆
λr−λr+1

, which upper bounds ‖Π̃⊥Π∗‖2F ≤
2∆

λr−λr+1
. Finally we use Theorem 10 to get Σ̃top satisfying ‖Σ̃top−Σtop‖2F ≤ O(λ2

1 · 2∆
λr−λr+1

+

λ1κ
2δ2 + κ4δ4).

G.1. Proof of Lemma 34

We use the following concentration result from Mendelson (2010) to bound the supremum.

Lemma 36 (See Corollary 4.1 in Vu and Lei (2012)) Let A1, . . . , Am ∈ Rn be i.i.d.
mean 0 random vectors with

Σ = EA1A
>
1 and σ = sup

‖u‖2=1

∥∥〈A1, u〉
∥∥
ψ2
.

For Sn = 1
m

∑m
i=1Ai ·A>i and a symmetric subset V in Rn, we have

E
A1,...,Am

[
sup
v∈V

∣∣∣∣〈Sn − Σ, vv>
〉∣∣∣∣] ≤ c

(
σ2

√
m
· sup
v∈V
‖v‖2 · E

g

[
sup
v∈V
〈g, v〉

]
+
σ2

m
E
g

[
sup
v∈V
〈g, v〉

]2
)

for a vector g ∈ Rn with i.i.d. Gaussian entries and a universal constant c.
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To use the above lemma, we first upper bound σ2 in our setting.

Claim 37 Let X ∼ N (0,Σ∗) for a matrix Σ∗ with eigenvalues at most λmax. Then∥∥〈X,u〉∥∥
ψ2
≤
√
λmax(Σ∗) for any u with ‖u‖2 = 1.

Proof Let v1, . . . , vn be the eigenvectors of Σ∗ with eigenvalues λ1, . . . , λn. Then 〈X,u〉 =√
λ1 · 〈v1, u〉g1 + · · ·+

√
λn · 〈vn, u〉gn for i.i.d. Gaussian random variable g1, . . . , gn. So the

variance is λ1〈v1, u〉2 + · · ·+ λn〈vn, u〉2 ≤ max{λ1, . . . , λn} and∥∥〈X,u〉∥∥
ψ2
≤
√
λmax.

We apply Lemma 36 to all vectors that could be in the basis of possible Π.

Claim 38 For any covariance matrix Σ∗ with eigenvalues at most λmax, let A1, . . . , Am ∈
Rn be i.i.d. vectors generated from N (0,Σ∗). Given n and q, let V be the set of all vectors v
with ‖v‖2 = 1 and ‖v‖q∗ ≤ κ.

Then for any m ≥ Cλ2
max · κ2 log n · n2/q with a sufficiently large constant C, we have

that with probability 0.99,∣∣∣∣〈 1

m

m∑
i=1

AiA
>
i − Σ∗, vv>

〉∣∣∣∣ = O

(
λmaxκ

√
log n · n1/q

√
m

)
for all v ∈ V.

Proof To apply Lemma 36, we notice that supv∈V ‖v‖2 = 1 and

E
g

[
sup
v∈V
〈g, v〉

]
≤ E

[
sup
v
‖g‖q · ‖v‖q∗

]
= E[‖g‖q] · sup ‖v‖q∗ = O(n1/q

√
log n · κ).

Thus Lemma 36 shows that for some absolute constant c′ > 0

E
A1,...,Am

[
sup
v∈V

∣∣∣∣〈 1

m

m∑
i=1

AiA
>
i − Σ∗, vv>

〉∣∣∣∣
]

=
c′λmax · 1 · κ

√
log n · n1/q

√
m

+
c′λmaxκ

2 log n · n2/q

m
.

Whenm > Cλ2
max·κ2 log n·n2/q, the right hand is at most twice the first termO(λmax·κ

√
logn·n1/q
√
m

).

Next we apply the Markov inequality to replace the expectation by probability 0.99.

Lemma 34 follows as a corollary of the above claim: for any Π of rank r and ‖Π‖q→2 ≤ κ,
we have ‖Π‖2→q∗ = ‖Π‖q→2 = κ such that all its eigenvectors v1, . . . , vr are in V with
‖vi‖q∗ ≤ κ (by considering ‖Πvi‖q∗ ≤ κ). Thus∣∣∣∣〈 1

m

m∑
i=1

AiA
>
i − Σ∗,Π

〉∣∣∣∣ =

∣∣∣∣〈 1

m

m∑
i=1

AiA
>
i − Σ∗,

r∑
j=1

vjv
>
j

〉∣∣∣∣
≤

r∑
j=1

∣∣∣∣〈 1

m

m∑
i=1

AiA
>
i − Σ∗, vjv

>
j

〉∣∣∣∣ = r ·O

(
λmaxκ ·

√
log n · n1/q

√
m

)
.
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Appendix H. Robust Mean Estimation

In this section we present an analysis of the robust mean estimation procedure sketched
below, thereby establishing Proposition 1.

Algorithm 3 Mean Estimation under Adversarial Perturbations

1: function AdvRobustMean(m samples Ã1, . . . , Ãm ∈ Rn, norm q, perturbation δ,
error η)

2: Compute the empirical mean µ′ of all the given samples.
3: Output µ̃, where µ̃ is the point in the `q ball of size δ+η around µ′ with the minimum
`q∗ norm i.e.,

min
u∈Rn
‖u‖q

∗

q∗ , s.t. ‖u− µ′‖q ≤ δ + η.

We remark that the above algorithm in the case of q =∞ specializes to ∀i ∈ [n], µ̃(i) =
sign(µ′(i)) ·max { | µ′(i)| − (δ + η), 0 }. This is the same as the soft-thresholding algorithm
that has been explored in the sparse mean estimation literature. More generally, we will
prove the statement for any `q norm for q ≥ 2. The main theorem of this section is the
following

Proposition 39 Fix q ≥ 2. Suppose we have m samples drawn according to the Adversarial
Perturbation model with `q perturbations. There is a polynomial time algorithm (Algorithm 3)
that outputs an estimate µ̂ for the (unknown) mean µ such that with probability at least
(1− 1/n),

‖µ̂− µ‖22 ≤ 4 min
{
‖µ‖q∗(δ + η), n

1− 1
q (δ + η)2

}
, where η := 2σn

1
q

√
log n

m
. (29)

Proof Let µ′ = mean(Ã). Since ‖Ãj − Aj‖q ≤ δ for each j ∈ [m], we know that
‖µ′ − mean(A)‖q ≤ δ. Furthermore, from standard Gaussian concentration as stated in
Fact 40 below we have that with probability at least 1− 1

n it holds that

‖µ−mean(A)‖q ≤ η = 2σn
1
q

√
log n

m
. (30)

This implies that with probability at least 1− 1
n ,

‖µ− µ′‖q ≤ δ + η (31)

and hence is a valid solution to the convex program in Algorithm 3. Moreover the convex
program can be solved in polynomial time using the Ellipsoid method. This is because the
objective is separable over the data points, and for each constraint is of the form ‖z‖p ≤ τ ,
where τ is specified and p ≥ 1. A simple hyperplane separation oracle for a constraint of the
form ‖z‖p ≤ τ is given by the duality since

‖z‖p = max
y∈Rn:‖y‖p∗≤1

〈y, z〉 =
〈 z∗

‖z∗‖p∗
, z
〉
, where z∗i = sign(zi)|z(i)|p−1 ∀i ∈ [n].

38



Hence a hyperplane of the form 〈w, z〉 ≤ τ with w = z∗/‖z∗‖p∗ gives a valid separation
oracle. A similar separation oracle can also be used for the objective. (Note that one can
also use the projected sub-gradient method for a more effective algorithm).

This implies that the Algorithm outputs a vector µ̂ in polynomial time. It satisfies

‖µ̂‖q∗ ≤ ‖µ‖q∗ (32)

Hence, via Hölder’s inequality we get that

‖µ̂− µ‖22 ≤ ‖µ̂− µ‖q‖µ̂− µ‖q∗
≤ (‖µ̂− µ′‖q + ‖µ− µ′‖q)(‖µ̂‖q∗ + ‖µ‖q∗)
≤ 2(‖µ̂− µ′‖q + ‖µ− µ′‖q)‖µ‖q∗ [from (32)]

≤ 4‖µ− µ′‖q‖µ‖q∗ [from the optimality of µ̂.]

≤ 4(δ + η)‖µ‖q∗ [from (31)] (33)

Alternately, using the fact that for any vector x ∈ Rn, ‖x‖p ≤ n
1
p
− 1

q ‖x‖q we get that

‖µ̂− µ‖22 ≤ n
1− 1

q ‖µ̂− µ‖2q

≤ n1− 1
q

(
‖µ̂− µ′‖q + ‖µ− µ′‖q

)2

≤ 4n
1− 1

q ‖µ− µ′‖2q [from the optimality of µ̂.]

≤ 4n
1− 1

q (δ + η)2 [from (31)]. (34)

Combining (33) and (34) we get the claim. Setting q =∞ establishes Proposition 1 from
the introduction.

To complete the argument we provide a self contained proof of the fact stated below.

Fact 40 Fix q ≥ 2. Let A1, . . . , Am be drawn i.i.d. from N(0,Σn×n) with ‖Σ‖ ≤ σ2. Then
with probability at least 1− 1

n it holds that,

‖ 1

m

m∑
i=1

Ai‖q ≤ 2σn
1
q

√
log n

m
.

Proof Noticing that each coordinate of 1
m

∑m
i=1Ai is a mean Gaussian with variance

bounded by σ2/m and using union bound we get that with probability at least 1− 1
n ,

‖ 1

m

m∑
i=1

Ai‖∞ ≤ 2σ

√
log n

m
.

Then it easily follows that with probability at least 1− 1
n ,

‖ 1

m

m∑
i=1

Ai‖q ≤ n
1
q ‖ 1

m

m∑
i=1

Ai‖∞

≤ 2σn
1
q

√
log n

m
.
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Notice that the bound of n
1− 1

q (δ + η)2 is the naive bound that is simply achieved by always
outputting the mean of the points in Ã. Hence, for small values of the perturbation δ, the
algorithm achieves a non-trivial guarantee of ‖µ‖q∗(δ + η). In fact we next show that the
guarantee of the algorithm is optimal. In particular, provide an instance wise lower bound,
stated below, for robust mean estimation in our model of corruption.

Proposition 41 Fix q = ∞. Let µ be any vector such that the analytical sparsity of
µ, i.e., ‖µ‖1‖µ‖ is bounded by

√
n/4. Then there exist δ, σ > 0 and another vector ‖µ′‖

such that ‖µ
′‖1

‖µ′‖2 = ‖µ‖1
‖µ‖2 (1 + o(1)), and ‖µ − µ′‖2 = Ω(

√
δ‖µ‖1) and with high probability,

i.i.d. samples A1, A2, . . . Am generated from N (µ, σ2I) and Ã1, Ã2, . . . Ãm generated from
N (µ′, σ2I) satisfy ‖Aj − Ãj‖∞ ≤ δ, for all j ∈ [m].

Proof The construction builds upon the argument presented in Awasthi et al. (2019a)
with most of the details unchanged. We provide a proof sketch here. Pick a subset S of
s = (‖µ‖1‖µ‖2 )2 coordinates and define µ′ = µ+ δsign(µS), where µS is the vector that equals
µ over S and 0 outside of S. Notice that since the analytical sparsity of µ is bounded by√
n/4, S will be non-empty. We will pick δ such that δ = o(‖µ‖2)/‖µ‖1. It is easy to see

that ‖µ′‖2 ≥ ‖µ‖2 and we also have that ‖µ‖1 = ‖µ‖1 + δs = ‖µ‖1
‖µ‖2 (1 + o(1)). Also if σ is

small enough then samples generated from N (µ, σ2I) and from N (µ′, σ2I) will be δ-close to
each other. Finally, notice that

‖µ− µ′‖ = δ
√
s

= Ω(
√
δ‖µ‖1).
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