Calendar Graph Neural Networks for Modeling Time Structures
in Spatiotemporal User Behaviors

Daheng Wangl, Meng ]iangl, Munira Syed!, Oliver Conwayz, Vishal Juneja2
Sriram Subramanian?, Nitesh V. Chawla®-?
1University of Notre Dame, Notre Dame, IN 46556, USA
2Condé Nast, New York, NY 10007, USA
SDepartment of Computational Intelligence, Wroctaw University of Science and Technology, Wroctaw, Poland
{dwang8,mjiang2,msyed2,nchawla}@nd.edu
{oliver_conway,vishal_juneja,sriram_subramanian}@condenast.com

ABSTRACT

User behavior modeling is important for industrial applications
such as demographic attribute prediction, content recommenda-
tion, and target advertising. Existing methods represent behavior
log as a sequence of adopted items and find sequential patterns;
however, concrete location and time information in the behavior
log, reflecting dynamic and periodic patterns, joint with the spatial
dimension, can be useful for modeling users and predicting their
characteristics. In this work, we propose a novel model based on
graph neural networks for learning user representations from spa-
tiotemporal behavior data. Our model’s architecture incorporates
two networked structures. One is a tripartite network of items, ses-
sions, and locations. The other is a hierarchical calendar network
of hour, week, and weekday nodes. It first aggregates embeddings
of location and items into session embeddings via the tripartite
network, and then generates user embeddings from the session em-
beddings via the calendar structure. The user embeddings preserve
spatial patterns and temporal patterns of a variety of periodicity
(e.g., hourly, weekly, and weekday patterns). It adopts the attention
mechanism to model complex interactions among the multiple pat-
terns in user behaviors. Experiments on real datasets (i.e., clicks
on news articles in a mobile app) show our approach outperforms
strong baselines for predicting missing demographic attributes.
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Figure 1: Our framework incorporates calendar structure to
model spatiotemporal patterns (including multi-level peri-
odicity) for predicting missing demographic attributes.

1 INTRODUCTION

Online web platforms have large databases to record user behav-
iors such as reading news articles, posting social media messages,
and clicking ads. Behavior modeling is important for a variety of
applications such as user categorization [2], content recommenda-
tion [18, 33], and targeted advertising [1]. Typical approaches learn
users’ vector presentations from their behavior log for predicting
missing demographic attributes and/or preferred content.
Spatiotemporal patterns in behavior log are reflecting user char-
acteristics and thus expected to be preserved in the vector rep-
resentations. Earlier work modeled a user’s temporal behaviors
as a sequence of his/her adopted items and used recurrent neural
networks (RNNs) to learn user embeddings [10]. For example, Hi-
dasi et al. proposed parallel RNN models to extract features from
(sequential) session structures [11]; Tan et al. proposed to model
temporal shifts in RNNs; and Jannach et al. combined RNNs with
neighborhood-based methods to capture sequential patterns in
user-item co-occurrence [13]. Recently, Graph Neural Networks
(GNNs) have attracted increasing interests for learning representa-
tions from graph structured data [5, 7, 16, 29]. The core idea is to
use convolution or aggregation operators to enhance representa-
tion learning through the graph structures [3, 8, 37]. For modeling
temporal information in network, Manessi et al. [22] stacked RNN
modules [12] on top of graph convolution networks [16]; Seo et
al. [26] replaced fully connected layers in RNNs with graph con-
volution [5]. However, existing GNNs can only model sequential
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patterns or incremental changes in graph series. The spatiotemporal
patterns are much more complex in real-world behavior log.

In existing GNN-based user models, the missing yet significant
type of patterns is periodicity at different levels such as hourly,
weekly, and weekday patterns (see Figure 1). For example, some
users may have the habit of browsing news articles early in the
morning during workdays; some may browse news late at midnight
right before sleep. To discover these patterns one needs to process
concrete time information beyond simple sequential ordering. So
the time levels (or say, the hierarchical structure of calendar) must
be incorporated into the process of user embedding learning.

User behaviors exhibit temporal patterns across different period-
icities on the time dimension. Our idea is to leverage the explicit
scheme of the Calendar system for modeling the hierarchical time
structures of user behaviors. A standard annual calendar system,
e.g., the Gregorian calendar, imposes natural temporal units for
timekeeping such as day, week, and month. A daily calendar sys-
tem imposes more refined temporal units such as hour and minute.
These temporal units can naturally be applied to frame temporal
patterns. Patterns of various periodicity can be complementary with
each other when jointly learned to extract user representations.

In this work, we propose a novel GNN-based model, called CAL-
ENDARGNN, for modeling spatiotemporal patterns in user behaviors
by incorporating time structures of the calendar systems as neural
network architecture. It has three aspects of novel designs.

First, a user’s behavior log forms a tripartite graph of items, ses-
sions, and locations. In CALENDARGNN, session embeddings are
aggregated from embeddings of the corresponding items and loca-
tions; embeddings of time units (e.g., node “3PM”, node “Tuesday”,
or node “the 15th week of 2018”) are aggregated from the session
embeddings. The embedding of each time unit captures a certain
aspect of the user’s temporal patterns. Then the model aggregates
these time unit embeddings into temporal patterns of different peri-
odicity such as hourly, weekly, and weekday patterns. The temporal
patterns are distilled from all his/her previous sessions happened
during the time periods specified by the time unit.

Second, in addition to the temporal dimension, CALENDARGNN
discovers spatial patterns from spatial signals in user sessions. It ag-
gregates session embeddings into location unit embeddings which
can be later aggregated into the user’s spatial pattern. The latent
user representations are generated by concatenating all temporal
patterns and spatial pattern. The user embeddings are used (by
classifiers or predictive models) for various downstream tasks.

Third, temporal patterns and spatial patterns should not be sepa-
rately learned because they interact with each other in user behav-
ior. For example, people may read news at Starbucks in the morning,
in restaurants at noon, and at home in the evening; people may
prefer different types of topics at different places when they travel
to different cities or countries for business. Our model considers the
interactions between spatial pattern and the multi-level temporal
patterns. We develop a model variant CALENDARGNN-ATTN that
utilizes interactive attentions between location units and different
time units for capturing user’s complex spatiotemporal patterns.

We conduct experiments on two real-world spatiotemporal be-
havior datasets (in industry) for predicting user demographic labels
(such as gender, age, and income). Results demonstrate the effec-
tiveness of our proposed model compared to existing work.

2 RELATED WORK

We discuss three lines of research related to our work.

Temporal GNNs. The success of GNN on tasks in static setting
such as link prediction [37, 41] and node classification [8, 29] mo-
tives many work to look at the problem of dynamic graph repre-
sentation learning. Some deep graph neural methods explored the
idea of combining GNN with recurrent neural network (RNN) for
leaning node embeddings in dynamic attributed network [22, 26].
These methods aim at modeling the structural evolution among a
series of graphs and they cannot be directly applied on users’ spa-
tiotemporal graphs for generating behavior patterns. Another set of
approaches for spatiotemporal traffic forecasting aim at capturing
the evolutionary pattern of node attribute given a fixed graph struc-
ture. Li et al. [19] modeled the traffic flow as a diffusion process
on a directed graph and adopted an encoder-decoder architecture
for capturing the temporal attribute dependencies. Yu et al. [39]
modeled the traffic network as a general graph and employed a fully
convolutional structure [5] on time axis. These methods assume
the graph structure remains static and model the change of node
attributes. They are not designed for capturing the complex time
structures among a large number of user spatiotemporal graphs.
Graph-level GNNs. Different from learning node representations,
there are some work focus on the problem of learning graph-level
representation leveraging node embeddings. A basic approach is
applying a global sum or average pooling on all extracted node em-
beddings as the last layer [6, 27]. Some methods rely on specifying
or learning the order over node embeddings so that CNN-based
architectures can be applied [24]. Zhang et al. [42] proposed a
SoRTPOOLING layer to take unordered vertex features as input and
outputs sorted graph representation of a fixed size in analogous to
sorting continuous WL colors [32]. Another way of aggregating
node embeddings into graph embedding is learning hierarchical
representation through differentiable pooling [38]. Simonovsky et
al. [27] proposed to perform edge-conditioned convolutions over
local graph neighborhoods exploiting edge labels and generate the
final graph embedding using a graph coarsening algorithm followed
by a global sum pooling layer. These methods are not designed to
model user’s spatiotemporal behaviors data and cannot explicitly
capture the complex time structures of different periodicity.
Session-based user behavior modeling. Hidasi et al. [11] pro-
posed a recurrent neural network based approach for modeling
users by employing a ranking loss function for session-based rec-
ommendations. Tan et al. [28] considered temporal shifts of user
behavior [40] and incorporated data augmentation techniques to
improve the performance of RNN-based model. Jannach et al. [13]
combined the RNN model with the neighborhood-based method to
capture the sequential patterns and co-occurrence signals [14, 15].
Different from these user behavior modeling methods mostly basing
on RNN architectures, our framework models each user’s behaviors
as a tripartite graph of items, sessions and locations, then learns
user latent representations via a calendar neural architecture. One
recent work by Wu et al. [34] models user’s session of items as
graph structure and use GNN to generate node or item embeddings.
However, it is not capable of learning user embeddings. Our work
aims at learning effective user representations capturing both the
spatial pattern and temporal patterns for different predictive tasks.



Table 1: Symbols and their description.

Symbol H Description
u,s,v,l a user, a session, an item, and a location
Uu,S,v, L set of users, sessions, items and locations
S (Su) subset of sessions S of user u
vV (V) subset of items V of user u
L(Ly) subset of locations L of user u
Gy user u’s spatiotemporal behavior graph
E edge set of G,
ED) subset of E containing location-session edges
EV) subset of E containing item-session edges
G set of user spatiotemporal behavior graphs
ay, A user label, and set of user labels
B spatiotemporal behavior graph data
us,v,1 emb. of user, session, item, and location nodes
Kq. Ks, Ky, Kg dimensions of u, s, v, 1 vectors
hi, wi, yi, li hour, week, weekday and location unit of s;
T Tw, Ty set of temporal units: hour, week, and weekday
ey, €y, €y, €] hour, week, weekday, and location unit emb.
P7;: P PTy» PL hourly, weekly, weekday, and spatial pattern
L L L hourly, weekly, weekday pattern
b7, P7, P, under impacts from spatial pattern
T T Ty spatial patterns under impacts
Pr-ProPr from hourly, weekly, weekday pattern
interactive spatial-hourly, spatial-weekly
PLT PLTy PLT and spatial-weekday patterns

3 PROBLEM DEFINITION

In this section, we first introduce concept of the user spatiotemporal
behavior graph then formally define our research problem. The
notations used throughout this paper are summarized in Table 1.
A traditional online browsing behavior log contains the trans-
action records between users and the server. Typically, a user can
start multiple sessions and each session is associated with one or
more items such as news articles or update feeds. For a spatiotempo-
ral behavior log, in addition to the sessions and items information,
there are also corresponding spatial information, e.g., the city or the
neighborhood, for each session of the user; and, explicit temporal
information, e.g., server timestamp, for each item of the session.

Definition 3.1 (Spatiotemporal Behavior Log). A spatiotemporal
behavior log is defined on a set of users U, a set of sessions S, a
set of items V, and a set of locations L. For each user u € U, her
behavior log can be represented by a set of session-location tuples

{Gu,1,1u,1)s - - s (Su,my» lu,m,, )} where my, denotes user u’s number
of sessions. Each session s, ; comprises a set of item-timestamp
tuples {(vi,1,ti,1), . . ., (Vi,n;» ti,n; )} Where n; denotes the number

of items in the i-th session of user u.

In a large-scale spatiotemporal behavior log, each user u € U
is associated with a subset of sessions S;; C S, a subset of items
Vi € V have been interacted with, and a subset of locations L;, C
L. Each session s, ; € Sy is paired with a geographical location
signal I, ; € Ly, and each item v; j € V,, is paired with an explicit
timestamp t; ; forming a behavior entry. To capture the complex
temporal and spatial patterns in the spatiotemporal behavior log,
we represent a user’s behaviors as a tripartite graph structure G,

Item nodes V Session nodes S Location nodes L

N
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Figure 2: Schematic view of user spatiotemporal behavior
graph G,,. This tripartite graph consists of user’s sessions S,
locations L, and items V as nodes; and, EWY) of session-item
edges and EWL) of session-location edges.

as shown in Figure 2. The graph Gy, is defined on S, Ly, and Vj,,
along with the their corresponding relationships. (Without causing
ambiguity, we reduce the subscript u on Sy, Ly, and V;, for brevity.)

Definition 3.2 (User Spatiotemporal Behavior Graph). A user u’s
spatiotemporal behavior graph G, = (S, L, V, E) includes the user’s
sessions S, locations L and items V as nodes. There exists an edge
(si, ;) € E(L) C E between a session node sj € S and a location
node [; € L if the user started the session at this location. And,
there exists an edge (s, v j) € EWY) C E between a session node
s; € S and an item node v; j € V if the user interacted with this
item within the session. Each edge of E possesses a time attribute
indicating the temporal signal of the interaction between two nodes.

The pairing timestamp #; j (i < my, j < n;) for each item in
the behavior log can be directly used as the time attribute value
for any edge of EY). For an edge between a session node and a
location node of E<L), we use the timestamp of the first item in
the session, i.e., the leading timestamp ¢; ; of the session, as the
time attribute value. Note that the subset of edges EWY) describe the
many-to-many relationships between the session nodes S and item
nodes V, whereas the subset of edges E(L) describe the one-to-many
relationships between location nodes L and session nodes S. By
modeling each user’s behaviors as a spatiotemporal behavior graph
G, we are able to format the spatiotemporal behavior log as:

Definition 3.3 (Spatiotemporal Behavior Graph Data). A spatiotem-
poral behavior graph data 8 = (G, A) represent each user u as a
user spatiotemporal behavior graph G, = (S,L,V,E) € G, and is
related to a specific label a,, € A where A can be categorical or
numerical. All user spatiotemporal behavior graphs VG, € G share
the same sets of sessions S, items V and locations L.

After we have formatted the spatiotemporal behavior graph data,
we can now formally define our research problem as:
Problem: Given a spatiotemporal behavior graph data 8 = (G, A)
on a set of users U, learn an embedding function f that can
map each user u € U, denoted by her spatiotemporal behavior
graph G, € G, in to a low-dimensional hidden representation u,
ie, f : G — RKu, where K¢, is the dimensionality of vector u
(Kqgy << |U|,|S],|V|,|L]). The user embedding vector u should
(1) capture the spatial pattern and temporal patterns of different
periodicity in the user’s behaviors, and (2) be highly indicative
about the corresponding label a,, € A.



4 THE CALENDARGNN FRAMEWORK

In this section, we present a novel deep architecture CALENDARGNN
for predicting user attributes by learning user’s spatiotemporal be-
havior patterns. The overall design is shown in Figure 4. We first
introduce the item and location embedding layers for embedding
the heterogeneous features of item and location nodes in the input
user spatiotemporal behavior graph into initial embeddings; then,
we present the spatiotemporal aggregation layers as core functions
for generating spatial and temporal unit embeddings; next, we
describe the aggregation and fusion of different spatial and tempo-
ral patterns as user representation, and the subsequent predictive
model. At last, to capture the interactions between the spatial pat-
tern and various temporal patterns, we present an enhanced model
variant CALENDARGNN-ATTN that employs an interactive attention
mechanism to dynamically adapt importances of different patterns.

4.1 Item and Location Embedding Layers

The inputs into CalendarGNN are a user spatiotemporal behavior
graphs Gy, = (S, L, V, E) and all users Vu € U share the same space
of items | JV =V and locations | J L = L. The first step of Calen-
darGNN is to embed all items V and locations L of heterogenous
features into their initial embeddings. Figure 3 illustrates the design
of the item embedding layer and the location embedding layer.

4.1.1 Item embedding layer. An item v € V such as a news article
can be described by a group of heterogeneous features: (i) the iden-
tification, e.g., the ID of article; (ii) the topic, e.g., the category of
article; and, (iii) the content, e.g., the title of the article. For each
item, we feed its raw features into the item embedding layer (shown
in Figure 3(a)) to generate the initial embedding. Particularly, for cat-
egorical features such as the item ID and category, we use Multilayer
Perceptron (MLP) to embed them into dense hidden representations;
and, for textual feature, i.e., the item title, we use Bidirectional Long
Short-Term Memory (BILSTM) [25] encoder to generate its hidden
representation. Then, the embeddings of different features are con-
catenated together as the item embedding v € RXV where Koy is
the dimensions of the item embedding vector.

4.1.2  Location embedding layer. Each location I € L is denoted
by a multi-level administrative division name in the format of
“county/region/city”, and a coordinate point of longitude and latitude.
One example location is “US/California/Oakland” and its coordi-
nate “-122.1359, 37.7591”. We use three distinct MLPs to encode the
administrative division at different levels which could be partially
empty. The outputs are concatenated with normalized coordinates
(shown in Figure 3(b)) as the location embedding vector 1 € RKs,

4.2 Spatiotemporal Aggregation Layer

After item and location nodes are embedded into initial embed-
dings, CALENDARGNN generates the embeddings of session nodes
by aggregating from item embeddings. For a session node s; € S in
Gy = (S,L,V,E), its embedding vector s; is generated by applying
an aggregation function AGGgess on all item nodes linked to it:

Si =0 (WS 'AGGsess({Vi,j | V(si»vi,j) €E})+ bS) 5 (1)

where o is a function for non-linearity, such as RELU [23]; and, W g
and bg are parameters to be learned. The weight matrix Wg €

Item embedding vector Location embedding vector

/ NI o
[ 1 [ ] [ ] I_@'_I
T " ____________ \
e | l
BiLSTM s H L
MLP MLP encoder H 1 Normalization
(O S L/
t ¥
| I
T I
Article ID: Category: Title: “A millennials Admin. division: Coordinate: “
“5ab3e79...”  “Humor” guide to cocktails” “US/California/Oakland”  -122.1359,37.7591"

Item raw features Location raw features

(a) Item embedding layer (b) Location embedding layer

Figure 3: The item embedding layer (left) takes raw features
of an item, i.e., the ID, category and title, as input and gener-
ates its embedding vector; and, the location embedding layer
(right) takes the administrative division and coordinate of a

location as input and generates its embedding vector.

RKsXKv transforms the Key-dim item embedding space to the
K s-dim session embedding space (assuming AGGgess has the same
number of input and output dimensions). The aggregation function
AGGsess can be arbitrary injective function for mapping a set of
vectors into an output vector. Since the session node’s neighbor of
item nodes {v; j | ¥(si, vi j) € E} can naturally be ordered by their
timestamps t;,j, we arrange items as sequence and choose to use
Gated Recurrent Unit (GRU) [4] as the AGGgess function.

Now, we have generated session node embeddings {s | s € S} for
Gy, CALENDARGNN is ready to generate spatial and temporal pat-
terns. The core intuition is to inject external knowledge about the
calendar system’s structure into the architecture of CALENDARGNN
so that we can aggregate a user’s session node embeddings into
spatial pattern and temporal patterns of various periodicity based
on their spatial and temporal signals. Specifically, we pass session
node embeddings to: (1) the temporal aggregation layer for gener-
ating temporal patterns of various periodicity; and, (2) the spatial
aggregation layer for generating spatial pattern.

4.2.1 Temporal aggregation layer. Given session node embeddings
{s | s € S} of Gy, the idea of temporal aggregations in this layer is
to: (1) map sessions S’s continuous timestamps into a set of discrete
time units, and (2) aggregate sessions of the same time unit into
the corresponding time unit embeddings, and, (3) aggregate time
unit embeddings into the embedding of temporal pattern.
Mapping sessions S’ timestamps {t; | s; € S} into set of discrete
time units is analogous to bucket session embeddings by discrete
time units. We regard the leading timestamp of corresponding item
nodes as the session’s timestamp, i.e., t; = min({t; j | ¥(s;,v;,;) €
E}). Particularly, taken inspiration from the daily calendar system,
we convert t; into three types of time units:
e h; = hour(t;) € Ty, where 7, has 24 distinct values: 0AM,
1AM, ..., 11PM;
e w; = week(t;) € Thy, where 7y, is the set of weeks of the
year, e.g., Week 18;
e y; = weekday(t;) € 7,, where 7y has 7 values: Sunday,
Monday, ..., Saturday.
The time unit mapping functions hour, week and weekday takes
a timestamp as input and outputs a specific time unit. The cardinal-
ity of the output time units set can vary, e.g., | 7| = 24 or 7| = 7.
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Figure 4: CalendarGNN architecture: Session embeddings are generated by aggregating its item embeddings. The embeddings
of sessions are aggregated into hour, week, weekday unit embeddings, and location unit embeddings. Next, embeddings of
temporal/spatial units are aggregated into pattern embeddings, and further fused into the user embedding for prediction.

In this work, we leverage 3 time units of common sense, i.e., hour,
week, and weekday, for capturing the complex time structures in
user behaviors. CALENDARGNN maintains the flexibility to model
temporal pattern of arbitrary periodicity, such as daytime/night or
minute, providing the new time unit mapping function(s).

Once the session nodes are mapped into specified time units,
CALENDARGNN aggregates the session node embeddings into var-
ious time unit embeddings by applying a temporal aggregation
function AGGtemp on sessions of the same time unit:

ep =0 (Wh . AGGtemp({si | hi=he 7;1}) + bh) P (2)
€w =0 (Ww 'AGGtemp({si | wi =weTy}) +bw) s (3
€y =0 (Wy 'AGGtemp({si lyi=ye 7}-/}) +by) > (4)

where the weight matrices Wy, € REnXKs w,, € RKwXKs and
Wy € RXy*Ks transform the K g-dim session embedding space into
K}p,-dim hour embedding space, K,,-dim week embedding space,
and Ky-dim weekday embedding space, respectively. The choice
of AGGtemp is also set to GRU since all items of the same time unit
can naturally be ordered by their raw timestamp.

Next, these time unit embeddings in the three dimensions (i.e.,
hour, week, and weekday) are further aggregated into embeddings
of respective temporal patterns:

Py, =0 (W'ﬁl 'AGGtemp({eh | Yh € Tp}) + b‘771) g ®)
Py, =0 (VV‘TW - AGGtemp({ew | Yw € Ty, }) + b(]:v) > ()

Py, =0 (W‘G : AGGtemp({ey | Yy € 7;}) + b(];) ’ )

where the weight matrices W, € RE7 XK”, Wq € RE7 XKw |
W'Ty c RK’Ty xK,
day embeddings into the corresponding (Kg; -dim) hourly, (K;, -
dim) weekly, and (K; ,-dim) weekday patterns, respectively. Each

Y transform the aggregated hour, week, and week-

one of these temporal pattern captures the user’s temporal behavior
pattern of a specific periodicity.

In addition to temporal patterns, another indispensable aspect
of user’s behavior pattern relates to the spatial signals of sessions.
CALENDARGNN is capable of discovering user’s spatial pattern by
aggregating session embeddings via the spatial aggregation layer.

4.2.2  Spatial aggregation layer. Similar to the treatment of tempo-
ral aggregation layer previous introduced, for generating spatial
pattern, CALENDARGNN first aggregates the session node embed-
dings into location unit embeddings based on their spatial signals:

€] :U(WSxi'AGGspat({si@li | 1; =l€L}+bS><£), 8)

where @ is concatenation operator, and W, , € RKX(Ks+Ke)
transforms the concatenated space of session embedding initial
location embedding into the location unit embedding space, and
AGGgpat is the spatial aggregation function. We also arrange ses-
sions of the same location unit by their timestamps and choose to
use GRU as AGGgpat-

Then, CALENDARGNN aggregates various location unit embed-
dings into the embedding vector of spatial pattern:

Pr=o0 (WL : AGGspat({el [VIeL})+ bL) g ©)

where Wy € RX£XK! transforms the location unit embedding
space into the spatial pattern space.

By feeding the session node embeddings into temporal aggre-
gation layers and spatial aggregation layer, CALENDARGNN has
generated temporal patterns. i.e., pg;, pg;, and pq, , and the spatial
pattern, i.e., p r. At last, CALENDARGNN fuses all temporal patterns
and spatial pattern into a holistic user latent representation u, and
pass it to the subsequent predictive model for prediction and output.



4.3 Fusion of Patterns and Prediction

To get the latent representation of user, we concatenate all temporal
patterns and the spatial pattern together:

ll=p7;l€Bp7;V€Bp7;€Bp£€RKw, (10)

WhereKﬂ =K771 +K7:v +K7—y +K£4

We use a single dense layer as the final predictive model for
generating user attribute predictions. The discrepancy between
the output of the last dense layer and the target attribute value is
measured by the objective function for optimization. Specifically, if
the user label a,, € A is a categorical value, i.e., the task is multi-
class classification (with binary classification as a special case), we
employ the following cross-entropy objective function:

exp(Wg - u)
T== Y lga Wt
b PP a%ﬂexp(wa-u)

where W, € RXU is the weight vector for label a € A and [ is an
indicator function. If the label is a numerical value (a, € R), we
employ the following objective function for the regression task:

T=-) (W-u-a,) (12)
uel

4.4 Interactive Spatiotemporal Patterns

By utilizing the temporal and spatial aggregation layers, CALEN-
DARGNN is able to generate spatial pattern and temporal patterns
of different periodicity (Eqn. (5) to (9)). However, there are a few
limitations. First, different temporal/spatial unit embeddings are of
different importance levels to its pattern and this should be reflected
during the pattern generation process. Secondly, there could be rich
interactions between the spatial pattern and different temporal pat-
terns. These interactions should be carefully captured by the model
and be reflected in the true spatiotemporal patterns [9, 35].

To address these limitations, we propose a model variant that
employs an interactive attention mechanism [20] and denote it
as CALENDARGNN-ATTN. It enables interactions between spatial
and temporal patterns by summarizing location unit embeddings
and a certain type of time unit embeddings into an interactive
spatiotemporal pattern. For location unit embeddings {e; | VI € L}
and time unit embeddings such as hour embeddings {ej, | Vh € 73},
a location query and a temporal query are first generated:

&= e/lLlen= ) en/IThl, (13)

leL heTy,

where |-| denotes the cardinality of the set. On one hand, to consider
the impacts from spatial signals on temporal signals, a attention
weight vector oL Tn)

€; and the temporal unit embeddings {ey, | Vh € T3 }:

LT _ X (flen- &)
h Zhe;, exp (f(ep. &)))’

where f is a function for scoring the importance of e;, w.r.t. the
location query e; and is defined as:

is generated using the location query vector

(14)

f(en.€) = tanh (Eh WL € + b(L,Th))’ (15)

Table 2: Summary statistics on two real-world spatiotempo-
ral datasets BW1) and 8("?),

| Dataset || ¢ | VI [ 1£] | S| |AvglGl|
Bwl) 10,545 | 7,984 | 7,393 | 651,356 | 242.8
Bw2) 8,017 | 6,389 | 4,445 | 135,805 | 61.3

where W( s 7,y is the weight matrix of a bilinear transformation.
Thus, we are able to generate the temporal pattern under impacts
from the location units as:

,Th
p% = Z ail'ﬁ ")eh. (16)
heTy,

On the other hand, we also consider the impacts from temporal
signals on locations signals. So the attention weight vector for
location unit embeddings can be calculated as:

a;‘rh,z) __ exp(fleg eh)_) ’ a7
2rer exp (fler ep))
and the spatial pattern under impacts from the time units is:
Th Th»
P/ = Za§ nLe,. (18)
leL

Then, these two one-way impacted spatiotemporal patterns are
concatenated to get the interactive spatiotemporal pattern:

,
PL.7 =PF ©P (19)

Similarly, we can generate the interactive spatiotemporal pat-
terns for the other two type of time units of week p o 7. and week-
day p £, 7, . Then, the final user representation is:

u=pr g ®PL,7, OPL T (20)

Thus, by substituting Eqn. (20) into Eqn. (10), CALENDARGNN-ATTN
considers all interactions between the spatial pattern and temporal
patterns when making predictions of user attributes.

5 EXPERIMENTS

In this section, we evaluate the proposed model on 2 real-world
spatiotemporal behavior datasets. The empirical analysis covers: (1)
effectiveness, (2) explainability, and (3) robustness and efficiency.

5.1 Datasets

We collected large-scale user behavior logs from 2 real portal web-
sites providing news updates and articles on various topics, and
created 2 spatiotemporal datasets B and (w2, They contain
users’ spatiotemporal behavior log of browsing these 2 websites
and both datasets range from Jan. 1 2018 to Jun. 30 2018. After
all users have been anonymized, we filtered each dataset to keep
around 10, 000 users with most clicks. More statistics are provided
in Table 2. The 3 user attributes used for prediction tasks are:

o AYeN): the binary gender of user ¥a(9¢™ ¢ {“f”, “m”} where
“f” denotes female and “m” denotes male,

o An9); the categorical income level of user such that Va(i"¢) €
{0,1,...,9} where larger value indicate higher annual house-
hold income level and 0 indicates unknown,

o A@9°): the calculated age of user based on registered birth-
day. This label is treated as real value in all experiments.



Table 3: For dataset 8", the performance of CALENDARGNN, CALENDARGNN-ATTN (CALGNN-ATTN), and baseline methods
on predicting user attributes. For all metrics except error-based MAE and RMSE, higher values indicate better performance.

Method Gender A" Income A"C) Age A49°)
Acc. ‘ AUC ‘ F1 ‘ MCC | Acc. ‘ F1-macro ‘ F1-micro ‘ Cohen’s kappax | R? ‘ MAE ‘ RMSE ‘ Pearson’s r

LR 67.08% | .6469 | .6628 | .3319 | 19.54% .0642 .1957 0121 .0349 | 12.22 15.53 .2938
LeEAarRNSUC 67.41% | .6541 | .6680 | .3330 | 14.58% .0531 1523 .0078 .0523 | 12.18 | 1549 .2989
SR-GNN 69.82% | .6733 | .6854 | .3510 | 20.21% .0676 .1949 .0182 .0121 | 15.20 | 16.87 .2566
ECC 70.29% | .6886 | .6832 | .3825 | 23.54% .0767 .2267 .0222 .2158 | 11.12 | 13.88 4768
DrirrPooL 72.12% | .7189 | .7089 | .4514 | 25.87% .0928 .2763 .0760 .2398 | 10.55 | 13.81 .4992
DGCNN 71.26% | .7129 | .7068 | 4189 | 24.55% .0879 .2509 .0687 .2351 | 10.86 | 13.97 .4809
CaprsGNN 70.85% | .6979 | .6921 | 4031 | 23.71% .0750 .2189 .0378 .2270 | 10.90 | 13.86 4645
SAGPooL 71.95% | .7156 | .7093 | .4467 | 26.13% .0942 .2554 .0797 .2350 | 10.77 | 13.91 .4887
CALENDARGNN || 72.98% | .7250 | .7119 | .4503 | 28.83% 1059 .2981 .0887 .2412 | 10.57 | 13.60 .5033
CALGNN-ATTN || 72.70% | .7236 | .7112 | .4491 | 29.67% .1100 .3062 .0910 .2401 | 10.65 | 13.52 .5069

5.2 Experimental Settings

5.2.1 Baseline methods. We compare CALENDARGNN against state-
of-the-art GNN-based methods:

e ECC [27]: This method performs edge-conditioned convo-
lutions over local graph neighborhoods and generate graph
embedding with a graph coarsening algorithm.

e DrrrPooL [38]: This method generates hierarchical repre-
sentations of graph by learning a soft cluster assignment for
nodes at each layer and iteratively merge nodes into clusters.

e DGCNN [42]: The core component SORTPOOLING layer of
this method takes unordered vertex features as input and
outputs sorted graph representation vector of a fixed size.

e CaprsGNN [36]: This method extracts both node and graph
embeddings as capsules and uses routing mechanism to gen-
erate high-level graph or class capsules for prediction.

e SAGPooL [17]: It uses self-attention mechanism on top of the
graph convolution as a pooling layer and take the summation
of outputs by each readout layer as embedding of the graph.

Besides above GNN-based approaches, we also consider the follow-
ing methods for modeling user behaviors in session-based scenario:

e Logistic/Linear Regression (LR): The former one is applied
for classification tasks and the later one is used for regression
task. The input matrix is a row-wise concatenation of user’s
item frequency matrix and location frequency matrix.

e LEARNSUC [30]: This method considers user’s sessions as
behaviors denoted by multi-type itemset structure [31]. The
embeddings of users, items, and locations are jointly learned
by optimizing the collective success rate or the user label.

o SR-GNN [34]: It uses graph structure to model user behavior
of sessions and use GNN to generate node embeddings. The
user session embedding is generated by concatenating the
last item embedding and the aggregated items embedding.

We use open-source implementations provided by the original
paper for all baseline methods and follow the recommended setup
guidelines when possible. Our code package is available on Github:
https://github.com/dmsquare/CalendarGNN.

5.2.2  Evaluation metrics. For classifying binary user label A9€™),
we use metrics of mean accuracy (Acc.), Area Under the precision-
recall Curve (AUC), F1 score and Matthews Correlation Coefficient
(MCQC). For classifying multi-class user label AN metrics of

mean accuracy (Acc.), F1 (macro, micro) averaged score and Cohen’s
kappa k are reported. For numerical user label A(29¢), metrics of
R-squared (R%), Mean Absolute Error (MAE), Root-Mean-Square Error
(RMSE) and Pearson correlation coefficient (r) are reported.

5.3 Quantitative analysis

Table 3 and 4 present the experimental results of CALENDARGNN
and baseline methods on classifying/predicting user labels Algen),
ﬂ(i"C), and A@9¢) on datasets 8D and B(Wz), respectively.

5.3.1 Overall performance. On dataset 81, D1rrPooL achieves
the best performance among all baseline methods. It scores an Acc.
of 72.12% for predicting AY™, an Acc. of 25.87% for predicting
A1) and an RMSE of 13.81 for predicting A?9¢). While on
dataset 8(*2), SAGPoor and DirrPooL give comparable best per-
formances. SAGPooL slightly outperforms DirrPooL that it scores
a higher Acc. for predicting A", and a lower RMSE for predict-
ing A(a9¢)_ Our proposed CALENDARGNN outperforms all base-
line methods across almost all metrics. On B(Wl), CALENDARGNN
scores an Acc. of 72.98% for predicting AYE™ (+1.19% relatively
over DIFFPOOL), an Acc. of 28.83% for predicting A"¢) (+11.44%
relatively over DirFPoor), and an RMSE of 13.60 for A(49¢) (—1.52%
relatively over DirrPooL). On B(Wz), it scores an Acc. of 71.63%, an
Acc. of 27.10%, and an RMSE of 13.88 for predicting ﬂ(ge"), ﬂ(i'”),
and A29¢) respectively (+0.86%, +10.52%, and —2.32% over SAG-
PooL). CALENDARGNN-ATTN further improves the Acc. for predict-
ing A1) t0 29.67% and 28.17% on both datasets (+2.9% and +3.9%
relatively over CALENDARGNN); and, decreases RMSE for Alage) to
13.52 and 13.67 (—0.6% and —1.5% relatively over CALENDARGNN).

5.3.2 Compare against behavior modeling methods. SR-GNN gives
the best performance of predicting user gender A9¢™ and user
income A1) among all behavior modeling methods. LEARNSUC
gives the best performance of predicting user age A(29¢). This is
probably because SR-GNN learns embedding for sessions instead
of users and inferring user age of real values based on session em-
beddings are difficult than directly using user embedding. Beside,
SR-GNN is designed to model session as a graph of items, but it
ignores all spatial and temporal signals. On the contrary, our CALEN-
DARGNN models each user’s behaviors as a single tripartite graph
of sessions, locations, and items attributed by temporal signals.


https://github.com/dmsquare/CalendarGNN

Table 4: For dataset B(*?), the performance of CALENDARGNN, CALENDARGNN-ATTN (CALGNN-ATTN), and baseline methods
on predicting user attributes. For all metrics except error-based MAE and RMSE, higher values indicate better performance.

Method Gender A" Income A"C) Age A49°)
Acc. ‘ AUC ‘ F1 ‘ MCC | Acc. ‘ F1-macro ‘ F1-micro ‘ Cohen’s kappax | R? ‘ MAE ‘ RMSE ‘ Pearson’s r

LR 66.53% | .6410 | .6523 | .3100 | 18.21% .0655 .1887 .0097 .0320 | 12.79 | 16.92 .2763
LeEAarRNSUC 67.01% | .6494 | .6612 | 3199 | 13.72% .0522 .1587 .0060 .0489 | 12.72 16.93 .2789
SR-GNN 67.80% | .6562 | .6660 | .3289 | 19.79% .0686 .1910 .0201 .0209 | 15.88 | 17.08 .2370
ECC 68.53% | .6802 | .6792 | .3580 | 21.08% .0723 .2190 .0345 .2030 | 11.75 | 14.82 4320
DrirrPooL 71.04% | .6998 | .6967 | 4269 | 24.09% .0835 .2753 .0687 .2188 | 11.23 | 14.30 .4590
DGCNN 70.20% | .6972 | .6855 | .3892 | 22.70% .0809 .2472 .0600 .2180 | 11.49 | 14.69 4392
CaprsGNN 68.29% | .6806 | .6800 | .3588 | 21.92% .0789 .2196 .0438 .2059 | 11.82 | 14.69 4389
SAGPooL 71.02% | .7065 | .6970 | .4287 | 24.52% .0856 .2802 .0701 2223 | 1097 | 14.21 4652
CALENDARGNN || 71.63% | .7104 | .7038 | .4389 | 27.10% .0909 2798 0742 2223 | 10.79 | 13.88 4872
CALGNN-ATTN || 71.47% | .7098 | .7021 | .4341 | 28.17% .1015 .2964 .0846 .2332 | 10.87 | 13.67 4963

CENO VS WNRO

(a) Clustering of user embeddings u is (b) Clustering of spatial patterns p is
highly indicative about gender AY¢™  highly indicative about income A7)

Figure 5: Clustering of user embeddings and patterns

And, this user spatiotemporal behavior graph is able to capture the
complex behavioral spatial and temporal patterns. CALENDARGNN
outperforms SR-GNN by +4.53% and +42.65% relatively for Accs. of
predicting A and A1) on dataset B, and by +5.65% and
+36.9% on dataset 8(?)_ CALENDARGNN outperforms LEARNSUC
by —12.20% and —18.02% for the RMSEs of predicting A(?9¢).

5.3.3 Compare against GNN methods. DIrrPooL performs the best
among all GNN-based baseline methods on dataset B Tt scores
an Acc. of 72.12% for predicting user gender A9¢™ (+3.29% rela-
tively over SR-GNN), an Acc. of 25.87% for predicting user income
Alne) (4:28.01% relatively over SR-GNN), and an RMSE of 13.81
for predicting user age A(29¢) (—10.85% relatively over LEARNSUC).
SAGPooL shows competitive good performance on dataset 8(*2),
Both of these two methods learn hierarchical representation of
general graphs. They are not designed to capture the specific tri-
partite graph structure of sessions, items, and locations. And, these
methods are not capable of modeling the explicit time structures in
user’s spatiotemporal behaviors.

DGCNN underperforms DirrPoor and SAGPooL across all met-
rics on both datasets. One reason is that DGCNN’s core component
SorTPOOLING layer relies on a node sorting algorithm (in analogous
to sort continuous WL colors [32]). This strategy produces lower
performance for predicting user demographic labels compared with
the learned hierarchical representations adopted by DirrPoor and
SAGPooL. ECC and CapsGNN yield slightly better performance

than behavior modeling method SR-GNN for predicting user gen-
der A9€™_But, they can quite outperform SR-GNN for predicting
A1) and outperform LEARNSUC by a large margin for predicting
A(a9¢) This validates the spatiotemporal behavior graph of ses-
sions, items, and locations (instead of itemset or simple item-session
graph) provides more information for the GNN model.

Our CALENDARGNN performs the best among all GNN-based
methods across almost all metrics. On dataset B<W1), CALENDARGNN
scores an Acc. of 72.98% for AYE™ (+1.19% relatively over DIFE-
PooL), an Acc. of 28.83% for AMC) (+11.44% relatively over DIFF-
Poot), and an RMSE of 13.60 for A49¢) (~1.52% relatively over
DirrPoor). On dataset B(Wz), it scores an Acc. of 71.63%, an Acc. of
27.10%, and an RMSE of 13.88 for predicting Algen) Alinc) a4
Alage) respectively (+0.86%, +10.52%, and —2.32% over SAGPooL).
This confirms that the proposed calendar-like neural architecture
of CALENDARGNN is able to distill user embeddings of greater
predictive power on demographic labels.

By considering the interactions between spatial and temporal pat-
tern, CALENDARGNN-ATTN further improves the Acc. for predicting
A1) t0 29 67% and 28.17% on both datasets (+2.9% and +3.9%
relatively over CALENDARGNN); and, decreases RMSE for Alage) to
13.52 and 13.67 (—0.6% and —1.5% relatively over CALENDARGNN).
We also note that CALENDARGNN-ATTN underperforms CALEN-
DARGNN on both datasets for predicting A(?9¢). This indicates the
interactions between spatial and temporal patterns provide no extra
information for predicting user genders. More results for examin-
ing the importance of each spatial or temporal pattern in different
predictive tasks can be found in the supplemental materials

5.4 Qualitative analysis

In Figure 5, we provide visualizations of user embeddings and pat-
terns learned by CALENDARGNN using t-SNE [21]. The clustering
results presented in Figure 5(a) clearly demonstrate that the learned
user embeddings are highly indicative about the target user at-
tribute AYe™). Furthermore, we plot the learned spatial patterns
pr in Figure 5(b) and it can be seen that they are especially useful
for determining user’s income level A9¢™): users of high income
levels (e.g., “7”, “8” and “9”) forms distinct non-overlapping clusters
despite some users of lower income level (e.g., “1”) and unknown
(“0”) scatters at the bottom part.
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Figure 6: Sensitivity and efficiency of CALENDARGNN.

5.5 Sensitivity and Efficiency

We test through CALENDARGNN’s hyper-parameters. Figure 6(a)
shows the prediction performance is stable for a range of user
embedding dimensions K¢ from 27 to 2'1. We also test the model’s
efficiency. All experiments are conducted on single server with dual
12-core Intel Xeon 2.10GHz CPUs with single NVIDIA GeForce
GTX 2080 Ti GPU. Figure 6(b) shows the per epoch training time is
linear to the average size of input user spatiotemporal graphs.

6 CONCLUSIONS

In this work, we proposed a novel Graph Neural Network (GNN)
model for learning user representations from spatiotemporal be-
havior data. It aggregates embeddings of items and locations into
session embeddings, and generates user embedding on the calendar
neural architecture. Experiments on two real datasets demonstrate
the effectiveness of our method.
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