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Spatiotemporal Multitask Learning for 3-D
Dynamic Field Modeling

Di Wang~, Kaibo Liu~', Member, IEEE, Xi Zhang™', Member, IEEE, and Hui Wang

Abstract—3-D dynamic field modeling using data acquired
from sensor networks is typically complex due to the data sparsity
and missing problem. In this article, we consider the ubiquitous
missing data problem in current sensor networks and aim to take
complete advantage of the existing sensor data for thermal field
modeling. In the common scenario, data from the target network
are not always obtainable, but data from other neighboring
networks with homogeneous fields are accessible. Thus, a novel
method that captures the information acquired from these neigh-
boring networks is proposed. To achieve accurate thermal field
estimation using limited sensor observations, we develop a mixed-
effect model framework in which the dynamic field is decomposed
into a mean profile and local variability. In particular, we estab-
lish a spatiotemporal field multitask learning (FML) approach to
identify the spatiotemporal correlation by integrating a multitask
Gaussian process (MGP) framework into an autoregressive (AR)
model using neighboring data sources from homogeneous fields.
Our proposed method is verified through a real case study of
thermal field estimation during grain storage.

Note to Practitioners—The proposed method aims to obtain an
accurate estimation of a thermal field when certain sensor data
are inaccessible. To better implement this method in practice,
three things are noteworthy: First, the mean profile of the thermal
field should be extracted using the thermodynamic model, so that
the remaining data are able to follow a Gaussian process. Second,
the FML approach considers neighboring data sources from
homogeneous thermal fields to achieve an accurate estimation of
the target thermal field. Thus, the target thermal field and other
thermal fields should be under similar external conditions, e.g.,
environmental surroundings, geographical location, and field size.
Third, the proposed method can not only process the data from
grid-based sensor networks, but also can be extended to other
topological structures of sensor networks for field estimation.

Index Terms— Dynamic thermal field, field multitask learning
(FML), spatiotemporal dependence.
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NOMENCLATURE
Heat capacity of the grains.
Total number of test data at each time
point in the target granary.
Number of iterations in the EM-LS algo-
rithm.
Number of thermal fields.
Total number of thermal fields.
Number of distinct sensor locations of
thermal fields.
Number of interested sites.
Set of real numbers.
Space position.
Set of distinct sensor locations in {S}", f =
to,...,fr,m=1,..., M}.
Set of interested sites.
Time point.
Total number of time points.
Space position in a Cartesian coordinate
system.
Range parameter that corresponds to the
distance around a thermal field.
Kernel matrix between S and S obtained
by the kernel function.
Precision of the hyperprior distribution for
My
Density of the grains.
Precision of the hyperprior distribution for
Ct.
Set of hyperprior parameters.
Predetermined threshold.
Bias of the thermal field m at location s
and time f.
Bias of the thermal field m at location s
and time f — 1.
Estimate of b}"(s) in iteration k.
Estimate of b}" ;(s) in iteration k.
Processed data of the thermal field m at
location s and time f in iteration k.
Covariance matrix of the Gaussian process
al.
Etstimate of C; in iteration k.
Estimate of the covariance matrix in terms
of a;’:‘k.
Covariance matrix of the Gaussian process
wit,
A::cessible data set of thermal field m at
time ¢ that is composed of S}" and gf".
Deviance of the sensor data from the mean
profiles of the thermal field m.
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gl Deviance vector of the sensor data from the
mean profiles of the thermal field m.

ny' Number of accessible sensor data of the ther-
mal field m at time 7.

S Space position with index i.

Sy Set of space positions of the thermal field m at
time f.

fo Initial time point.

tr Last time point.

tr(-) Trace of a matrix.

u‘;’:‘k(s) Difference between b";’fk (s) and ﬁ);':‘k_l (s).

v;’jk (s) Deviance between the bias of the thermal field

m at time rb";’fk (s) and those at previous L time

points 3"/, ﬁgikb!?i—.*,k(s)'
v:’,’"k Vector of {v;’jk (s)}, VseS}".

wl(s) Variation of the local variability of the thermal
field m at location s and time f.

w;’jk(s) Estimate of w]"(s) in iteration k.

wy N x 1 vector in terms of W] (s)

y™(s, t) Temperature of the thermal field m at location
s and time 1.

y™M(s, t) Estimate of y™(s, t).

af’ Vector of the weight parameters for thermal
field m at time f.

@y Estimate of " in iteration k.

a;’i, ith element of a}".

ar k Estimate of &;"; in iteration k.

B Ith parameter associated with the temporal
effects from time # — /.

Af‘k Estimate of g/" in iteration k.

" Vector of the AR model parameters of the
thermal field m.

ABY Change in ™ between time ¢ and time £ — 1
in iteration k.

e™m(s,t) Model error of the thermal field m at location
s and time f.

x(si,s) Kernel function in terms of locations s; and s.

Ko Kernel matrix among S.

Km Kernel matrix between S' and S obtained by
the kernel function.

Ax, Ay, 4;  Thermal conductivity of the grains in the x, y,
and z directions, respectively.

um(s, 1) Mean function of the thermal field m at loca-

tion s and time ¢.
Iy Mean vector of the Gaussian process o}".

My i Estimate of u, in iteration k.

[T Mean vector of the Gaussian process w}".

af Variance of the normal distribution for £™ (s, ).
ol Estimate of ¢ in iteration k.

(D; Set of the MGP model parameters at time f.
(ilf k Estimate of @; in iteration k.

I. INTRODUCTION

YNAMIC fields, such as electric, magnetic, and ther-
mal fields, widely exist in various dynamic systems
and are critical for the operation, design, and mainte-

nance of a system. The appropriate modeling of such fields
provides good opportunities to understand the system mecha-
nism and obtains useful information for potential improvement
of a system. Successful examples can be found in a variety
of domains, including ecology [1], [2], healthcare [3], and
meteorology [4].

A thermal field is a classic dynamic field that exists in a
variety of engineering systems, and temperature is typically
regarded as an important index to indicate system perfor-
mance. For example, in a grain storage depot, the local
temperature in barns can be affected by a number of external
factors (e.g., ambient temperature and airiness condition) and
internal factors (e.g., grain self-breath and mildew), thereby
leading to considerable spatial and temporal temperature vari-
ations during grain storage. Modeling thermal distribution
by relying only on expertise in thermodynamics does not
work efficiently due to lack of understanding regarding the
dynamics of grain activities. Consequently, obtaining a precise
thermal distribution of grains in certain complex systems
is critically important. This is because the change in the
thermal distribution may result in grain quality deterioration
and excessive energy consumption in warehouse ventilation.
A similar problem is also often observed in the cooling
systems of nuclear plants [5] and supercomputer centers [6].

A thermal field can be generally considered a 3-D spa-
tiotemporal stochastic system that is represented by time-
varying temperatures at each location. The accurate estimation
of a thermal field remains a challenging task because capturing
spatiotemporal dynamics in a 3-D thermal field involves a
large number of uncertainties. Conventional field modeling
techniques obtain the spatiotemporal dynamics of a thermal
field by establishing thermodynamic models, which merely
consider the aforementioned extrinsic factors and employ
physical principles (such as thermal mechanism) to describe
a field. For example, nonlinear heat transmission models [7],
[8] were proposed to describe the thermal field in a cuboid-
shaped granary. A hydromechanical model was developed to
characterize the air flow and a dynamic thermal field [9].
An improved heat transmission model was proposed by con-
sidering the self-heating property of grains to improve the
field estimation performance [10]. These methods successfully
estimate thermal fields under ideal conditions, i.e., no other
unexpected changes occur in the system. In practice, however,
uncertainties caused by internal factors also exist, which limits
these conventional methods, leading to a large discrepancy
between the estimated and actual thermal fields. Therefore,
to acquire an accurate thermal field through a new modeling
technique is quite desirable for field estimation and system
improvement.

The remainder of this article is organized as follows.
Section II provides the literature review on dynamic field
modeling by using sensor data. Section III introduces the
methodology of thermal field modeling and elaborates two
major components of the mixed-effect model, i.e., modeling
the mean profile and local variability, using the grain storage
example. Section IV presents a real case study of grain thermal
fields to evaluate the performance of the proposed method.
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Grain thermal field

Ideal sensor observations Sensor observations oblained in practice

Fig. 1. Sensor observations from the grid-based sensor networks of a granary
with missing data.

Section V provides conclusive remarks and suggestions for
future research.

II. LITERATURE REVIEW

A large number of modeling techniques have emerged
with the advancement of information and sensor technologies,
which provide the infrastructural support to generate sensor
observations for dynamic field modeling [11]-[13]. Data-
driven approaches have been vastly developed to model the
dynamic field based on sensor observations obtained from
sensor networks [14], [15]. These approaches aim to character-
ize dynamic fields by considering spatiotemporal correlations
using sensor observations. Pioneering studies have modeled
the spatiotemporal correlations of dynamic fields by assuming
that spatial and temporal components are independent of each
other [16], [17]. For recent studies, Katzfuss and Cressie [18]
proposed a spatiotemporal smoothing approach that indepen-
dently represents spatial and temporal processes using remote-
sensing data sets. Zheng ef al. [4] modeled the spatiotemporal
dependence of air quality by considering two independent
classifiers, namely spatial and temporal classifiers. However,
the model framework with independent spatial and tempo-
ral components cannot effectively capture the spatiotemporal
interactions of dynamic fields.

To address this problem, studies have attempted to model
spatiotemporal interactions by simultaneously considering spa-
tial, temporal, and spatiotemporal correlations [19]. In recent
years, kriging has elicited considerable attention in dynamic
field modeling and has been widely used to model spatiotem-
poral interactions [20], [21]. However, the computational issue
generally arises in the kriging method for large training data
sets. Consequently, many researchers have made their efforts
in modeling covariance functions to reduce computational
complexity; these studies include sparse matrix algorithms
[23], reduced rank techniques [24], and Gaussian random
fields [25]. For example, Wang ef al. [26] integrated a kriging
model into a Gaussian Markov random field model by fully
using grid-based sensor data, which reduced the computational
burden and provided an acceptable performance in thermal
distribution monitoring. The aforementioned methods require
sufficient available sensor observations to achieve a balance
between the field estimation accuracy and the computational
burden. However, one of the major challenges in thermal
field modeling is that limited sensor observations are available
because only sparse sensors are deployed in sensor networks,
given the high costs of sensors and limited budget (the distance
between two adjacent sensors is set to be 5 m in a granary,
as shown in Fig. 1). In addition, sensor observations may not
be gathered appropriately into a single database for unexpected

Fig. 2. Aerial view of a grain depot with multiple homogeneous granaries
in the central part of China.

reasons, such as sensor aging, wireless communication fail-
ures, and data reading errors. Therefore, developing an effec-
tive method for spatiotemporal thermal field modeling when
only a limited number of sensor observations are accessible is
essential.

To solve this problem, researchers have adopted interpola-
tion methods to fill in missing data using the existing sensor
observations of thermal fields, including linear, spline [27], and
Lagrange interpolations [28]. However, this strategy may cause
a large bias and is inclined to lose the chance to capture local
changes in a dynamic field, particularly when certain data from
the target sensor network are missing while other neighboring
networks with homogeneous fields are accessible. Hence, other
researchers instead tend to borrow data from homogeneous
fields to fill in the missing data for target dynamic fields.
For example, missing thermal data in a granary are filled
directly with sensor data from similar granaries. However,
interpolation methods and the direct data filling strategy from
other data pools lack substantial consideration of the dynamics
of a thermal field and data uncertainties, e.g., varieties of data
dependence may exist at different locations and time points.

Transfer learning provides an opportunity for thermal field
modeling with limited sensor observations and for address-
ing the issue of data uncertainty; it aims to improve the
learning of unobserved values in the target source by sharing
knowledge or information from related data sources [29]-[32].
In recent years, transfer learning has been studied by numer-
ous researchers and applied to various engineering domains,
including WiFi localization [33], speech emotion recognition
[34], and manufacturing shape deviation [35]. Multitask learn-
ing has emerged as one of the popular focuses for transfer
learning problems. Compared with single-task learning (STL)
[36], [37], which learns “knowledge” by using the training data
in the target task, multitask learning is a machine learning
framework that aims to improve the model performance of
a target task by learning multiple similar-but-not-identical
tasks (e.g., thermal field estimation) and then sharing the
information of each task. Here, we use grain storage as an
example, as shown in Fig. 2. Several columns of granaries with
similar storage conditions (within the red boxes), including the
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location, volume of granaries, stored grains, and environmental
surroundings, are found in this grain depot. The thermal field
estimation of a target granary can be obtained through the
concept of multitask learning, which leverages information
available from sensor observations collected from other homo-
geneous granaries.

Multitask learning has attracted considerable research inter-
est within a decade. For example, Jin and Sun [38] combined
multitask learning and neural networks to predict traffic flows.
Huang et al. [39] proposed a deep architecture that combined
a deep belief network with multitask learning for traffic flow
prediction. Xu et al. [40] developed a least squares (LS)
regularized regression algorithm for multi-task learning with
Gaussian kernels. Unfortunately, these models fail to effi-
ciently capture the spatiotemporal information in dynamic sys-
tems. Many researchers have also adopted multitask learning
for complex spatial and temporal systems. Guo and Chen [41]
applied multitask learning to human action recognition. Their
method represents the spatiotemporal features of each human
action independently but does not consider spatiotemporal
correlations among human actions. Goncalves ef al. [42]
proposed a hierarchical multitask learning method for climate
prediction. Their method can estimate the spatiotemporal cor-
relation of climate, but is not applicable to high-dimensional
spatiotemporal data using limited sensor observations, e.g.,
estimating a 3-D spatiotemporal thermal field. Shao et al.
[43] developed a multitask learning model to estimate a 2-D-
machined surface shape using limited sensor observations from
homogeneous data sources. This model considers the spatial
correlation of the surface shape and improves the modeling
accuracy based on the sensor data for related surface shapes.
The study of [43] mainly focused on static spatial surfaces,
but failed in modeling spatiotemporal dynamic fields that vary
across space and time.

In conclusion, the existing spatiotemporal models require
sufficient observations in the spatial and temporal domains
to estimate dynamic fields accurately. However, only sparse
sensor observations in granaries are collected, and some
sensor observations may be missing for unexpected reasons,
thereby leading to poor field estimation results using these
existing spatiotemporal models. Multitask learning provides
an opportunity for thermal field modeling with limited sensor
observations. However, the existing approaches for multitask
learning have gaps in dynamic field modeling. First,multitask
learning approaches have been widely used to model pro-
files or surfaces, but few studies have considered 3-D field
modeling. Second, the existing multitask learning approaches
are purely data driven. These purely data-driven approaches
cannot achieve accurate field estimation results; useful engi-
neering information must be considered in the modeling of 3-D
dynamic fields. Third, the existing works mainly focus on the
modeling of static systems. They mainly consider “borrowing”
spatial information, but disregard the temporal correlation of
a system. Few studies have addressed the issue of dynamic
systems that vary over time using multitask learning.

To fill in the research gap, we propose a 3-D thermal field
estimation method and model spatiotemporal dynamics of a
thermal field using limited sensor observations from several

homogeneous data sources. To achieve accurate thermal field
estimation using limited sensor observations, we develop a
mixed-effect model framework in which the dynamic field
is decomposed into a mean profile and a local variability.
We adopt a thermodynamic model to capture the mean profile
of a thermal field by leveraging the physical mechanism of
heat transmission. To fully utilize all the accessible sensor
data, we develop a spatiotemporal field multitask learning
(FML) approach to characterize local variability by con-
sidering missing data and data uncertainties. In particular,
we establish the FML to capture spatiotemporal correlation by
integrating a multitask Gaussian process (MGP) model into an
autoregressive (AR) model with time series using neighboring
data sources from homogeneous fields.

Compared with the existing spatiotemporal models, the pro-
posed method addresses the challenges of 3-D thermal field
estimation using spatiotemporal multitask learning in the
following aspects. First, we propose an FML method to
characterize the local variability of a 3-D thermal field by fully
utilizing limited sensor observations from homogeneous data
sources. Second, compared with purely data-driven methods,
our proposed method leverages the physical mechanism of
thermal conductivity and uses a thermodynamic model to
capture the mean profile of a thermal field. We combine the
thermodynamic model and data-driven methods to achieve
accurate thermal field estimation. Third, the MGP and the time
series method are simultaneously considered to effectively
capture the spatiotemporal correlations of dynamic thermal
fields.

III. METHODOLOGY

A mixed-effect model framework that incorporates thermal
physics and information acquired from sensor networks using
FML is proposed to obtain a dynamic field. Fig. 2 shows
that the granaries are arranged using columns with identical
environmental conditions. This situation naturally provides
a good opportunity to capture the available sensor data in
neighboring granaries to support the thermal field estimation of
the target granary. Without loss of generality, we assume that
M 3-D spatiotemporal thermal fields with similar conditions
exist. As shown in Fig. 3, these M 3-D thermal fields present
different missing data patterns. We regard the thermal field
m as the target data source and estimate it by considering
the sensor data in M thermal fields. For the thermal field
mm = 1,...,M), let y™(s,f) be the response variable
observed at location s and time f, where s ¢ B3 and t € R+.
The underlying dynamic field can be represented as follows:

Y7 (s,1) = p™(s,1) + b (5,1) + €™ (5,1) 1)

where p™(s,t) is the mean function of the thermal field m.
The residual after the mean function is decomposed into two
independent parts, namely the corresponding bias b™(s, 1),
which captures the local variability of the thermal field, and
Gaussian white noise £”(s, f), which captures model errors.
Here, we assume that £™(s,t) is independent at each time
point. For each &™(s,t),m = 1,...,M, g™(s,t) follows
a normal distribution at time ¢ with variance o7, that is
g™ (s, 1) ~ N(0, a}).
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Field estimation

Fig. 3.

Main concept of research methodology. Dynamic field estimation for 3-D thermal fields by integrating the MGP model and the AR model based on

sparse sensor data with missing data problems from homogeneous sensor networks.

A. Modeling Mean Profile

We adopt a thermodynamic model as a mean function
to model mean profiles of thermal fields following ther-
mal physics knowledge. The thermodynamic model has been
widely used to estimate thermal fields under ideal conditions.
In particular, we employ a 3-D unsteady heat transfer function
as the thermodynamic model to characterize the spatiotempo-
ral mean profiles. This function is a second-order differential
equation, which describes the heat distribution (or temperature
variation) in a given space over time. For the thermal field
m, the location s in (1) is denoted (x,y,z) in a Cartesian
coordinate system, and the 3-D unsteady heat transfer function
is given as follows:

R ) B oZum(x,y,2,1)
ot - ox2
rum(x,y,z,1)
ay? ti

p

2um(x, y,z,1)
872

+iy 2
where p™(x,y,z,t) denotes the temperature response of the
thermal field m. The parameter set 8 = p,c, A, Ay, 4; is
determined based on the properties of the target thermal
field. For stored grains, p denotes the density of grains, ¢
denotes the heat capacity of grains, and A,, 4,, 4; denote the
thermal conductivity of grains in the x, y, and z directions,
respectively.

Given the temperature at time fp as the initial values and
the temperature at the walls of the granary as the boundary
conditions, we use a finite difference method to solve (2).
Notably, the boundary conditions change over time and are
affected by environmental factors, which in turn significantly
affect the temperature of granary walls and further affect the

2
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Fig. 4. Anatomy of a thermal field. (A thermal field is decomposed into the
mean profile and the local variability.)

temperature of inner grains (for detailed analysis regarding
these effects, please refer to [8]).

B. Modeling Local Variability

The local variability of a thermal field is affected by various
latent intrinsic factors and cannot be easily characterized
by an existing known deterministic model. Two variables at
adjacent locations tend to exhibit a strong correlation when
the distance between their locations is small in a thermal
field. Thermal fields with similar conditions share common
spatiotemporal structures. Notably, only the deviance of the
limited sensor data from the mean profiles of a thermal
field g™ (s, 1) = y™(s,t) — u™(s, 1) is known. To effectively
estimate the local variability of a thermal field, spatiotemporal
correlations should be captured by simultaneously consider-
ing multiple sensor observations from homogeneous thermal
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Fig. 5. Procedure for modeling the local variability of the thermal field m
based on FML.

fields. Fig. 4 presents a demonstrative example of thermal
sensor observations at the same location in three adjacent
granaries with similar storage conditions. The curves of the
mean profile are obtained using the thermodynamic model
and the local variabilities marked with dots are the values
of the deviance of the sensor observations from the mean
profile. The local variability in each granary varies and exhibits
considerable spatial and temporal correlations.

We propose an FML method to describe the local variability,
which integrates the MGP model into an AR model to char-
acterize spatiotemporal correlation by considering temperature
from neighboring fields at previous L time points. For the
thermal field m

L
bl(s) =D BPb () + w]'(s)

=1

(€)

where the bias bf" (s) denotes the local variability at location s
and time ¢ of the thermal field m, which is a simplified notation
of b™(s,t). B is the Ith parameter associated with the
temporal effects from the f —/ time point. w}"(s) corresponds
to the spatial effects that are used to model the variation in
location s at time f. We consider w}"(s) as a Gaussian process
and use an MGP model to characterize the spatial correlation
between the thermal field m and other M — 1 thermal fields
at time ¢ using multiple sensor observations from these M
homogeneous thermal fields.

Fig. 5 shows the procedure of the FML method. The bias
b (s) is composed of a weighted combination of the bias from
its previous L time points and the variation term of the local
variability at time f. As the flowchart shows, at time f — 1,
we consider the bias from time f — L — 1 to time  —2 as well
as the variation terms at time f — 1 of all the M homogeneous
fields and use the proposed FML model to estimate the bias
at time ¢ — 1. Similarly, at time ¢, we consider the bias from
time t — L to time t — 1, as well as the variation terms at

time ¢ of all the M homogeneous fields, and use FML to
estimate the bias at time 7. We can see that the FML model
considers data from homogeneous fields and also characterizes
spatiotemporal correlations.

1) MGP for w}'(s): For the thermal field m, recall that we
can only observe the deviance between the limited sensor data
and the thermodynamic model. This condition poses a consid-
erable challenge to accurately estimate the local temperature
variation if nearby sensors are inaccessible. To address this
issue, we consider the estimation of M related functions in
terms of local variability based on the observed deviance of
M similar thermal fields, which substantially increases the size
of the available data set.

At time £(t = fp, ..., IT), we represent the accessible data
for the thermal field m as D" = {S}", g{"}, where S" denotes
the location and gf" denotes the observed deviance. Each
thermal field processes accessible sensor data with different
sites. Thus, a total of n distinct sensor locations exist in
{8\t = t,...,.tr,m = 1,..., M} with max{n}",t =
to,....tr,m=1,...,My<n<3M Ziimn;’*, where n*
indicates the number of accessible sensor data for the thermal
field m at time f. We denote S as the set of distinct sensor
locations in {S}",t =1fp,...,tr,m=1,..., M}.

We assume w}" = {w]"(s),s € S C R?}, is the N x 1 vector
of the variation term, with m = 1, ... , M, where & denotes
a set of interested sites among thermal fields and N denotes
the number of interested sites, to be a Gaussian process wy' ~
N (s, Cwr), which is characterized by a mean vector .,
and a covariance matrix C,,. To capture the similarities of
local variability among granaries, we assume that wi" shares a
common structure by modeling the parameters of the Gaussian
process m,, = k' p, and C,; = kT Cik, where k denotes
the n x N kernel matrix obtained by the kernel function. For
Vwi" with m = 1,..., M, there exists a unique e}", such
that w" = xTa™. Here, «™ denotes a vector of the weight
parameter for thermal field m and o} ~ N(,, C;), where u,
denotes the mean vector of «}" and C, denotes the covariance
matrix of e}". To obtain the maximum likelihood estimates of
jt; and C;, we describe the hyperprior distribution of p, and
C; via the normal-inverse Wishart distribution, which is the
conjugate prior for the multivariate Gaussian distribution

1
{1, Cr} ~ Nue,|0,;cf)fW(Cf|r,x—‘)

where u, is specified by a prior mean O and a covariance
matrix C; with precision = and C; is specified by the kernel
matrix x with precision z. Thus, the MGP framework is
described in detail as follows.

Step I: We initiate u, and C; by following the normal-
inverse Wishart distribution.

Step 2: For each thermal field m,m=1,...,M, we obtain
o by & ~ N(r,, Cy).

Step 3: Given s; € S,s € § C R3, we obtain wi'(s) =
>y alk(si,s), where a)"; denotes the ith element of «}"
and x(s,',, s) denotes the kernel function in terms of locations
s; and s.

Various types of kernels can be used as candidates for the
MGP model. To effectively capture the spatial dynamics of
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a thermal field, we select a spatial covariance kernel that
describes the spatial correlation on the basis of the Euclidean
distance between two different locations of the thermal field.
The spatial covariance kernel is extensively used in grain
thermal fields to characterize the spatial correlation patterns
of local variability among granaries as follows:

2
K(5i,9) = exp (—%) )

where s; and s denote two different locations and 6 denotes
the range parameter that corresponds to the distance around a
thermal field. The range parameter can be determined on the
basis of the maximum length of a thermal field.

This MGP model based on i, and C; has two advantages.
First, the MGP model is convenient for parameter estimation.
We develop an iterative EM-LS algorithm that integrates an
expectation—-maximum (EM) algorithm into the LS method
and iteratively estimates parameters. The detailed information
is expressed in Section III-B2. Second, we realize w;" by
a spatial covariance kernel k, which can characterize the
nonlinear spatial correlation patterns in a thermal field.

Algorithm 1 Iterative EM-LS Algorithm for Parameter Esti-
mation

Input: deviance data of homogeneous fields

~ m
Output: estimated parameters in AR model g , with
m=1,..., M; estimated parameters in MGP model

D, = {;1,, C;, &,zLand &) fort=ty,...,1r,

withm=1,...,
1:  Procedure:
2: Set ;’y(s) =0 and k = 1.
3: Use Gaussian process to fill up missing values and
obtain {b'{; ()}, t =1to,..., 1.
4: Do
5: AR model: obtain u"(s) = b} (s) — ®}_(s),

and apply the least squares method to estimate ,B;:l
using {u",(s), b7y 1 (8), -, BT )]

6: MGP model: obtain L
o (8) = b'Th(s) — 20y ﬁ;?kb!?—gk(s) for

t =1to,...,tr, and apply the EM algorithm to
estimate ®@; ; and @& using {v]";(s)}.
7: Set k =k + 1. ’ -
8: Field estimation: fill up missing values using 8,

and &', _; and obtain{b'}"; (s)}, t = fo, .
9:  Stop the loop until AB}' = H,é;? - ﬁ:‘_l H
convgl;ges EomO. . .
10: Set B =B, O =Dy, and @) = &;’fk for
t=ty,...,ir,withm=1,..., M.

L IT

2) Parameter Estimation for the FML Model: In the pro-
posed FML model, we assume that the parameters of all M
bias functions in (3) share a common mean and a common
covariance matrix of the Gaussian process, because the con-
sidered dynamic fields have a nearly identical environment
and same operating conditions (e.g., same type of grains
stored in granaries). Nevertheless, the associated parameters

h J

SetWh(s) =0 k=1

y

Gaussian process o fill up missing
values and obtain {b'Y} ()}, ¢ =
[P 2%

' |

Field estimation 1o fill up missing
values using B, and &, and
obtain {75 (s)], t = tg, ., tr

T

b4 Update iteration sequence
AR model: least squares estimation k=k+1

to obtain B using
{ulli (8D, BTy (8), s BT i (8]

Obtain ufy (8) = b7, (s) —
Wik (8)

MGP model: EM algorithm to obtain

M m

@, and @, using {”t.k [s)}, t=

[

Obtain v{y (s) = b7, (s) —
Fi BIED T (8) .= ty, oty

ABY
= ||-8? - B}’(R—IH

< E

Fig. 6. TIterative EM-LS algorithm for parameter estimation.

from different thermal fields vary. We capture the dependence
among bias functions based on the corresponding sensor data
in all accessible sensor networks.

The proposed FML model contains a set of parameters:
hyperprior parameters ¥ = {x, 7, d}; parameters of the MGP
model ®;, = {u,, C,,af},r = Iy, ...,IT; and parameters
of the AR model g™ = {p{",By',.... B[ },m = 1,..., M.
Hyperprior parameters ¥ can be determined via expert knowl-
edge of thermal fields, and small # and 7 values generally
provide good estimation performance [43]. Meanwhile, J can
be determined based on the maximum length of a thermal
field. In addition, two types of parameters, namely{(Dt}:T:,u

and {,8], . ﬁM} should be estimated. The simultaneous
estimation of these parameters is challenging because the
changes in one parameter may affect the estimation of the
other. This phenomenon has motivated us to consider the EM
algorithm and the LS method simultaneously. In particular,
we develop an iterative EM-LS algorithm that integrates an
EM algorithm into the LS method and iteratively estimates the
two types of parameters, i.e., {(D,}f":t(J and {,81, ey ,SM}.

The flowchart in Fig. 6 and the pseudocodes illustrate the
iterative algorithm procedure for parameter estimation. The
deviance of the sensor data from the mean profiles of thermal
field m{g;”"}:’;m is known. At iteration k = 1, where k
denotes the index of iteration, we employ a Gaussian process
model [26] to fill in the missing data in the grid-based sensor
networks using the deviance data {g;”"}:sz, given that there are
missing data on the sensor locations. The processed data set
is denoted as {b'}",(s)},Vs €S,t =1, ..., 1T.

Step 1: Estimafing parameters in the AR model
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To estimate the parameters of the AR model, we first
obtain the estimates of {Lﬁ?,‘k(s)} using the current estimated
parameters of the MGP model for the thermal field m (m =
I,..., M), where we initiate wt 7"0(s) = 0. The calculation
of wr ) atk=12,...,Kis introduced in Step 2. Then,
we obtain the data set {“r k(s)} by calculating the difference
between {b’ +(8)} and {wt _1(8)} using the following equa-
tion:

“fk (s) = b;:?k (s) — lbfk_l () (5)
We establish  an AR model  d]".(s) =
Sk, ﬁl’:‘kb:”_t_, () and its corresponding data set
@l (), 07y 1 (8), .. VL ()}, Vs €St = 1p,... 07,

and we use the LS method to estlmate the parameters of the
AR model and obtain the estimator ﬁk

Step 2: Estimating parameters in the MGP model

To estimate the parameters of MGP, we first obtain the data
set that corresponds to w}"(s),m = 1,..., M by calculating
the deviance between the bias at time ¢ and those at previous
L time points, that is,

L
o (5) = b7k () — D~ BT 4 (s).
I=1
Then, we apply the EM algorithm to estimate @;; =
{me ks ka,atk} and urtk usmg the obtained data set of M
thermal fields {u k(s),..., rk(s)} VseSi',t = rg,...,rr,
and to acquire the estimated parameters in MGP ie., (D, k
and 47
E-step: The expectation of a‘;’,’k and the covariance matrix
C‘;’:‘k are estimated using current @ form=1,..., M

1
1 1
m T -1 T.m —1
O = ( 7 Kmkm +Cr 7 Km Ve + Cr ek
c o
1k 1k
-1
thk = 7 Kmkym 6
O k

where k,, denotes the n}" x n kernel matrix between S and
S} obtained using the kernel function in (4) and vi"; denotes
the vector of {v;”k(s)} VseSy'.

M-step: p g, Ctp, and crfk are optimized based on the last
E-step; thus, we obtain the updated By ks Ci k. and cr & as
follows:

6)

] m
”I,k = T +M Zlaf,k
m=

M
1 _
Cir = i (fﬂr,kﬂ;{k +rKg! + E Ci
a T
+ D (@ = ) (@ — He) )
—
ik = DIV — e |+ te(em ey,

M om
2m=1 M
where k(o denotes the n x n kernel matrix among S and

tr(-) denotes the trace of a matrix. After the EM algorithm

Fig. 7. Illustration of a traditional cuboid granary (the blue cloud represents
grain, whereas the black points represent sensor locations).

TABLE I
PHYSICAL PROPERTIES OF GRAIN IN THE GRANARY

Thermal conductivity in

Material Density p x, y, and z directions Speciﬁf: heat
2.2, ,and A, capacity ¢
Mixed 2 0.0834, 0.0833, 0.2257
wheat 750 kg/m W/(m-K) 2000]/(kg - K)

is implemented, we obtain &),’k = {fs k> éf,k,&gk} and &;i‘k,
t =1g,...,Ir. The estimated inductive functions in terms of
wy"(s) are as follows:
n
D (s) = Za:’;-,kx(s,-, 5) ™
where 4;"; ;. denotes the ith element of ;.

We update the iteration sequence k = k1 after both types
of parameters at iteration k have been estimated. Since missing
data exist in the target field, we use the estimated parameters in
the last iteration to fill in the missing values in the grid-based
sensor networks using the proposed FML model as follows:

L n

by (s) = Z Brioib,_) ) + Z&;’j,-,k_]x(s,-, s (®)
and obtain the processed data set {b’ (8)},VseS,t =
fo, ..., tr. Then, we repeat Steps 1 and 2 to estimate the
two types of parameters until convergence is achieved. These
parameters interweave with each other; therefore, selecting
one type of parameter for the convergence test is reasonable.
We adopt the convergence criterion to check whether the
parameters of the AR model g™ convergeat m =1,..., M.
Convergence is considered achieved when the changes in g™
between two consecutive iterations are within a predetermined
threshold e

ABY = |IBT Vm=1,...,M.

®)

— Bl <e

C. Spatiotemporal Field Estimation

The thermal field m(m = 1, ..., M) can finally be obtained
with the mean function and local variability using sensor
observations from M homogeneous fields based on the esti-
mated parameters in the FML model

L
P60 = "0 + DB, () + Zar x(si,s)  (10)
=1 i=
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TABLE II
RMSES OF THE PROPOSED MODEL WITH DIFFERENT ORDERS FOR GROUP A

Granary #1 #2 #3 Model performance
Order B RMSE B RMSE B RMSE Average RMSE
1 {0.9986} 0.0949 {0.9990} 0.1210 {0.9990} 0.0918 0.1026
2 {0.9841, 0.0162} 0.0926 {0.9846, 0.0158} 0.1196 {0.9874, 0.0128} 0.0842 0.0982
3 {0.9811, 0.0105, 0.0080} 0.0939 {0.9894, 0.0068, 0.0042}  0.1207 {0.9779, 0.0136, 0.0090} 0.0905 0.1017

Note: the number in parentheses is the standard deviation of RMSEs under 100 replications

where ™ (s, t) denotes the estimate given a new location s €
S C R and time t; b™ ,(s) = $™(s,t — 1) — p™(s,t —1); "
and a!"; denote the esUmatcd parameters of the AR model and
the MGP model, respectively.

I'V. CASE STUDY

Monitoring grain quality during storage is necessary to
reduce losses. A grain thermal field should be estimated based
on grain thermal sensor data for grain quality monitoring.
Therefore, we conducted a real case study on grain thermal
field estimation to test the performance of our proposed model.
We selected three adjacent traditional granaries that store the
same type of grains in a national grain depot located in
central China. The thermal sensor data for these granaries were
collected synchronously from thermal sensor networks from
July 2, 2012 to March 4, 2013. Fig. 7 presents an illustration of
a traditional cuboidal granary. As shown in Fig. 7, 240 evenly
spaced temperature sensors are distributed in the granaries,
which have a volume of 46 m (length), 26 m (width), and 6 m
(height). The sensors are deployed at the initial positions of
0.5, 0.5, and 0.3 m in the x, y, and z directions, respectively,
and located at 5-m intervals in the x and y directions and
1.8-m intervals in the z-direction. We obtained 11 280 samples
of 10 x 6 x 4 meshgrid-based sensor data at 47 time points
from each selected granary.

Missing sensor data commonly exist in grain storage sensor
networks [44]. Generally, once the ratio of missing sensor
data is beyond 30%, grain quality monitoring performance
will greatly decline, leading to a large number of grain losses.
In a real grain storage scenario, the range of missing data
ratio is approximately from 20% to 40%. Therefore, in order
to be consistent with the real scenario, for each granary, we
randomly selected a number of sensor data as training data and
set the rest as test data, which are assumed missing. We set the
ratios of the training data to the test data as 7/3 (Group A), 6/4
(Group B), and 5/5 (Group C) in the case study to evaluate the
performance of our proposed method. Specifically, we set the
ratio of training data to test data as 5/5 to test the effectiveness
of our proposed model in some extreme cases with a large
ratio of missing data. Furthermore, we repeated the procedure
by randomly selecting the training and test data 100 times to
evaluate the proposed method.

0.14 0.2 0.12
7 T
0.13 H 0.18 E 0.11 E
0.12 + T
L} o016 1 1
w T w 0.1
2 0,11 2 i é
i T 014
041 T 0.09 é :l:

0.09 é 0.12
1 1
A B C A B C A B C
G

0,08 0.1
Granary #1 Granary #2 ranary #3

RMSE

0.08

Fig. 8. Model performance of the proposed method under 100 replications
with group A (30% testing), group B (40% testing), and group C (50%
testing).

We considered the root-mean-square errors (RMSEs)
between the real data values and the estimated values of
granary m(m = 1, ..., M), defined as follows:

tr I

ZZ@ (i, 1) — 9™(si, )2 (11)

t=f |

RMSE =
I(T +1)

where y™(s;, t) is the observation in the test data set of granary
m and y™(s;, t) is the estimated value of granary m at location
s; and time f.

For the mean function, the physical properties of
stored grains with regard to the static parameters in the
thermodynamic model are given in Table I. Environmental
conditions considerably affect the temperature of granary walls
(e.g., the seasonal variation range of temperature reaches
25 °C) and further affect the inner grain temperature. Accord-
ingly, we set the temperature of the granary walls as the
boundary condition to determine the environmental effects on
the grain thermal field. We acquired the sensor data for the
granary walls collected by the sensors on the walls and adopted
a Gaussian process model [21] for interpolation using the
sensors mounted on the granary walls to obtain the boundary
condition of the thermodynamic model. Afterward, we adopted
the thermodynamic model to obtain the global profile of each
granary. We calculated the RMSEs using the thermodynamic
model for three granaries which are 0.7468, 1.0521, and
0.9938, thereby indicating that the thermodynamic model can
mainly capture global trends in grain thermal fields.
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Fig. 9. Examples of grain thermal profiles in the three granaries estimated using the proposed method and the thermodynamic model. Coordinates (a) Granary
#1 (10.5, 30.5, 2.1) m. (b) Granary #1 (15.5, 35.5, 3.9) m. (c) Granary #2 (10.5, 30.5, 2.1) m. (d) Granary #2 (15.5, 35.5, 3.9) m. (e) Granary #3 (10.5, 30.5,

2.1) m. (f) Granary #3 (15.5, 35.5, 3.9) m.

For local variability, the hyperprior parameter ¥ was deter-
mined via expert knowledge of thermal fields. Small x and
7 values generally provide a good estimation performance
[43]. Without loss of generality, we set # = 1 and 7 = 0.
d was determined on the basis of the maximum length of
the grain thermal field. The parameters of the MGP model
O; = {p,, C,,af},r = Iy, ..., It and the parameters in the
AR model g™ = {p{",py,.... B[ L,m = 1,...,M were
estimated using the proposed iterative EM-LS algorithm in
(5)—(9). After parameter estimation, we estimated the grain
thermal fields using (10) and calculated the RMSEs to validate
the model performance.

Then, we introduced the determination of the order L in the
AR model. In grain thermal field estimation, on one hand, we
tended to set the order as a medium value because the grain
temperature during storage changes slowly. On the other hand,
we determined the order L using a best-fit strategy, which
compares the model performances (RMSEs) with different
values of the order and selected the proper order L with a

minimum average RMSE value. We used the data in group A
as an example. The estimated g™ and RMSEs for the three
granaries are listed in Table II if the order of the proposed
model is set to L = 1,2,and 3. We compared the average
RMSE:s of the three granaries to select a proper value of order
L. Table II shows that the proposed model with order L = 2
has the best model performance, i.e., the minimum average
RMSE value.

Fig. 8 illustrates the performance of our proposed field
estimation method under 100 replications. The RMSEs of the
discrepancy between the test data and the estimated values
by our proposed model for the three granaries are as follows:
0.0926, 0.1196, and 0.0842 for Group A; 0.1048, 0.1431, and
0.0951 for Group B; and 0.1253, 0.1759, and 0.1096 for Group
C. Compared with the performance when only the thermody-
namic model is used, our proposed method not only char-
acterizes the global profile of thermal fields but also captures
their local variability using sensor observations, and ultimately
achieves a higher field estimation than the thermodynamic
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Fig. 10.
comparative methods. [Coordinate (10.5,
Granary #2. (c) Granary #3.

Estimated grain temperature profiles in the three granaries using
10.5, 3.9)] (a) Granary #1. (b)

model. Fig. 9 presents examples of the estimated thermal fields
using our proposed model v.s. using only the thermodynamic
model based on the three granaries. The thermodynamic model
can capture the global profile of the grain thermal field in each
granary. Although the sensor observations of each granary
are limited, our proposed model can accurately characterize
the spatiotemporal correlations of local variability by sharing
sensor observations from homogenous granaries. For example,
we accurately estimate the local variability of Granaries #1 and
#2 at day 91 by sharing the corresponding sensor observations
from Granary #3, as shown in Fig. 9(b), (d), and (f).

To further validate the performance of our proposed method,
we compared the FML model with two alternative models: an
STL model and a kriging model. Compared with our proposed
method, these two models also employed the mixed-effect
model framework and used the thermodynamic model as the
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Fig. 11. Estimated grain temperature profiles at different locations in the
three granaries. (a) Granary #1. (b) Granary #2. (c) Granary #3.

mean function, but they characterized the local variability
only using sensor data collected from the corresponding gra-
nary. The STL model assumed that grain temperature data
at different time points were independent of one another. It
characterized the spatial correlation of the local variability at
each time point. Meanwhile, the kriging model was used to
characterize the spatiotemporal correlation of local variability.
We considered a covariance function in terms of space and
time and applied the kriging model to describe the local vari-
ability of the grain thermal field. We implemented these mod-
els 100 times and calculated their average RMSEs (Table III).
The FML model outperforms the STL and kriging models. The
average computation time of field estimation by STL, Kriging,
and FML is 156.67, 387.69, and 769.26 s, respectively. Since
the grain temperature changes slowly during storage, to reduce
the data storage and processing costs, the sampling frequency
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TABLE III
COMPARISON OF MODEL PERFORMANCE USING THREE MODELS

Model Group of test data RMSEs (Granary #1) RMSEs (Granary #2) RMSEs (Granary #3)
A 0.6911 (0.0135) 0.9995 (0.0248) 0.7803 (0.0181)
STL B 0.6945 (0.0128) 1.0114 (0.0156) 0.7845 (0.0162)
c 0.7013 (0.0063) 1.0190 (0.0118) 0.7936 (0.0115)
A 0.2040 (0.0175) 0.3619 (0.0333) 0.2237 (0.0205)
Kriging B 0.2433 (0.0145) 0.4514 (0.0326) 0.2814 (0.0203)
C 0.2855 (0.0143) 0.5299 (0.0270) 0.3437 (0.0204)
A 0.0926 (0.0034) 0.1196 (0.0092) 0.0842 (0.0036)
FML B 0.1048 (0.0054) 0.1431 (0.0098) 0.0951 (0.0040)
C 0.1253 (0.0064) 0.1759 (0.0134) 0.1096 (0.0042)

Granary #1 Granary #1 Granary #1

\

Granary #2 Granary #2

'

Granary #3

\

Granary #2

127" day

134" day

Fig. 12.

of the grain temperature sensor data is comparatively low and
the computational time of these three models is acceptable
under this scenario. Fig. 10 presents examples of thermal fields
estimated by the three models using the data setup of Group B.
The STL model cannot accurately characterize the profiles of
the thermal field since it only considers the spatial correlation
of the grain thermal field at each time point with only limited
sensor observations. The kriging model efficiently captures
local variability when sensor observations in the target thermal
field are sufficient. However, when sensor observations are
sparse, the kriging model fails to achieve an accurate result.
The FML model captures trend and local variability more
accurately than the two alternative models.

We estimated the thermal fields of the three granaries
using our proposed method. Fig. 11 shows the estimated
grain temperature profiles at different locations in the three
granaries. The grain temperature profiles at the same locations

141" day

Estimated grain thermal fields at consecutive time points in the three granaries.

in the three granaries exhibit similar variation patterns over
time. The grain temperature at the center of the granaries
varies more slowly and has a smaller fluctuation range than
the grain temperature near the boundary of the granaries.
Fig. 12 shows the estimated thermal field at three consecutive
time points in the three granaries. The thermal fields exhibit
similar spatial correlation patterns and evolve over time with
similar trends because the granaries share the same environ-
mental conditions. These findings provide a new quantitative
understanding of temperature field evaluation in granaries,
which is of practical significance for monitoring the quality
of grains and reducing grain loss during storage.

V. CONCLUSION

Thermal field estimation plays an essential role in a number
of industrial domains by providing useful information for sys-
tem improvement. One of the major challenges in thermal field
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estimation is the limited availability of sensor observations,
because only sparse sensors are engaged in sensor networks
to collect data. Moreover, missing data arise due to sensor
malfunction and data loss during transmissions. An efficient
spatiotemporal approach for estimating the thermal field under
such a scenario should be developed. In this article, we propose
a dynamic thermal field estimation method using limited
sensor observations from neighboring homogeneous sources.
By fully considering limited sensor observations, we adopt a
thermodynamic model to capture the trend of a thermal field
and propose an FML method that integrates an MGP model
into an AR model to characterize the spatiotemporal dynamics
of local variability.

In our future work, given an accurate thermal field, we will
focus on establishing an effective online strategy for simulta-
neously monitoring multiple thermal fields using limited sen-
sor observations by fully considering their common features.
We will also focus on developing a field prediction approach
and modeling the spatiotemporal dynamics of a thermal field
in the upcoming time points using limited sensor observations
from several homogeneous data sources.
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