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Abstract

The main idea of conflict-based search (CBS), a popular,
state-of-the-art algorithm for multi-agent pathfinding is to re-
solve conflicts between agents by systematically adding con-
straints to agents. Recently, CBS has been adapted for new
domains and variants, including non-unit costs and contin-
uous time settings. These adaptations require new types of
constraints. This paper introduces a new automatic constraint
generation technique called bipartite reduction (BR). BR con-
verts the constraint generation step of CBS to a surrogate bi-
partite graph problem. The properties of BR guarantee com-
pleteness and optimality for CBS. Also, BR’s properties may
be relaxed to obtain suboptimal solutions. Empirical results
show that BR yields significant speedups in 2* connected
grids over the previous state-of-the-art for both optimal and
suboptimal search.

1 Introduction

The goal of multi-agent pathfinding (MAPF) is to move
multiple agents to their respective goal states while
avoiding conflicts between agents. Conflict-based search
(CBS) (Sharon et al. 2015), a state-of-the-art algorithm for
MAPE, is designed around detecting and resolving con-
flicts between agents by systematically adding constraints
to agents and has been used for many variants of the MAPF
problem (Atzmon et al. 2018; Li et al. 2019b; Ma et al. 2018;
Li et al. 2019a; Thomas, Deodhare, and Murty 2015; Honig
et al. 2018). Most notably, CBS has been adapted for non-
unit cost and continuous time domains (Andreychuk et al.
2019; Cohen et al. 2019). Many of these adaptations intro-
duced new types of constraints or new ways to manage con-
straints. In each case, rigorous proofs are required to guar-
antee that the new enhancements preserve completeness and
optimality. There is a need for a generalized technique that
can automate this process, simplifying the application of
CBS to new domains.

This paper has three main contributions. First, a new tech-
nique called bipartite reduction (BR). This is a general con-
straint generation technique for CBS that can be applied to
new domains and variants which guarantees completeness
and optimality. BR converts the constraint generation step
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of CBS to a surrogate bipartite graph problem. BR only re-
quires a low-level (single-agent) successor generation rou-
tine and a conflict detection routine and can return con-
straints with both spatial and temporal extents. Second, a
method of introducing conditional constraints for subopti-
mal search which exploits constraint relaxations to quickly
find suboptimal solutions fast while maintaining complete-
ness. Finally, empirical analysis showing significant im-
provement over the previous state-of-the-art for both optimal
and sub-optimal variants in 2*-connected grids.

2 Problem Definition

MAPF was originally defined for agents that occupy a single
vertex and move on unit-cost edges. This paper demonstrates
the new automation technique (BR) on MAPFRr (Walker,
Sturtevant, and Felner 2018) a variant of MAPF for real-
valued weighted graphs. A MAPFR problem instance is de-
fined by a tuple (G, A,V,,V,). G = (V,E) is a positive-
weighted graph, Ve € E, w(e) € Ry. Each v € V is associated
with unique coordinates in a metric space. A = {1, ..., k}
is a set of k agents. V; C V = {starty,..., starty} and
Vy €V = {goaly, ..., goal} are sets of unique start and
goals for each agent where start; # start;, goal; # goal;
for all i #£ 7.

A solution to MAPF is IT = {7y, ..., 1}, a set of single-
agent paths composed of states. A state s = (v, 1) is a pair
composed of a vertex v € V and time ¢ € R . We de-
note the vertex and time of a state as v(s) and ¢(s) respec-
tively. A path for agent ¢ is a sequence of d states m; =
[s9, ..., s¢] where s? = (start;,0) and s¢ = (goal;, t). Each
(v(s?),v(s8™)) € E and each t(s!) = t(s7) + w(e}).
That is, states on the path are connected by edges, and the
weight of an edge is the time it takes to traverse it.

Agents have a physical shape such as spheres, polygons
or polygonal meshes which are situated relative to their ref-
erence point (Li et al. 2019b). Agents move along edges
(v(s™),v(s"*1)) € E — an agent begins with its reference
point at v(s™) at time ¢(s™) and its reference point follows
a straight, constant velocity motion vector in metric space,
ending at v(s"1) at time t(s""1). For simplicity, we as-
sume that the time it takes to traverse an edge is identical to
the weight of the edge (more complicated assumptions can
be made). The act of traversing an edge is an action, and a

path is a sequence of actions 7; = [aY, ..., ad] where each

3



al’ = (s7,s"T1). MAPFg also allows self-directed edges

for wait actions.

A conflict is denoted by (a;,a;) — a pair of actions for
agent ¢ and j in which their shapes overlap. A feasible solu-
tion is one in which no two agents come into conflict at any
time during their respective paths in I, i.e., the shapes never
overlap. In this paper the objective is to minimize flowtime,
the sum of individual path costs. An optimal solution II* has
minimal cost among all feasible solutions. Finding optimal
solutions to the classic MAPF problem is NP-hard (Yu and
LaValle 2013). As the classic version is a special case of
MAPFr, MAPFy is also NP-hard.

3 Background: The CBS Algorithm

CBS (Sharon et al. 2015) is a two-level algorithm for MAPF.
The high level searches a conflict tree (CT). Each node
N € C'T contains a possible solution N.II. Each = € N.II for
the root node is constructed using a low level search without
taking other agents into account. N.II is checked for con-
flicts between paths. If no conflict is found, NV is a goal and
CBS terminates. If a conflict is found, CBS performs a split,
where two child nodes N; and N; are generated with con-
straints ¢; and c;. A constraint blocks an agent from per-
forming one or more actions that caused the conflict. In sec-
tion 4 we discuss the details for constraints. Next, the low
level is invoked for IV; and N; while adding the new con-
straints ¢; and c¢; respectively to re-plan paths m; and 7; and
update INV; and N;. All CT nodes are placed into an OPEN
list which is prioritized by flowtime. The search terminates
when a feasible solution is found or when OPEN is empty.

CBS is solution complete. That is, it is guaranteed to find a
solution only if one exists, otherwise it may run forever. This
problem can be mitigated by running a polynomial-time al-
gorithm (Botea, Bonusi, and Surynek 2018) in parallel to
determine if a solution exists, although general polynomial-
time algorithms may not exist for MAPFg.

Several optimal enhancements for CBS in the classic
problem have been published, (Boyarski et al. 2015b; Felner
et al. 2018; Li et al. 2019a; Gange, Harabor, and Stuckey
2019). CBS has also been extended for several new problem
variants: large agents (MC-CBS) (Li et al. 2019b), robust-
ness (Atzmon et al. 2018), road maps (Honig et al. 2018),
convoys (Thomas, Deodhare, and Murty 2015), trains (Atz-
mon, Diei, and Rave 2019) and deadlines (Ma et al. 2018).
Sub-optimal algorithms have also been published (Barer et
al. 2014; Cohen and Koenig 2016; Walker, Chan, and Sturte-
vant 2017; Cohen et al. 2018).

Prior Work in MAPFr Optimal and complete solvers
were published for MAPFr. The ICTS algorithm was ex-
tended for MAPFr (Walker, Sturtevant, and Felner 2018)
and was shown to outperform A* and CBS with classic edge
constraints and vertex constraints. These constraints block
low-level solvers from traversing an edge or a vertex re-
spectively at a specific time. The CCBS algorithm (Andr-
eychuk et al. 2019) and the ECBS-CT algorithm (Cohen et
al. 2019) adapt CBS for MAPFR via the use of time-range
constraints (Atzmon et al. 2018) with the SIPP algorithm
(Phillips and Likhachev 2011) at the low level. The most

significant difference between CCBS and ECBS-CT is that
the former uses SIPP verbatim and the latter modifies SIPP
to reason about conflicts in order to inform tie-breaking and
sub-optimal search heuristics. Because of the SIPP reser-
vation table, these algorithms are only valid for discretized
spaces such as grid maps or robotic latices.

A time-range constraint (e, [tsiart, tena)) blocks all ac-
tions which cause an agent to traverse an edge e during an
unsafe interval [tstart,tend). An unsafe interval is the time
interval in which agent , traversing e is guaranteed to collide
with another agent j traversing another edge in an overlap-
ping time interval. Computing unsafe intervals can be done
using an incremental approach (Andreychuk et al. 2019), or
in closed-form in the special case of circular agents (Walker
and Sturtevant 2019). Time-range constraints are more pow-
erful than simple edge constraints because they may block
multiple actions, resulting in more pruning of the CT.

4 The Bipartite Reduction Technique

CBS with time-annotated bicliques (CBS+TAB) utilizes bi-
partite reduction (BR) and is a generalization of multi-
constraint CBS (MC-CBS) (Li et al. 2019b) which allows
constraint sets C, to be used with CT nodes. MC-CBS was
applied to unit-cost domains with large agents which was
shown to reduce the number of CT node expansions because
more conflicts are resolved per CT node. The pruning by
a constraint is positively correlated with the cardinality of
A, the set of actions blocked by C. A single constraint ¢
(such as a time-range constraint or vertex constraint) may
block a set of actions A.. Prior work in MAPFR used a
single time-range constraint per CT node in order to block
multiple actions in a time interval. We define this blocking
as a one-to-many relation between constraints and actions:
¢ — A.. CBS+TAB uses multiple time-range constraints
per CT node. Therefore, the set of blocked actions A for
the set of constraints C' is the union of blocked action sets:
A= UCEC AC‘

Because |A] is correlated with pruning, it is beneficial to
maximize | A|. CBS+TAB heuristically maximizes | A| with-
out losing completeness or optimality. The algorithm is gen-
eral and may be used with or without SIPP at the low level
and on discretized or continuous environments.

Ensuring Completeness and Optimality CBS+TAB is
designed to use more comprehensive constraints while en-
suring completeness and optimality. For completeness, con-
straint sets C; and C; which are created during a split, must
be mutually disjunctive (Atzmon et al. 2018; Li et al. 2019b).
That is, no pair of conflict-free paths for agents ¢ and j can
violate both C; and C;. C; and C; are mutually disjunctive
if their corresponding blocked action sets A;, A; are mu-
tually conflicting. Two sets of actions A;, A; are mutually
conflicting if for all pairs of actions (a;, a;) in the Cartesian
product A; x A;, a; conflicts with a;.

For example, in Figure 1(a) action 1 conflicts with 6, 7
and &; action 2 conflicts with 6, 7 and 8 and action 3 conflicts
with 6,7, 8,9 and 10. Thus the action sets {1, 2, 3}, {6, 7, 8}
are mutually conflicting. Although actions 9 and 10 also
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Figure 1: Ilustration of (a) actions for two agents, (b) the
corresponding BCG and (c) the corresponding TAB.

conflict with action 3, they cannot be included because they
do not conflict with actions 1 and 2.

Lemma 4.1. CBS is complete if all pairs of blocked action
sets A;, A; affected by a CBS split are mutually conflicting.

Proof. By contradiction, if 3(a;,a;) € A; x A; such that
a; does not conflict with a;, then there may exist a pair of
paths 777, 77 from a feasible solution II* where a; € =7
and a; € 7. Hence, constraints for A;, A; would not be
mutually disjunctive and would render CBS incomplete. [

The proof of optimality is the same as for the original
CBS (Sharon et al. 2015). In short, optimality is guaranteed
if no optimal solutions are blocked by constraints (i.e. mutu-
ally disjunctive constraints) and both the high and low level
OPEN lists are prioritized by flowtime. CBS+TAB reduces
the problem of constructing mutually conflicting constraint
sets to finding a biclique in a bipartite graph.

Reduction to Bipartite Graphs The conflicts between a
pair of action sets A; and A;, (shown as arrows in Figure
1(a)), can be represented as a bipartite conflict graph (BCG),
shown in Figure 1(b). A BCG, G = (U, V, E), has two sets
of vertices U and V such that each u € U represents an
action a; € A; and each v € V represents an action a; € A;.
E consists of the subset of vertex pairs (u,v) € U xV for
which the corresponding actions (a;, a;) € A; x A; conflict.

For CBS, it is sufficient to construct a BCG only for the
subset of actions which conflict with the core action pair
which is the actions from the conflict (a;, ;) that caused
a split. In Figure 1(a), the core action pair is (3, 8), hence
only actions which conflict with 3 or 8 are depicted. In this
setting, each vertex is guaranteed to be connected to the op-
posing agent’s core action in the BCG.

Although Figure 1 shows biclique construction based only
on actions from the start states of the core action pair, in
practice, a BCG can include all actions from all states that
conflict with an opposing agent’s core action. However, it
may not be computationally efficient to do so.

Constraint Set Construction Using Bicliques A biclique
G'=(U',V', E") C G is afully bi-connected bipartite graph,
that is, B/ = U’ x V', meaning all u € U’ are connected via
an edge to all v € V’. A BCG may have many bicliques. In
order to maximize pruning in the CT, we find a max-vertex
bicligue (MVB) in GG which is a biclique with a maximal
number of vertices. This can be done in polynomial time

Algorithm 1 ComputeLargestTimeAnnotatedBiclique
. INPUT: A bipartite graph G = (U, V, E)
. Construct G, the bipartite complement of G

. Find M, a maximal matching in G

. Construct K, a minimum vertex cover of G from M

. Take the bipartite complement of K to get G’ C (, a max-vertex bi-
clique

. Annotate all edges e € E’ € G’ with computed unsafe intervals to
create a time-annotated biclique G':

Foreach e€ E', E} < E;U(e,UNSAFEINTERVAL (e.u, e.v))

7. Annotate all vertices U/, V,/ with the intersection of all unsafe intervals
of incident edges:

For each u €Uy, w4 (u, Neeivement () €-intvl); analogously for V/
8. return (U{, V)

[ S R S

[=))

(Garey and Johnson 2002). Algorithm 1, lines 1-5 shows
pseudocode for computing a MVB. Because G’ is fully bi-
connected, U’ and V”’ represent the mutually conflicting ac-
tion sets suitable for a split, and edge constraints could be
used to block these actions. In CBS, edge constraints are
only for a single time ¢. However, given a MVB, unsafe in-
tervals can be computed and time-range constraints can be
used (see Section 3).

After extracting G’ from G, G}, a time-annotated biclique
(TAB) is constructed (Algorithm 1, line 6) by annotating
each edge ¢’ € E’ with its unsafe interval (see Section 3).
An example of a TAB is shown in Figure 1(c). Finally each
vertex in U/, V/ is annotated with an interval that is fully in-
cluded by the annotated intervals for each e € E} incident
to it (line 7). An interval tr; = [t5trt t¢nd) fully includes
another interval ¢r; = [t57*7, t5"4) if 3Tt < ¢rstrt and
trf"‘i > trj'?"d. In set notation, this is denoted tr; C tr;.

A time interval ¢r; is fully included by a set of time ranges
T if tri © (), er trj. This relation is illustrated in Figure
2 (b) — the interval in blue is fully included by all other in-
tervals. Figure 2(a) illustrates the annotation of a vertex in
a TAB. The blue time interval annotation on vertex 1 is the
intersection of all intervals annotated on its adjacent edges
as shown by the blue interval in part (b). Thus, the result of
Algorithm 1 is a TAB where each edge is annotated with an
unsafe interval between two actions, and each vertex is an-
notated with an unsafe interval which is fully included by
the intervals of its incident edges.

Thus, for a split we first build the relevant TAB. Then for
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Figure 2: Example of (a) a TAB with (b) corresponding un-
safe intervals plotted on a concurrent timeline.



the left node we add the set of time-range constraints C;
that includes (u, tr = [tstart, tend)) for each u € U] where
[tstart, tena) 1s the unsafe interval associated with it. This
is then done analogously for the right node using V. This
approach yields constraint sets that guarantee completeness.

Theorem 4.2. CBS+TAB is complete.

Proof. First, the action sets U’, V' € G’ (line 5 of Algorithm
1) are guaranteed to be mutually conflicting because G’ is
a biclique. Second, since the annotated unsafe interval for
each vertex u, € U{ and v, € V/ is the intersection of all un-
safe intervals of incident edges € Ey (line 6,7), all time range
constraints ¢; € C; and ¢; € Cj constructed from those inter-
vals (Algorithm 2 lines 13,14) are guaranteed to block only
actions that conflict. Hence, C;, C'; are mutually disjunctive.
Thus, per Lemma 4.1 completeness is guaranteed. O

Black portions of Algorithm 2 are the core algorithm for
the CBS+TAB split operation. Red portions are sub-optimal
enhancements discussed in the next section and can be dis-
regarded for now. CBS+TAB computes a TAB and creates
time range constraints on lines 9-12 then re-plans the agents
with those constraints on lines 20, 21.

Additional Variants We define two additional variants
which utilize BR: CBS+MVB, simply omits the time an-
notation step (line 9) and uses U’ and V' from the MVB
to create edge constraints instead of time-range constraints.
This variant may be required for some domains in which
computing unsafe intervals is not possible or too expensive.
CBS+TMA (for time-annotated max-biclique approxima-
tion), approximates a TAB by assuming that the MVB is a
1x N biclique, that is, |U’| = 1 and |V’| = N. For exam-
ple, using the sets {3},{6,7,8,9,10} from Figure 1. However,
instead of explicitly blocking each action in U] and V/, the
TAB is represented implicitly, using only two constraints,
one edge constraint ¢; for agent 4 that blocks a; (this is UY),
and another constraint ¢; for agent j that blocks all actions
that conflict with a; (this is V}/). ¢; in this case is imple-
mented such that it performs a collision check versus a; dur-
ing low-level expansions. With this representation, ¢; and c;
can be created without constructing a BCG.

5 Sub-Optimal, Complete Constraints

CBS+TAB constraints block large sets of actions in order to
maximize pruning of the CT. It is possible to further increase
the number of blocked actions by relaxing the mutually dis-
junctive requirement. For example, by blocking all actions in
the BCG. However, doing so may result in incompleteness
in two ways: (1) termination at the low level without find-
ing a path or (2) agents being constrained in such a way that
each low-level search is successful, but no feasible solution
is found. In situation (2) collisions tend to recur over and
over at increasingly later times, causing the algorithm to run
forever. For completeness, we must detect and avoid these
two conditions. For this purpose, we introduce conditional
constraints.

(a) (b)

Figure 3: Illustration of (a) sets of available actions for two
agents and (b) the corresponding BCG.

Conditional Constraints Constraints for a CT node N
apply permanently to N and are inherited by all CT nodes
in the sub-tree of N. Conditional constraints are turned on
by default, but may be turned off, meaning they no longer
block any actions in IV or its sub-tree. A constraint is turned
off by omitting it from the low-level re-plan step after a split
operation. Per Lemma 4.1, if an action that is not in the
biclique is blocked, CBS is no longer complete. To avoid
this, mutually-conflicting actions from the MVB are always
blocked permanently and other actions not in the MVB
are blocked conditionally, so that those actions may be un-
blocked to avoid incompleteness.

Figure 3(a) and the corresponding BCG in (b) are shown
for the same scenario as Figure 1: Actions corresponding to
the MVB are permanent and shown with bold lines. All other
actions in the BCG are shown with dashed lines — these are
the set of conditional constraints.

Algorithm 2 Expand-CT-Node

1: Input: N —a CT node

: (aj, aj) <find-conflict(N.II)

: if No conflict return N.II as goal

N; <= N;Nj <= N/l Copy N to child nodes for split

. Get conflict counts A;, Aj: the number of conflicts from N to root
. Get length of path d;, d; in CT root node for ¢ and j

. // Compute BCG and biclique for core action pair

: (U, V, E) + CreateBCG(aj, aj)

1 (U, V)) < ComputeMazVertexTAB(U,V, E)

. // Create constraints

11: N;.C < N;.C U CreatePermanentConstraints(U])

12: N;.C'+ N;.C U CreatePermanentConstraints(Vy)

13: N;.C+ N;.C U CreateConditionalConstraints(U \ U{)
14: N;.C+ N;.C U CreateConditionalConstraints(V \ V)
15: // Create probabilistically filtered sets

16: p; < MIN((A;—1)/d;,1.0); pj <—MiIN[e]((A; —1)/d;,1.0)
17: Remove conditional constraints from N;.C' with probability p;
18: Remove conditional constraints from N;.C' with probability p;
19: // Re-plan with (filtered) constraint sets

20: N;.II < Replan(start;, goal;, N;.C')

21: N;.II < Replan(startj, goalj, N;.C)

22: // Check for no path and re-plan without conditional constraints
23: if N; Il = () then

SOOI NN

24 Remove all conditional constraints from N;.C'
25: N;.II < Replan(N.IL.w;, N;.C)

26: end if

27: if N;.ILx; = 0 then

28: Remove all conditional constraints from N;.C'
29: N; ILw; < Replan(N.Il.7;, N;.C)

30: end if

31: Add N;, N; to OPEN




Enhancements for implementing conditional constraints
are highlighted in red in Algorithm 2. After detecting a con-
flict between two core actions (line 2) child nodes NN;, N;
are created as copies of N (line 4). Then the steps for creat-
ing permanent constraints are executed in the same manner
as described in Section 4 (lines 8-12). Then conditional con-
straints are created from U \ U/ and V' \ V/ where U and V
are from the BCG, and U/ and V} are from the TAB (lines
13,14). Then conditional constraints are turned off accord-
ing to the two causes of incompleteness as follows:

Situation (1) may occur when a low-level re-plan for an
agent returns no path because a conditional constraint may
have blocked a feasible path (lines 23, 27). When this occurs,
conditional constraints are removed from N;.C and N;.C
and the re-plan is performed again (lines 25, 29).

Situation (2) is difficult or impossible to detect but intu-
itively, if a single agent incurs many collisions, it is likely
to be in this situation. Because this situation is caused by
one of the conditional constraints, we use a strategy to turn
them off probabilistically. Specifically, they are turned off
with an increasing probability pog =MIN(1, (Ai—1)/4;) (line
16) where d; (line 6) is the length of the path for agent ¢ in
the root CT node and A; (line 5) is the number of conflicts
with agent 7 in CT nodes from N to the root. As the search
progresses, if agent ¢ has recurring conflicts, A; will grow
relative to d; increasing pog, resulting in a higher proportion
of conditional constraints being turned off. Eventually, any
conditional constraints causing situation (2) to occur will be
turned off, allowing a goal to be found. We call this algo-
rithm CBS+TCC (TAB with conditional constraints).

Theorem 5.1. CBS+TCC is complete.

Proof. First, no feasible solution is ever blocked by perma-
nent constraints because they will never block a feasible so-
lution per Lemma 4.1. Second, there are two cases to con-
sider for any conditional constraint ¢ € C, where C. C C
is the set of conditional constraints from N:
Case 1: ¢ blocks an action in a feasible solution. If all fea-
sible solutions are blocked, a conflict resulting from situa-
tion (1) or (2) will occur. In the case of (1), all conditional
constraints are turned off immediately (including c), (lines
23,27) allowing a solution to be found. In the case of (2),
if the probabilistic filtering (lines 17,18) does not turn off ¢
at this stage, a new CT node will be created, increasing A;.
This situation may be repeated in subsequent CT nodes with
increasing pog until ¢ is turned off. Because A; is mono-
tonically increasing, pog will reach 1 after a finite number
of steps, hence c is guaranteed to be turned off after a finite
number of steps, (if a goal is not found in a different sub-tree
of the CT first) allowing CBS to complete.
Case 2: ¢ blocks an action that causes a conflict. If ¢ is
turned off before a goal is found, an agent may now be al-
lowed to take an action which re-introduces a conflict into
N.II. In this case, either a goal node will be found in a dif-
ferent sub-tree, or the resulting conflict will eventually be
detected in the sub-tree of IV and a permanent constraint to
avoid it will be created, allowing CBS to find a goal.
Eventually, in the worst case, all conditional constraints
are turned off and the algorithm reduces to CBS+TAB which

(a) (b)

Figure 4: Illustration of (a) regular CBS constraint allocation
and (b) allocation with the conflicting paths strategy.

is guaranteed complete per Theorem 4.2. O

CBS+TCC can yield significant speed-ups over
CBS+TAB because it pre-emptively blocks actions that are
likely to lead to dead-ends in the CT, resulting in finding
a feasible solution sooner. Optimality is not guaranteed
because active conditional constraints may block an action
a € m* € II* where II* is an optimal solution.

The Conflicting Paths Strategy A more powerful block-
ing strategy called CBS+TCP (TAB with conflicting paths)
blocks actions that conflict with the paths of all other agents
(in addition to agents ¢ and j). This technique has strong re-
semblances to prioritized planning algorithms (Silver 2005;
Van Den Berg and Overmars 2005; Chouhan and Niyogi
2015; 2017). This is done during the CBS feasibility check
routine. The first conflict encountered during the check is the
core conflict. Mutually conflicting actions between agents
and 7 in the core conflict are blocked using permanent con-
straints (by computing the TAB for the core action pair).
For every conflict between agent ¢ or j and any other agent
that is encountered thereafter, conditional constraints for all
actions in the corresponding BCG are added to C; or Cj.
Figure 4 (a) shows the regular constraint allocation strategy
which adds permanent constraints for resolving only one
conflict. This is indicated by the black ‘x’ over the colli-
sion area. Diagram (b) shows the CBS+TCP strategy which
allocates extra conditional constraints for all conflicts be-
yond the core conflict as indicated by the dashed ‘x’s. With
CBS+TCP, when agent 7 (resp. j) is re-planned as part of
a split operation, it will attempt to avoid conflicts with all
other agents (not just agent j). This technique can result in a
significant performance improvement because of aggressive
pruning high in the CT.

The same conditions for turning off conditional con-
straints in CBS+TCC are employed by CBS+TCP, hence it
is complete but sub-optimal.

6 Empirical Results

We experimented with CBS+TAB, CBS+TCC and
CBS+TCP. All tests were performed on virtual machines
with 2.8GHz processors. All implementations use closed-
form solutions for conflict detection and unsafe interval
computation for circular agents (Walker and Sturtevant
2019) with radius 1/2v2 which disappear upon reaching
their goal.



Table 1: Total problems solved in under 30 seconds on grid MAPF benchmarks

8-Connected

16-Connected 32-Connected

Type Map ICTS Classic Time | MVB TMA  TAB H ICTS Classic Time | MVB TMA  TAB H ICTS Classic Time | MVB TMA  TAB
Berlin_1 256 628 1626 1595 | 1,624 1,785 1,790 || 601 1356 1,001 | 1431 1,629 1570 | 565 1,104 715 | 1212 1,521 1,310

City Boston_0256 623 1406 1312 | 1446 1,563 1,574 || 559 1226 858 | 1351 1,463 1442 | 600 855 579 | 927 1205 974
Paris_1_256 615 1,545 1480 | 1,607 1,653 1,695 || 645 1207 1,075 | 1236 1489 1393 || 631 1076 745 | 1,124 1,375 1,280

bre202d 363 627 585| 658 637 658 | 324 460 401 | 485 485 505 | 329 373 291 | 386 473 413

den312d 771 550 456 | 558 545 549 | 450 476 347 | 477 507 502 | 522 426 273 | 452 479 470

DAO den520d 941 856 879 | 880 911 954 || 805 695 670 | 686 821 748 | 802 s11 373 | 521 627 552
1ak303d 520 586 575 | 594 583 600 | 542 369 308 | 393 449 435 || 534 307 201 | 326 363 346

orz900d 227 707 706 | 736 739 780 || 197 330 320 | 345 369 361 | 157 200 223 | 276 297 281

0st003d 924 571 615 | 589 669 687 | 622 468 414 | 490 541 539 | 701 391 244 | 421 471 423

ht_chantry 484 638 640 | 649 711 705 | 318 499 426 | 529 585 559 | 433 396 282 | 448 541 477

Dragon  ht_mansionn 393 843 774 | 854 843 871 || 344 561 468 | 607 645 609 | 377 429 273 | 511 s61 513
Age2  lt_gallowstemplar | 461 634 633| 676 661 699 | 412 568 495 | 599 607 625 | 364 520 331 | 549 571 553
w_woundedcoast | 322 795 825 | 865 899 935 | 292 461 411 | 479 519 503 | 253 326 261 | 362 453 384

empty-8-8 442 451 237 | 461 485 493 || 384 375 254 | 387 445 386 || 329 337 134 | 361 423 333

Oven empty-16-16 429 567 96| 592 595 599 || 354 486 259 | 518 521 527 | 314 412 210 | 414 471 457
P empty-32-32 674 986 70 | 1.001 1019 1,027 | 422 832 490 | 808 891 827 || 438 709 407 | 735 841 762
empty-48-48 899 1,297 40 | 1,314 1,393 1307 || 510 1,196 727 | 1,204 1,299 1214 || 484 1,015 506 | 1,030 1,205 1,091
random-32-32-10 | 487 880 938 | 910 903 925 || 387 624 358 | 662 761 724 | 395 575 316 | 601 713 624

Open+  random-32-32-20 | 305 68 773 | 699 757 773 | 305 586 354 | 607 627 645 | 313 518 303 | 577 605 615
obstacles random-64-64-10 | 656 1,539 1,521 | 1,383 1483 1415 | 519 1032 632 1,078 1,203 1,112 | 463 857 438 | 904 1,085 953
random-64-64-20 | 535 1,068 1,013 | 1,101 1,152 1,152 || 448 732 495 | 792 853 882 | 480 644 399 | 662 811 774
maze-32-32-2 239 306 373 | 308 315 344 | 229 271 251 | 291 271 282 || 208 232 195| 250 259 260

Maze maze-32-32-4 223 297 269 | 299 291 304 | 170 173 173 | 184 251 264 || 156 158 152 | 179 233 230
maze-128-128-10 | 252 356 309 | 356 399 422 | 176 244 211 | 291 315 306 | 180 20 162 | 250 267 283
maze-128-1282 | 232 237 243 | 250 241 278 | 190 236 190 | 184 197 213 | 192 203 134| 179 193 187
room-32-32-4 278 440 347 | 441 457 480 || 259 382 274 | 393 395 426 || 267 373 246 | 378 397  4I5

Room  room-64-64-16 355 516 426 | 529 555 575 326 405 300 | 435 485 513 || 281 333 218 | 367 443 424
room-64-64-8 310 346 299 | 399 371 383 | 294 291 241 | 302 315 345 2067 255 191 | 263 309 306

All CBS-based test implementations run in the indepen-
dence detection framework (Standley 2010). We found that
the conflict avoidance table (CAT) (Standley 2010), the by-
pass enhancement (Boyarski et al. 2015a) and the conflict
prioritization enhancement (Boyarski et al. 2015b) were ei-
ther ineffective or detrimental in 2 neighborhood environ-
ments of 8-connected and higher. Our analysis showed that
turning these enhancements off increases average perfor-
mance. 4-connected grids were not tested because that do-
main is a planar graph and always yields 1x1 BCGs!'.

Results for Optimal Variants We experiment with
CBS+TAB, CBS+MVB and CBS+TMA. CBS+TAB and
CBS+MVB use TABs that were computed a-priori and
saved in a lookup table. We also experiment with Extended-
ICTS (Walker, Sturtevant, and Felner 2018) (denoted ICTYS),
CBS with edge and vertex constraints (Sharon et al.
2015) (denoted Classic) and CBS with time-range con-
straints (Atzmon et al. 2018) — based on CCBS (Andrey-

Code available at https://github.com/thaynewalker/hog2
More benchmarks at http://mapf.info
"For agents with diameter no larger than 1/2v3

Table 2: Final size of CT on 16-connected grids

Configuration Classic Time MVB TMA TAB
City: Boston 1,422 360 304 180 174
DAO: 0st003d 2,043 1,197 575 485 473
DAZ2: ht_chantry 2,762 669 607 164 150
Open: 16x16 27 25 23 24 19
Obstacles: 64x64-20 896 240 602 201 199
Maze: maze-32-32-4 | 13,237 9,332 10,326 6,261 5,752
Room: room-64-64-8 1,462 459 1,451 468 321

chuk et al. 2019) and ECBS-CT (Cohen et al. 2019) (denoted
Time). Our implementation uses A* with a fixed duration of
1 for wait actions at the low level instead of SIPP. Hence,
we do not run CCBS and ECBS-CT, but perform a direct
comparison of the effectiveness of the time-range constraints
which they use.

Table 1 shows results on the MAPF benchmarks (Stern et
al. 2019) which consists of 25 tests on each of 28 grid-based
maps of various types. Each test consists of up to 1,000 prob-
lem instances with increasing numbers of agents. Tests were
run by incrementally adding one agent at a time until it be-
comes unsolvable within the allotted time limit of 30 sec-
onds. The results for each experiment are the sum of the
max number of agents solvable per each of the 25 trials. Top
scores in each connectivity level of 8-, 16- and 32-connected
are in bold.

With the exception of some DAO maps where ICTS is
faster, CBS+TAB is the strongest overall algorithm in 8-
connected grids, and about equally as strong as CBS+TMA
in 16-connected grids. CBS+TMA is consistently stronger
in 32-connected settings.

Table 2 shows the size of the CT from sample problems
from each category in Table 1. The results are for a num-
ber of agents that were solvable by all algorithms in un-
der 30 seconds. CBS+TMA and CBS+TAB show a signif-
icant reduction over prior approaches. When comparing the
amount of node reduction to the values in Table 1, the im-
provement is generally less significant — this is due to the
low-level performing extra work evaluating constraints. In
the case of CBS+TAB and CBS+MVB, a large number of
constraints are usually added per CT node. In the case of
edge, vertex and time-range constraints, there is only one
constraint added per CT node and these constraints are inex-



Table 4: Total problems solved in under 30 seconds

Type Map GCBS+Time GCBS+TCC GCBS+TCP
8 32 8 32 8 32

Berlin_1.256 2,473 1,121 || 4,413 2,970 | 4,920 3,068

City Boston_0-256 3,027 1,073 || 6,021 2,937 | 5,879 2,983
Paris_1_256 2,833 1,153 || 6,115 3,011 | 6,745 3,027

brc202d 1,701 733 || 2,703 1,709 | 3,385 2,035

den312d 849 451 || 1,885 1,919 | 2,549 2457

DAO den520d 1,653 737 | 2911 2,783 | 3,161 3,235
lak303d 1,035 435 || 2,289 1,883 | 2,635 2,495

0rz900d 1,507 509 || 2,163 963 | 2,393 1,059

ost003d 1,139 493 || 2,341 2,167 | 2,645 2,687

ht_chantry 1,221 577 || 2,635 2,381 | 3,327 3,217

Dragon ht_mansion_n 1,251 565 | 2,391 2,515 | 2,847 2,809
Age 2 It_gallowstemplar | 1,325 653 || 2,223 2,213 | 2,493 2,497
w_woundedcoast | 2,031 735 | 3,277 1,726 | 3,853 27873

empty-8-8 392 221 800 800 800 800

Open empty-16-16 423 223 || 1,695 1,751 | 2,147 2,121
P empty-32-32 839 431 | 2,991 3,061 | 3,765 3,737
empty-48-48 1,079 535 || 4,043 4,683 | 5,271 5,833
random-32-32-10 689 381 || 2,787 2,723 | 3,283 3,389

Open+ random-32-32-20 765 401 || 2,175 1,991 | 2,657 2435
obstacles  random-64-64-10 | 1,261 595 || 4,869 5,105 | 5,891 6,051
random-64-64-20 | 1,135 681 || 3,743 3,581 | 4,105 4,185
maze-32-32-2 447 261 999 917 | 1,103 1,123

Maze maze-32-32-4 339 222 651 631 745 665
maze-128-128-10 981 435 || 1,793 1,711 | 2,295 2,155
maze-128-128-2 601 301 || 1,117 1,025 | 1,223 1,171
room-32-32-4 489 256 || 1,205 1,135 | 1,395 1,349

Room room-64-64-16 709 317 || 1,503 1,465 | 1,909 1,677
room-64-64-8 419 230 || 1,055 1,005 | 1,163 1,092

pensive to evaluate. In the case of CBS+TMA, there is only
one constraint per CT node, however, because the implicit
constraints perform a collision check when evaluated, they
are more costly in terms of runtime. It is often the case that
an MVB is a 1 x N biclique (about 56% in 16-connected
grids), thus, the set of blocked actions in CBS+TMA con-
straints is identical to CBS+TAB in many cases.

Results for Sub-Optimal Variants We compare state-
of-the-art, Greedy CBS (GCBS) (Barer et al. 2014), an
unbounded, suboptimal variant of CBS using the num-
ber of conflicts heuristic and time-range constraints with
GCBS+TCC and GCBS+TCP which are GCBS with the
new strategies discussed in Section 5. GCBS low-level pri-
oritization on fewest conflicts with other agents is not per-
formed because (as stated earlier) the CAT enhancement is
not effective for 2% neighborhoods with & of 8 and higher.

Table 4 shows results for the same set of benchmark prob-
lems. GCBS+TCP consistently outperforms the other vari-
ants. The improvement over GCBS is significant, up to 5x.
Figure 5 shows success rate for a subset of the benchmark
problems. GCBS+TCP is the strongest overall, with its most
significant gains in maps with wide open spaces.

—— GCBS+Time —@— GCBS+TCC —¢— GCBS+TCP
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Figure 5: Success rate of sub-optimal variants

Table 3 shows mean solution costs where CBS[4], and
GCBS[4] are for 4-connected grids, and CBS[16], and
GCBS[16] are for 16-connected grids and GCBS+TCC and
GCBS+TCP are also run on 16-connected grids. The solu-
tion quality compared to optimal costs in 4-connected grids
(the underlined values) is shown next to each statistic as a
percentage in parenthesis. Solutions in 8x8 grids show the
highest percentages of sub-optimality. This is due to the high
agent density. Both strategies do not significantly degrade
the overall solution quality when compared to GCBS[16],
usually 1% of optimality or less. GCBS+TCP, which shows
a significant speedup over GCBS+TCC, does not show any
significant degradation in solution quality.

Path quality in 16-connected grids is better than for 4-
connected grids (Rivera, Hernandez, and Baier 2017), and
this phenomenon is reproduced here — CBS[16] consistently
yields higher quality solutions than CBS[4], and all sub-
optimal variants consistently report better solution quality
than CBS[4]. This is a key highlight because it means that
if sub-optimal results are acceptable, when given a choice
between a low-fidelity, unit-cost movement model and a
higher-fidelity non-unit cost movement model, a higher fi-

Table 3: Comparison of solution quality on 4- and 16-connected grids

Optimal Complete
Configuration CBS[4] CBS[16] GCBS[4] GCBS[16] GCBS+TCC  GCBS+TCP
Empty 8x8 (25 agents) 116 77 (67%) 132 (114%) 105 (91%) 107 (92%) 107 (92%)
Empty 64x64 (100 agents) 4,277 3,353 (78%) | 4,283 (>100%)  3.355(78%) 3,358 (79%)  3.358 (79%)
den520d (50 agents) 9,025 7,266 (81%) | 9,028 (>100%) 7269 (81%) 7292 (81%) 7321 (81%)
brc202d (50 agents) 21,072 18,894 (90%) | 21,090 (>100%) 18,899 (90%) 18,980 (90%) 18,922 (90%)
0st003d (50 agents) 7,889 6,148 (78%) | 7,899 (>100%) 6,154 (78%) 6,293 (80%) 6,182 (78%)



delity model can yield both higher quality solutions and bet-
ter runtime performance by using sub-optimal variants.

7 Conclusions

This work introduced a new, systematic approach to imple-
menting constraints using bipartite graphs. Constraints can
be extended in both time and space by the use of time-
annotated bicliques to significantly increase the efficiency of
CBS. This work also formulated new conditional constraints
which allow controlled deactivation of constraints in order to
significantly increase the performance of Greedy-CBS while
guaranteeing completeness.
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