
Brain Rhythms During Sleep and Memory
Consolidation: Neurobiological Insights

Sleep can benefit memory consolidation. The characterization of brain regions

underlying memory consolidation during sleep, as well as their temporal inter-

play, reflected by specific patterns of brain electric activity, is surfacing. Here,

we provide an overview of recent concepts and results on the mechanisms of

sleep-related memory consolidation. The latest studies strongly impacting

future directions of research in this field are highlighted.
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Introduction

Memory formation encompasses both the learning
(encoding) of information and the consolidation of
learned content in long-term storage, with the con-
tents assessed by subsequent recall. Examples of
temporally graded retrograde amnesia spurned an
entire field of research demonstrating how mem-
ories undergo gradual processes of reorganization
at the system level, i.e., between brain regions. For
example, freshly encoded episodic memories (as
memories of events) stored in the hippocampus,
become hippocampal-independent over a period
of weeks to years, since they are represented in a
more permanent form within the neocortex (21,
78). The notion that sleep and memory consoli-
dation are associated has been around for a long
time, and a large quantity of research has
amassed compelling evidence that sleep partic-
ularly supports the consolidation of learned in-
formation into long-term memory (for reviews,
see Refs. 36, 103).

The relationship between memory consolidation
and sleep has been conceptualized under two ba-
sic overarching and non-exclusive concepts. One
focuses on the homeostatic regulation of synaptic
downscaling during sleep (128). This posits that
sleep, specifically the slow oscillations of non-rap-
id-eye-movement (NREM) sleep, function toward
global downscaling or synaptic renormalization.
Synapses recently and strongly potentiated during
prior waking, in contrast, are less prone to down-
scaling (reviewed in Ref. 129). This synaptic ho-
meostasis hypothesis is supported by a wealth of
molecular studies revealing the regulation of genes
and the expression of proteins indicative of synap-
tic weakening after a period of sleep, including
structural modifications to synapses as well as
electrophysiological measures of synaptic potenti-
ation (34, 129).

The other concept relies on an active role of
sleep in the process of systems consolidation and
will constitute the focus of this review. This con-
cept originated following the observation that
retention was dependent on different propor-
tions of sleep stages (reviewed in Ref. 16). Exper-
iments depriving sleep during the first vs. the
second part of the night gave rise to the “dual-
process hypothesis” in which NREM-rich sleep
during the first part of the night was considered
beneficial for declarative memories, and REM-
rich sleep of the second half of the night was
considered beneficial for non-declarative or im-
plicit (e.g., procedural) memories (45, 73, 103,
106, 120). A further model, the “sequential hy-
pothesis,” underscored the relevance of the suc-
cession of processes occurring during NREM
sleep and REM sleep for memory consolidation
in both rodents (5) and humans (123).

To gain more elaborate insight regarding how
memory consolidation transpires during sleep, re-
searchers turned to studying electric activity of the
brain, i.e., electrical signals of mixed frequency and
amplitude resulting predominantly from neuronal
activity. Rhythms or oscillations in these signals
typically reflect the synchronized activity of large
populations of neurons and are considered to re-
flect facilitated communication between neural
populations (20, 86). Neural oscillations can be
measured using non-invasive scalp sensors [e.g.,
electroencephalography (EEG) and magnetoen-
cephalography (MEG)] or implanted intracranial
electrodes. The latter can also detect activity of
smaller neuronal populations and are used most
widely when recording from laboratory animals
and—to a lesser extent—in pre-surgical epileptic
patients. The characteristic neural oscillations are
used to define different stages in sleep (FIGURE 1).
In humans, polysomnography (EEG, EOG, and EMG)
is used to determine sleep stages. In laboratory
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animals, EEG or local field potentials (LFPs) are
measured. Although analysis of neural oscillations
solely using EEG provides exceptional temporal
resolution, a shortcoming of this approach is its
poor spatial resolution. To unravel the neuronal
processes that facilitate sleep-related memory con-
solidation, it is important to understand the brain
structures involved in the processes of encoding dur-
ing wakefulness and consolidation during sleep. In
humans, where localized invasive electric recordings
are limited, neuroimaging procedures [e.g., func-
tional magnetic resonance imaging (fMRI)] have
contributed greatly to determining the involvement
of the brain regions involved in sleep-associated
memory consolidation.

Mechanisms underlying sleep-related memory
consolidation differ depending on the specific
memory system. The two major long-term memory
systems are most frequently discerned as being
hippocampus-dependent (for humans, the term
“declarative” is used) or non-hippocampus-depen-
dent (“non-declarative” or “procedural”). Although
not exclusively, we will focus this review on mech-
anisms of hippocampus-dependent memories,
since a greater amount of studies on the neural
underpinnings and associated brain rhythms of
sleep-associated memory consolidation have in-
vestigated hippocampus-dependent memory cons-
olidation.

There are different experimental approaches to
investigate sleep-related memory consolidation.
The first is based on measuring the impact on
memory consolidation of partial sleep deprivation
(i.e., on deprivation of specific sleep stages), which
essentially gave rise to the dual and sequential
hypotheses, as mentioned above. Another ap-
proach, aimed at more specifically disclosing the
underlying neural mechanisms of sleep-associated
memory, is to correlate brain electric activity dur-
ing sleep with memory retention. Retention is typ-
ically measured as the difference in performance
between recall and learning. A similar approach is
to compare neural responses during sleep follow-
ing a learning vs. non-learning baseline or control
task.

In the 1990s, important studies on spatial learn-

ing and post-experience activity patterns of “place-

cell” ensembles in sleep led to the concept that
reactivation during sleep could represent a mech-

anism for sleep-associated memory consolidation.

Reactivation describes the process by which the

same neuronal networks that were active during

learning are re-activated during sleep in a pattern
that matches the relative sequence of original ac-

tivation (reviewed in Refs. 19, 111). Experience-

dependent reactivations were later observed in

human studies as well (94, 104).

The study of brain rhythms during sleep pro-
vides the clearest available approach to under-
standing the physiological processes involved in
sleep-related memory consolidation. This review
presents an outline of the literature generated to
date, including the emerging importance of temporal
coordination between different sleep rhythms, as
well as approaches to manipulate these rhythms to-
ward uncovering causal evidence for sleep-related
processes in memory consolidation. We will con-
clude this review with an outlook on future directions
of research on sleep oscillations and memory con-
solidation, and a speculative opinion.

FIGURE 1. Characteristic features of sleep architecture and predomi-
nant neural oscillations across the sleep period in humans and rodents
Top: in both humans and rodents, a distinction is made between NREM and REM
sleep stages. In humans, NREM sleep is further divided into stages N1–N3, de-
pending on sleep depth. In rodents, a further subdivision of NREM sleep is un-
common due to the short duration of sleep episodes. Bottom: the traces show
representative recordings from human EEG over frontal (Fz) and parietal (Pz) loca-
tions, and mouse intracranial local field potentials (LFP) in frontal cortex (FC) and
dorsal hippocampus (HC). Discrete electrical events in NREM sleep are thalamo-
cortical sleep spindles (green), cortical slow oscillations (SO; blue), and hippocam-
pal sharp-wave ripples (SPWR; red). Sleep spindles (~10–16 Hz) are a hallmark of
NREM stage N2 sleep. They are generated through inhibition of thalamo-cortical
relay cells by the repetitive spike-bursting of GABAergic thalamic reticular neu-
rons (121). As sleep deepens, neural activity slows and synchronizes. Both slow-
wave activity (SWA; 0.5–4 Hz) and slow oscillations (~1 Hz) dominate. Slow
oscillations are cortically generated biphasic rhythms consisting of the alternation
between a hyperpolarizing state of neuronal silence (or “Down state”) and a de-
polarizing state (or “Up state”), which reflects enhanced activity of both excitatory
and inhibitory cortical neurons (88, 121). Note, the polarity of up and down states
is reversed between humans and rodents due to the depth LFP recording in ro-
dents. Sharp wave-ripples (SPWRs) are short-lasting (~50–100 ms), fast-oscillatory
events of ~100–250 Hz observed in the hippocampal formation during NREM
sleep (20), which are measured electrophysiologicaly by using invasive intracranial
electrodes. During REM sleep, low-amplitude EEG frequencies appear. In rodents,
continuous theta oscillations (~5–9 Hz) are clearly pronounced, with GABAergic
neurons of the medial septum relevant for theta pacing of the hippocampus and
other limbic cortical structures (20). In contrast to rodents, humans appear to have
multiple theta generators producing only short theta sequences during REM sleep
(24).
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Evidence Linking Brain Oscillations
During Sleep and Retention
Performance

Of the predominant neural oscillations across the
sleep period (FIGURE 1), sleep spindles (10 –16 Hz)
have arguably been the most widely investigated.
The first line of evidence for a link between sleep
spindles and memory consolidation came from
studies correlating retention on a given memory
task (e.g., a word-pair association task) with con-
comitant EEG-derived spindle activity during a pe-
riod of sleep (either a full night or a daytime nap).
An increased occurrence of spindles during sleep
after learning in relation to increased retention
performance has been found in multiple studies of
human subjects (26, 27, 46, 116, 117). In particular,
associations between spindle activity and verbal
(26, 27, 46, 116, 117, 124) or visual declarative
memory (30), as well as motor procedural memory
(42, 43, 54, 68, 85, 89, 101), have been found. In-
terestingly, sleep spindles occurring during deep
NREM sleep (stage N3 sleep) have appeared to be
particularly responsible for potentiating declara-
tive memories (30), whereas procedural motor
learning could be specifically related to spindles
occurring in light NREM (N2) sleep (42, 47).

Investigations have similarly found relationships
between slow oscillations (~1 Hz)—as reflected by
EEG spectral power in the slow-wave frequency
band [slow-wave activity (SWA), 0.5– 4 Hz]—and
learning in human participants. For instance,
learning on a visuo-motor task induced an increase
in SWA over parietal brain areas during subsequent
sleep, and this SWA change was positively corre-
lated with the enhancement of task performance
after sleep (55). Positive correlations between SWA
and overnight retention were also reported for a
procedural motor skill and a declarative task of
learning a word list (54).

Post-learning increases in sharp-wave ripple
(SPWR) density in rodents are likewise found and,
moreover, were also associated with improved re-
tention on a spatial memory and an odor-reward
association task (38, 48, 102). In pre-surgical epi-
leptic patients, numbers of ripples in rhinal cortex,
but not in hippocampus, were correlated with rec-
ognition memory performance (8).

Taken together so far, correlational evidence de-
tailed relationships between more efficient sleep-
related memory consolidation and greater densities
of sleep spindles, SPWRs, and/or slow oscillations,
separately. Importantly, however, spindles and slow
oscillations do not only occur independently but of-
ten synchronously, reflecting a unified thalamo-cor-
tical generating system in which spindles tend to be
nested within slow oscillations (28, 84). Indeed, in

mice, concomitantly occurring slow oscillations and
sleep spindles revealed increased calcium signaling
(compared with the separate events), which is con-
sidered a potential prerequisite for processes of neu-
roplasticity, compared with isolated slow oscillations
and sleep spindles (88). SPWRs are temporally asso-
ciated with slow oscillations as well as spindles (72,
83, 119, 135) (but see Ref. 126 for extensive review).
Methodologically, the application of cross-frequency
coupling (CFC) analyses to neural oscillations (23)
has greatly improved the ability to quantify interac-
tions between sleep rhythms underlying sleep-re-
lated memory consolidation. For instance, phase-
amplitude CFC determines the phase of a low-
frequency component at which the amplitude of a
high frequency is maximum. The phase at which
spindles couple to the slow oscillation changes with
age, and this phase has been associated with differ-
ences in memory consolidation (53, 80). In addition,
the strength of coupling, i.e., its consistency across
trials, can be quantified.

The actual interplay of neural oscillations is un-
doubtedly more complex. For instance, in humans,
there are strongly pronounced differences between
slow and fast sleep spindles; their occurrence
within the slow oscillation differs, with fast spin-
dles occurring during the slow oscillation Up state
and slow spindles during the Up to Down slope,
and coupling to the slow oscillation is stronger for
the fast spindles (32, 82). It also has been observed
that changes in fast sleep spindles after learning
were correlated with the overnight consolidation
of motor sequence learning, whereas slow spin-
dles did not appear to be involved (9). It is thus
possible that, in humans, the different types of
spindles (slow or fast) contribute differentially to
the consolidation of memory types. Moreover,
there are indications that the function of sleep
spindles during light (N2) and deep NREM sleep
may differentially interact with processes of
memory consolidation (35, 47). However, this
field is relatively young, and more systematic
evidence is required before a comprehensive
model can be formulated.

Reactivation and Reorganization

Recordings from multiple brain regions, e.g., using
simultaneous EEG and fMRI in humans, have re-
vealed a topographic specificity of activity during
memory consolidation, in particular in relation to
spindle activity. Prior learning of face-scene associa-
tions has been shown to promote stronger coupling
(covariance) between sleep spindle amplitude and
neural activity in face scene-selective regions of the
ventral visual cortex and hippocampus (13). An in-
creased activation of the fusiform gyrus, critical for
face recognition, was found temporally locked to fast
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spindles during sleep following learning a face se-
quence declarative memory task compared with a
control night (56). Importantly, in both studies, the
coupling between spindle activity and fMRI re-
sponses was topographically restricted to regions
that were activated during prior learning, and the
extent of coupling was correlated either with learning
performance before sleep (13) or with recall perfor-
mance after sleep (56). Similar results have been
shown for motor learning, and a reorganization of
neural activity between brain structures often occurs
during sleep-related procedural memory consolida-
tion. Activity in the rostrodorsal striatum (an associa-
tive area) recruited during training on motor
sequence tasks has been shown to subsequently
transform to activity in the caudoventral subregion of
the striatum (a sensorimotor area) post-learning (41,
69). This reorganization was also correlated with
spindle-related reactivation of the putamen during
sleep, the extent of which also related to overnight
gains in performance (41). By using EEG source lo-
calization on the same data set, it was demonstrated
that the coherence (functional binding) of cortical
and subcortical brain activity during sleep spindles
was related to post-learning gains in motor learning
consolidation (17). Functional MRI studies in hu-
mans also showed that an interaction between stri-
atal and hippocampal activity during training on a
motor sequence predicted future gains in perfor-
mance on a retest after sleep during retest (4). Fur-
ther investigations should achieve a more consistent
picture on the reorganization during sleep of mem-
ory representations post-learning (3).

A reorganization over time of post-experience
neural activity may similarly be concluded from
findings in rodents subsequent to a reward-search-
ing task. The reactivation of ventral striatal firing
was temporally associated with hippocampal rip-
ple activity during NREM sleep, yet reactivation
decayed slower in the ventral striatum than had
been found for hippocampal reactivation (99). In
general, sleep research is taking on the question of
how and when memory systems centered on ac-
tivity within different brain structures (e.g., relying
on hipocampus, amygdala, and striatum) may in-
teract during NREM sleep to consolidate memories
(40, 134).

Investigations on electrophysiological brain ac-
tivity emphasize the central role of hippocampal
SPWRs in the coordination of network reactiva-
tions among distributed brain regions during
NREM sleep after learning. Comparisons of neural
activity during encoding and subsequent NREM
sleep have revealed temporally coordinated activ-
ity between SPWRs and neural activity patterns
that code for spatial or self-motion related infor-
mation within the parietal (136) and entorhinal
cortex (91). Reactivation associated with SPWRs

was, however, also found in regions involved in
encoding the location of material possessing a spe-
cific positive or negative valence, not only in brain
regions involved in spatial processing. For in-
stance, reactivation of both reward-related activity
in the ventral striatum (99) and the basolateral
amygdala encoding the location of an aversive air-
puff on a running track (49) were modulated by
hippocampal SPWRs during post-learning sleep.
Typically, hippocampal reactivation is strongest for
experiences or events of greatest salience (25), yet
novelty of the fore-going experience may also con-
tribute to greater reactivation or post-experience
neuronal activity during sleep (38, 44, 66). The role
of such factors as valence, salience, and emotional
significance suggest that coordinated reactivations
are particularly relevant for future adaptive behav-
ior. SPWRs also serve a modifying function, as re-
flected in the above-mentioned study by Girardeau
et al. (49) on coordinated reactivation of hippocam-
pus and amygdala, in which stronger reactivations
were measured for subgroups of amygdala cells rep-
resenting the aversive stimulus. Also, in a study em-
ploying a sound-guided memory task in rats,
reactivation of specific auditory cortex activity was
shown to precede and follow SPWRs and even be
capable of influencing SPWR content (109). Techno-
logical advancements, for instance, enabling paired
recording and intervention at the level of neuronal
populations in vivo (58, 125), bring novel possibilities
to measure localized activity in parallel from multiple
brain areas. If focused during distinct time periods,
such as the occurrence of spindles or SPWRs, re-
search is bound to reveal a clearer picture of inter-
actions between different brain areas during sleep
that are relevant for post-task memory consolidation.

Bidirectional and Intraregional
Interactions

Many of the investigations described above were
based on the physiological “two-stage” model of
memory formation, which posits that new memo-
ries are initially encoded within the hippocampus
and subsequently transferred to the neocortex for
long-term storage (21, 78). The concept of a two-
way interaction during sleep between hippocam-
pus and cortex is, however, evolving. For instance,
recent results of interactions at the cortical level
have found neurons in the anterior cingulate (ACC)
firing both before and after hippocampal SPWRs.
All ACC neurons during sleep demonstrated in-
creased activity ~200 ms before SPWR activity and
correlated positively with SPWR amplitude. Pre-
ripple activation of the majority of ACC neurons
were not present during the awake state, which
supports a functional distinction between SPWRs
occurring during sleep and waking (133). There is
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further evidence suggesting the existence of a rapid
cortico-hippocampal-cortical loop (109). Stimuli
delivered during NREM sleep to rats following a
sound-guided task elicited neuronal ensemble pat-
terns within the auditory cortex that predicted the
occurrence of hippocampal SPWRs. In turn, firing
rates of cells in the auditory cortex were strongly
modulated during hippocampal SPWRs.

Alongside communication between the hip-
pocampus and (sub)cortical regions, intraregional
interactions within the cortex have also proven
relevant for sleep-associated memory consolida-
tion. For example, non-hippocampus-dependent
perceptual memory has been demonstrated to de-
pend on top-down intracortical activity during
NREM sleep. Here, opto-inhibition of the projec-
tion axons from the secondary motor cortex to
primary somatosensory cortex within post-task
hour 1 (but not post-task hours 6 –7) of NREM sleep
reduced duration of retention for tactile memory.
Retention appeared to rely on the synchronous
activation of these cortical regions mediated by the
secondary motor cortex projections. In fact, reten-
tion performance could be prolonged by photo-
stimulation inducing synchronous activation in
the two cortical regions (81). These latter findings
on neuronal interactions may contribute to how
neocortical schemas affect the rate or efficiency of
consolidation, as previously described in models of
memory consolidation (77, 90, 130).

Experimental Modulations of Brain
Oscillations During Sleep and
Related Impacts on Memory
Consolidation

As indicated in FIGURE 2, various techniques have
now been developed to modulate brain oscillations
during sleep, with an attempt to influence memory
recall post-sleep and highlight the causal impor-
tance of these rhythms in consolidation processes.
One approach employed has been pharmacologi-
cal modulation. Inducing an elevated spindle
activity through selective serotonin or noradr-
enaline uptake blockers improves procedural
memory performance on finger sequence tap-
ping and mirror tracing tasks, despite supressing
REM sleep, challenging originally held views on
the beneficial effect of REM-rich sleep on proce-
dural memory consolidation (105). Increasing
spindle density with the gamma-amino-butyric
acid (GABA)-A receptor agonist zolpidem increased
recall performance on a declarative word-pair task
but worsened performance to a perceptual dis-
crimination task and had no effect on a motor
sequence learning task (79). However, decreased
spindle activity after administrating the anticon-
vulsant tiagabine (39) had no negative effect on
declarative memory recall (39). Importantly, in
all these studies, pharmacological reduction of
spindle density also increased slow oscillations and

FIGURE 2. Active systems consolidation and reactivation
Top: different experimental designs have been created to assess the effect of sleep on systems consolidation of memory.
These include providing a sleep opportunity between learning and recall testing, or a sleep opportunity paired with an
intervention (pharmacological administration, acoustic stimulation, weak electrical currents, optogenetics, or targeted
memory reactivation). Middle: information enters the hippocampus during learning, where it is temporarily stored. Reacti-
vation of this information during sleep is presumed to transfer the memory representation, reorganizing the learned infor-
mation. Bottom: the concept of active systems consolidation, the transfer of information during sleep from a temporary
representation in the hippocampus to a permanent representation in the neocortex, is schematized.
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SWA. Therefore, the reported effects on memory
consolidation or lack thereof cannot be solely at-
tributed to either a decrease in spindle activity or
an increase in slow oscillations. Beyond the diffi-
culties in modulating one type of brain oscillation
specifically without inversely affecting the others,
these pharmacological approaches are limited by
both their spatial and temporal imprecision—that
is, they cannot be targeted to specific brain regions
or time points in the sleep period.

In an alternative approach, various types of sen-
sory stimulation have been used to modify brain
oscillations during sleep. For example, a recent
study used a rocking bed to induce a continuous
rhythmic sensory stimulation that increased slow
oscillations and spindles during deep NREM sleep
(100). Importantly, this stimulation also improved
the overnight consolidation of a declarative mem-
ory task, which was positively correlated to the
increase in spindle activity (100). More precise and
targeted control over neural oscillations during
sleep is possible by using stimuli— especially
acoustic—that can be applied on an event-by-
event basis. Acoustic stimulation was for instance
timed to selectively suppress slow oscillations dur-
ing NREM sleep, which prevented the improve-
ment of procedural motor (65) and declarative
(131) memories after sleep. More recently, closed-
loop acoustic stimulation paradigms, in which
stimulation occurred dependent on the ongoing
activity of the signal to be targeted by the stimula-
tion, have allowed automatically delivery of sounds
in phase with the Up state of slow oscillations.
These paradigms resulted in an enhancement of
slow oscillations, an increase in spindle activity
(113) and an improved retention of declarative
memories during sleep compared with a control
condition consisting of either sham (92, 97) or out-
of-phase (87) stimulations. In addition, changes in
memory performance were correlated with in-
creases in slow oscillations (87, 93, 97) and/or spin-
dle activity (87) associated with the in-phase
stimulation. Together, these findings provide
strong support for slow oscillations and sleep spin-
dles in memory consolidation, and moreover for
their concurrent enhancement to effectively im-
prove cognitive perfomance (137, 138).

Over the past decade, a series of studies have
been published using targeted memory reactiva-
tion (TMR) during sleep to enhance memory con-
solidation. In this paradigm, subtle cues (e.g.,
auditory or olfactory), which have previously been
associated with specific learning during wakeful-
ness, are presented during subsequent sleep.
These studies have consistently reported an im-
proved memory recall of the associated learned
information, for both declarative and procedural
motor memories, during the post-sleep assessment

following TMR (22, 68, 95, 118). Interestingly, the
timing of these cues in relation to neural oscilla-
tions of sleep appears to strongly influence the
effects of TMR on memory recall. For instance, the
beneficial effects of TMR for a declarative memory
task appeared to be predicted by the phase of the
cortical slow oscillation at the time of stimulus
presentation, specifically the cortical Up state (11).
Furthermore, TMR can yield significant increases
in sleep spindle amplitude and frequency, the ex-
tent of which has been shown to mediate memory
retention of a motor sequence task (68). In report-
ing a refractory period for spindles (i.e., spindles
are more likely to occur 3– 6 s after a previous
spindle), one study found that TMR cues presented
outside compared with inside this spindle refrac-
tory period were associated with a greater memory
recall following sleep (6). This was suggested to
reflect a potentiality for memory reactivation that
is dependent on the temporal occurrence of spin-
dles. These findings detailing the particular traits
of TMR have painted an overall picture of complex
interactions between sleep-state neural oscilla-
tions and memory consolidation, furthering the
understanding of how memory consolidation may
be processed during sleep.

Sensory (e.g., acoustic, olfactory) stimulation
can be given with high temporal precision, yet
these stimuli affect both subcortical and cortical
structures. The application of weak electric cur-
rents to the scalp or cortex aims in contrast to
primarily affect ongoing neocortical activity. Con-
stant and oscillating weak electric currents applied
via electrodes are capable of modulating ongoing
brain electric activity and affecting memory con-
solidation. Frontal-to-mastoid weak electric stim-
ulation during the transition to deep NREM sleep
distinctly increased the retention of word pairs
compared with sham stimulation, and enhanced
temporal coupling between slow oscillations and
spindles (64, 74, 76). In rats, a similar electrode
configuration likewise improved post-sleep perfor-
mance (14, 15). A reduced performance in a declar-
ative but not procedural memory task could be
observed after decreasing both frontal EEG spindle
power and slow oscillations during NREM sleep by
theta-frequency transcranial direct current stimu-
lation (tDCS) in a later study (75). Although studies
with contrasting results have since been reported
(e.g., Ref. 98; reviewed in Refs. 137, 138), recent
studies indicate that, due to the subthreshold char-
acter of the stimulation, covert interactions be-
tween the applied stimulation, inter-individual
confounds and content can play a decisive role in
the efficiency of oscillatory weak electric stimula-

tion (57, 62).
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In rodents, reinforcing the temporal coordina-
tion of cortical delta waves and spindles using
SPWR-triggered electrical stimulation resulted in
a reorganization of spatio-temporal spiking pat-
terns of prefrontal pyramidal neurons, along
with subsequent increased recall performance
relative to controls (72). However, during sleep,
studies have shown that endogenous neuro-
modulators interact with neural oscillations (7,
52, 114). For instance, optogenetically driven ac-
tivation of cholinergic neurons influences the
theta-to-slow oscillation ratio (132), and norad-
renergic neurons fire phasically time-locked to
the slow oscillation (37). These interdependen-
cies may help explain why imposing a stereo-
typed external rhythm may not always be
functionally efficient (61).

Targeted manipulation of oscillatory activity

has also been conducted using optogenetic

methods in rodents. For example, Latchoumane

and colleagues induced a spindle-like rhythm in

the thalamus of mice, either during the Up or

Down state of ongoing cortical slow oscillations,
and could thereby improve SPWR-slow oscilla-
tion coupling and memory consolidation
(67).

Overall, the specific modulation of brain oscil-

lations of sleep to impact memory consolidation

is a relatively new area but provides substantial
potential in unravelling the role of neural oscil-

lations in the process of memory consolidation
at both systems and cellular levels.

The Role of Brain Oscillations for
Sleep-Related Memory
Consolidation: Interactions
Between Models and Future
Directions

In this review, we emphasize that the major con-
cept through which active systems memory con-
solidation takes place during sleep is by a fine
temporal relationship between neural oscillations
associated with sleep and reactivation, namely the
Up and Down states of the slow oscillation,
thalamo-cortical sleep spindles, hippocampal
sharp wave-ripples, and coordinated activity of
other brain regions (FIGURE 3). There are indeed
indications that systems consolidation requires the
coordination of multiple brain structures. The es-
sential component of active systems consolidation
theory posits that, over time, (episodic) memory
representations lose their dependence on the hip-
pocampus. For memories to become hippocam-
pus-independent, the hippocampus must “train”
the cortical associations during an offline period
when no external influence can disturb memory
representations to strengthen and stabilize these
into “self-sustaining” representations. Sleep spin-
dles originating from the thalamus may specifically
serve to ensure this offline environment. In hu-
mans, brain responses to acoustic stimulation
were profoundly dampened when presented in
concurrence with an ongoing sleep spindle (29,
33). Thalamic gating of external sensory stimuli

FIGURE 3. Neural oscillations of memory consolidation in sleep
Figurative model of the interplay of neural oscillations/brain rhythms during NREM sleep. Slow oscillations (A) in the
neocortex temporally group neural activity in other brain structures such as thalamocortical spindles (B) and hip-
pocampal sharp wave ripples (C). The timing of spindles relative to the phase of the slow oscillation and the coordi-
nated reactivation of hippocampal SWPRs underlie the transfer of previously learned information on the memory
representation to the neocortex, reorganizing, consolidating, and possibly generalizing the memory content as it
becomes hippocampus independent (cp. FIGURE 2). During ongoing spindles, the thalamus performs sensory gat-
ing, thereby reducing external sensory input to the neocortex. Note, oscillations (A–C) are not scaled.
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during spindles might contribute to protect the
sleeping brain from external disuption, thereby fa-
ciliating internal reprocessing and integration,
such as during memory consolidation.

Several lines of study, however, underscore the
need for a more complex view. First, although the
concept of active systems consolidation was devel-
oped for hippocampus-dependent (declarative)
memories, the hippocampus may also be critical
for forming “non-hippocampal” long-term memo-
ries, e.g., hippocampal inactivation impaired
sleep-related consolidation on a non-hippocam-
pus-dependent novel object recognition memory
task (115). In addition, only few studies have inves-
tigated the specific role of REM sleep for retention
of hippocampus-dependent memories (2). Indeed,
most studies indicating an involvement of neural
activity during REM sleep for memory consolida-
tion have used behavioral paradigms of contextual
fear or other emotional material or contexts (12, 60,
107). However, structures found to be activated
during REM sleep (limbic structures, including the
retrosplenial cortex) have all been implicated in
hippocampus-dependent spatial memory (70). In
fact, the relevance for memory consolidation of
theta rhythm during REM sleep was demonstrated
by using optogenetic techniques. Optogenetic si-
lencing of medial septum GABAergic neurons in
mice both selectively attenuated theta activity dur-
ing REM sleep and impaired consolidation on two
hippocampus-dependent tasks (18).

Second, there has been an emerging discussion
on how the type of sleep-related memory repre-
sentations may shift over time (108, 122). For in-
stance, the memory for differently shaped single
items was enhanced 10 h after learning, with a
post-learning sleep period. Yet, testing the same
subjects 1 year later showed that subjects who had
slept after an initial encoding revealed improve-
ment on more generalized knowledge, i.e., on a
prototype memory of shapes (71). The specific
mechanisms of sleep for such extraction of gist
from specific information to form generalized
schemas are an ongoing research focus. Discerning
these mechanisms may also contribute to under-
standing how semantic memories are forged from
episodic experiences.

Third, results from weak electric stimulation inter-
ventions show the greater need to focus on inter-
individual response variability (61, 62). Advances
in analysis procedures have facilitated the applica-
tion of tools to measure features of neural oscilla-
tions, such as the phase coupling between slow
oscillations and sleep spindles, at the individual sub-
ject level. Cox and colleagues revealed consistent
inter-individual “fingerprints” of coupling phases be-
tween slow oscillations and both fast and slow sleep
spindles (31). A future direction is the use of such

analytic tools together with customized intervention
procedures for investigating the causality of neural
oscillations and sleep-related memory consolidation,
with a stronger focus on inter-individual differences
in responsiveness.

Fourth, although the two concepts of sleep-re-
lated memory consolidation—namely the synaptic
homeostasis hypothesis and the concept of active
systems consolidation—seem in opposition, sev-
eral recent findings suggest a convergence in the
cellular mechanisms associated with both theories.
Optogenetic studies investigating the specific func-
tion of slow oscillation Up vs. Down states suggest
that Up states may contribute to a selective down-
scaling of subthreshold inputs (10, 50). Indeed,
when active Up-state firing in the primary motor
cortex was optogenetically suppressed, the rescal-
ing (downscaling of “indirect” neurons non-caus-
ally related to a task) was prevented, and post-
sleep task behavior, namely for rats to control the
angular velocity of a feeding tube, was impaired
(51). These findings support a rescaling of task-
related activity, as proposed by the synaptic ho-
meostasis hypothesis, yet not as a passive but as an
active (i.e., activity-dependent) process. These
findings furthermore suggest that downscaling
may operate locally and not globally, as initially
hypothesized by the synaptic homeostasis hy-
pothesis. Local modulations in neuroplasticity
during sleep and activity-dependent local sleep-
regulation are also indicated by local sleep-re-
lated synthesis of plasticity-related proteins (1).
The concept of local sleep regulation emerged
from findings that local use-dependent increases
in cytokines and other sleep regulatory molecu-
lar components can affect local neuronal/glial
network activity, and the theory posits that cel-
lular events can induce effects at higher levels of
tissue organization (63).

Finally, although our review has focused on neu-
ronal interactions on memory, the process of sleep
also involves systematic changes in non-neuronal
cellular activity (e.g., astrocytes) and chemical neu-
romodulatory sytems that have been shown to af-
fect cellular neuroplasticity and memory (63, 96,
112). New technologies enabling improved parallel
monitoring of cellular and systems level activity
patterns will definitely shed new light on the con-
tributions of these elements to sleep-related mem-
ory consolidation. In fact, the identification of
post-experience neuronal cell ensemble activity
during systems consolidation has become possible
by the recent combination of transgenic, optoge-
netic, pharmacogenetics, and optical imaging ap-
proaches. Findings indicate that such “engram
cells” in both medial prefrontal cortex and hip-
pocampus are formed rapidly on learning of con-
text-fear conditioning but that medial prefrontal
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cortex engrams have to undergo maturation over
time with aid of hippocampal engram cells before
they can be used for recall (59, 110) (for a review,
see Ref. 127). However, until now, the fate of en-
gram cells in different brain regions and their in-
teraction has only been demonstrated for context-
fear conditioning in laboratory rodents and has not
been explicitly investigated in relation to sleep. For
future research, it would be desirable to combine
the above-mentioned methodological approaches
with electrophysiology, and possibly the manipu-
lation of sleep oscillations, to gain more insight
into sleep-related memory consolidation at the en-
gram cell level.

Taken together, it is essential for research on
sleep and memory consolidation to uphold an in-
tegrative view ranging from systems to cellular lev-
els, and from local to global levels. We believe
neural oscillations during sleep reflect, on the one
hand, previous “learning-related activity.” On the
other hand, results from studies on weak electric
current stimulation indicate that neural oscilla-
tions per se can affect neuroplasticity. Learning-
related activity is expressed at a multitude of levels
(e.g., neuronal engram cells, with their activity-
dependent intracellular molecular machinery; re-
sulting dendritic spine dynamics; activity-dependent
cellular release of cytokines; changes in neuromodu-
latory activity, possibly reflecting the learning mate-
rials’ reward value for the individual subject; etc.),
and each level is characterized by specific temporal
dynamics. Which rules may govern communication
within the brain? It is conceivable that these large-
scale neural oscillations during sleep emerge from
local use-dependent activity and in turn affect all
ongoing local learning-related activity in a tempo-
rally coherent manner. The achieved effect is depen-
dent on the specific learning-related history of the
local network.

Science is accelerating the development of
tools that can potentially narrow the gap be-
tween systems, network, cellular, and molecular
level functions, and link online and offline neuronal
activity to sleep-associated behavior. Future research
should utilize these tools to scrutinize present and
newly evolving concepts of memory consolidation. �
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