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ABSTRACT

The ubiquitous use of machine learning algorithms brings
new challenges to traditional database problems such as in-
cremental view update. Much effort is being put in better un-
derstanding and debugging machine learning models, as well
as in identifying and repairing errors in training datasets.
Our focus is on how to assist these activities when they
have to retrain the machine learning model after removing
problematic training samples in cleaning or selecting differ-
ent subsets of training data for interpretability. This paper
presents an efficient provenance-based approach, PrIU, and
its optimized version, PrIU-opt, for incrementally updating
model parameters without sacrificing prediction accuracy.
We prove the correctness and convergence of the incremen-
tally updated model parameters, and validate it experimen-
tally. Experimental results show that up to two orders of
magnitude speed-ups can be achieved by PrIU-opt compared
to simply retraining the model from scratch, yet obtaining
highly similar models.
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1 INTRODUCTION

In database terminology, this paper is about efficient incre-
mental view updates, specifically about using provenance
annotations to propagate the effect of deletions from the
input data to the output. However, the views that we con-
sider are regression models (linear and binomial/multinomial
logistic regression) and the input data consists of the samples
used to train these models.

The need for incremental techniques to efficiently update
regression models arises in several contexts, for example
data cleaning and interpretability. Data cleaning has been
extensively studied by the database community [8, 12, 17, 46],
and is typically an iterative and interactive process, allowing
data analysts to alternate between analysis and cleaning
tasks, as well as to interact with other parties such as IT
staff and data curators [33]. Machine learning techniques
are particularly sensitive to dirty data in training datasets,
since it can result in erroneous models and counter-intuitive
predictions for test datasets [8]. A number of techniques
have therefore recently been proposed for detecting and
repairing dirty data in machine learning, e.g., [25, 32]. The
work presented in this paper can be incorporated into these
data cleaning pipelines by assuming that dirty data in the
training set has already been detected, and addresses the
next step by providing a solution for incrementally updating
the machine learning model after the dirty data is removed.

Interpretability is also a major concern in machine learn-
ing (see, for example, the general discussions in [15, 38],
the extensive human subjects experiments in [45], as well
the many references in these papers). The problem is be-
ing studied from several different perspectives (see Sec. 2).
The data-driven approaches of [15, 35] discover factors of
interpretability by performing repeated retraining of mod-
els using multiple different subsets of a training dataset to
understand the relationship between samples with certain
feature characteristics and the model behavior. Such repeated
retraining also occurs in model debugging (25, 28, 34] and
deletion diagnostics [9].
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In this respect, our work shares goals with [30], which
develops an influence function to approximately quantify the
influence of a single training sample on the model parameters
and prediction results; this can also be used for estimating the
model parameter change after the removal of one training
sample. However, extending the influence function approach
to multiple training samples significantly weakens prediction
accuracy. In contrast, our techniques are not only efficient but
significantly more accurate.

Connection to Provenance. Note that the problem of
incrementally updating the model after removing a subset of
the training samples can be seen as a question of data prove-
nance [4, 7, 20]. Data provenance tracks the dependencies
between input and output data; in particular, the provenance
semiring framework [20, 21] has been used for applying in-
cremental updates (specifically deletions) to views.

In the semiring framework, input data is annotated with
provenance tokens which are carried through the opera-
tors performed on the data (e.g. select, project, join, union).
Output data is then annotated with provenance polynomi-
als expressed in terms of the provenance tokens. When an
input tuple is deleted, the effect on the output can be effi-
ciently calculated by essentially “zeroing out” its token in the
provenance polynomial. Recently, the framework has been
extended to include basic linear algebra operations: matrix
addition and multiplication [52]. In this extension, the prove-
nance polynomials play the role of scalars and multiplication
with scalars plays the role of annotating matrices and vectors
with provenance.

As an example, suppose that p, g, 7, s are provenance to-
kens that annotate samples in a training dataset. Our meth-
ods will show that vectors of interest (such as the vector
of model parameters) can be expressed with provenance-
annotated expressions such as:

W= (pPg* ) + (qr' +v) + (ps )

Here, u, v, z are numerical vectors signifying contributions
to the answer w and they are annotated (algebraic operation
*) with p?q, qr*, ps which are provenance polynomials to be
read as follows: the provenance p?q represents the use of
both data items labeled p and g and, in fact, the first item
is used twice. Now suppose the data item annotated with
r is deleted while those annotated p, g, s are retained. We
can express the updated value of w under this deletion by
setting r to the “provenance 0 polynomial”, denoted Opoy
which signifies absence, and p, g, s to the “provenance 1 poly-
nomial”, denoted 1,0y, Which signifies “neutral” presence, no
need to track further. The algebraic properties of provenance
polynomials and of their annotation of matrices/vectors en-
sure what one would expect, e.g, Oproy rt = Oprov as well as
Oprov * v = 0 (the all-zero vector) and 1,0y * z = z. It follows
that under this deletion w = u + z.

Approach. In this paper, we use the extension of the
semiring framework to matrix operations to track the prove-
nance of input samples through the training of logistic re-
gression and linear regression models using gradient descent
and its variants. In each iteration of the training phase, a
gradient-based “update rule” updates the model parameters,
which can be annotated with provenance polynomials. For
logistic regression, we can achieve this via piecewise linear
interpolation over the non-linear components in the gradient
update rule.

In addition to enabling provenance tracking, the lineariza-
tion of the gradient update rule allows us to separate the
contributions of the training samples from the contributions
of the model parameters from the previous iteration. As a
result, the effect of deleting training samples on the gradient
update rule can be obtained by “zeroing out” the provenance
tokens corresponding to those samples.

Challenges. Reasoning over provenance to enable incre-
mental updates introduces significant overhead in the gra-
dient descent calculation. To speed up incremental updates
over model parameters for dense datasets, we use several
optimizations in our implementation, PrIU: First, between
iterations during the training phase over the full training
dataset, we cache intermediate results (some matrix expres-
sion) that capture only the contribution of the training sam-
ples. These are annotated with provenance. Then during
the model update phase, the propagation of the deletion of a
subset of samples comes down to a subtraction of the "zeroed-
out" contributions of the removed samples. Second, we apply
singular value decomposition (SVD) over the intermediate
results to reduce their dimensions. An optimized version
of PrIU, PrIU-opt, is also designed for further optimizations
over datasets with small feature sets using incremental up-
dates to eigenvalues. (For logistic regression, it is used by
terminating provenance tracking early when provenance
expressions stabilize. See Section 5 for more details). But
the optimizations above cannot work for sparse datasets, for
which we use only the linearization of the update rule for
logistic regression.

As we shall see, PrIU and PrIU-opt can lead to speed-
ups of up to 2 orders of magnitude when compared to a
baseline of retraining the model from the updated input
data; however, for sparse datasets the speedup is only 10%.
While the practical impact of this speed-up may be small
for an engineer who only deletes one subset of training
samples, especially if retraining takes only a few minutes,
the impact is much greater for an engineer who repeatedly
removes multiple different subsets of training samples, e.g.
when exploring factors of interpretability. In this case, even
one order of magnitude speed-up reduces exploration from
several hours to a few minutes.

Contributions of this paper include:



(1) A theoretical framework which enables data prove-
nance to be tracked and used for fast incremental
model updates when subsets of training samples are
removed. The framework extends the approach in [19,
20, 52] to linear regression and (binary and multino-
mial) logistic regression models.

(2) Analytical results showing the convergence and accu-
racy of the updated model parameters for logistic re-
gression, which are approximately computed by apply-
ing piecewise linear interpolation over the non-linear
operations in the model parameter update rules.

(3) Efficient provenance-based algorithms, PrIU and PrIU-
opt, which achieve fast model updates after removing
subsets of training samples.

(4) Extensive experiments showing the effectiveness and
accuracy of PrIU and PrIU-opt in incrementally updat-
ing the linear regression and logistic regression models
compared to the straightforward approach of retrain-
ing from scratch, as well as compared to implementing
an extension of the influence function in [30].

(5) Enabling work on interpretability that seeks to under-
stand the effect of removing subsets of the training
data, rather than just of a single training sample.

The remainder of the paper is organized as follows. In
Section 2, we describe related work in incremental model
maintenance, data provenance, data cleaning, and machine
learning model interpretability. Section 3 reviews the basic
concepts of linear regression and logistic regression. The
theoretical development of how to use provenance in the
update rules of linear regression and logistic regression is
presented in Section 4, and its implementation provided in
Section 5. Experimental results comparing our approach to
other solutions are presented in Section 6. We conclude in
Section 7.

To our knowledge, this is the first work to use provenance
for the purpose of incrementally updating machine learning
model parameters.

2 RELATED WORK

Incremental model maintenance. There have been several pro-
posals for materializing machine learning models for future
reuse. [13, 22, 40] target the problem of efficiently updating
the model as the training data changes, which focus primar-
ily on linear regression and Naive Bayes models, and use
closed-form solutions (rather than iterative algorithms, e.g.,
gradient-based approaches) of the model parameters to deter-
mine incremental updates in light of additions and deletions
of training samples while [23] deals with how to merge pre-
materialized models to construct new models based on user
requests. In addition, [22] also deals with incremental up-
dates of the model parameters based on the Mixture Weight

Methods (a variant of gradient descent) for logistic regres-
sion. The method, however, puts additional training samples
into another batch and averages the pre-computed parame-
ters derived from other batches (over the original data) with
the parameters computed over the additional batch. This
cannot be used for incremental deletions which is our focus
in this paper.

The basic ideas of [13, 22, 40] on how to incrementally
update linear regression models are somewhat similar. Due
to the existence of the matrix inverse operations in the closed-
form solution for linear regression, only the intermediate
results built with linear operations are maintained as views.
They are updated when insertion or deletion happens in the
input training data. After that, matrix inversion is used to
compute the final updated model parameters. In contrast,
our approach proceeds directly to a gradient descent-based
linear regression. As we shall see, our experiments show that
our approach is more efficient than the closed-form update.

Data provenance. Data provenance captures where data
comes from and how it is processed. Within the database
community, various approaches have been proposed to track
provenance through queries, e.g. where and why provenance
[4], and semiring provenance [2, 20]. Provenance is used to
identify the source of errors in computational processes, such
as workflows [1] and network diagnostics [53]. It is also used
to support efficient incremental updates through database
queries and schema mappings [18, 19, 26] and workflow
computation [16]. Provenance support for linear algebra
operations in the context of machine learning tasks has also
been recently studied [52]. This work was mentioned in [5]
as a first step in using data provenance for interpretability of
machine learning models.

Data cleaning. The goal of data cleaning is to detect and
fix errors in data, and is a crucial step in preparing data for
data analytics/machine learning tasks [14, 34]. However, if
erroneous/dirty data is detected after the model has been
trained, the machine learning algorithm must be rerun to ob-
tain the updated model parameters. This repetitive training
can cause significant delays when large volumes of data are
processed. One approach is to start each training phase by
setting the initial model parameters to the ones generated
by the previous training phase over the dirty data [34]. Our
contribution is orthogonal to this approach, and updates the
machine learning model parameters directly by reasoning
over provenance rather than retraining from scratch.

Interpreting and understanding ML models. Fully under-
standing the behavior of ML models, especially deep neural
network models, is difficult due to their complexity. More-
over, there are different perspectives on what we should
understand. For example, one approach separates model
components into “shape” functions, one for each feature,
in generalized additive models, in particular for linear and



logistic regression [6, 39]. Closest to our perspective is the
idea of influence function [30] (similar problem is also men-
tioned in [44]), which originates from deletion diagnostics in
statistics [9]. [30] estimates the effect of removing a single
training sample on the already obtained model, without re-
training the model. The influence function uses the Taylor
expansion of the derivative of a customized objective func-
tion for the model parameter. The calculation (and thus the
approximation of model parameter change) is only based on
lower-order terms in Taylor expansion.

This can be seen as a method for incremental model up-
date for just one sample deletion. In fact, we have observed
that the method could be extended to deleting an arbitrary
number of samples, which led us to compare it experimen-
tally to our approach. The results (see Section 6) show that
this approach leads to very inaccurate results when multiple
training samples are deleted.

3 PRELIMINARIES

We give an overview of linear and logistic regression along
with the gradient-based method for learning model parame-
ters. Assume a training dataset (X, Y), where X isan n X m
matrix representing the feature matrix while Y is an n x 1
vector representing the labels, i.e.:

) yn] ! (1)
For both linear and logistic regression we only focus on a
common case: L2—regularization. The objective functions of
linear regression, binary logistic regression and multinomial
logistic regression with L2—regularization are presented in
Equations 2-4 respectively !
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w = vec([wy, wWa,...,wq])

where w is the vector of model parameters and A is the regu-
larization rate. For simplicity, we denote w = vec([wy, wa,

..., Wq]) for multinomial logistic regression where g repre-
sents the number of possible classes. Typical learning meth-
ods for computing w are to apply gradient descent (GD) or
its variant, stochastic gradient descent (SGD) or mini-batch
stochastic gradient method (mb-SGD) [47] to minimize the
objective function h(w) iteratively. GD, SGD and mb-SGD
are the same in nature since mb-SGD can be regarded as

!Here we assume that the two possible labels in binary logistic regression
are 1and -1.

a generalization of GD and SGD. They are therefore called
Gradient-based method (GBM) for short, and hereafter we
will only take mb-SGD as an example. Considering the simi-
larities between binary logistic regression and multinomial
logistic regression and the complexity of the computation
related to the latter one, we will only present the formulas
related to binary logistic regression below. All the theorems
that hold for binary logistic regression can be also proven to
be true for multinomial logistic regression.

At each iteration, mb-SGD updates the w(*) by using the
average gradient of h(w) over a randomly selected mini-
batch from the training dataset. Specifically, for linear re-
gression and logistic regression, the rule for updating w(*)
under mb-SGD is presented below (Equations 5 and 6 respec-
tively):

2
W 1o = D W - )
ieB
witt) (1- r]t/l)w(t)

" % Z yixi(1 - : y  ©

icBt) 1+ eXp{_yiw(t)Txi}

where 7, is called the learning rate and %" represents a
mini-batch of B training samples. For SGD, %) includes
only one sample (B = 1), while for GD, 2 includes all the
training samples (B = n).

4 ITERATION MODELS

In this section, we first discuss the annotation with prove-
nance of the gradient-bases update rules in our approach.
Next, we discuss for the non-linear operations in logistic
regression the linearization that makes our provenance an-
notation framework usable. Finally, we give a rigorous theo-
retical analysis of the convergence of the iterative process
with provenance-annotated update rules for both linear and
logistic regression model and the similarity to the expected
results after linearization for logistic regression models.

4.1 Provenance annotations for matrices

In the semiring framework [2, 20, 21] one begins by annotat-
ing input data with elements of a set T of provenance tokens.
These annotations are then propagated through query oper-
ators as they combine according to two operations: “+” that
records alternative use of information, as in relational union
or projection, and “-”, that records joint use of information,
as in relational join. With these, the annotations become
provenance polynomials whose indeterminates are tokens
and with coefficients in N. For example, the monomial p*q is
the provenance of a result for which the data item annotated
p was used twice together with the item annotated q used
once. We denote the set of polynomials by N[T].



In the extension of the framework to matrix algebra [52],
annotation formally becomes a multiplication of vectors with
scalars as in linear algebra. The role of scalars is played by
provenance polynomials and the role of vectors, of course, is
played by matrices (generalizing their row vectors and the
transposes of these).

Matrices annotated with provenance polynomials form a
nice algebraic structure that extends matrix multiplication
and addition. We denote multiplication with scalars by “«”
writing p* A for the matrix A annotated with the provenance
polynomial p. For space reasons we cannot repeat here the
technical development in [52], however, we mention a crucial
algebraic property of annotated matrix multiplication, which
also illustrates combining provenance in joint use:

(p1 * APz * Ag) = (P1 - P2) * (A1Az)

We apply this framework to tracking input training sam-
ples through GBM’s in which the update involves only ma-
trix multiplication and addition. Let the training dataset be
(X,Y) where X is an n X m feature matrix and Yisan n x 1
column vector of sample labels. For i = 1,...,n, we anno-
tate every sample (x;, y;) (x; and [y;] are the i’th rows in X
respectively Y) with a distinct provenance token p;. Next,
we decompose X and Y as algebraic expressions in terms of
PL*¥X1, .. Pn*Xn, P1*[Y1], - . ., Pn * [yn] and some matrices
made up of the reals 0 and 1. These “helper” matrices are
annotated with the provenance polynomial 1,0y € N[T] (has
only a term of degree zero which is the natural number 1)
meaning “always available, no need to track”. We illustrate
with the provenance-annotated X when n = 2:

X = (1prov*

(l):| )(Pl *X1) + (1pr0v * [(1)] )(Pz * Xp) =

= [o.x.l.o )+ (P [O.XIZ.O])

When X is transposed, a similar decomposition applies
in terms of the annotated column vectors p; * x!. We also
note that the algebra of annotated matrices follows the same
laws as the usual matrix algebra. Consequently, we can per-
form in the algebra of provenance-annotated matrices the
calculations involved in the gradient-based update rules. For
illustration, a calculation involving X that without prove-
nance takes the form ), | a;x; x (where «; are some real
numbers) becomes with provenance annotations

D (prov * [aiDpi * x)(pi xx]) = Y pl # (ixix] ).
i=1 i=1

And here is the provenance-annotated expression for the
update rule of linear regression (i.e. Equation 5):

WD — [(1 =) 1k * 1)

2 2 7
e T

where ‘W) represents the provenance-annotated expres-
sion for the vector w(*) of model parameters while P*) rep-
resents a provenance-annotated expression for the number
of samples in the min-batch %", for example, following the
approach to aggregation in [2], P = 3, pi * 1.

In the semiring framework there is no division operation
so we used fractions with denominator $*) in Equation 7
only for notational purposes. As we shall see immediately
below, in incremental update P*) can be replaced with an
integer.

As with the other applications of the semiring framework,
deletion propagation is done by "zeroing-out" the deleted
samples. That is, if sample i is deleted we set the correspond-
ing provenance token p; = Oproy € N[T] (has only a term of
degree zero which is the natural number 0). The challenge, as
detailed in the following section is how to do this efficiently
throughout the gradient descent.

For the samples that remain we obtain (after we stop the
iterations) a provenance-annotated expression that can be
put in the form W =} my = ux where my is a monomial in
the provenance tokens and each uy is a vector of contribu-
tions to the model parameters. To get the updated vector
of model parameters we set each remaining provenance to-
ken to 1p0y obtaining w' = >, ug. And, as promised, we
notice that when all the provenance tokens are set to Oproy
or 1pv the provenance expression P comes down to an
integer. Denoting this integer by Bg) and denoting the set
of the indexes of the removed training samples by R, the
provenance-annotated update rule for W*Y becomes:

(WL(;tH) —[(1- Ut/l)(lprov * I)
2’71‘
- B(t) Z pExx; XT](W([) + — (z) Z prexy;  (8)
U jepn) U ic Bt
,igR LigR

4.2 Linearization for logistic regression

The model in [52] supports tracking provenance through ma-
trix addition and multiplication. In order to apply it to GBM
for logistic expression, we linearize, using piecewise linear
interpolation, the non-linear operations in the corresponding
update rules, i.e. Equation 6.

In Equation 6, the non-linear operations can be abstracted
as f(x)=1- ﬁ, where the value of the product y; w7 x;
is assigned to the variable x in Equation 6. Then f(x) can
be approximated by applying 1-D piecewise linear interpo-
lation [31]. So for each x; and w(*), f(y;w¥Tx;) can be ap-
proximated by s(y;wV7x;) = a>*Oy,wTx; + b-(*) where



a>® and b>®) are the linear coefficients produced by the lin-
earizations, which depends on which sub-interval (defined
by piecewise linear interpolation) the value of y;w¥)Tx; lo-
cates and thus should be varied between different x; and
different w()7 (see the associated superscript).

Throughout the paper, we will consider the case in which
the variable x in f(x) is defined within an interval [—aq, a]
(a = 20) that is equally partitioned into 10° sub-intervals;
for x outside [—a, a], we assume that s(x) is a constant since
when |x| > a, the value of f(x) is very close to its bound
(0 or 1). We will show that the length of each sub-interval
influences the approximation rate.

In terms of multinomial logistic regression, the non-linear
operations in its update rule is the softmax function, which is
a vector-valued function and thus requires piecewise linear
interpolation in multiple dimensions, which can be achieved
by using the interpolation method proposed in [51].

After the interpolation step over the update rules for bi-
nary logistic regression, Equation 6 is approximated as:

w(Lt“) ~[(1 -3+ % Z ai’(t)xixiT]w(Lt)
icW

+% Z bi’(t)yix,

ieB1)

)

in which W<Lt) represents the model parameter after lineariza-
tion at t' iteration. By annotating each training sample x;
with provenance token p; and by taking the similar deriva-
tion of Equation 8, after the removal of the subset of training
samples the provenance expression becomes:

(WIE;H) —[(1- Ut/l)(lprov * I)
+ % Z 25 (a"Wxx D)W, (t)
By ie@(’),ieﬂ (10)
e 24 (h Oy x.
+ (t) Z pi * (b ylxl)

U e, igR

By setting all the p; in Equation 10 as 1p,0y, We can get the

update rule for the updated model parameter w(ui ie.

wi D~ [(1 = )1

RG] wt) e L(Dy, 11
e Ol 4 S Oy )
U je® U iep™®)

,igR ,igR

4.3 Convergence analysis for
provenance-annotated iterations

One concern in using GBM is whether the model parame-
ters ultimately converge. This has been extensively studied
in the machine learning community [3, 29, 36, 48, 49]. In
[3], convergence conditions have been provided for GD and
SGD over strong convex objective functions. Those conver-
gence conditions can exactly fit linear regression and logistic

regression with L2-regularization because their objective
functions are strong convex.

A similar concern occurs when GBM is coupled with prove-
nance, i.e. whether the provenance expression ’Wl(,t) in Equa-
tion 8 and "WL(L) in Equation 10 converge in the case when
the original model parameter w(*) converges. We propose
the following definition for the convergence of provenance-
annotated expressions.

Definition 1. Convergence of provenance-annotated
expressions. The expression W) = ¥, pgt)*u(it) converges

(0

when ¢t — oo iff every matrix u;’ converges when t — oo.

As mentioned before, we hope that the convergence of
Wy () and (WL(U can be achieved when w?) can converge.
The convergence conditions of w(*) are presented below:

LEmMmA 1. Convergence conditions for general mb-SGD.
Given an objective function h(w), which is L—Lipschitz contin-
uous and A—strong convex once the learning rate n; satisfies:
Dy < %; 2) n; is a constant across all the iterations (denoted
byn), then w*) converges when mb-SGD is used.

Unfortunately, our theoretical analysis shows that there

. t t
is no convergence guarantee for ’VVI(]) and "WL(U) under the
convergence conditions from Lemma 1, i.e.:

THEOREM 2. "Wl(,t) in Equation 8 and ‘WEQ in Equation 10
need not converge under the conditions in Lemma 1.

However, ‘Wl(,t) in Equation 8 and ‘WL([? in Equation 10
converge under the conditions in Lemma 1 with one more
assumption about the provenance expression, i.e.:

THEOREM 3. The expectation of"W(t) in Equation 8 and of

(VV(t) in Equation 10, converge when t — oo if we also assume
that provenance polynomial multiplication is idempotent.

Intuitively speaking, the assumption of multiplication
idempotence for provenance polynomials means that we do
not track multiple joint uses of the same data sample, which
is not problematic for deletion propagation.

4.4 Accuracy analysis for linearized
logistic regression

The next question is whether the approximated model param-

eters after linearization of Equation 6 (i.e. w( )in Equation 9)

is close enough to the real model parameters from Equation

6. By following the approximation property of piecewise

linear interpolation, we can prove that the distance between

w® and w'” is very small.

*Due to space limitations the proofs of the theorems are omitted. They will
appear in the full version of the paper.

[3]



THEOREM 4. ||[E(w®) — w(Lt))l |2 is bounded by O((Ax)?)
where Ax is an arbitrarily small value representing the length
of the longest sub-interval used in piecewise linear interpola-

tions.

Furthermore, in terms of the updated model parameters
for logistic regression, we also need to guarantee that the
updated parameters w( ) are close to the real updated model
parameters without hnearlzatlon (denoted by w,,), i.e.:

t+1 ¢
(+)<—(l—I]A)w()+B(t) Z yixi f (yi Eu)/ i)

U jegt)
LigR

(12)

Recall that f(x) = 1~ = Note that the linear coefficients

a>® and b>® in Equation 11 are actually derived in the
training phase where all samples exist (rather than in the
model update phase), which implies that a larger difference

(¢ ) (t)

between w,;, and w,,, should be expected. Surprisingly, we

can prove that the dlstance between w( ) and WEH), is still

small enough.

THEOREM 5. ||E(w<Ltl), - w&fZ,)Hz is bounded by O(A—n"Ax) +
O((%)Z) + O((Ax)?), where An is the number of the removed
samples and Ax is defined in Theorem 4.

5 IMPLEMENTATION

We now discuss how the ideas in the previous section are
implemented in PrIU and PrIU-opt, for both linear and lo-
gistic regression. Along the way, time and space complexity
analyses, as well as theorems that justify our approximation
strategies used in PrIU and PrIU-opt, are provided.

5.1 PrlIU: Linear regression

In Equation 8, by setting all the p; as 1y, the expression
Zle%(” léﬂp? * X XT becomes 3, _ ) XixiT — Diea",ieR
x,x in which the first term, 3. _ ) xl-xl.T, can be regarded
as provenance information and thus cached as an interme-
diate result for each mini-batch during the training phase
for the original model parameter w'*). Thus we only need
to compute the latter term during the incremental update
phase. ;. 5 jqg Xiy;i can be computed in a similar way.
In the end, Equation 8 is then rewritten as follows for the
purpose of incremental updates:

2n
wit [ -ne - 05 ) xix]
U jent)
(13)
3 T1e(®) s
Z X;X; ]W + (t)(z XiYi — Z lel)
icB® By icB® ieB),ieR

JIER

Note that 3, ) ;cn xl-xl.T can be rewritten into matrix form,
ie. AXT e

removed samples in the mini-batch #*). The associativity

AX ) where AX 4 is a matrix consisting of the

property of matrix multiplication can also be used to avoid
expensive matrix-matrix multiplications (i.e. AX” 20X z0)
by conducting more efficient matrlx vector multiplications
instead (e.g. computlng AX%U)W D first and then multiply-
ing the result by AX ng)

Suppose that AB samples are removed from each mini-
batch on average, then the time complexity of updating the
model parameters in each iteration using Equation 13 will be
O(ABm +m?) (recall that the dimension of X is nx m). In con-
trast, the time complexity for retraining from scratch (i.e. not
caching 3. ) xixl.T in Equation 13) will be O((B — AB)m).
Of course, performance predictions based on asymptotic
complexity give only very rough guidance, and we conduct
experiments for realistic assessments. Still, the bounds above
suggest, for example, that for small AB and m < B incre-
mental deletions with PrIU work better than retraining (and
our experiments verify this, see Section 6).

Typically, however, a smaller mini-batch size B is used.
To deal with the case in which m > B, we notice that the
rank of the intermediate result, 3}, x,-xiT should be no
more than B, thus smaller than m when B is smaller than
m. This motivates us to reduce the dimension of the inter-
mediate results using SVD, i.e. 3, _ ) X; x! = uWsVT-(1),
where S is a diagonal matrix whose dlagonal elements rep-
resent the singular values, while U®) and V() are the left
and right singular vectors. Suppose after SVD, we only keep
the r largest singular values and the corresponding singular
vectors where r < B, then 1, _ ) X;X T is approximated by

U(t) S(t) V(t)T (U(t) V(t) represents the submatrix com-

1..r’
posed of the first r columns and S( ) . is a diagonal matrix
composed of the first r elgenvalues in S(t)) Thus Equation
13 is rewritten as:

1 (1) (1) (T
wil) [(1—m)t)1—p(u1 SV
(14)
AXQU)AX@@)) (t)+ (t) Z XY — Z X;Y;)
By ieB) ieB

,ieR

Here we can cache the results of U(lt) rS(lt)r (denoted by

P(lt) ,) and V(lt) , for efficient updates, both of which have
dimensions m X r.

Time complexity. The time complexity to update the
model parameters using this approach is O(rm + ABm) for
each iteration since the computation time is dominated by
the matrix-vector computation, e.g. the multiplications of
VT (t) and WU) This is more efficient than retraining from
scratch which has time complexity O((B — AB)m). So the
total complexity for PrIU is O(rrm + tAB), where r is the
number of iterations in the training phase.



Space complexity. Using this approximation, at each it-

eration we only need to cache P(t) and V(t) which require
space O(rm). So the total space complex1ty will be O(rrm)
for 7 iterations.

THEOREM 6. Approximation ratio Under the convergence
conditions for w), ||w?)|| should be bounded by some con-
U(t) s(z) T(t)llz
||U(‘)S(‘)VT O],
value, then the change of model parameters caused by the
approximation will be bounded by O(e).

stant C. Suppose > 1 — € where € is a small

This shows that with proper choice of r in the SVD ap-
proximation, the updated model parameters computed by
PrIU or PrIU-opt should be still very close to the expected
result. So in our implementations, r is chosen based on € (say
0.01) such that the inequality in Theorem 6 is satisfied.

5.2 PrlIU-opt: Optimizations for linear
regression

When the feature space is small, additional optimizations can
be used for linear regression. Note that according to [29],
the model parameters derived by both SGD and mb-SGD will
end up with statistically the same results as GD. This means
that the update rule in Equation 5 and Equation 13 could be
approximated by its alternative using GD, i.e.:

2,
wtD (1= p, I - xTX) 0 4 2 “EXTY(15)
2
Wit (1= )= _”A xXTX - AXTAX))W
(16)
2
+ M (xTy - AXTAY)
n—An

in which (AX, AY) represent the removed samples while An
represents the number of those samples. Let M and N denote
XTX and XTY respectively. Then eigenvalue decomposition
can be applied over M, i.e. M = Q diag ({c;}",) Q™" (where
c; represents the eigenvalues of M). This is then plugged into
Equation 15 and computed recursively, which results in the
following formula:

wi*) = Q diag ({IT}_ (1 — ;A -

t—1

+Qdiag( > m{I_,, (1 - ;A - —c,)} ' )Q S
I=1

—Le)e,) Q7w

N (17)

This indicates that once the eigenvalues and eigenvectors
of each M are given, we can derive w(®) by simply comput-

ing the product, H (1= 171/1 - c,) and the sum of the

product, Zf;i n j:l+1(1 -l Tci), on diagonal entries.
The overhead of this is only O(zm) (recall that 7 represents
the total iteration number), and thus we avoid the repetitive
matrix multiplication operations through the for-loops. Also,

observe that M’ = X” X~ AX” AX can be regarded as a small

change over M when An is small. Thus we can use the results
on incremental updates over eigenvalues in [41], i.e. when
the difference between the eigenvectors of M’ and that of M
is negligible then the eigenvalues of M’ are estimated as:

Q'M'Q= diag({cj}i=;) (18)

Here, ¢/ represents the approximated i* h eigenvalue of M’
It indicates that we can apply eigenvalue decomposition over
M offline before the model incremental update phase and
use Equation 18 to get the updated eigenvalues online.
Time complexity. The time complexity for updating the
model parameters is dominated by the computation of ¢},
which is followed by the computation over each ¢ as Equa-
tion 17 does. These have time complexities O(min{An, m}m?)
and O(rm), respectively. So the total time complexity is
O(min{An, m}m?)+O(rm), which can be more efficient than
the closed-form solution (see experiments in Section 6).
Space complexity. The method avoids caching the prove-
nance information at each iteration, and only requires caching
Q, Q7! and all the eigenvalues c;, which takes space O(m?)

THEOREM 7. (Approximation ratio) The approximation

of PrIU-opt over the model parameters is bounded by O(||AX* AX]|)

This shows that with small number of removed samples,
the approximation ratio should be very small.

5.3 PrIU: Logistic regression

As the first step of the implementation of PrIU for logis-
tic regression, non-linear operations are linearized using
piecewise linear interpolation. Then, based on the analysis
in Section 4, given the ids of the samples to be removed in
dense datasets, R, Equation 11 is rewritten as follows:

Nt
wit e [(1 - p )L+ W(C(’) - AC)]wlt)
Bo (19)
+ It p® _ Ap®)
B\
where C®Y), D), ACY), AD® are:
c = Z ai’(t)x,-xiT,AC(t) = Z ai’(t)xl-xiT
icBWb ieR,icB)
D® = Z bi’(t)yixi,AD(t) - Z bi,(f)yixi
ieB® ieR,icB)

Similar to linear regression, the intermediate results c®
and D) are cached and the dimension of C*) can be reduced
by using SVD before the model update phase, which can
happen offline. Suppose after SVD, C**) ~ P(t) 1T<rt),

which P(lt_?r and V(lt_)_r are two matrices with dlmensmn mxr.

in



In the end, Equation 19 is modified as below for incremental
model updates:

(t+1) — [(1 _ Ut/l)I + P(t) T (t) C(t))]

B(r)(

" o

+ ﬁ(D(t) — AD(t))
U

Time complexity. To apply Equation 20 in the model up-
date phase, the computation ofP(t) VIT (rt) (t) and ACY'w ([)
become the major overhead, Wthh have tlme complex1ty
O(rm) and O(ABm), respectively. Suppose there are 7 iter-
ations in total, then the total time complexity is O(z(rm +
ABm)). In comparison, the time complexity of retraining
from scratch is O(z((B — AB)m + Cyonm)), where Cpop, rep-
resents the overhead of the non-linear operations. When
r < Band AB <« B, we can therefore expect PrIU to be
more efficient than retraining from scratch.

Space complexity analysis Through this approxima-
tion, we need to cache P(It) »and V(lt.).r at each iteration, which
requires O(rrm) space in total. Plus, O(n I'%'l) extra space is
necessary to cache the linear coefficients. So the total space
complexity will be O(zrm) + O(nI'%'l).

THEOREM 8. (Approximation ratio) Similar to Theorem 6,
the deviation caused by the SVD approximation will be bounded
e, vl

PO VO],
5 ||E(w) — wiid)llz is bounded by O(2 Ax) + O((A2)2) +

O((Ax)?) + O(e).

by O(e), given the ratio > 1—e. So using Theorem

This indicates that w(u} should be very close to w (s1m-
ilar to the discussion after Theorem 6).

Discussion Notice that for sparse datasets with large fea-
ture space, we can utilize the efficient sparse matrix oper-
ations by retraining from scratch. Also note that the inter-
mediate result C'*) will be a sparse matrix for such datasets.
However, after SVD, there is no guarantee that P) and v(*)
are sparse matrices. Therefore, for sparse training datasets,
we will simply use the linearized update rule, i.e. Equation
11 directly, without considering the strategies above.

5.4 PrIU-opt: Optimizations for logistic
regression

Again, when the feature space is small additional optimiza-
tions are possible. In particular, we observe that for each
sample i the change in the coefficients a**) and b*®*) from
one iteration to the next becomes smaller and smaller as w*)
converges. This suggests that we can stop capturing new
provenance information at some earlier iteration, call it ¢,
and continue with the same provenance until convergence.
Suppose that for each sample i we approximate a*(*), b>(*)
by a”* and b%* after the iteration t;. Therefore the matrices
c®, D" AC® and AD®) will be approximated using the

coefficients a>* and b>* and will remain the same for all
iterations t > t; allowing us to avoid their recomputation.
In the experiments, we found that a rule of thumb that takes
t; to be 70% of the total number of iterations works well.

This has the same form as for linear regression, motivat-
ing us to use the same techniques from PrIU-opt for linear
regression, i.e. conducting eigenvalue decomposition over
C®, followed by incrementally updating the eigenvalues
given the changes AC'?), thus avoiding recomputations after
the iteration ;.

Time complexity. Before and after the iteration t,, the to-
tal time complexity is O(ts(rm+ABm)) and O(min{An, m}m?)+
O((t — ts)m) (see the time complexity analysis in Section 5.2)
respectively. Thus the total time complexity is O(ts(rm +
ABm)) + O(min{An, m}m?) + O((t — t;)m).

Space complexity. After the iteration t;, we only need
to keep the eigenvectors of C**), which requires O(m?) space.
Including the space overhead for the first ¢, iterations, the
total space complexity is O(m?) + O(tsrm) + O(nl’%’l).

THEOREM 9. (Approximation ratio) Suppose that after
the iteration ts the gradient of the objective function is smaller
than 8, then the approximations of PrIU-opt can lead to de-
viations of the model parameters bounded by O((t — t5)0) +
O(| IAXTAXl |). By combining the analysis in Theorem 5, | |E(w§2
wRU)| |2 is bounded by O(5" An Ax)+O((5* Any2)y L O((Ax)?)+O((r—
t)8) + O(||AX" AXIl)

This thus indicates that w(L) should be very close to w,

Discussion. Our current framework handles linear and
logistic models with L2 regularization. Our solutions cannot
handle L1 regularization since in this case the gradient of
the objective function is not continuous, thus invalidating
some of the error bound analysis above. How to handle L1
regularization will be our future work.

(t)

6 EXPERIMENTS
6.1 Experimental setup

Platform. We conduct extensive experiments in Python 3.6
and use PyTorch 1.3.0 [42] for the experiments for dense
datasets and scipy 1.3.1 [27] for the experiments for sparse
datasets. All experiments were conducted on a Linux server
with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and
64GB of main memory.

Datasets. Six datasets were used in our experiments: (1)
the UCI SGEMM GPU dataset®; (2) the UCI Covtype dataset
4. (3) the UCI HIGGS dataset °; (4) the RCV1 dataset ¢ (5)

Shttps://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+
performance

4https://archive.ics.uci.edu/ml/datasets/covertype
Shttps://archive.ics.uci.edu/ml/datasets/HIGGS

¢simplified version from https://scikit-learn.org/0.18/datasets/rcv1.html
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https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/HIGGS

the Kaggle ECG Heartbeat Categorization Dataset’; (6) the
CIFAR-10 dataset &, which are referenced as SGEMM, Cov,
HIGGS, RCV1, Heartbeat and cifar10 hereafter.

SGEMM has continuous label values, therefore we use it
in experiments with linear regression while the rest of them
have values that are appropriate for classification. Each
dataset is partitioned into training (90% of the samples) and
validation (10% of the samples) datasets, the latter used for
measuring the accuracy of models trained from the former.

The characteristics of these datasets are listed in Table
1, which indicates that RCV1 and cifar10 have extremely
large feature space (over 30k model parameters) while other
datasets have much fewer parameters (Heartbeat has around
1000 while others have less than 500).

6.2 Experiment design

We conduct two sets of experiments, the first of which aims
to evaluate the performance of PrIU and PrIU-opt with re-
spect to the deletion of one subset of the training samples.
We do this over different types of datasets (dense VS sparse,
large feature space VS small) with varied configurations (how
many samples to be removed, mini-batch size, iteration num-
bers etc.), and compare against retraining from scratch. The
second set of experiments simulate the scenario where users
repetitively remove different subsets of training samples.

In the first set of experiments we simulate the cleaning
scenario. To specify the samples to be removed from the
training datasets, we introduce dirty samples, which are a
selected subset of samples from the original dataset 7~ that
are modified to incorrect values by rescaling. The resulting
dataset is denoted 7, , over which the initial model M,
is constructed. The dirty samples are then removed in the
model update phase. The goal is to compare the robustness of
PrIU, PrIU-opt and the influence function [30] method when
dirty data exists. In the experiment we vary the number of
erroneous samples generated. The ratio between the erro-
neous samples and the original training dataset is called the
deletion rate, and we give it values ranging from 0.0001 (i.e.
0.01%) to 0.2 (i.e. 20%).

In the second set of the experiments, we simulate the sce-
nario in which users debug or interpret models by removing
different subsets of samples, necessitating repeated incremen-
tal model update operations. We assume that the datasets
are very large; to simulate this, we create three synthetic
datasets 7, by concatenating 4 copies of HIGGS, 20 copies of
Cov and 130 copies of Heartbeat such that the total number
of training samples is around 40 million, 11 million and 11
million, respectively, which are denoted HIGGS (extended),
Cov (extended) and Heartbeat (extended), respectively. In the

"https://www.kaggle.com/shayanfazeli/heartbeat
8https://www.cs.toronto.edu/~kriz/cifar.html

experiments, ten different subsets are removed and for each
of them the deletion rate is about 0.1% of randomly picked
samples out of the full training set. The hyperparameters for
this set of experiments are listed in Table 2.

Baseline. For both 7, and 7, we simulate what users
(presumably unaware of errors) would do, and train an initial
model M, using the following standard method: Manually
derive the formula for the gradient of the objective func-
tion and then program explicitly the GBM iterations. The
erroneous or chosen samples are then removed from 7, or
7. For linear regression (except for GBM), we also compare
PrIU and PrIU-opt against close-form formula solutions for
incremental updates [13, 22, 23, 40], denoted by Closed-form.

Incrementality. To update the model M, , the straight-
forward solution is to retrain from the scratch by using the
same standard method as before but exclude the removed
samples from each mini-batch. We denote this solution by
BaseL. In contrast, our approach uses PrIU or PrIU-opt to
incrementally update the model. The time taken by BaseL,
PrIU or PrIU-opt to produce the updated model is reported in
the experiments as the update time, and is compared over the
two solutions: retraining with BaseL vs. incremental update
with PrIU or PrIU-opt.

Note that our PrIU/ PrIU-opt approach uses provenance
information collected from the whole training dataset. This
phase is offline for the PrIU/ PrIU-opt algorithms and is not
included in their reported running times. In practice, for
the first set of experiments (cleaning of erroneous samples)
provenance collection is done during the training of M, ,
from 7, . For the second set of experiments (repeated dele-
tions of subsets for debugging or interpretability) provenance
collection is done during an initial training of M, from the
entire dataset 7 , which only needs to be done once even if
many deletions of subsets are performed subsequently.

Since PrIU-opt is the optimized version for datasets with
small feature space we only record the update time of PrIU
over RCV1 and cifar10, which have very large feature spaces.

Accuracy. We compare the quality of the updated model
obtained by BaseL and PrIU/PrIU-opt. The goal is to show
that the improvement in update time is not achieved at the
expense of accuracy. For experiments with linear regression,
we use the mean squared error (MSE) over the validation
datasets as a measure for accuracy. A lower MSE corresponds
to higher accuracy over the validation set. For experiments
with binary or multinomial logistic regression, we use the up-
dated model to classify the samples in the validation datasets
and report their validation accuracy.

Model comparison. We also compare the updated mod-
els structurally by comparing the vector of updated model
parameters obtained via PrIU/PrIU-opt against the ones by
using BaseL. This is done in two different ways: 1) Using
distance, that is, the L2-norm of the difference between the


https://www.kaggle.com/shayanfazeli/heartbeat
https://www.cs.toronto.edu/~kriz/cifar.html

two vectors, for both linear and logistic regression, and 2)
Using similarity, that is, the cosine of the angle between the
two vectors. The latter is only done for logistic regression
since the angle is only relevant for classification techniques.
For both linear regression and logistic regression, we also
record the changes of the signs and magnitude of individual
coordinate of the updated model parameters by PrIU and
PrIU-opt compared to the ones obtained by BaseL.

Comparison with influence function. As indicated in
Section 2, the influence function method in [30] can be ex-
tended to handle the removal of multiple training samples
by us (details omitted). We denote the resulting method INFL
and compare it against PrIU/PrIU-opt in the experiments.
We predicted and verified experimentally that this approach
produces models with poor validation accuracy since the
derivation of INFL relies on the approximation of the Taylor
expansion, which can be inaccurate. We also notice that the
Taylor expansion used in INFL involves the computation of
the Hessian matrix, which is very expensive for datasets with
extremely large feature space. So we did not run INFL over
RCV1 and cifar10 in the experiments; the comparison be-
tween PrIU/PrIU-opt and INFL over other datasets is enough
to show the benefits of our approaches.

Effect of the hyperparameters and feature space size
As discussed in Section 5, the performance of PrIU and PrIU-
opt is influenced by the mini-batch size, the number of itera-
tions and the size of the feature space. To explore the effect of
the first two parameters for logistic regression, three differ-
ent combinations of mini-batch size and number of iterations
are used over Cov, denoted Cov (small), Cov (large 1) and Cov
(large 2) (see Table 2). Since the datasets used for logistic re-
gression have different feature space sizes, the performance
difference with respect to feature space size is also compared.
Since there is only one dataset for linear regression, SGEMM,
we extend this dataset by adding 1500 random features for
each sample to determine the effect of feature space size. The
extended version of SGEMM is denoted SGEMM (extended)
(see Table 2). Other hyperparameters used in the experiments
are shown in Table 2. Note that since erroneous samples exist
in the training datasets for the first set of experiments, some
values of the learning rate need to be very small to make
sure that the convergence can be reached.

In the experiments, we answer the following questions:

(Q1) Do the optimizations used in PrIU-opt compared to
PrIU lead to a significant improvement in update time
without sacrificing accuracy when the number of fea-
tures in the training set is small?

(Q2) Do PrIU and PrIU-opt afford significant gains in effi-
ciency compared to BaseL?

(Q3) Are the efficiency gains provided by PrIU and PrIU-
opt achieved without sacrificing the accuracy of the
updated model?

(Q4) Can we experimentally validate the theoretical anal-
ysis in Sections 4.4 and 5, i.e. that the updated model
derived through the approximations in PrIU and PrIU-
opt is very close to the one obtained by BaseL?

(Q5) Does the influence function approach, INFL, provide a
competitive alternative to PrIU and PrIU-opt?

(Q6) Can we experimentally show the effect of the hyper-
parameters, such as mini-batch size and iteration num-
bers over the performance gains of PrIU and PrIU-opt?

(Q7) Can we experimentally show the effect of the feature
space size (i.e. the number of model parameters, which
equals to the feature number times the number of
classes for multi-nomial logistic regression)?

(Q8) What is the memory overhead of PrIU and PrIU-opt
for caching the provenance information?

6.3 Experimental results

We report the results of our experiments in this subsection.
(Q1) We compare the update time of PrIU and PrIU-opt
for linear regression using SGEMM (extended) in Figure 1b.
The results show that the update time of PrIU-opt is signifi-
cantly better than that of PrIU except when the deletion rate
is approaching 20%. We also see from Table 4 that PrIU-opt
and BaseL yield models that have exactly the same valida-
tion accuracy. Therefore, although PrIU-opt uses additional
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Table 1: Summary of datasets Table 2: Summary of hyperparameters used in the ex-
periments
name # features | # classes # samples
SGEMM 18 241,600 name mini- # of other hyper-
Cov 54 7 581,012 batch | iterations parameters
HIGGS 28 2 11,000,000 size 1, 2)
RCV1 47,236 2 23,149 SGEMM (original) | 200 2000 (5x1073,0.1)
Heartbeat 188 7 87,553 SGEMM (extended) | 200 2000 (5x1073,0.1)
cifar10 3072 10 50,000 Cov (small) 200 10000 (1% 107%,0.001)
Cov (large 1) 10000 500 (1x107%,0.001)
Cov (large 2) 10000 3000 (1x1077,0.001)
approximations for optimization, they do not hurt the pre- HIGGS 2000 20000 (1x107°,0.01)
dictive power of the updated models. This shows that the Cov (extended) 1000 40000 (1x107%,0.001)
optimization strategies in Sections 5.2 and 5.4 are worth the HIGGS 2000 20000 (1x107°,0.01)
design and implementation effort. Consequently, we will HIGGS (extended) | 2000 60000 (1x107°,0.01)
only compare PrIU-opt against other approaches except for Heartbeat 500 5000 (1x107°,0.1)
i i Heartbeat
cifar10 anq RCV1 which have extremely large f.eatu@ spaces. eartbea 500 40000 (1%1075,0.1)
(Q2) Figures la-1b compare the update time in BaseL (extended) .
and PrIU-opt using linear regression (ignore the INFL lines RCVl 500 3000 (1x107°,0.5)
for the moment), while Figures 2-3 show the same results cifar10 500 1000 (0.001,0.1)
for logistic regression for single model update operation.
Observe that for both linear and logistic regression, when magnitude for linear regression and up to around 23x for lo-
the deletion rate is small (<0.01), PrIU-opt can achieve sig- gistic regression (for Cov (large 1) and Cov (large 2) with low

nificant speed-up compared to BaseL: up to two orders of deletion rate). Even when the feature spaces are extremely



Table 3: Memory consumption summary (GB)

Dataset BaseL PrlU PrIU-opt
Cov (small) 0.71 4.30 4.34
Cov (large 1) 0.87 4.02 3.49
Cov (large 2) 1.34 21.0 174
HIGGS 5.09 8.40 8.40
SGEMM (original) 2.43 2.45 2.48
SGEMM (extended) 4.94 6.66 5.74
Heartbeat 0.46 6.01 5.69
RCV1 0.28 0.3 -
cifar10 0.79 26.59 -

large, with deletion rate 0.1%, there is around a 2.6x speed-
up for dense datasets (cifar10 in Figure 3c) and only 10%
for sparse datasets (RCV1 in Figure 3c), respectively (similar
speed-ups were observed for other small deletion rates). The
former shows the effectiveness of the optimization strategies
in PrIU over dense datasets with a large feature space while
the latter is due to the fact that the optimization strategies
for dense datasets were not applied over the sparse ones. No-
tice that for linear regression, PrIU-opt is always faster than
Closed-form. Figure 4 shows the results of repetitive model
updates; PrIU-opt achieves an order of magnitude speed-up
for HIGGS (extended).

(Q3) Table 4 (validation accuracy for PrIU and PrIU-opt
column) compares the quality of the models obtained by
PrIU/PrIU-opt with that of the models obtained by BaseL.
For these results we chose the highest deletion rate in the
experiments, i.e. 20%. For all the experiments, the validation
accuracy (MSE in the case of linear regression) of the updated
models obtained by PrIU and PrIU-opt match exactly the
accuracy of the ones obtained by BaseL. Combined with the
answer to Q2, we can conclude that PriU-opt speeds up the
model update time by up to two orders of magnitude without
sacrificing any validation accuracy.

(Q4) We investigate why PrIU-opt has the same validation
accuracy as BaseL by measuring the distance and similar-
ity between the updated models computed by PrIU-opt and
BaseL. The results are presented in Table 4 (again, ignore
the columns for INFL). The results indicate that the updated
model parameters computed by PrIU-opt are very close to
the ones obtained by BaseL since the cosine similarity is
almost 1 (see the “similarity” column) while the L2-dist is
very small (see the “distance” column). An even finer-grained
analysis, comparing the signs and magnitude of each coordi-
nate in the model parameters updated by PrIU-opt and BaseL
shows that there is no sign flipping and only negligible mag-
nitude changes for PrIU-opt compared to BaseL when the
deletion rate is small. Even with a large deletion rate of 20%
in HIGGS, only 2 out of 58 coordinates flip their signs with
small magnitude change.

(Q5) The model update time of INFL is also included
in Figures 2 and 3. Note that it can be up to one order of
magnitude better than PrIU-opt, which is expected since
using INFL to update the model parameters does not require
an iterative computation. However, there is a significant drop
in validation accuracy of the updated model derived by INFL
compared to BaseL and PrIU-opt (see Table 4), which is due
to the significantly higher L2-dist (see the “distance” column)
and lower cosine similarity (see the “similarity” column) of
its updated model compared to the model derived by BaseL.
We conclude that PrIU and PrIU-opt produce much better
models than INFL yet can still achieve comparable speed-ups.

(Q6) Effect of mini-batch size. The effect of mini-batch
size is seen by comparing Cov (large 1) and Cov (small). One
observation is that with larger mini-batch size, the maximal
speed-up of PrIU-opt is around 23x, while with the smaller
mini-batch size it is only about 6x, see Figures 2a and 2b
This confirms the analysis in Section 5. In the second set
of experiments, we used a small mini-batch size for Cov
(1000) and Heartbeat (500), resulting in only 4.62x and 3.2x
speed-ups by PrIU-opt, respectively (see Figure 4).

2000
2 [ BaseL
21500 71 PriU-opt
§1000 10.5 x

5

o 500 —x—

& 4.62 x

o

HIGGS (extended) Cov (extended)

Figure 4: The execution time of repetitively removing
10 different subsets

Effect of number of iterations. A comparison of Cov
(large 1) and Cov (large 2), which have the same mini-batch
size but a different number of iterations, can be found in
Figures 2b and 2c. We observe that no matter how many
iterations the program runs for, at the same deletion rate
PrIU-opt achieves a similar speed-up against BaseL. For ex-
ample, we have up to around 23x speed-up for small deletion
rates and smaller speed-up for higher deletion rates (note
the difference in y-axis scale between Figures 2b and 2c).
However, increasing the number of iterations increases the
amount of provenance information cached for PrIU-opt, thus
requiring more memory. As Table 3 indicates, since there
are 6x iterations for Cov (large 2) compared to Cov (large
1), roughly 6x memory is needed, confirming the analysis in
Section 5. However for Cov, with a large mini-batch size and
500 iterations, convergence is achieved and we do not ob-
serve a difference in validation accuracy between Cov (large
1) and Cov (large 2). Note that according to [10, 37, 43], the
theoretical optimal number of passes for logistic regression

heartbeat (extended)



Table 4: Accuracy and similarity comparison between
PrIU-opt and INFL with deletion rate 0.2

Validation . o
distance similarity
Dataset accuracy
BaseL = INFL | PrIU- | INFL | PrIU- | INFL
PrIU-opt opt opt
Cov
48.76% 36.93% | 0.184 | 1.287 | 0.992 | 0.624
(small)
Cov 48.76% 37.99% | 0.0016| 1.047 1.0 0.738
(large 1)
Cov 48.76% 46.38% | 0.0003 | 1.430 1.0 0.471
(large 2)
HIGGS 52.99% 47.99% | 0.0004 | 0.006 | 0.979 | -0.040
Heartbeat 82.78% 74.34% | 0.0016| 0.583 | 1.00 0.143
SGEMM 0.001 0.002 | 0.027 | 0.140 - -
(origin)
SGEMM 0.001 0.002 | 0.029 | 0.141 - -
(extended)

using mb-SGD (one pass equals to the total number of iter-
ations divided by the number of iterations used for going
through the full training set) is quite small. However, for
Cov (large 2) the number of passes over the full training
set is quite large (3000/(581012/10000) ~ 60). Such a high
memory usage should therefore not arise in practice.

(Q7) In terms of the update time for experiments over
datasets with a comparable mini-batch size but with different
feature space sizes (Heartbeat VS HIGGS), we notice that
a larger number of model parameters leads to poorer per-
formance by PrIU-opt (compare Figures 3a and 3b). This is
also validated through a second set of experiments in which
HIGGS (extended) achieves significant speed-up compared
to Heartbeat (extended) (see Figure 4). This confirms the
analysis in Section 5, where we show how the asymptotic
execution time of PrIU and PrIU-opt depends on the number
of the model parameters.

(Q8) Table 3 shows that in most cases, both PrIU and PrIU-
opt only consume no more than 5x memory compared to
BaseL (ignore the number for Cov (large 2) since, as discussed
earlier, it is a rare case in practice). However, with a large
number of model parameters (like cifar10 and Heartbeat)
there is over 10x memory consumption for PrIU and PrIU-
opt. How to decrease the memory usage for dense datasets
with large feature space is left for future work.

Discussion. Extensive experiments using linear regres-
sion and logistic regression over the datasets above show the
feasibility of our approach. PrIU and PrIU-opt can achieve
up to two orders of magnitude speed-up for incrementally
updating model parameters compared to the baseline, es-
pecially for large datasets with a small feature space. This
is done without sacrificing the correctness of the results

(measured by similarity to the updated model parameters
by BaseL) and the prediction performance. The experiments
also show that the optimizations used in PrIU-opt give signif-
icant performance gains compared to PrIU with only a small
loss of accuracy. We observe that INFL is not a good solution
because of the poor quality of models produced when more
than one sample is removed.

Limitations. Our experiments also show the limitations
of our solutions. They concern the memory footprint when
the feature space or the number of iterations is large (an-
ticipated by several analyses in Section 5) and the marginal
speed-up for large sparse datasets (See Section 5.3). We shall
endeavor to approach these limitations in future work.

7 CONCLUSIONS

In this paper, we build a connection between data prove-
nance and incremental machine learning model updates,
which is useful in many machine learning and data science
applications. Building on an extension of the provenance
semiring framework [21] to include basic linear algebra op-
erations [52], we capture provenance in the training phase
of linear regression and (binary and multinomial) logistic
regression and address non-linear operations in logistic re-
gression using piecewise linear interpolation. We prove that
linearization does not harm convergence of the updated pa-
rameters and similarity to the expected results. Based on
these theoretical results, we construct solutions, PrIU and
PrIU-opt, which are optimized to reduce the time and space
overhead. The benefits of our solutions are experimentally
verified through extensive evaluations over various datasets.
Looking forward, we believe that these solutions for simpler
machine learning models are likely to extend to generalized
additive models [24] and they also pave the way toward so-
lutions for more complicated machine learning models such
as deep neural networks.
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A APPENDIX
A.1 Notations

A.1.1  Notations for objective functions, gradients and update rule. The objective functions for linear regression, binary logistic
regression and multinomial logistic regression are shown as below (They are Equation (2)-(4) in the paper):

1 v A
h(w) = = > (i = xw) + | Iwlf} (21)
i=1

h(w) = Zln(1+exp{ yiw X)) + = ||w||2 (22)

i=1

h(w) = Z Z(ln(z wl JXiy - wkx)+ —||vec([w1,wz, .,wq])llg (29)
= ly;=

w= vec([wl,wz, cowel)
Note that h(w) can be rewritten as h(w) = = 37 hy(w) + %”W(t)”' For example for Equation (3), h;(w) = (y; — x] w)?

For linear regression and logistic regression, the rule for updating w'*) under mb-SGD is presented below (They are Equation
(5)-(6) in the paper and we use VORwWD) to denote the average gradients evaluated over the mini-batch at the t,}, iteration):

2
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Note that in Equation (25), the non-linear part can be abstracted as f(x) = 1 - —= +e . So this formula can be also represented
as:
1
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in which — 3}, z0 Xixl.Tf’(yiw(t)Txi) should be a semi-definite matrix since f(x) = 1 — is a monotonically

1
1+exp{-x}
decreasing function and thus f’(x) should be negative for any x.



A.1.2  Notations for the linearized update rule. After the interpolation step over the update rules for binary logistic regression,
Equation (25) can be approximated as (It is Equation (9) in the paper):

w(Lt“) ~[(1-n I+ U Z By xT (t) + I Z by, x; (28)
B ic B ze@“)
which can be also represented as:

Wl [(1— g DL+ % Z a*Ox;x Tw (t)+’;3 Z b (y,x;

ie@“) ic B (29)

= (- pw? + It Z yixis(yiw DT x;)
le.@(”
in which s(x) = a*®x + b-®).
Suppose after removing certain subset (the number of those samples is An and the corresponding indices are R), Equation
(29) becomes (It is Equation (11) in the paper):

w(LtJD ~[(1 -+ — (t) Z atWx; xT]w(LtJ + Ué) Z b Dy;x;

U jeBY,i¢R U jeBY,i¢R (30)
Nt
_(1—ntA)w(t)+ 0 Z yix;s(y;w (t)Txl)
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For the linearized version of the update rule of logistic regression in Equation (29) and the update rule in Equation (30), we
represent VT(t)(W(t)) and VR(t)(w(t)) as:

VT (w') = —yixis(yiwTx;) = (—aOxx)w?) - b+ Oyx; (1)

VT(t)(w(Lt)) =% Z le.(t)(w(Lt)) (32)
icBW

vRY(wlh)) = ylx s(yiwl) xi) = —a"Oxx] wll) = bt yixg (33)

VROw) = F > RO W) (34)

U ieBY,i¢gR

where VT(t)(w(t)) and VR(’>(w(t)) can be considered as pseudo-derivative in Equation (29). So Equation (29) and Equation
(30) can be rewritten as:

w(L”l) =(1-n A)w(t) + U(t) Z yixis(yiw(L’)Txi) =(1- ryt/l)w(L‘) - r]tVT(t)(w(Lt)) (35)
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In contrast, by computing the model parameter from the scratch for logistic regression after removing the same set of
training samples, the update rule is (It is Equation (12) in the paper):
witsD _ () 4 Mt w?x) = (1 0 _ v g
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which aims at minimizing the following objective function:

A
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in which R represents the ids of the samples that are removed and An represents the number of the removed samples and
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Similarly after removing certain subset, the update rule for linear regression model is (It is Equation (13) in the paper):
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The provenance expression for the model parameters of linear regression model and logistic regression model after removing
subset of training samples are (They are Equation (8) and Equation (10) in the paper):
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A.2 proof preliminary

(41)

There are some useful properties related to matrix theory, matrix norm, real analysis and SGD convergence, which will be
used in the follow-up proof.

LEMMA 2 (SGD CONVERGENCE, [3]). (Full version of Lemma (1) in the paper) Suppose that the stochastic gradient estimates are
correlated with the true gradient, and bounded in the following way. There exist two scalars J; > J, > 0 such that for arbitrary %;,
the following two inequalities hold:

Vh(w»TE— D Vhi(w) = BIIVA(w) |1 (42)
le.j’,
||E— > Vhi(w)ll < JIVh(w) | (43)
16%,

Also, for two scalars J3, Js > 0 we have:
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By combining equations (42)-(44), the following inequality holds:
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where Js = J, +]12 2]22 > 0.

Then stochastic gradient descent with fixed step sizen; = n < L]} has the convergence rate:
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If the gradient estimates are unbiased, then EB% Yies, Vhi(w) = % 1 Vh;(w;) = Vh(w;) and thus J; = J, = 1. Moreover,

J5 ~ 1/B, where B is the minibatch size, because J; is the variance of the stochastic gradient.

+
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So the convergence condition for fixed step size becomesn; = n < LJ , in which J5s = Jy + ]l =J4+1>21Son,=n< L]s <+
suffices to ensure convergence.

So in what follows, we will simply consider the case where the learning rate is a constant across all the iterations as Lemma
2 indicates.

LEMMA 3. For a matrix A, its L2—norm equals to its largest singular value and the maximal eigenvalue of matrix AT A, i.e.:

/ T
I|Allz = omax(A) = VCrax(A" A).
where 0y and Cpax represents the largest singular value and the largest eigenvalue of certain matrix.
If A is a semi-definite matrix, its eigenvalue is the same as its singular value, then the equation above can be rewritten as:

||A||2 = O'max(A) = Cmax(A)~
LEMMA 4. If an n X n matrix A is a real symmetric matrix, then we can find n mutually orthogonal eigenvectors for A.

LEMMA 5. Given an iteration formula u**" = Au®) + b where A is a matrix while u*) is a vector to be derived iteratively, if
I— A is invertible, then the following statements are equivalent:

(1) u® will get converged

(2) lIB|l, < 1 for some matrix norm ||||,

LEMMA 6. Cauchy schwarz inequality For any two matrix A and B, their norm should satisfy the Cauchy schwarz inequality,
ie:||AB||x < ||Allx||Bllx where|| - ||x represents any matrix norm

LEMMA 7. Weyl’s inequality For any three Hermitian matrices, M, N, P satisfying M = N + P, the eigenvalues of M is:
P12 Ho 2 H3r 2 fin;

the eigenvalues of Nis:v1 > vy > v3 -+ > Up;

and the eigenvalues of P is: p1 > py > p3 -+ > pp;

the following inequalities hold: v; + p, < p; < v; + py

The following lemma requires the definition of Lipschitz-continuity and Strong-convexity, which are provided below:
Lipschitz-continuous A function f(x) is Lipschitz-continuous (L—continuous) if there exists a constant L such that the
following inequality is satisfied for all x, y:

If (@)~ f(0I < Llly - xl; (47)
Another form of Equation (47) is:
f) < fG+ < 9f 0y = x> +51ly - x| (49)

Strong convexity A function f(x) is A—strong convexity iff there exists a constant A such that the following inequality is
satisfied for all x, y:

F@) 2 )+ < Tf0x)y —x >+ lly ~ (49

Other equivalent forms of Equation (49) are:
(7160 = f@)x ~ ) 2 A~y (50
v f(x) = A 1)

Then there is a useful lemma about A—strong convexity, i.e:
LEmMA 8. a function f(x) is a strong convex function iff f(x) — ’%Hxl |2 is a convex function,

LEMMA 9. Piecewise linear interpolation In Piecewise linear interpolation [31], we assume that the function to be approximated
is a continuous function f(x) where x € [a, b]. Piecewise linear interpolation starts by picking up a series of breaking points, x;
such thata < x; < xp < -++ < xp < b and then constructs a linear interpolant s(x) over each interval [x;j_1, x;) as follows:

s(x) = f(x]) + f(xj 1)

= a]x + b x € [xj_l,xj)

(52)



The following property holds on how close the value of s(x) is compared to the original function f(x):

1) = 5] < $(Ax)? max |£(x)] = O((Ax))
asx< (53)
1160 = '] < 5(8%) max |77(x)] = O((Ax)

LEmMmA 10. Expectation of the number of the removed samples Because of the randomness from mb-SGD, the An removed
samples can be viewed as uniformly distributed within all n training samples, which can be considered as a 0 — 1 Bernoulli
distribution with probability %. In other words, we can define a random variable S; for each sample, which is 1 with probability
A—n" and 0 with probability 1 — L. So within a single mini-batch %", we can have

E( ) ) =E(AB,) = B~
i€ Bt n
and
Var( ) §)=B-(1- 1)
ieBt n n

So in terms of the random variable %, its expectation and variance will be

AB;
and
AB; _r..r
Var(?) = Bn(l n) (55)

In mb-SGD, a typical assumption is used for the convergence analysis of the model parameter w(*) in Equation (24)-(25) and
the update rules for other general models, i.e.:

LEMMA 11. For any randomly selected sample i; in some batch, the expectation of its gradient should be the same as the gradient
over the all the samples, i.e.:

E(vh, () = Th(w)

which also implies that the following equality holds for mb-SGD:

E(V(g Zican hi(w))) = Vh(w)
where E is the expectation value with respect to the sampling over the entire training samples.

In what follows, our analysis is based on the following assumptions:

AssUMPTION 1. every hi(w) (i = 1,2,...,n) is L—Lipschitz continuous. Since h;(w) has L2—norm regularization term, then we
also know that h;(w) is A—strong convex.

AssUMPTION 2. each Vhy(w")) is bounded by some constant ¢, for each w'").

AssuMPTION 3. The function f”(x) is co—Lipschitz continuous, which means that the following inequality holds:

1f'(0) = F' W)l < callx =yl

A.3 Main results and proofs

THEOREM 10. (It is Theorem 2 in the paper) (Wl(f) in Equation (40) and ‘WL(f,) in Equation (41) need not converge under the

conditions in Lemma 2.
Proor. Let us take linear regression as an example. Note that we can explicitly evaluate the second order derivative of h(w)
for linear regression, i.e. V2h(w), then according to Assumption 1, vZh(w) should satisfy the following inequality:

2 n
A 9ROl =117 D ] + Ml < 1 (56)

In order to prove Theorem 10, we need to show that there exists a case where (Wl(f) cannot converge under the conditions
in Lemma 2. This is achieved by considering gradient descent (GD) without excluding any original training samples, i.e.



{pirsPiy»---»Pi.} ={1,2,...,n}, every B(Ut) = nin Equation (40) and every %) includes all n samples in Equations (24) and
40. We can then apply the update rule in Equations (24) and (40) recursively, which ends up with:

2 n
wiD = (1 =nA)I - 7’7 Z xixl—T)”lw(O)
i=1

t 2 n 2 n (57)
n N
+ Q== 3 xx[ )Y iy,
= i=1 i=1
2n $
WD = (1~ pM)Lproy 1 - - D pt e xix] ) WY
i=1
t 2 n 2 n (58)
+ (O =Wy 1= 2L Y pF s V) =L Y pl v xiys
= i=1 i=1
According to Assumption 1, the following inequality should be satisfied:
2 n
Iyv*h()llz = 1= D" xix] +Anlll, < nL < 1 (59)
i=1
which implies that
2 < T
11 =0~ =2 3 x|l < 1 (60)
i=1
Also since every x;x! is a semi-positive definite matrix, by using Lemma 3, Equation (59) also implies that:
1> ||@ix-x.T +AnIl; =C (Zlix-xT + Anl)
=1 . iX; nill2 max{~ . iX; n
i=1 i=1
" " (61)
2n T 2n T
2 Cmax(; ;Xixi )= ||7 ;Xixi [z
Then by applying Equation (7), Equation (61) also leads to:
2 2 21 <
1= Il = Coas(—xix]) < Coax(SL Y xix]) < 1 (62)
n n n &

i=1
Then we can expand the first term in the right-hand side of Equation (58), the tensor product with provenance monomial
pi should be p? * (f)(l - U/l)é(—zgnxixlr)%. According to the convergence conditions in Lemma 2, 5 < % and thus ||(£)(1 -
2 2

n/l)é(—%”xixiT)%Hz > (%)H(—%xix?)%(@)éﬂz. According to [11, 50], when t — oo, (g) should be very close to 2¢ and
thus when || — %XiXiTHz > ﬁ (note that || — 27'7x,~xl.T||2 can be any value between 0 and 1 according to Equation (62)),
(g) | |(—%xixl.7)§ ||[; = oo, which means that the tensor product with provenance monomial p! cannot converge and thus "WL(,t)

cannot converge.
i

THEOREM 11. (It is Theorem 3 in the paper) The expectation of(WlSt) in Equation (40) and of(WL(fj) in Equation (41), converge
when t — oo if we also assume that provenance polynomial multiplication is idempotent.

Convergence proof for linear regression We simply need to consider whether W ({p;., pi,, . .., pi, }) converges (sup-
pose there are An provenance tokens in total that are set as 0, which corresponds to the deletion of An samples), which
equals to the update rule in Equation (39) and leads to a new objective function without the An removed samples (denoted by
(AX, AY)), i.e:

In what follows, we will only prove the convergence of binary logistic regression, i.e. the convergence of (\/VL(Z) , which is the
same as proving the convergence of w(jj The convergence of linear regression and multi-nomial logistic regression can be
proven in the similar way.



According to Lemma 9, the following equation holds:
19T (W) = VO WO = llyixi(s(yewTx:) = fyswDTx)l| = O((Ax)) (63)
I9°7 W) = PRI WO = | = @ Oxix] + £/ gowTxpxix] || = O((Ax)) (649)
for all w*) (rather than wgg or wi) since a*® and b(®) are evaluated when w is w(®)). Since A < ||[v2h(w®)|| < L, then
A= 0(Ax) < ||[V*TO(wWD)|| < L + O(Ax). Then by bringing in the definition of v2T()(w("), we know that:

A= O(Ax) < [V TOWD)| = || - a*Px;x! + Al|| < L+ O(Ax) (65)
By using the fact that || # [|; = Cinax(*), the following formula also holds:
A = O(Ax) < Cpax(=a*Px;x! + Al) < L+ O(Ax) (66)
But note that since every a*(*) is a negative value, then —ai’(t)xixiT is a semi-positive definite matrix and thus:
| - a"Px;x] + ALl > A (67)
Then we bound I — n(—a*®x;x! + 2I) as:
I = (=na"Oxix] +paD)|| < 1-nA (68)
Similarly we know that the following inequality holds for any w:
1= pv* RO (w)ll = (1 = n)T = pl-xix] f'(ysw"x)]ll < 1-nA (69)
Then the convergence of w,,, can be derived below (in the case of constant 1, according to Lemma 2):
Wi = wiy Il

(70)
_ ¢ ) (1) (ot * £) p(t) (o £) () (o *
= |lwl) —pvROWY) - wi, + v IROW ) - pv RO (w] )l

Then by using the fact that if w(Ltl), converges, ||V(t)R(’)(w’zU)|| < C for some constant value C for all ¢. By using the triangle
inequality and the definition of vR()(x), the formula above is bounded as:
1 i *
<i-— D, nl=a"Oxax] + AW - wi )l +nC
U ieBY),i¢R

1 ; N
<-—5 > al=a"Oxix] + LW = wi Il +5C
U ieBW),igR

By using the result from Equation (68), we get:
< (1= nIIIWS) = wi )l +7C
By applying the formula above recursively, we get:

Wl —wi Il <

This finishes the proof.
m]

THEOREM 12. (This is Theorem 4 in the paper) ||[E(w'*) — w(Lt))I |2 is bounded by O((Ax)?) where Ax is an arbitrarily small value
representing the length of the longest sub-interval used in piecewise linear interpolations.

Proor. By subtracting Equation (25) by Equation (35) and taking the matrix norm, we get:

[[Ew D = wi D),
= B(Iw = nvhO(w') = (wi?) = o T Wi )e)
= E(Iw' = wif! = g[vTO(w) = sTOw)] = vk (w') = yTOw)]]l)

(- (-2 @ Oxi] + pADIw - wlh) = [T ) - OO )
ie B



Then by using triangle inequality and the bound from Equation (68), the formula above is further bounded as:

<EQI- (-5 3 a*Oxax] + DI = W)l + pllvAw ) = 91w )])
ieB®)
< (= nDllw = wi) o + pl [T W) =TT W],

Then by using the result from Equation (63), the formula above is rewritten as:
= (1= )W = w2 + nO((Ax)*)
Then by applying the formula above recursively, we have:

1-(1-ngd)t
(LO))HZ_,_M

= (L= (W = w ”

nO((Ax)?)

(0)

Since w® = w)” andp < 1 7. then the formula above is bounded as:

< %O((Ax)z) = O((Ax)?)

According to Assumption 2 and Equation (63) and by using the triangle inequality and the Theorem above, we have:

IVTO W) = VIO WD) = VIO (w®) + VT (w®) - VA (W) + VA (w)))|
< VT WD) = VT W) | + 9T (w®) = VA (wO) || + [VAO (WD) (71)
< || = a*Dx;xT + M| O((Ax)?) + O((Ax)?) + ¢; := ¢

TrroreM 13. |[E(wf) — w(®)||; is bounded by O(22).
ProorF. By using the definition of wﬂfl)] and w(®), i.e. Equation (37) and Equation (25), we have:
E(|lwiir? = wi* D))

= B, - nOw) + = 3 i ST - [w - aw® =g S g w1l

1698(‘) U 1633(’) igR
= B(I(L = n)wil), —w)+ T 37 gl f ) ) = Flyw Tx)l+ £ D g fwTx)
IEJ(” le.@(’)

% Z inif(in(t)TXi)”)

U e, igR

Then by using the cauchy mean value theorem over f (y,w;l),Tx,) — f(y;w'YTx;), the formula above is bounded as:

B - oD+ £ 7 xx] F)lwl, - wi)lD

ieB)

+E(I4 Y v flywTx) - B(t) D uxifuwTx)l)

ze.%(‘) U ieBY,i¢gR

=Bl - DT+ 3 > xex] OIS -wOD+ B Y vhw) == S shwO)l)

ieB® icB U jeBY,i¢R



By rewriting the formula above and using the upper bound on ||vh;(w(®))||, we get:

= B0 - 5 3 xix] S OIS =W+ Bl 3 vhiw ) + G =5 3 ohiw )i

icB1) e, U je®),
ieR i¢R
_ n (1) _® n n_n
<E( -+ 5 > xx] fIw ~wD+E(G Y a+(g ) >
ieB" ieB™), U ies®,igR
ieR

217AB ®
c1)

=B -nT+ § 37 xex] f@)wis) —wi)l) +E(
ieB)
Then by using the result from Equation (69) and Equation (54), the formula above is bounded as:

A
< (1= AW = wO|| + 2nc, —
n

By applying the formula recursively, we get:

O

THEOREM 14. (It is Theorem 5 in the paper) ||E(w(LtL), - wﬁfl),)| |2 is bounded by O(A—H"Ax) + O((%)z) + O((Ax)?), where An is the
number of the removed samples and Ax is defined in Theorem 12

Proor. By using the definition of w, , and w,,, and subtracting the former one from the latter one, we have:

E(lwi ) — wil D]l
= B(w') — Aqw'’) — npvRO(w)) = (W) = aqw'l) = 59g D w))l)
= B(w') = wl) = n(vRO(W)) = TROW) ) = An(wl) = wi)) = p(vRO(w!l)) = vg D (w') )
5 2, aOxx] £ aDIW) — W)l + pllvRO(w) = 99wl
U icBY,igR
Then by using the result from Equation (68), the formula above is bounded as:

< (1=nA)lws) - wi) ||+UE(|IVR“)(W(’)) vg Wil

< E(|I[T-

= (=)~ B 3% w0 = Sl Xl (72)
By icB®
i¢R

in which we bound y;x; s(y,wRU X;) — Y;X lf(ylw Tx;) as below:
lyixis(yiwle) xi) = yixi fyiwls) %)
= llyixis(yw x;) — yixis(yw D x;) + yixis(y,w'

< Ilyixis(yiw “)sz) — yixis(yw O x;) + yixi f(yiw
= lla"xix] (wl) = w®) + yixi fysw'Tx0) = yixi f(yswiy) %)l + O((Ax)%)

Xl) —yiXi f(yiw (¢ )TXI) +yix; f(yiw (t)TXz) YixX zf(ylw( )Txl)”
(t)TXl) Yix zf(yzW(t)TXz)H + ||ini5(yiw<t)TXi) - inif(in( )TXi)H

The last step uses the result from Equation (63). Then by using the Cauchy mean value theorem on f(y;wY)7x;)— f(y;w (t)T X;),

we know that:

= [laOxix] (W) - wh) + yix;| / £ @w T + x(yiw) xi = yow T x))dx) (yw™ T x; — yiw DT x| + O((Ax)°)

< Il / w9+ x(yswi) i = giwTxi)dxlxix] [l wil), = wi)ll +O((Ax)*)



Then by adding and subtracting f’(y;w®Tx;) in the first term and using the fact from Equation (64) and Assumption 3, the
formula above is bounded as:

= 1@ = f'@wTx) + ' (yew T xi) — / £ w4 x(ywl) xi = ywTx)dx e (1wl = w)ll +0((Ax)?)

< (@ = £ (ew O Tx)xix] || + 1] / L (aw T xi) = £ (iw i + xyawll )T xi = gow T x| (wi) T = wT)]
+0((Ax)?)
1
< O((ANI(w, = Wl + [1xix] / ex(ywig) xi = yiw T xp)dx |(wly), = w)l + 0((Ax)%)
0
< O((Ax)) (W) = wi)] + —IIX x; yix] [lI(wl), = w®)|? + 0((Ax)?)
Then by using the result from Theorem 13, the formula above is bounded as:
An_ ¢ An An An
< 0(AN)O(=D) + L xix] yix] [(O(S)F +O((Ax)%) = O(=2A%) + O((=2)) + O((Ax)?)
which is then plugged into Equation (72), we have:
1 1
Bl - wits )
< (1-p)lwt) —wlt) O—A 0—20A2
< (1 =n)lw); —w Il +7[0(—Ax) + O((—)") + O((Ax))]
which is then used recursively. Then we have:
1 An An An An
< 210(=2Ax) + O((Z2)) + O(Ax))] = O(=Ax) + O((=1)P) + O((Ax)?)
m]

THEOREM 15. Approximation ratio (It is Theorem 6 in the paper) Under the convergence conditions for w*), ||w'?)|| should be
o, s vl

lrlr

bounded by some constant C. Suppose W > 1 — € where € is a small value, then the change of model parameters
caused by the approximation will be bounded by O(e).

Proor. The approximate update rule for linear regression by using SVD after removing subsets of training samples is:

lrlr

(t+1) _ _ (t) (t) T(t)
w, — [ =nMI B(t)(U S o

w® 21, (73)
— AX'%,(”AXU?([)) U + (t)( Z Z Xiyi)
By, ient) ieB jeR

T, (t)

By comparing Equation (39) against this approximate update rule, the only difference is U(lt)rS(lt)r in Equation (73)

and 2.0 Xl-xl.T in Equation (39). Then according to the condition in this theorem, || X, 0 X; xT U(t) (t) vl (t)||

1. r
[JUMSOVT.() Uﬁf?,sﬁt) T (t)||2 O(e). So by subtracting Equation (39) by Equation (73), the result becomes

[Iwi ™ = w111 = 7)1 - m(Z AXT 0 AX o) |(wi = w(P)
By iep™)
20 1) o vh
+ (00 VD= 3 xx wll, (74)
By iem®)

< I =0t~ 25 ] = XL A 8 =)l + O
By ie



Then we evaluate the expectation between both sides, which ends up with:

E(|[wi ™ = wi D)

21, (75)
= Il = e = —— = (XTX = AXT, AX o)l o [ (WS = w2 + OCe)
in which AI + —(XTX AX;(”AX ggm) equals to the hessian matrix for the object function over the remaining samples
after removing subsets of samples, which should be still A-strong convex and L-lipschitz continuous. It indicates that:
1-nA 2 [|(1— )l - H(XTX AXT  AX o)l 2 1-n,L (76)
Since according to Lemma 2, ;L < 1, then:

1> 1=, > [|(1= M)l - — e (XX = AX Dy AXgo)ll2 2 1= 0L > 0 (77)

So we can compute Equation (75) recursively and thus the following inequality holds:
E(|lw* —wii ) < O(e) (78)
m]

THEOREM 16. (Approximation ratio) (It is Theorem 7 in the paper) The approximation of PrIU-opt over the model parameters
is bounded by O(||AXT AX]|)

Proor. The update rule through gradient descent for linear regression model is as below:

Wl (1= g1 - ”A (XTX - AXTAX))w

21t 79)
+ (XTY - AXTAY)
n—An
while the approximated update rule through the approximations by incremental updates over eigenvalue is:
/ 2’7 —1 7. ro ’ /
wg“) — (1 =-nMI- tA Q 'diag[c},c}, . . ., cm]Q)w(lf)
n
(80)
+——xTY- AXTAY)
n-— An

According to [41], the difference between Q 'diag[c],c},...,c},]Q and X’ X — AXT AX is bounded by O(AX” AX). So by
subtracting Equation (79) by Equation (80), the results become:

|[wHD — Wl D], ||[(1—mA>I—B—xTx AXT | AX i)W — wD)

(1) 2
(e po To(Q diagle], . ., ¢ 1Q = AXT, AX gy )W, (81)

< [I[( =1 - m( D, xixt = AXL AX gl Wl - wi)ll; + O(AXT AX)
By ieB®)
Through the similar analysis to Theorem 15, the above formula is computed recursively, which ends up with:
W™ = wi ™l < O(AXTAX) (82)
O

THEOREM 17. (Approximation ratio) (It is Theorem 8 in the paper) Similar to Theorem 15, the deviation caused by the SVD

t) T(t)
UPEVE N > 1— €. So using Theorem 14, ||[E(w\") — w\"))||, is bounded

approximation will be bounded by O(e), given the ratio IGIZEGI

by O(A2Ax) + O((52)?) + O((Ax)?) + O(e).

ProOF. Let’s assume that the incremental updated model parameter without SVD approximation is w(jgo. According to the

results in Theorem 14, the | |w(L20 - wgl), | <O(5" An Ax) + O((%)Z) + O((Ax)?). After the SVD approximation, similar analysis to
Theorem 15 can be done such that [[w'%), —w') |l < O(e). So [[EW') —w'))[|, < O(e) + O(A2Ax) + O((A2)2) + O((Ax)?) O



THEOREM 18. (Approximation ratio) (It is Theorem 9 in the paper) Suppose that after iteration ts the gradient of the objective
function is smaller than 8, then the approximations of PrIU-opt can lead to deviations of the model parameters bounded by
O((t — t5)8) + O(||AXT AX]|). By combining the analysis in Theorem 14, ||E(w(Ltl), - wﬁjﬁ,)| |2 is bounded by O(%Ax) + O((A—n")z) +
O((Ax)*) + O((z — £5)8) + O(/|AXT AXI|)

ProOF. Let’s assume that after ¢! iteration, the incremental updated model parameter without only linearization approx-

imation is wLU0 Then ||E(W(L?]0 - W;?,)llz < O(A—H"Ax) + O((%)Z) + O((Ax)?) based on Theorem 14. Also let’s assume that
tth

after t!" iteration, the incremental updated model parameter with both linearization approximation and SVD approximation is
w' Then:
1 :

||w(t) —w® — ||w(t l) _ R(t—l)(w(t—l) )—(w(t) _vR(t—l)(w(t—l) M2

LU1 LU0||2 LU 0 (83)
< |lwltD WD ), +25<||w<;;,1— wits) [y +2(t — t; = 1)8 = O((t - £;))
O

Finally, by using Theorem 16, ||w(t) wit) [l < O(||AXT AX||). By combining those results together, we have:

LUI

I[Ew'D —with||, < O(7Ax) + O((7)2) + O((Ax)®) + O((r — t,)8) + O(||AXT AX]|) (84)
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