Agriculture, Ecosystems and Environment 285 (2019) 106615

Contents lists available at ScienceDirect

Agriculture
Ecosystems &

Environment

Agriculture, Ecosystems and Environment

journal homepage: www.elsevier.com/locate/agee

Check for
updates

The impact of agricultural landscape diversification on U.S. crop production

Emily K. Burchfield™, Katherine S. Nelson", Kaitlyn Spangler

# Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta GA 30322, USA
® Department of Geography, College of Arts and Sciences, Kansas State University, 920 N. 17th Street, Manhattan, KS 66506-2904, USA
¢ Department of Environment and Society, Quinney College of Natural Resources, Utah State University, 5215 Old Main Hill, Logan, UT 84322-5215, USA

ARTICLE INFO ABSTRACT

The last century has seen a dramatic simplification of global landscapes, driven largely by the expansion and
intensification of agriculture. Landscape simplification has known negative impacts on ecosystem health and
function; however, less is known about how landscape simplification affects agricultural production. There is
mounting field-scale evidence that simplification can reduce agricultural production by eroding the ecosystem
processes on which agricultural systems depend; however, many of these processes emerge not at the field scale,
but from complex interactions between land use, biophysical context, and human activity at the landscape scale.
This research uses hierarchical Bayesian models to estimate the relationship between landscape-scale agri-
cultural diversity and the yields of corn, soy, and winter wheat in the coterminous United States. We find that the
yields of corn and winter wheat increase by as much as 20% in highly diversified agricultural systems. Our
findings also indicate that (1) crop production is more responsive to the number of distinct crop types cultivated
on a landscape than their cultivated extent and that (2) increasing diversity in agricultural systems that are
already diverse brings the highest yield gains. Our models provide strong evidence at national and regional
scales that agricultural diversification—an intervention with known ecosystem benefits—can increase crop

Keywords:
Diversity

Crop production
United States

production.

1. Introduction

The last century has seen a dramatic simplification of global land-
scapes, driven largely by the expansion and intensification of agri-
culture (Aguilar et al., 2015; Khoury et al., 2016; Landis, 2017). Agri-
culture now covers one-third of global land, making it the most
significant “engineered ecosystem” on the planet (Zhang et al., 2007).
In the U.S., agriculture accounts for over 50 percent of total land area
(Fig. 1) — and over half of this land is cultivated with corn, soy, or wheat
(Bigelow and Borchers, 2017). Simplified agricultural landscapes with
low levels of natural habitat and plant diversity are optimized for crop
production (Meehan et al., 2011; Grab et al., 2018); however, they are
also associated with soil degradation, loss of habitat, reductions in
water quality, and loss of species diversity (Bommarco et al., 2013;
Hendrickx et al., 2007; Landis, 2017; McDaniel et al., 2014; Tiemann
et al., 2015; Tscharntke et al., 2012). These negative environmental
impacts in turn erode the ecosystem processes essential to crop pro-
duction such as pollination, pest management, water retention, and
nutrient supply (Swift et al., 2004; Zhang et al., 2007). This implies that
over time agriculturally-driven landscape simplification may diminish
agricultural productivity.

* Corresponding author.

An axiom of ecology and sustainability science is that diversity in-
creases the health and function of complex systems (Bommarco et al.,
2013; Khoury et al., 2016; Walker et al., 2004). Evidence from hun-
dreds of experiments confirms that diversity, in and of itself, is essential
to ecosystem productivity (Cardinale et al., 2012, 2006; Hooper et al.,
2012; Loreau et al., 2001; Tilman et al., 2014, 2012). Despite being
inextricably linked to ecological systems, agricultural systems are often
purposefully managed to reduce species diversity to increase harvest-
able yields. Farmers, who play a central role in the selection of which
species are present on a landscape, are influenced by policies and in-
stitutions endorsing specialization as a tool to increase agricultural
productivity (Nassaur, 2010; Roesch-McNally et al., 2018; Yoshida
et al., 2018). Whether this economic assumption aligns with biological
reality is highly contested (Cassman, 1999; Davis et al., 2012; Kremen
and Miles, 2012; Reiss and Drinkwater, 2018; Virginia et al., 2018).

Field-scale experiments suggest that—as in ecological system-
s—diversity can actually increase agricultural production (Li et al.,
2009; Ojha and Dimov, 2017; Smith et al., 2008; Tscharntke et al.,
2005). Smith et al. (2008) found that corn yield increases were 100
percent higher in diverse agricultural systems as compared to mono-
culture systems. Pywell et al. (2015) and more recently Schulte et al.
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Fig. 1. The proportion of agricultural land use across the U.S. as indicated by the USDA CropScape dataset (2017). Dark green indicates a higher intensity of

agricultural land use.

(2017) found that transforming even a small percentage of agricultural
land to wildlife habitat maintained or improved yields. Several papers
have found that crop diversity is associated with reduced yield volati-
lity over time (Abson et al., 2013; Di Falco and Perrings, 2005; Weigel
et al., 2018). Research suggests that these yield improvements are
driven by the positive impact of diversification on the ecosystem ser-
vices essential to crop production, including pest management
(Bommarco et al., 2013; Chaplin-Kramer et al., 2011; Gardiner et al.,
2009), soil health (McDaniel et al., 2014; Tiemann et al., 2015), and
pollinator diversity (Schulte et al., 2017; Tscharntke et al., 2005).

Almost all of the existing evidence linking diversity to increased
agricultural production is at the field-scale; however, many of the
ecological processes on which agricultural systems depend emerge not
at the field-scale, but from complex interactions between land use,
biophysical context, and human activity at the landscape scale.
Landscape composition and configuration have been shown to affect
many of the ecosystem services essential to agriculture, such as water
quantity and quality, pollination, pest regulation, carbon storage, and
climate management (Li et al., 2009; Swinton et al., 2007). In addition,
many ecosystem services essential to agriculture such as pollinator
movement and water flow are generated far from the agricultural fields
that benefit from them. Therefore, field-scale efforts to diversify may be
negated by landscape simplification and conversely, landscape-scale
diversification may benefit localized monoculture systems (Tscharntke
et al., 2005). For these reasons and the mounting evidence linking field-
scale diversification to increased ecosystem services and agricultural
productivity, we hypothesize that landscapes with higher levels of
agricultural diversity will support more productive agricultural sys-
tems.

As agriculture becomes the most widespread use of land on Earth,
there is a critical need to determine how and why agriculturally-driven
landscape change affects agricultural production. This research uses
Bayesian hierarchical modeling to estimate the relationship between
agricultural diversity and the yields of corn, soy, and winter wheat in
counties across the coterminous United States while controlling for
seasonal climate, spatiotemporal dependencies, and regional factors

known to influence yield. Our results indicate that agricultural diversity
is associated with increased agricultural productivity and that it is
primarily the number of agricultural land use categories, rather than
their relative cultivated extent, that drive these yield gains. Regional
variability in our models, however, highlights the continued im-
portance of local and regional analyses to assess the complex assem-
blage of socio-ecological factors that mediate the diversity-productivity
relationship across space and time.

2. Methods
2.1. Data

The county-season is the smallest spatiotemporal unit at which
public yield data is available nationally (USDA NASS, 2018); however,
land use and weather data are available at much higher spatiotemporal
resolutions. To resolve this scalar mismatch and preserve as much in-
formation as possible, we constructed county-scale indicators of cu-
mulative seasonal weather exposure from gridded daily temperature
and precipitation data and computed three indicators of county-scale
agricultural diversity from annual 30 m land use data. We extracted
gridded land use and weather data to the county scale and merged this
data with county-level yield estimates for corn, soy, and winter wheat
for all counties in the conterminous U.S. (n = 3108) from 2010 to 2016.
We focus on corn, soy, and winter wheat because of their importance to
the global economy and their prevalence on U.S. agricultural land-
scapes. Since the 1960s, harvested soy and corn acreage has increased
by 76 percent (74 million acres), today covering about 90 million and
89 million acres respectively (Bigelow and Borchers, 2017). Wheat —
including winter, durum, and spring wheat — comprises the third largest
acreage in the U.S. at 46 million acres (Ash et al., 2018). Together,
these crops cover more than 50% of cultivated land in the U.S.

Agricultural production is influenced by many factors other than
land use, the most important of which is weather. To control for the
impact of weather on crop production, we computed the average
county-level temperature and precipitation for each day within a crop’s
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spatially varying growing season (Ramankutty et al., 2008) from four-
kilometer gridded daily weather data provided by the PRISM Climate
Group, 2004. From this daily data, we computed three indicators of
seasonal weather: growing degree days (GDDs), stress degree days
(SDDs), and total precipitation (TP). GDDs measure the accumulated
degrees Celsius within a crop-specific temperature range in which a
crop’s growth rate increases (Miller et al., 2001). The tolerance range
for corn and soy is 10-30° C and 0-30° C for winter wheat (Mesonet,
2017; NDAWN, 2017). To model the negative effects of extreme tem-
perature on crop production (Lobell et al., 2013) we included SDDs,
which are the total accumulated degrees Celsius above the maximum
GDD temperature threshold. To control for the impact of water avail-
ability on yields, we also computed the TP or the cumulative sum of
precipitation in millimeters throughout the growing season.

We used the USDA NASS Cropland Data Layer (CDL) as our in-
dicator of land use. This dataset classifies land use at a 30-meter re-
solution nationwide from 2008 to 2017 using satellite imagery and
extensive ground truth data. Using this data, we computed three
county-scale indicators of agricultural diversity: the Shannon Diversity
Index, the Simpson Diversity Index, and Richness. The Shannon
Diversity Index (SDI) is a widely-used index of diversity that measures
the proportional abundance of each land use category in a given region
(Aguilar et al., 2015; Gustafson, 1998; Turner, 1990). It incorporates
both the number of land use categories and their relative evenness on
the landscape. The Simpson Diversity Index (SIDI) measures the prob-
ability that two pixels selected at random belong to different land use
categories. The SIDI gives more weight than the SDI to common land
use categories, i.e. rare land use categories will have a smaller effect on
SIDI than SDI. We also computed richness (RICH), or the number of
unique land use categories in a county. We extracted each index to the
county-scale from the 100+ agricultural land use categories included
in the CDL (see the SI Appendix for the full list of categories). Each
index varies significantly across space, with the Midwestern U.S. gen-
erally exhibiting lower diversity than the Southern and Western U.S.
(Fig. 2). By running our models with three commonly-used indices of
diversity, we can both test the sensitivity of our results to different
operationalizations of diversity and assess the extent to which different
facets of diversity, e.g. abundance or relative extent, affect yields. We
include two additional spatially- and temporally-varying controls. The
first is an indicator of the percent of irrigated land in a county extracted
from the 250-m gridded MiRAD dataset (Pervez and Brown, 2010). The
second is an indicator of the prevalence and importance of a crop to a
county’s agricultural system, calculated as percent of agricultural
acreage cultivated with the crop of interest (Table 1).

2.2. Modeling

The quantitative modeling in this study builds on work employing
advanced statistical regression of cross-sectional time-series data—also
known as panel data—to investigate known nonlinearities in the re-
lationship between crop production and seasonal weather (Blanc and
Schlenker, 2017; Schlenker and Roberts, 2009). Agricultural production
is strongly influenced by spatiotemporal context (Mendelsohn, and
Massetti, 2017; Tack et al., 2015); however, agro-climatic panel models
typically employ frequentist statistics for which the incorporation of
complex spatiotemporal dependency structures can be difficult and
computationally expensive (Chatzopoulos and Lippert, 2015; Moore
and Lobell, 2015). We leverage recent advances in Bayesian modeling
(Blangiardo and Cameletti, 2015; Mantovan and Secchi, 2010; Meehan
and Gratton, 2016; Nelson and Burchfield, 2017) to control for the
influence of spatiotemporal dependency in our estimation of the in-
teractions between landscape, seasonal weather, and crop production.
In addition to accounting for spatiotemporal dependencies which might
otherwise bias our regression estimates, this approach has several ad-
vantages that are particularly relevant to our focus. First, it facilitates
the estimation of known nonlinearities in the interactions between
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landscape, yield, and seasonal weather (Blanc and Schlenker, 2017;
Butler and Huybers, 2015; Lobell et al., 2013; Schlenker and Roberts,
2009). Second, it controls for time-invariant spatially-varying factors
(e.g. soil type, topography) and space-invariant temporally-varying
factors (e.g. national policy changes, market variations) that influence
yield, isolating yield variations driven by our variables of interest
(Bivand et al., 2015; Blangiardo and Cameletti, 2015; Meehan and
Gratton, 2016). Third, this approach flexibly handles missing yield data
by building model estimates using a combination of a specified like-
lihood function, specified prior probability distributions, and available
data, providing multiple sources of information from which to build
posterior effect estimates (Blangiardo and Cameletti, 2015).

We estimate a log-linear random-effects panel model that includes
diversity (D), seasonal weather controls (GDD, SDD, TP), county-level
spatial effects (County), and independent quadratic time trends for each
region (Time) — identified using the Level III ecological regions provided
by the US EPA (Fig. 3) - to account for regionally-varying temporal
changes that affect yield such as differences in technology adoption and
management changes (Schlenker and Roberts, 2009).

log(Yield)ye = f(D)y + f(TP)y + f(GDD)y + f(SDD)y
+ Percent_Irrigated; + Percent_Crop;, + f(County);
+ f(Time);

where i indexes counties, j indexes regions, and t indexes year. County-
level spatial effects (County) account for time-invariant factors asso-
ciated with each county that influence yield including soil, topography,
and non-dynamic sociocultural, infrastructure, and institutional factors.
The county-level effects are modeled using a Besag-York-Mollié (BYM)
structure which includes both exchangeable (iid) county random effects
as well as conditional autoregressive structured (iCAR) residuals be-
tween counties. This formulation accounts for both random variation in
yields across counties as well as spatial autocorrelation in yields across
neighboring counties. Percent Irrigated and Percent Crop are linear con-
trols that indicate the percent of irrigated land in a county and the
percent of the county farmed with the crop of interest in each year,
respectively. These controls account for known county characteristics
that are expected to significantly impact yields. While most of the
variance associated with these control variables is captured in the
county-level spatial effects these variables are included as explicit
controls in order to reduce chances of omitted variable bias (Blanc and
Schlenker, 2017; Schlenker et al., 2007). Climate (TP, GDD, SDD) and
diversity predictors (D, which includes SDI, SIDI, and RICH) are mod-
eled using a first-order random-walk functional form. The random-walk
structure allows the effect of these predictors to vary non-linearly (for
example both low precipitation and very high precipitation tend to be
associated with low productivity while moderate levels of precipitation
tend to be associated with high productivity) while also considering
that the effect of these predictors will be autocorrelated (e.g. similar
values of TP will have a similar effect on yields).

Our Bayesian models utilize a highly uninformative (reduced pre-
cision) prior distribution for linear effects and employ penalized com-
plexity (PC) priors for the diversity, climate, and spatial effects
(Simpson et al., 2017). The PC priors employ a scaling factor to specify
priors based on sensible limits of the data (Simpson et al., 2017). We
employed default and recommended settings for PC priors as provided
by Simpson et al. (2017), yielding moderately informative priors.
Model fit was evaluated using the deviance information criterion (DIC),
the conditional predictive ordinate (CPO), the predictive probability
integral transform (PIT), posterior predictive p-values, mean squared
error (MSE) and Bayesian R-squared ®R? (Blangiardo and Cameletti,
2015; Gelman et al., 2017; Gelman and Hill, 2007). Cross-validation of
final models was conducted by re-estimating models with "86% of the
observations and comparing model predictions against the remaining
held-out observations using MSE, R%, and the Nash-Sutcliffe Efficiency
(NSE). In addition, model robustness checks were conducted to test
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SDI

SIDI

Fig. 2. Variations in agricultural diversity as measured by the Shannon Diversity Index (SDI), the Simpson’s Diversity Index (SIDI), and Richness (RICH) for counties
in the conterminous U.S. in 2017.
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Table 1
An overview of agricultural diversity indicators.

Agriculture, Ecosystems and Environment 285 (2019) 106615

Index Formula

Definition and advantages

Shannon Diversity Index (SDI) SDI = — Zk L pilog(p)
i=1Fi i

A measure of the abundance and evenness of land use categories. This index is sensitive to rare land use

categories. Typical values are between 1.5 and 3.

Simpson Diversity Index (SIDI) SIpf = Z=b
T NWN-D

Richness (RICH) Number of discrete land use types

A measure of the abundance and evenness of land use categories. This index is not sensitive to rare land use
categories. Values range from 0 to 1.
A measure of the abundance of land use categories.

Fig. 3. Gray lines indicate the Level III ecological regions (US EPA, 2011) used for the quadratic time-trends. Colored areas represent the four major regions used in

the regional models described in the Results and Discussion.

sensitivity of results to the presence of control variables, data subsets,
and prior specification (Schlenker et al., 2007). All models were esti-
mated using the R-INLA package (Rue et al., 2009) in R (R Core Team,
2017). Model scripts and additional information on model diagnostics
and robustness checks are provided in the SI Appendix and on GitHub
(https://github.com/eburchfield/Diversity_yield).

3. Results

Our results estimate the nonlinear response of the yields of corn,
soy, and winter wheat to changes in agricultural diversity as measured
by the Shannon Diversity Index (SDI), Simpsons Diversity Index (SIDI)
and Richness (RICH) (Fig. 4). The response curves indicate that the
yields of corn and winter wheat increase by between 5 and 20% re-
spectively at high levels of agricultural diversity, which equates to
approximately 22-33 bushels per acre for corn ("1381 to 2071 kg/ha)
and 9-14 bushels per acre for winter wheat ("605 to 942 kg/ha). Soy is
less responsive to agricultural diversity, with yield gains between 0 and
5% (up to 2.2 bushels per acre or 148 kg/ha) at high levels of diversity.
This aligns with published research showing that soy is less responsive
to agricultural diversification (Smith et al., 2008) and changes in tillage
and weather variability (Gaudin et al., 2015). Our results also indicate
that the yields of corn and winter wheat are more responsive to SDI and
RICH (Fig. 4A and C) than SIDI (Fig. 4B). These effects are detected

after controlling for seasonal weather, county-level spatial effects, re-
gional time trends, cultivated extent, irrigated extent, and spatial de-
pendencies in the data. Table 2 shows high model fit across crops and
diversity indices with posterior predictive and cross-validation R? va-
lues of more than 0.7 for all national models.

Our models also produce crop-specific response curves to seasonal
weather (Fig. 5). Estimated yield-weather interactions resemble those
in the published literature, indicating that more GDDs increase yields,
while higher SDDs decrease yields (Schlenker and Roberts, 2009). The
idealized TP-yield curve is an inverse parabola (Rosenzweig et al.,
2014), reflecting damages to crop production under extremely low and
high precipitation conditions. Corn and soy exhibit this response, while
winter wheat yields increase only at high levels of precipitation. This
may be attributable to the fact that unlike corn and soy, which are
grown over the summer and harvested in early fall, winter wheat is
planted in the fall and is harvested for grain the following spring. For all
crops, very low seasonal precipitation is associated with higher yields.
This may be due to the relatively short time-frame of our panel
(2010-2016) as well as the importance of irrigation as a buffer against
low precipitation over this period.

While the national models control for regional differences, they do
not explicitly model the ways in which these differences influence di-
versity-production interactions. To assess how the relationship between
agricultural diversity and crop production varies across space, we re-
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Table 2
Model fit, posterior predictive checks, and cross-validation.
Corn (n = 11,085 county-years) Soy (n = 9825 county-years) Winter wheat (n = 8003 county-years)
SDI SIDI RICH SDI SIDI RICH SDI SIDI RICH
MSE 0.0289 0.0289 0.0289 0.0174 0.0174 0.0174 0.0281 0.0281 0.0280
R? 0.7084 0.7082 0.7080 0.7521 0.7518 0.7522 0.7682 0.7687 0.7692
R? 0.7397 0.7857 0.7112 0.7331 0.7736 0.7599 0.7362 0.7669 0.7940
MSE 0.0423 0.0382 0.0413 0.0242 0.0258 0.0246 0.0391 0.0404 0.0404

estimated models in four major regions of the U.S.: the South,
Northeast, Midwest, and Western U.S. (Fig. 3). The models suggest that
in places where large-scale farming is less common for edaphic, topo-
graphic, cultural, or infrastructural reasons—such as the Southern and
Western U.S.—agricultural diversity has a far greater impact on crop
production (Fig. 6). Midwestern and Northeastern agricultural systems
are relatively insensitive to diversification, while Western systems show
strong and sustained yield responses to all indicators of diversity. The
Southern U.S. shows the most variability across crops, with positive
yield responses for corn and soy, and slightly negative yield responses
for winter wheat.

4. Discussion

Our results suggest agricultural diversification can directly benefit
agricultural systems. Yields of corn and winter wheat increase by as
much as 20% in highly diversified agricultural systems, and soy yields
increase by nearly 5%. Our findings also indicate that (1) crop pro-
duction is more responsive to the number of agricultural land use ca-
tegories in a region than the relative cultivated extent of each category
and that (2) increasing agricultural diversity in regions that are already
diverse brings the highest yield gains. These results provide strong
empirical support for why we should consider agricultural diversifica-
tion. In what follows, we discuss how these models can also give us a
better sense of where, when, and how to diversify.

4.1. Where to diversify? The importance of regional variability

We find that agricultural diversification has a stronger impact on
corn and winter wheat than soy nationally, but these effects vary across
regions (Fig. 6). For example, winter wheat shows markedly different
responses to increased agricultural diversity in the Western and
Southern U.S., while soy - relatively unresponsive to diversification in
the national models — shows significant responses to diversification in
the Southern and Northeastern U.S. The regional models highlight two
important findings. First, differences in diversity-productivity curves
across crops and indices as seen in the national models are less sig-
nificant than differences in diversity-productivity curves across regions.
This suggests that regional factors may play a larger role in moderating
the diversity-productivity relationship than crop- and index-specific
factors. Second, the regional models correspond with published litera-
ture indicating that the ways in which diversity interacts with crop
production varies significantly across agricultural, climatic, ecological,
and socio-cultural contexts (Balvanera et al., 2006; Loreau et al., 2001;
Swift et al., 2004; Tilman et al., 2014; Zak et al., 2003). The spatial
variability of our findings highlights the fundamental challenge of scale
in agro-ecological research. Large scale models, such as those presented
in this paper, provide empirical support for interventions that may
sustainably increase agricultural productivity, but are limited in their
ability to provide context-specific recommendations to support agri-
cultural decision-making. Conversely, field-scale analyses can provide
specific recommendations for farmers but are limited in their general-
izability across regions.

Despite regional variability, in very few cases does diversification
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Fig. 5. The response of yields to changes in total seasonal precipitation in millimeters (TP), growing degree days (GDDs), and stress degree days (SDDs) in degrees

Celsius.

decrease yields. A shift from low to moderate levels of agricultural di-
versity decreases yields for winter wheat (national model); however,
this is only the case for SDI, suggesting that how land uses are parti-
tioned, as opposed to the number of land uses itself, is driving this ef-
fect. Increasing diversification is also associated with decreased winter
wheat yields in the Northeastern and Southern regional models and
with decreased soy yields in the Midwestern regional model, however
these decreases are not significant.

4.2. When to diversify? The importance of contextual variability

Our primary objective in modeling yield response to multiple in-
dicators of diversity (SDI, SIDI, RICH) is to test model sensitivity to
operationalizations of diversity; however, model differences also pro-
vide insights into how agricultural systems respond to different facets of
diversity. Our results indicate that the yields of corn and winter wheat
are more responsive to SDI and RICH (Fig. 4A and C) than SIDI
(Fig. 4B). The SIDI is less sensitive than SDI and RICH to rare land use
categories, meaning that a small increase in agricultural diversity in a
system dominated by a single crop will increase both the SDI and RICH
much more than the SIDI. Therefore, the relative responsiveness of corn
and winter wheat yields to changes in SDI and RICH suggests that these
crops are more sensitive to the number of distinct crops in a county
rather their relative cultivated extent. This finding merits further ex-
ploration, as it indicates that cultivating small areas of a landscape with
a new crop could increase agricultural productivity.

By estimating non-linearities in the diversity-productivity relation-
ship, we can also identify the specific ranges of agricultural diversity

that have the highest potential impact on crop production. The linear
response of yields to RICH indicates that adding a new crop to an
agricultural system operating at any level of diversity can increase
yields; however, the shape of the SDI and SIDI curves in Fig. 4 suggests
that increasing agricultural diversity in systems that are already diverse
brings the highest yield gains. For example, increasing SDI from 2 to 3
increases yields of corn and winter wheat by approximately 10 and 20%
respectively. Similarly, increasing SIDI from 0.9 to 1.0 increases yields
of corn and winter wheat by nearly 10%. Yield gains for corn and soy
are much lower when systems move from low to moderate agricultural
diversity. In the case of winter wheat, diversification in this range may
actually decrease yields. We hypothesize that this is, in part, due to
heavy reliance on external mechanized and chemical inputs in specia-
lized monoculture systems that offset (at least in the short-term) the
negative impacts of diversity loss.

Increasing agricultural diversity in regions that are already diverse
has positive effects on yields of all crops across indicators of diversity
and across regions. There is far more variability in crop response to
diversification in systems with low agricultural diversity. These findings
emerge both at the national and regional scales, with the Midwestern
U.S.—a region dominated by monoculture systems—showing weaker
yield responses to agricultural diversification than other regions of the
U.S. This illustrates the importance not only of the regional variability
discussed above, but of contextual variability, or the impact of current
landscape composition on the effectiveness of diversification.

Fig. 7 classifies systems in terms of their combined diversity and
productivity. Diverse and productive systems are shown in dark green,
while simplified and productive systems—Ilargely concentrated in the
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Fig. 6. Regional differences in the effect of agricultural diversification on crop production.

Midwestern U.S.—are shown in dark purple. This figure highlights the
importance of regional variability in diversity-productivity interactions
but can also help to target regions where agricultural diversification
may have the highest impact. Given our finding that agricultural di-
versification has the highest impact in systems that are already fairly
diverse, diversification efforts targeted in regions of low to moderate
agricultural productivity and moderate to high agricultural diversity
(light greens and yellow regions) may have the highest impact.

Why might simple agricultural systems exhibit a more varied re-
sponse to diversification than diverse agricultural systems? Simple
agricultural systems, such as the monoculture systems that dominate
much of the Midwestern U.S., tend to be highly specialized, intensively
managed, and heavily reliant on external petro-chemical and mechan-
ical inputs (Altieri, 1999; Foley et al., 2011; Kremen et al., 2012). These
systems have some of the highest yields on the planet (USDA-FAS,
2017); however, these yields are not without environmental con-
sequence (Rabalais et al., 2002; Kremen and Miles, 2012). We

hypothesize that benefits from diversification in these systems are
drowned out by the yield gains brought by intensive management. We
note that, except in the case of winter wheat in a subset of models, crop
production does not decrease with diversification. In fact, yield re-
sponses to RICH are near-linear in national models and consistently
positive in the regional models across all crops. While we acknowledge
the significant cost and barriers to diversification in monoculture sys-
tems (Blesh and Wolf, 2014; Roesch-McNally et al., 2018; Lin, 2011;
Roesch-McNally et al., 2018), this result suggests that simple inter-
ventions, such as adding a small area cultivated with a new crop, could
significantly increase crop production even in the most simplified sys-
tems.

4.3. How to diversify? A landscape “commons”

This investigation of the relationship between agricultural diversity
and crop productivity has important implications for farmers and land
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Corn
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Fig. 7. Bivariate choropleth constructed by binning county-level spatial effects and SDI into thirds. We use the county-level spatial effects from the model described
in Section 2.2 run without diversity predictors as our indicator of yields. These effects capture the average yield in a county given the non-diversity predictors in our
model (seasonal weather, irrigation, and acreage). Regions in dark green are both highly diverse and highly productive. Yellow regions are highly diverse, but low
productivity, and purple regions are highly productive but low diversity.
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managers across the U.S. Our results suggest that by increasing the
compositional heterogeneity of crops within a landscape, farmers can
significantly increase yields. Furthermore, our models suggest that it is
the number of crops cultivated rather than their cultivated extent that
can bring greater yield benefits. This suggests that relatively simple
interventions such as adding a new crop cultivated on a small extent
could increase agricultural system productivity. This also implies that a
single farmer does not necessarily need to abandon monoculture to see
yield gains; conversely, a diversified farmer may not see gains in pro-
ductivity when cultivating in a simplified landscape. These dynamics
emphasize the importance of conducting analyses at a landscape scale
and of re-conceptualizing working landscapes, as well as the ecosystem
services they generate, as common pool resources (Ostrom, 1990;
Zhang et al., 2007). The benefits of agricultural diversification flow
across property boundaries and associated costs may not be fairly
spread across users. There is a growing need to understand land use
diversification beyond individual farmer decisions and within the fea-
sibility of coordinated landscape management and connectivity
(DeClerck et al., 2015).

5. Conclusion

Human-induced reductions in diversity have had negative impacts
on ecosystem function comparable to those from elevated carbon di-
oxide concentrations, nitrogen deposition, fire, and drought (Hooper
et al., 2012; Tilman et al., 2012). Agriculture is a significant driver of
this diversity loss and will likely remain as such if current practices
persist (Bommarco et al., 2013; Hendrickx et al., 2007; Landis, 2017;
McDaniel et al., 2014; Tiemann et al., 2015; Tscharntke et al., 2012). In
this paper, we assess whether and how increasing agricultural diversity
affects agricultural health and productivity. Our models provide strong
evidence at national and regional scales that agricultural diversifica-
tion—an intervention with known ecosystem benefits—can increase
crop production. This suggests that agricultural diversification could
serve as a key land use strategy to boost agricultural production while
preserving ecosystem function and integrity. These findings are rela-
tively consistent across crops, indices of diversity, and regions of the
U.S. However, these findings do not identify the specific causal me-
chanisms underlying the relationship between landscape diversity and
crop production. A limitation of this study is the inability to account for
local-scale factors and sub-annual variability such as application of
fertilizer and pesticides for which data availability is limited and nat-
ural disaster events (see Figure S1). The regional variability in our
models, highlights the continued importance of local- and meso-scale
analyses to assess the complex assemblage of socio-ecological factors
that mediate the diversity-productivity relationship across space and
time. In addition, the time frame for which the USDA Cropland Data
Layer land use information is available limits this study to a relatively
short window of time, making these model results more sensitive to
annual variation as shown in Figures S2-S4. Additional research is
needed to identify the social and ecological moderators of the diversity-
productivity relationship and key barriers to diversification such as
capital and cost, risk perceptions and behavior, market dynamics, in-
stitutional constraints, and changing climate (Burchfield and de la
Poterie, 2018; Di Falco and Perrings, 2005; Roesch-McNally et al.,
2018). Our hope is that the empirical evidence provided in this paper
will motivate future initiatives to identify these barriers and mod-
erators.
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