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We show that kidney exchange markets suffer from market failures 
whose remedy could increase transplants by 30 to 63 percent. First, 
we document that the market is fragmented and inefficient; most trans-
plants are arranged by hospitals instead of national platforms. Second, 
we propose a model to show two sources of inefficiency: hospitals only 
partly internalize their patients’ benefits from exchange, and current 
platforms suboptimally reward hospitals for submitting patients and 
donors. Third, we calibrate a production function and show that indi-
vidual hospitals operate below efficient scale. Eliminating this ineffi-
ciency requires either a mandate or a combination of new mechanisms 
and reimbursement reforms. (JEL D24, D47, I11)

The kidney exchange market in the United States enables approximately 800 
transplants per year for kidney patients who have a willing but incompatible live 
donor. Exchanges are organized by matching these patient–donor pairs into swaps 
that enable transplants. Each such transplant extends and improves the patient’s 
quality of life and saves hundreds of thousands of dollars in medical costs, ulti-
mately creating an economic value estimated at more than one million dollars.1 
Since monetary compensation for living donors is forbidden and deceased donors 

1 Kidney exchange is among a handful of recent innovations that both improve health care delivery and save costs 
(see Chandra and Skinner 2012). Transplantation roughly doubles the life expectancy of patients with end-stage 
renal disease and is cheaper than the alternative treatment of dialysis. Medicare provides nearly universal coverage, 
irrespective of age, for patients with end-stage renal disease, which comprises about 7 percent of Medicare’s annual 
budget (see United States Renal Data System 2016). The cost savings of transplantation relative to dialysis alone 
have been estimated to be over $270,000 (see Section I).
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are in increasingly short supply, kidney exchange markets play an important role in 
mitigating the shortage of organs available for transplant.2

This paper shows that, despite significant success, US kidney exchange suffers 
from market failures that result in hundreds of lost transplants per year. Our descrip-
tive evidence shows that the market is fragmented and operates inefficiently. The 
inefficiency arises from two standard market failures. First, kidney exchange plat-
forms use inefficient mechanisms: hospitals are not rewarded for submitting high 
social value patients and donors to the platform. Second, there are significant agency 
problems: hospitals face most of the costs of participating in national platforms but 
receive only a fraction of the benefits. These market failures are serious, but fixable. 
We show how to combine theory and data to design efficient mechanisms, and dis-
cuss policies such as reimbursement reforms and mandates. Our estimates suggest 
that fixing these problems would generate between 240 to 500 additional transplants 
per year (25 to 63 percent of the current total).

Our argument has three parts. First, we use administrative datasets to show that 
the market is fragmented, inefficient, and shows signs of agency problems. Second, 
we develop a simple model to explain the market failures and propose solutions. 
Third, we combine the model and data to estimate the magnitude of the inefficien-
cies and to design practical alternative mechanisms and policies.

The first part documents three key facts using data on all transplants in the United 
States and proprietary data from the three largest US kidney exchange platforms. 
First, the market is highly fragmented. Instead of most transactions being arranged 
by a few large platforms, 62 percent of kidney exchange transplants involve patients 
and donors from the same hospital. Second, we find direct evidence of inefficient 
exchanges in the market. Kidney exchanges performed within hospitals often trans-
plant kidneys from easy-to-match donors to easy-to-match patients, a practice 
which existing theory has shown to be inefficient (Roth, Sönmez, and Ünver 2007). 
Third, hospital behavior is inconsistent with pure maximization of patient welfare. 
Evidence suggests that hospitals are sensitive to the financial and administrative 
transaction costs of participating in kidney exchange, even though these costs are 
small relative to the social value of transplants. Many hospitals do not participate in 
national platforms, and even when they do, the typical hospital does not conduct all 
kidney exchanges through a national platform.

The second part develops a model to explain these facts and design policy 
responses. Although kidney exchange markets do not directly use monetary incen-
tives to acquire organs, we can analyze them with standard neoclassical producer 
theory. A kidney exchange platform produces a final good (transplants) from inter-
mediate goods (submissions of patients and donors) supplied by a competitive fringe 
(hospitals) according to a production function. This model is motivated by three key 
institutional features. First, hospitals are the key decision makers steering partici-
pants toward kidney exchange (Roth, Sönmez, and Ünver 2005; Ashlagi and Roth 

2 There are over 97,000 patients currently waiting for a kidney from a deceased donor, but less than one-fifth are 
expected to be transplanted in the next year. Becker and Elías (2007) argues that the wait-list could be completely 
eliminated if there were monetary compensation for live donors. However, this type of transaction is widely panned 
by bioethicists, and almost all countries forbid it. The National Organ Transplantation Act prohibits compensating 
donors to acquire organs in the United States, but explicitly allows for kidney exchange through the Charlie W. 
Norwood Living Organ Donation Act.
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2014; Rees et al. 2009). Second, due to biological compatibility constraints, some 
patients and donors generate considerably more transplants than others when they 
join a platform. Third, the structure of optimal matches makes transplants a natural 
numéraire good. Platforms can effectively transfer transplants from one hospital to 
another by choosing which hard-to-match patients to match.

Much of the economics of kidney exchange is determined by the shape of the pro-
duction function. Returns to scale determine how large a platform must be to attain 
efficiency, which tells us whether a fragmented market can be efficient. Marginal 
products determine the values of different types of patients and donors to the plat-
form, which are key factors in designing efficient mechanisms.

Theorem 1 shows that inefficiency comes from the two market failures we dis-
cussed. First, platforms use inefficient mechanisms. When a hospital submits a 
patient or a donor to a platform, current mechanisms reward hospitals according to 
the probability with which that hospital’s patient is matched. But the theorem shows 
that, to maximize hospital welfare, hospitals should be rewarded with the mar-
ginal product of their submissions (the expected number of additional transplants 
enabled), plus a small adjustment term. Because existing platforms do not reward 
hospitals based on the marginal product of their submissions, even a hospital that 
maximizes the number of own-patient transplants has to perform socially inefficient 
matches. This problem can be addressed by using a points mechanism that rewards 
hospitals according to marginal products. Without making the connection between 
kidney exchange and neoclassical producer theory, it is not obvious that this market 
failure exists, much less how to fix it. The second market failure is that hospital 
objectives may differ from pure social welfare maximization, a problem which we 
refer to as an agency problem. For example, hospitals may participate too little in 
kidney exchange because they face most of the costs but only receive a fraction of 
the benefits. This problem can be addressed with subsidy policies and mandates.

The third part of this paper combines theory and data to quantify inefficiency in 
the market and to suggest policy responses. To do so, we recover the production 
function using administrative data from the largest US kidney exchange platform 
and detailed information on matching algorithms and operational procedures.

The production function yields three sets of results. First, we measure the returns 
to scale and estimate the inefficiency from market fragmentation. We find that the 
largest kidney exchange platform is well above the minimum efficient scale, while 
almost all single-hospital platforms are far below the efficient scale. We estimate that 
the gains from moving all production to the efficient scale is at least 200 transplants 
per year, and likely closer to 500. These improvements correspond to an economic 
value of between $240 million and $500 million annually, of which approximately 
one-quarter is due to savings on health care costs. Thus, consistent with the descrip-
tive evidence and the shape of the production function, fragmentation has a large 
efficiency cost. Under certain assumptions, mandating that hospitals participate in 
national kidney exchange platforms could realize most of these gains. Our results 
suggest that the market can support two to three national platforms at close to the 
efficient scale. Therefore, a stronger mandate that additionally restricts participation 
to a single platform would not generate further gains.

Second, we use the estimated production function to design more efficient mech-
anisms. Optimal mechanisms should reward submissions approximately according 
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to marginal products, while current mechanisms reward submissions according to 
probabilities of matching. We find that marginal products are considerably different 
from probabilities of matching, which implies that existing mechanisms are far from 
optimal. We discuss how optimal points mechanisms based on our estimates could 
be used to improve hospital incentives.

Third, we study the importance of the two market failures. The loss in hospital 
welfare due to the inefficient mechanism depends on the wedge between current and 
optimal rewards, and on the elasticity of supply from hospitals. We have estimated 
the wedges and the marginal products, but our data do not have enough information 
to estimate supply elasticities credibly. Therefore, we calculate this deadweight loss 
under a broad range of assumptions on elasticities. Except under the most extreme of 
these, the deadweight loss is significant but lower than the inefficiency due to market 
fragmentation. Hence, both the current mechanism and agency problems contribute 
significant inefficiency in the market. This finding suggests a two-pronged policy 
approach: improve mechanisms and encourage participation. This approach is par-
ticularly appealing if a mandate is not politically feasible.

Relation to the Literature.—We build upon several earlier contributions. In kidney 
exchange, Roth, Sönmez, and Ünver (2004, 2007) and a large subsequent literature 
have studied optimal matching algorithms and the technology of kidney exchange. 
In particular, Roth, Sönmez, and Ünver (2007) calculates the marginal products of 
different types of pairs in a simplified theoretical model. Our empirical estimates 
of marginal products are, to our knowledge, the first test of their theoretical predic-
tions. We find qualitatively similar marginal products for most types, with differ-
ences because the empirical model accounts for features like immune sensitivity 
and matching frictions. Motivated by anecdotal evidence, other papers in the kidney 
exchange literature have theoretically analyzed the problem of hospital participa-
tion. Roth, Sönmez, and Ünver (2005) showed that hospitals may have incentives 
to match patients outside of an exchange and that this may compromise efficiency. 
Ashlagi and Roth (2014) proposes a mechanism that addresses this issue in a styl-
ized static model by only considering exchanges in which all patients that a hospital 
can transplant on its own are matched.3 Hospital rewards in their mechanism differ 
from long-run marginal products in a dynamic and stochastic setting when patients 
and donors are registered over time. Thus, Theorem 1 suggests that even if their 
mechanism provides good incentives in static models, it can be inefficient in prac-
tice.4 Rees et al. (2012) advocates for reimbursement policy reform based on the 
argument that costs of kidney exchange are a barrier to participation in the market.

We also draw on other areas of economics that are not traditionally used in mar-
ket design. Theorem 1 describes linear rewards that maximize hospital welfare. The 
key idea is based on analogies to linear commodity taxation (Ramsey 1927) and reg-
ulation of multi-product monopolists (Boiteux 1956). Our theoretical contribution 
is to apply these classic ideas and proofs to kidney exchange. A difference is that 

3 Toulis and Parkes (2015) proposes an alternative algorithm in the same lines as Ashlagi and Roth (2014).
4 Hajaj et al. (2015) also proposes a dynamic “credit mechanism” for kidney exchange; however, their mecha-

nism rewards each hospital based on the total number of pairs that it submits, irrespective of type. In this way, their 
suggested rewards differ from the marginal-product rewards that we suggest in Section IIIC.
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we recognize the possibility that hospital welfare and social welfare differ, which 
we model as a general wedge between the two, as in the modern behavioral public 
finance literature (Farhi and Gabaix 2017). Our paper is also related to the industrial 
organization literature on platforms. Platforms bring together market participants, 
much like kidney exchange platforms. A key issue in this literature is the structure of 
optimal prices, commonly studied for two-sided platforms (Rochet and Tirole 2003, 
Weyl 2010). Our analysis of kidney exchange involves pricing to only one side of 
the market: hospitals. Finally, we measure the total number of transplants lost due 
to market fragmentation using a misallocation analysis. This exercise is similar in 
spirit to the literature documenting and quantifying the efficiency implications of 
productivity dispersion (see Bartelsman and Doms 2000, Hsieh and Klenow 2009).

I.  Background and Data

A. Basics of Kidney Exchange

End-stage renal disease (ESRD) afflicts more than half a million Americans. The 
disease is almost universally covered by Medicare, even for patients under the age 
of 65. The Medicare ESRD program accounts for 7 percent of its budget, mostly 
spent on patients undergoing dialysis (United States Renal Data System 2016). The 
preferred treatment for ESRD patients is transplantation, which increases the qual-
ity and length of life by several years and is cheaper than dialysis. Transplantation 
saves approximately $270,000 per Medicare beneficiary and even more for privately 
insured patients (Wolfe et al. 1999, Irwin et al. 2012, Held et al. 2016). Moreover, 
the health risks to living donors are small. Taken together, these facts indicate that 
a living-donor kidney transplant has large economic value. Held et al. (2016) esti-
mates this value at $1.1 million using a detailed cost-benefit analysis.5

There is a severe shortage of organs for transplantation. Each year, approx-
imately 13,000 patients are transplanted using organs from deceased donors and 
another 5,500 from living donors. Demand far outstrips this supply with approxi-
mately 35,000 patients added to the deceased donor kidney wait-list in each of the 
recent few years. The shortage has resulted in the kidney wait-list growing to almost 
100,000 patients, with about 8,000 patients per year dying or being categorized as 
too sick to transplant.6 Monetary compensation cannot be used to address this short-
age because of ethical and legal reasons: it is forbidden in almost every country, 
including the United States (Becker and Elías 2007).

Kidney exchange is an innovative way to ameliorate this shortage (Roth, Sönmez, 
and Ünver 2004; Sönmez and Ünver 2013). It serves patients who have a willing 
live donor with whom they are not biologically compatible. Such patients can swap 
donors with others in the same situation, enabling transplants for many patients. 

5 Most of the $1.1 million comes from gains in quality-adjusted life-years (QALYs), valued at $200,000. Even 
if each QALY is valued at only $100,000, the estimated economic value only drops to $660,000. This drop is less 
than 50 percent because the cost savings on dialysis are also significant. In 2014, Medicare paid $87,638 per year 
per dialysis patient but only $32,586 in post-transplant costs per year per patient (United States Renal Data System 
2016, chapters 7 and 11).

6 Statistics taken from https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/ (accessed December 
21, 2017).

https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/
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These swaps are organized by kidney exchange platforms that match patients and 
donors registered with them. The platforms receive three types of submissions. The 
most common type is a pair, consisting of a patient and a living donor. The second 
type is an altruistic donor, who is willing to donate a kidney to a stranger without 
requiring a transplant for an associated patient. Finally, there are some unpaired 
patients, who do not have a willing live donor.

Platforms organize transplants in two ways. The first, called a cycle, involves 
a set of pairs. The kidney from one pair’s donor is transplanted into the patient in 
the next pair, and so on, until the cycle is closed. All transplants are carried out 
simultaneously to reduce the risk that a pair donates a kidney without also receiving 
one. Cycles are usually limited to at most three pairs due to logistical constraints. 
The second type, called a chain, is initiated when an altruistic donor donates to a 
patient in an incompatible pair. The donor from this pair can then continue the chain 
by donating to the next pair, and so on, until the chain terminates with an unpaired 
patient. Chains can be very long in principle because transplants do not have to 
be performed simultaneously, easing medical logistics.7 However, our data from 
the National Kidney Registry (NKR), the largest US kidney exchange platform, 
show that most chains involve four to five transplants. Initially, cycles were the most 
common type of transaction, but chains became more important over time and now 
account for about 90 percent of transplants.

There are two types of biological compatibility constraints on kidney transplants: 
blood-type and tissue-type compatibility (Danovitch 2009). A donor is blood-type 
incompatible with a patient if the donor has a blood antigen that the patient lacks. 
There are two blood antigens, known as A and B. Blood type is A or B if the blood 
has only the A or the B antigen, respectively, AB if it has both, and O if it has neither. 
A donor is tissue-type incompatible with a patient if the donor has human leukocyte 
antigens (HLA) to which the patient has an immune response.8 The most common 
measure of sensitization, that is, how likely a patient is to reject a transplant due to 
tissue-type incompatibility, is the Panel Reactive Antibody (PRA) score. A patient’s 
PRA is between 0 and 100 and denotes the percentage of a representative population 
of donors with whom a patient is tissue-type incompatible. Because this measure 
depends on the choice of representative population, the NKR’s algorithm uses an 
alternative measure tailored to its own pool called match power. It measures, for a 
given recipient (donor), the fraction of donors (recipients) on the platform that are 
both blood-type and tissue-type compatible.

7 Rees et  al. (2009) reports on an early chain involving ten transplants conducted over the course of eight 
months. One reason chains can be executed over a long period of time is that donors rarely renege (Cowan et al. 
2017). This trust allows chains in which a patient can receive a transplant before her related donor donates to the 
next patient in the chain.

8 Each patient has a list of antibodies to some, possibly large, subset of HLA antigens. If the recipient has an 
antibody to one of the donor kidney’s antigens, the recipient’s immune system will attack the kidney, leading to 
immediate rejection. A recipient is tissue-type compatible with a donor’s kidney if she has no antibodies corre-
sponding to the major HLA antigens of the donor’s kidney (Danovitch 2009). Note that recent developments in 
desensitization techniques have allowed some of these incompatibilities to be overcome (Orandi et al. 2014).
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B. Institutional Features and the Economics of Kidney Exchange

There are three institutional features that are crucial for the economics of kid-
ney exchange. First, kidney exchange takes place both in large, national platforms 
and within individual hospitals. There are three major national platforms currently 
operating in the United States: the National Kidney Registry (NKR), which is the 
largest; the Alliance for Paired Kidney Donation (APD); and the United Network 
for Organ Sharing (UNOS) Kidney Paired Donation Pilot Program. These large 
platforms match patients using optimization software that maximizes a weighted 
number of transplants. They differ in terms of exact algorithms and operational 
details.9 Once an exchange has been arranged, standard medical procedures are used 
to conduct the transplant with no known differences across the platforms. Platforms 
also do not influence a patient or donor’s surgeon choice. Besides these major plat-
forms, there are small regional platforms and individual hospitals that also organize 
kidney exchanges.

Hospitals are not forced to participate in platforms. In fact, most hospitals that 
participate in large national platforms also match patients outside those platforms. 
When multi-hospital kidney exchange platforms were conceived, hospital partici-
pation was assumed to be all or nothing. As the market developed, it became clear 
that platforms effectively reward hospitals with transplants in order to receive sub-
missions. For this reason, most platforms explicitly reward hospitals that submit 
altruistic donors by matching one of their unpaired patients.10

The second important institutional feature is that biological compatibility creates 
substantial variation in the social value of different submissions. One reason for this 
variation is blood-type compatibility. To simplify exposition, assume that there are 
only two blood types, O and A. These two types together are a significant majority 
of patients and donors in the United States. Denote a pair with patient blood type X 
and donor blood type Y as X–Y, and let ​​q​X–Y​​​ be the number of such pairs in a pool. 
Assume that ​​q​A–O​​  < ​ q​O–A​​​, which is the empirically relevant case.11 For this sim-
plified case, Roth, Sönmez, and Ünver (2007) showed that, in the large market limit, 
the number of transplants that can be performed, ​f ​(𝒒)​​, is

(1)	 ​f ​(𝒒)​  =  2 ⋅ ​q​A–O​​ + 1 ⋅ ​(​q​A–A​​ + ​q​O–O​​)​ + 0 ⋅ ​q​O–A​​.​

This result follows because A–A and O–O pairs can be matched with pairs of 
the same type. Roth, Sönmez, and Ünver (2007) calls these pairs self-demanded. 
Self-demanded pairs have a marginal product of ​1​, in the sense that they gener-
ate ​1​ additional transplant when they join the pool. However, an O–A pair can 
only be transplanted using a cycle with one of the valuable A–O pairs. Thus, there 
will be many leftover O–A pairs that can only be transplanted if more A–O pairs 

9 See Abraham, Blum, and  Sandholm (2007); Ashlagi et  al. (2019); Anderson et  al. (2014); Dickerson, 
Procaccia, and Sandholm (2012); and Agarwal et al. (2018).

10 Until recently, matching an unpaired patient in return for submitting an altruistic donor has been the only 
form of reward used by these platforms. After the end of our sample, the NKR started experimenting with a more 
complex rewards system to encourage the registration of easy-to-match patients and donors. To our knowledge, it 
is not based on the marginal products.

11 This fact is confirmed for patients and donors registered in the NKR. See Table 2.
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join the pool. A–O pairs are called over-demanded and have a marginal product 
of ​2​. O–A pairs are called under-demanded and have a marginal product of ​0​. An 
under-demanded pair competes with another under-demanded pair and adds no 
value to the pool. Roth, Sönmez, and  Ünver (2007) showed that this qualitative 
pattern holds even in a model with all possible blood types.

Current platform rules largely ignore this variation in the social value of submis-
sions, inducing hospitals to perform socially inefficient matches. Consider a hospital 
with two over-demanded pairs. The hospital could perform a pairwise exchange to 
conduct two transplants. However, if the hospital submits both pairs to the platform, 
then in expectation, the hospital receives a number of transplants equal to twice the 
probability that one of them is matched. According to our data, this probability is 
0.8, so the hospital expects only 1.6 transplants from submitting, which pushes it 
to match its patients outside the platform. However, each pair the hospital submits 
to the platform generates its marginal product, which the Roth, Sönmez, and Ünver 
(2007) model puts at 2. This suggests that the platform could generate four trans-
plants if the hospital would submit both its pairs. Using a more realistic empirical 
model, we estimate just under three additional transplants (Section IV). Either way, 
matching these two pairs within the hospital is socially inefficient despite the hospi-
tal acting in the best interest of its patients.

An important corollary of Roth, Sönmez, and Ünver’s (2007) results is that trans-
plants are a natural numéraire in a kidney exchange platform. Because hospitals 
have a large number of under-demanded pairs, it is easy for a platform to transfer 
transplants from one hospital to another without compromising efficiency, simply 
by choosing which under-demanded pairs to match.

The third important institutional feature is that hospitals do not necessarily max-
imize a utilitarian measure of the welfare of the patients and third-party payers who 
they represent. We refer to such behavior as a broadly defined agency problem, since 
hospitals incur most of the transaction costs of kidney exchange. The social value 
from one transplant is more than $1,000,000, of which the majority is savings in 
health care costs and gains in quality-adjusted life years. But, hospital revenues are 
between $100,000 to $160,000 per transplant.12 Variable profits are likely much 
smaller. Thus, even socially insignificant transaction costs of performing kidney 
exchange through a platform can be important for hospitals. Conversations with hos-
pital staff indicate that participation in kidney exchange platforms involves logistical 
and administrative hassle in addition to direct costs arising from biological testing 
and platform fees.13 Previous surveys and interviews have found that these trans-
action costs are commonly cited barriers to participation (Ellison 2014, American 
Society of Transplant Surgeons 2016). Besides costs, hospitals may also have behav-
ioral reasons for not perfectly maximizing patient welfare. For example, there is 

12 See Held et  al. (2016) and United States Renal Data System (2013). The revenues include payments for 
surgery teams, drugs, equipment, and capital.

13 Platforms require extensive biological testing, which is particularly complicated because donors and patients 
are in different hospitals. Platforms also charge fees, which are paid by hospitals. NKR charges an annual fee of 
about $10,000 plus about $4,000 per transplant. See National Kidney Registry (2016) for NKR’s fees, and Rees 
et al. (2012) and Wall, Veale, and Melcher (2017) for a broader discussion of the kidney exchange costs borne by 
hospitals.
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considerable heterogeneity regarding hospital sophistication: some hospitals use 
optimization software to match patients while others do so manually.

C. Data

We assembled two datasets for this paper. The first, the transplant dataset, records 
all kidney exchange transplants in the United States. We use this dataset to docu-
ment fragmentation, inefficiency, and participation in the kidney exchange market. 
The second, the NKR dataset, records all patients and donors who registered with 
the largest US kidney exchange platform, the NKR. We use this dataset to estimate 
a transplant production function.

The transplant dataset consists of anonymized records of every kidney transplant 
conducted in the United States between January 1, 2008 and December 4, 2014. 
We obtained this dataset from the Organ Procurement and Transplantation Network 
(OPTN), a contractor for the US Department of Health and Human Services.14 The 
OPTN dataset includes each transplant’s date and location; whether it is part of a 
kidney exchange; the age, sex, weight, height, body mass index (BMI), blood type, 
and HLA antigens of the donor and recipient; and the unacceptable antigens and 
days on dialysis of the recipient. See online Appendix C for details.

Although a comprehensive source for data on transplants, the only field in the 
OPTN dataset that specifically pertains to kidney exchange is an indicator for which 
transplants were part of such an exchange. Therefore, the OPTN dataset does not 
identify which, if any, multi-hospital kidney exchange platform organized a given 
transplant.

To address this limitation, we separately obtained anonymized records of all 
transplants organized by each of the three largest multi-hospital kidney exchange 
platforms in the United States: NKR, APD, and UNOS. By merging the data from 
these platforms with the OPTN data, we identified which transplants were organized 
through NKR, APD, UNOS, or other avenues. This merge is not straightforward 
because all of our datasets are anonymized. Fortunately, the rich biological data 
allow us to match transplants across datasets on the blood type, sex, and HLA anti-
gens of the recipient and donor; and the date and location of the transplant. See 
online Appendix C for more details. We were able to match approximately 94 per-
cent of transplants at these platforms to the corresponding OPTN data with a high 
degree of certainty.15

The transplant dataset contains information on transplants that were performed, 
but not on the pool of patients and donors that were available for kidney exchange. 
This information is needed to estimate a platform’s transplant production function. 
Therefore, we assembled the NKR dataset. It records all patients and donors who 

14 This study uses data from the Organ Procurement and Transplantation Network (OPTN). The OPTN data 
system includes data on all donors, wait-listed candidates, and transplant recipients in the United States, submitted 
by members of the Organ Procurement and Transplantation Network (OPTN). The Health Resources and Services 
Administration (HRSA), US Department of Health and Human Services provides oversight to the activities of the 
OPTN contractor.

15 Of the matches, 90 percent were within 1 day on the transplant date, within 5 years on donor and recipient 
age, and agreed on the hospital where the transplant was conducted as well as the blood type, sex, and all six major 
human leukocyte antigen (HLA) alleles relevant for kidney transplantation (2 alleles each at the HLA-A, B, and DR 
loci) for both the donor and recipient.
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registered with the NKR between April 2, 2012 and December 4, 2014. This dataset 
is sourced from the administrative records the NKR uses to organize transplants. 
It includes the registration date, blood type, age, sex, and HLA antigens for both 
patients and donors. It also records whether the patient or donor left NKR’s system, 
and the date and reason for departure (transplantation or otherwise). In addition, it 
includes information on pairings between donors and patients (if any), unacceptable 
antigens, and all the restrictions a patient places on which organs are acceptable. 
These fields allow us to determine the set of transplants the NKR considers accept-
able and medically feasible. We also have detailed data on how the transplants were 
organized, including the donors and patients involved, and the chain or cycle config-
uration. Online Appendix C provides details on how we assembled the NKR dataset.

II.  Descriptive Evidence

We now document three key facts: the kidney exchange market is highly frag-
mented, this fragmentation leads to inefficiency, and there is evidence of agency 
problems.

A. Fragmentation

We first document that the market is highly fragmented. Most kidney exchange 
transactions are matched internally by individual hospitals, as opposed to by large, 
national kidney exchange platforms. A kidney exchange transplant is defined 
as within hospital if the donor’s operation took place in the same hospital as the 
patient’s, and across hospitals if the donor’s and patient’s operations took place in 
different hospitals.16 We also classify transplants based on which platform coordi-
nated the exchange: NKR, APD, or UNOS. Transplants that were not organized by 
one of these platforms are classified as being performed by other platforms, includ-
ing single-hospital programs and small regional platforms.

Figure 1 shows that the market is highly fragmented. The three largest 
multi-hospital platforms together only account for a minority share of the kidney 
exchange market. Of all kidney exchange transplants, 62 percent are within-hospital 
transplants that are not facilitated by the NKR, APD, or UNOS. Over 100 hospitals 
performed kidney exchanges outside these three platforms during this period.

Unlike the dominance of within-hospital exchanges in the overall market, a large 
majority of the transplants facilitated by multi-hospital platforms are across hospi-
tals. This contrast between the overall market and the platforms is striking as the 
platforms do not prioritize across-hospital exchanges as a rule; such exchanges are 
a by-product of maximizing the total number of transplants. This suggests that coor-
dinating across hospitals has potential gains.

16 The common practice is to transport the organ after recovery instead of transporting the donor and recovering 
the organ elsewhere. Conversations with surgeons suggest that the primary motivation for this practice is to safe-
guard the donor’s interests: she has built relationships at her hospital, and the donation surgery requires extensive 
pre-planning and follow-up care.
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Figure 1 also shows that the total number of kidney exchange transplants grew 
from about 400 in 2008 to about 800 in 2014.17 However, overall market growth 
seems to have slowed in recent years. The total number in 2017 remains at around 
800,18 well below some estimates of the potential size of the market (Bingaman 
et al. 2012, Massie et al. 2013).

The growth in kidney exchange between 2010 and 2014 is concurrent with the 
NKR becoming the dominant kidney exchange platform. The NKR accounted for 
33.1 percent of all kidney exchange transplants in 2014 and facilitated more than 
5 times as many transplants as the APD and UNOS combined.19 The importance 
of the NKR during our sample period motivates our focus on the platform in the 
subsequent sections.

B. Evidence of Inefficiency

Market fragmentation creates inefficiency if there are increasing returns to scale 
and hospitals are operating below efficient scale. We now present direct evidence of 
hospitals conducting exchanges that are inefficient from a social perspective.

One easily detectable inefficiency is a transplant between a blood-type O donor 
and a non-O patient. As explained in Roth, Sönmez, and  Ünver (2007) and in 
Section I, O donors are scarce while O patients are abundant. If all transplants are of 
equal social value, optimal matches in a large market should only transplant organs 

17 Our data for the NKR extend until December 4, 2014. This censoring may account for the slight drop in 
transplants in the last year of this figure.

18 Source: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/ (accessed December 21, 2017).
19 The APD has grown in recent years, significantly closing the gap.
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Figure 1. Market Fragmentation and Trends in Kidney Exchange

Notes: The figure displays the number of kidney exchange transplants in different categories. The category Other 
represents transplants that were not facilitated by NKR, APD, or UNOS. Single-hospital platforms fall under this 
category. Within hospital and across hospital classify a transplant into whether the donor’s hospital was the same 
as the patient’s hospital.
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from O donors to O patients because O patients cannot accept other blood types.20 
The exception to this rule is for a highly sensitized patient, that is, one with a very 
high PRA. The platform might want to match an O donor with such a patient if it 
were the only way to get her transplanted.

Figure 2 displays the fraction of O donors that are used to transplant non-O 
patients, categorized into NKR transplants, APD/UNOS transplants, across-hospital 
transplants at other platforms, and within-hospital transplants at other platforms. 
Among NKR transplants, only 6.5 percent of O donors are used for non-O patients. 
In contrast, among within-hospital transplants outside the three platforms, this fig-
ure is 22.8 percent. The difference is statistically significant ( p < 0.01) and con-
stitutes strong evidence that hospitals often perform inefficient matches outside the 
platform. The figures for APD, UNOS, and across-hospital transplants at other plat-
forms are in between these two categories, but much closer to the NKR.

An alternative explanation for inefficient matching is that within-hospital trans-
plants use O donors to help highly sensitized patients who would otherwise remain 
untransplanted. However, Figure 2 shows that almost none of the potentially inef-
ficient transplants in the Other (within hospital) category involve highly sensitized 
patients. In contrast, about one-half of the potentially inefficient NKR transplants 
involve highly sensitized patients.

This exercise treats the value of all transplants as equal, irrespective of patient 
or donor blood type and whether the exchange was organized through a platform. 

20 Strictly speaking, efficiency as discussed here means maximizing the total number of transplants. However, 
transplanting an O donor to a non-O patient is also likely to be Pareto inefficient: if a pairwise exchange between 
two over-demanded A–O pairs were replaced by two A–O to O–A exchanges, then all parties would be better off 
(assuming the under-demanded O–A pairs would otherwise be unmatched).

Figure 2. Evidence of Hospitals Performing Inefficient Matches

Notes: The bars display the percentage of O donors whose kidneys were transplanted into non-O patients for dif-
ferent categories of transplants. Other indicates a transplant not organized by NKR, APD, or UNOS. This category 
includes transplants organized by single-hospital platforms. Within hospital and across hospital classify a transplant 
into whether the donor hospital was the same as the patient hospital. The colors decompose this total into highly 
sensitized patients (PRA > 90) and non-highly sensitized patients. The error bars depict 95 percent confidence 
intervals for the totals.
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The total number of transplants provides a transparent and economically relevant 
measure of market outcomes. Although not reported, our data show that indicators 
of the life-years benefit of kidney exchange, such as patient or donor age, do not 
significantly differ by blood type.

The remaining concern is that transplants organized through a platform may dif-
fer in quality or costs. However, Section IA argues that transaction costs of conduct-
ing transplants through a platform are negligible relative to the value of transplants 
lost by matching O donors to non-O patients. Moreover, Table 1 shows that there are 
no substantial differences in donor or match quality across our platform types. One 
reason patients considering a multi-hospital platform need not worry about donor 
quality is that the platforms allow patients and doctors to specify donor acceptabil-
ity criteria. They also allow patients to refuse proposed transplants if the donor is 
unsuitable. The only noticeable difference in Table 1 is that patients who receive 

Table 1—Summary Statistics for Kidney Exchange Transplants

Other platforms

NKR APD/UNOS Across hospital Within hospital

Observations 1,118 198 341 2,719

Patient blood type (%)
  A 34.7 36.4 37.2 37.1
  B 19.0 21.2 17.6 17.0
  AB 5.7 3.5 7.0 5.7
  O 40.6 38.9 38.1 40.2

Donor blood type (%)
  A 36.8 35.4 37.5 33.4
  B 18.2 20.2 14.7 13.8
  AB 3.9 1.5 6.7 2.9
  O 41.1 42.9 41.1 49.9

Panel reactive antibody (PRA) (sensitization)
  Mean 35.0 43.0 30.4 17.6
  Standard deviation 39.7 40.8 37.5 30.8
  Percent >90 16.4 20.6 12.0 5.1

Transplant outcomes and quality measures
  Donor age
    Mean    44.1 44.6 44.1 43.2
    Standard deviation  11.8  11.1 11.3 11.8

  Donor body mass index (BMI)
    Mean    26.5 27.0 26.6 26.5
    Standard deviation  4.0  4.0 4.1 4.2

  Donor height (cm)
    Mean    169.4 168.0 169.6 169.3
    Standard deviation   9.8 9.6 10.3 9.8

  Donor weight (kg)
    Mean    76.3 76.3 76.9 76.3
    Standard deviation 15.1 13.9 15.4 15.1

  Tissue type mismatch (0–6)
    Mean  4.2 4.2 4.2  4.4
    Standard deviation   1.3 1.4 1.2 1.2

  Mean days on dialysis
    Mean    1,026.6 1,048.4 1,063.1 969.1
    Standard deviation    1,088.1 848.1 1,269.5 990.9

Note: Sample of all kidney exchange transplants between January 1, 2008 and December 4, 2014.
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a transplant through a platform typically spend only two more months on dialysis 
than do patients who receive a within-hospital transplant. Given the average patient 
wait time of about 32 months, this difference represents only an 8 percent increase. 
The longer waiting time at the platforms should be expected because, as we discuss 
below, patients transplanted through the platform are, on average, harder to match.

If each of these inefficient transplants from O donors to non-O patients comes at 
the cost of one other transplant, as in the Roth, Sönmez, and Ünver (2007) model, 
then achieving the level of efficiency obtained by the NKR would have resulted in 
about 250 additional transplants between 2008 and 2014.21 The advantage of con-
sidering only the clearly inefficient transplants is that the results provide transparent 
evidence of inefficiency. The total inefficiency can be much larger.

C. Hospital Participation and Evidence of Agency Problems

Why do hospitals fail to participate more in national platforms? We start by doc-
umenting key facts about hospital behavior and argue that hospitals do not purely 
maximize the number of transplanted patients. Instead, they seem to maximize com-
plex and heterogeneous objectives, including, but not limited to, profits and patient 
welfare.

Descriptive Evidence.—We focus on participation behavior at the NKR because 
it is the primary multi-hospital kidney exchange platform during our sample period 
(Table 1). Panel A of Figure 3 depicts the extensive margin of participation among 
hospitals conducting kidney exchange transplants. A hospital is considered an NKR 
participant if it conducted at least one transplant through the NKR during our sample 
period. The figure is a binned scatterplot of the fraction of hospitals that participate 
in the NKR versus hospital size (measured by the total number of kidney transplants 
performed, both living and deceased).22 Panel B depicts the intensive margin of 
participation. The vertical axis in this scatterplot is the fraction of kidney exchange 
transplants that a hospital performs through the NKR. The results are qualitatively 
similar if we consider participation at any of the three largest kidney exchange plat-
forms because the APD and UNOS are relatively small during our sample period.

The figures reveal four key facts about participation. First, both the extensive 
and intensive margins are important drivers of market fragmentation. Only 41.4 
percent of hospitals participate in the NKR. Within those participating hospitals, 
only 59.1 percent of transplants are conducted through the NKR. These results are 
qualitatively similar if participation in any of the three national platforms (NKR, 
APD, or UNOS) is considered because only a few hospitals participate in multiple 
platforms.23 Second, larger hospitals are considerably more likely to participate in 

21 Table 1 shows that within-hospital platforms have a larger gap between the fraction of O donors and patients 
than the NKR. The difference in this gap, multiplied by the number of within-hospital transplants, is a measure of 
transplants lost due to inefficient use of O donors in within-hospital transplants.

22 This broad measure of size limits the endogenous effect of NKR participation on hospital size since deceased 
donor and direct living-donor transplants form the bulk of kidney transplants. During our sample period, the total 
number of kidney transplants has remained stable relative to the growth in kidney exchange.

23 Only 10 hospitals out of the 64 that participated in the NKR between 2012 and 2014 also conducted a trans-
plant through the APD or UNOS. Most of these hospitals did not do so in all three years and conducted only a 
handful of transplants through the other platforms.
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the NKR. The probability of participating at all is about 80 percent for a hospital 
that performs approximately 250 transplants per year but only about 30 percent for 
a hospital that performs about 50 transplants per year (panel A of Figure 3). Third, 
conditional on participating, large hospitals conduct more of their matches outside 
the platform (panel B). Although size positively correlates with the fraction of kid-
ney exchange transplants performed in the NKR, the relationship is negative if we 
focus exclusively on hospitals that participate at all (panel B). Fourth, there is a high 
degree of heterogeneity in intensive margin participation. Even among hospitals 
with similar size, participation varies considerably (panel B). For example, among 
the five transplant hospitals that perform more than 300 transplants per year, one 
does not participate at all (Jackson Memorial), one has a participation rate close to 
zero (UC Davis Medical Center), one has a rate in the 50–60 percent range (UCSF 
Medical Center), and two have rates greater than 75 percent (UCLA Medical Center 
and the University of Wisconsin Hospital).

The data also provide information on the characteristics of patients submitted to 
the NKR and of the patients transplanted by each hospital, categorized by how the 
transplant was facilitated. Tables 1 and 2 reveal three main facts.

First, the NKR receives submissions that are very hard to match compared to the 
general population (Table 2). The blood types of both altruistic and paired donors skew 
away from O donors and toward A donors relative to the US population. The deceased 
donor population has about 45 percent O donors and 40 percent A donors. In contrast, 
patients in pairs are disproportionately likely to have blood type O (58.6 percent), and 
their related donors are unlikely to have blood type O (31.9 percent). Only a small 
fraction of pairs (13.8 percent) are over-demanded. Interestingly, unpaired patients 
are much more likely to have an easy-to-match blood type (the majority having A). 
The average PRA for patients registered with the NKR is 47.6, which corresponds to 
tissue-type incompatibility with almost one-half of the reference population.

Second, the NKR transplants patients who are considerably harder to match than 
patients transplanted by single hospitals (Table 1). Approximately 40 percent of the 
patients and donors transplanted through the NKR are blood type O. The PRA of 
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the patients transplanted through the NKR is approximately 35, and about one in six 
patients have a PRA above 90. These statistics are similar for across-hospital kidney 
exchanges not facilitated by the NKR and transplants facilitated by APD or UNOS. 
In contrast, among within-hospital kidney exchanges not conducted by a large 
platform, almost 50 percent of the donors are blood type O, but only 40 percent 
of the patients. The average PRA of patients transplanted through within-hospital 
exchanges is only 18. This is almost one-half of the mean PRA for patients trans-
planted through one of the three national platforms.

Third, transplants on all platforms look similar in donor quality measures that do 
not affect compatibility, such as weight, body mass index, and age (Table 1). This 
supports our equal treatment of all transplants for welfare calculations, irrespective 
of whether they are facilitated through a national platform.

Implications for Hospital Behavior.—The facts above have implications for 
different hypotheses about hospital behavior. In the discussion that follows, we 
approximate total patient welfare with the total number of transplants because, as 
we argued in Section I, kidney exchange transaction costs are small relative to the 
benefits of transplantation.

The first hypothesis is that hospitals maximize the total welfare of all patients in 
the system, regardless of the hospital to which a patient belongs. This hypothesis 
is strongly rejected by several features of the data, such as the evidence of socially 
inefficient matches (Figure 2).

Table 2—Summary Statistics for NKR Submissions

Altruistic donors Pairs Unpaired patients

Observations 164 1,265 501

Patient blood type (%)
  A — 23.8 51.1
  B — 15.0 16.0
  AB — 2.6 19.0
  O — 58.6 14.0
Donor blood type (%)
  A 44.5 44.4 —
  B 14.0 18.5 —
  AB 3.7 5.2 —
  O 37.8 31.9 —
Match power
  Recipient/pair
    Mean — 0.218 0.431
    Standard deviation — 0.210 0.392
  Donor
    Mean 0.279 0.258 —
    Standard deviation 0.162 0.159 —
  Panel reactive antibody (PRA) (sensitization)
    Mean — 48.8 44.4
    Standard deviation — 41.1 45.1
  Pair type (%)
    Over-demanded — 13.8 —
    Under-demanded — 41.9 —

Notes: A pair is over-demanded if the patient is blood-type compatible with the related donor, but not of the same 
blood type. Under-demanded pairs are either blood-type O patients without blood-type O donors or are blood 
type-AB donors without blood-type AB patients. Sample is all patients and donors registered in the NKR between 
April 2, 2012 and December 4, 2014.
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A second hypothesis is that hospitals only maximize the welfare of their own 
patients. This hypothesis was investigated theoretically by Ashlagi and Roth (2014), 
which argues that hospitals will try to match as many of their patients internally as 
possible and only submit the remaining patients to a multi-hospital kidney exchange 
platform. This hypothesis fits some qualitative patterns in the data, but not others. 
For example, it explains why larger hospitals in the NKR perform fewer transplants 
through the platform: these hospitals have more opportunities to match patients out-
side the platform (panel B of Figure 3). However, it does not explain why many hospi-
tals do not participate in a national platform at all, even though all hospitals likely have 
patients who cannot be matched.24 Moreover, many small hospitals do not participate 
in the NKR, even though these hospitals, due to their size, are least likely to find 
matches within the hospital. The patterns suggest that hospitals respond to fixed costs 
of participating in kidney exchange platforms, even though these transaction costs are 
small relative to benefits to patients and cost savings from dialysis to insurers.

A third hypothesis is that hospitals are profit maximizers. This hypothesis is consis-
tent with the fact that small hospitals are less likely to participate in the NKR (panel A 
of Figure 3) because the fixed costs of participation may not compensate for the gains 
in profits from additional transplants. However, this theory alone cannot fully explain 
the large variation in the degree of participation, especially among large hospitals. 
For example, transplant coordinators at Cornell Medical Center (a large hospital with 
a high NKR participation rate) report that a primary reason for participating is the 
importance of contributing to a national kidney exchange platform (Ellison 2014).

Taken together, the evidence on hospital participation suggests that hospitals 
maximize complex and heterogeneous objectives. This finding is consistent with the 
anecdotal evidence on kidney exchange reviewed in Section I, as well as the stan-
dard view in health care economics (Arrow 1963) and more recent findings about 
the behavior of health care providers (Kolstad 2013, Clemens and Gottlieb 2014).

The facts about selection into which patients and donors are submitted to the NKR 
also indicate that two of these theories, maximizing profits and maximizing their 
own patients’ welfare, can explain many hospitals’ behavior. These theories’ shared 
implication is that pairs submitted to national platforms are negatively selected, in 
the sense of being hard to match. In both cases, a hospital only submits a pair to a 
platform if an internal match is not possible. Unfortunately, we cannot directly test 
this prediction because we do not have data on the entire pool of patients available 
to individual hospitals. But, it is reassuring that the results on selection do not falsify 
the two theories that best fit the participation behavior.

To summarize, these findings have two important implications. First, there is 
clear evidence of agency problems, as we defined broadly in Section I. Second, the 
data indicate that none of the simple models describe the behavior of all hospitals.

III.  Theory

The evidence above shows that kidney exchange markets are fragmented, which 
leads to real efficiency loss. We now build a model similar to one of a traditional 

24 Recall that over-demanded pairs are typically scarce. We will see in Section IV that even the NKR is able to 
match only about 50 percent of its donors.
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market in which the platform procures submissions (donors and patients) from hos-
pitals and rewards these hospitals with transplants. We use the model to explain how 
inefficiency arises, to quantify it, and to develop responses. In particular, under cer-
tain assumptions, policy responses like participation mandates and providing incen-
tives can improve outcomes.

A. Model

A kidney exchange platform procures submissions from hospitals and rewards 
them with transplants. The platform’s ability to produce transplants is described by 
a production function ​f​. We consider types of submissions ​i = 1, … , I​. A (column)
vector of submissions ​q  = ​​ (​q​i​​)​​ i=1​ I  ​​ in ​​ℝ​ +​ I ​​ specifies a quantity ​​q​i​​​ of each submission 
type available to the platform, where ​​ℝ​+​​​ is the set of non-negative real numbers. 
Given a vector of submissions ​q​, the platform can produce ​f ​(q)​​ transplants. The 
model can be interpreted as either static or as a steady state from a dynamic model. 
We will use the steady-state interpretation in the empirical analysis. All variables are 
measured in flows (i.e., transplants per year).

The production function ​f ​(q)​​ summarizes what matches are possible. Roth, 
Sönmez, and Ünver (2007) calculated the production function using a simple model 
that we described in Section I. Since that paper assumed that all submissions are 
pairs and that only blood-type compatibility matters, its model has ​I  =  16​ types. 
Our analysis applies both to such theoretically tractable production functions as 
well as to more complex ones. Section IV uses an empirical production function 
that allows submissions to differ by whether they are patient–donor pairs, altru-
istic donors, or unpaired patients, and by a host of variables including blood 
type and antigen and antibody profiles. Thus, the number of types ​I​ is potentially  
large.

We say that the production function ​f​ has constant returns to scale at ​q​ if its elas-
ticity with respect to scale at q is equal to 1. That is, ​​​((α/f (αq)) ⋅ (∂ f (αq)/∂ α))​​|​​​α=1​​  
= 1​, which is equivalent to ​∇f ​(q)​ ⋅ q  =  f ​(q)​​. The Roth, Sönmez, and  Ünver 
(2007) model considers a large platform with constant returns to scale. Our empir-
ical production function in Section IV will measure the returns to scale for the 
NKR.

The platform produces transplants using submissions provided by hospi-
tals ​h  =  1, … , H​. Hospitals are rewarded for these submissions with transplants. 
We assume these rewards are linear in submissions and anonymous. That is, there 
exists a (row) vector of rewards ​p  = ​​ (​p​i​​)​​ i=1​ I  ​​ in ​​ℝ​​ I​​ where the ​i-​th component 
denotes the (expected) number of transplants awarded to the hospital per submission 
of type ​i​. The units of ​​p​i​​​ are transplants per submission. A hospital that submits a 
flow ​​q​​ h​​ in ​​ℝ​ +​ I ​​ of submissions receives a flow ​p ⋅ ​q​​ h​​ of transplants, where · represents 
matrix multiplication. Since all transplants that are performed must be allocated to 
some hospital, a platform must satisfy the constraint that ​f ​(​∑ h​​ ​q​​ h​​)​  = ​ ∑ h​​  p ⋅ ​q​​ h​​.​

This linear reward schedule is a good approximation of current platforms’ rules 
because their matching algorithms maximize a weighted sum of the number of 
matches without considering which patients and donors are submitted by each hos-
pital (Sönmez and  Ünver 2013, Anderson et  al. 2015). That is, when a hospital 
submits an additional pair, the probability that the platform matches a different pair 
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from the same hospital does not significantly change. Therefore, the current reward 
for submitting a type ​i​ pair is equal to the probability ​​p​i​​​ that the pair is matched.

We assume that hospital utility equals the number of transplants received from 
the platform minus a private cost of submissions, ​​C​​ h​​(​q​​ h​)​​, measured in transplant 
units. For instance, if a hospital maximizes the number of its own patients that are 
transplanted, then ​​C​​ h​​(​q​​ h​)​​ is the number of within-hospital transplants that the hos-
pital must forgo in order to submit ​​q​​ h​​. However, ​​C​​ h​​(​q​​ h​)​​ could also include a weight 
on additional hospital profits from within-hospital transplants. Our analysis will 
remain agnostic about the specific form of ​​C​​ h​​(​q​​ h​)​​, except when explicitly noted.

Welfare is defined over an allocation ​​​(​q​​ h​)​​ h=1​ 
H

  ​​ that specifies the quantity of pairs 
supplied by each hospital. We will use two welfare notions, both of which use trans-
plants as a numéraire because platforms can effectively transfer transplants between 
hospitals by choosing which under-demanded submissions to match (see Section I).

The first notion is hospital welfare ​​W​​ H​​(​q​​ 1​, … , ​q​​ H​)​​, which is the total welfare 
measured from the point of view of hospitals. Hospital welfare equals the total num-
ber of transplants produced (which is the same number of transplants that hospitals 
receive) minus the private costs. That is,

(2)	 ​​W​​ H​​(​q​​ 1​, … , ​q​​ H​)​  =  f ​(​∑ 
h
​ 
 
 ​​​ q​​ h​)​ − ​ ∑ 

h=1
​ 

H

  ​​​C​​ h​​(​q​​ h​)​.​

This is a compelling notion of welfare if the goal is to help key market participants 
(hospitals, in this case) achieve their objectives.

Hospital welfare is not compelling if hospitals do not purely maximize patient and 
insurer welfare. As discussed in Sections IA and II, there is anecdotal and empirical 
evidence of such agency problems. For this reason, we also consider a utilitarian 
welfare measure, which we term social welfare.25

Define ​​SC​​ h​​(​q​​ h​)​​ as the social cost for hospital ​h​ to supply a vector ​​q​​ h​​ submissions. 
If there are agency problems, then social and private costs are different, and there 
is an agency externality from hospital ​h​’s submissions because ​​C​​ h​​(​q​​ h​)​  ≠ ​ SC​​ h​​(​q​​ h​)​.​ 
For example, ​​C​​ h​​(​q​​ h​)​​ is larger than ​​SC​​ h​​(​q​​ h​)​​ if hospital ​h​ acts as though the financial 
and logistical costs of participating in kidney exchange platforms are significant 
relative to the private value of a transplant. The externality represents the benefits 
to stakeholders other than the hospital itself. We will refer to any such wedge as 
a (broadly defined) agency problem.26 In the particular case where there are no 
agency problems, we have ​​C​​ h​​(​q​​ h​)​  = ​ SC​​ h​​(​q​​ h​)​​ for all ​h​. Define social welfare to be

	​ SW​(​q​​ 1​, … , ​q​​ H​)​  =  f ​(q)​ − ​ ∑ 
h=1

​ 
H

  ​​ ​SC​​ h​​(​q​​ h​)​.​

25 The theory does not make specific assumptions about social welfare. In the empirical application, we will con-
sider social welfare to be equal to the number of transplants performed because the costs of organizing exchanges 
and transplants are small relative to the social benefit of a transplant.

26 The wedge between ​​C​​ h​​ and ​S​C​​ h​​ includes all reasons why hospitals’ objectives deviate from social goals. 
But, it can be decomposed into behavioral reasons why hospitals do not maximize social welfare (such as inatten-
tion) and differences in payoffs if hospitals were rational. We follow the behavioral public finance literature (Farhi 
and Gabaix 2017) in letting the wedge include all of these differences. We use the term agency for two reasons. 
First, Section I argues that hospitals represent patients and insurers, and that the additional costs of participating in 
kidney exchange are negligible when compared to the value of a transplant. Second, survey and anecdotal evidence 
suggests that these costs influence decisions, indicating that agency problems are important. We cannot rule out 
behavioral biases resulting in suboptimal hospital behavior.
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Define first-best hospital welfare as the supremum of ​​W​​ H​​ and first-best social wel-
fare as the supremum of ​SW​.

Given these primitives, for a vector of rewards p, the hospital supply of hospital ​h​ is

	​ ​S​​ h​​(p)​  = ​ arg max​ 
​q​​ h​∈​ℝ​ +​ I ​

​ ​​ [p ⋅ ​q​​ h​ − ​C​​ h​​(​q​​ h​)​]​.​

Define the aggregate cost, ​C​(q)​​, to be the minimum sum of hospital private costs 
necessary to ensure that hospitals supply ​q  ≡ ​ ∑ h​   ​​ ​q​​ h​​ in aggregate. Let the aggre-
gate supply correspondence be

	​ S​(p)​  = ​ arg max​ 
q∈​ℝ​ +​ I ​

​ ​​ [p ⋅ q − C​(q)​]​.​

We assume that the production function, social and private costs, and aggregate cost 
functions are defined over all non-negative real vectors and are smooth. The max-
imum of each hospital’s objective is attained for some quantity for every vector of 
rewards. Further, assume that aggregate cost is strictly convex.

Online Appendix B shows that aggregating individual hospital supplies yields 
​S​(p)​​. Denote the aggregate inverse supply with ​​P​S​​​(q)​  = ​ {p  ∈ ​ ℝ​​ I​ ∣ q  ∈  S​(p)​}​​. 
Further, online Appendix B shows that, for strictly positive q, the aggregate inverse 
supply is single-valued and ​​P​S​​​(q)​  =  ∇C​(q)​​, where we use the convention that 
gradients are row vectors. This result is similar to how firms supply at price equal to 
marginal cost in a competitive market.

B. Illustrative Example: Agency and the Wedge between Private and Social Costs

Our model of the kidney exchange market is framed in terms of transplants as 
a numéraire, and captures agency problems as a wedge between private and social 
costs. We now present a particular example to clarify these two features of the model. 
The specific assumptions in this section are not necessary for our results.

Let ​​K​​ h​​(​q​​ h​)​​ be the monetary costs borne by hospital ​h​ of sending ​​q​​ h​​ submissions 
to a kidney exchange platform. These can include platform fees, costs of rearranging 
the hospital’s schedule around the platform, and funds for hiring additional trans-
plant coordinators (see Section IA). Let ​​T​​ h​​(​q​​ h​)​​ be the flow of kidney exchange 
transplants that hospital ​h​ forgoes when submitting ​​q​​ h​​ to the platform because it 
cannot match these patients and donors internally.27

To combine the monetary costs and the transplant costs of submitting, we need 
a rate of exchange between the two. Let hospitals value each transplant at ​v​ dol-
lars, which includes profits and the value that hospitals place on transplanting their 
patients. Gross revenues from a transplant are approximately $150,000 (United 
States Renal Data System 2013, Held et al. 2016). For illustrative purposes, take ​v​ to 
be $50,000, which represents a generous 50 percent markup on costs. In transplant 
units, hospital ​h​’s cost function is

	​ ​C​​ h​​(​q​​ h​)​  = ​ T​​ h​​(​q​​ h​)​ + ​ 
​K​​ h​​(​q​​ h​)​
 _ v  ​ .​

27 If the hospital cannot supply a quantity ​​q​​ h​​, define ​​T​​ h​​(​q​​ h​)​​ as infinity.
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The private value of a transplant just discussed does not account for any benefits 
that fall to non-hospital stakeholders. Such benefits include the value a patient has 
for a transplant beyond the value the hospital places on it and the savings in health 
care costs to insurers. Hospitals contract with these agents, but may not account for 
all of their benefits because they are not incentivized to do so. For this reason, the 
social value of a transplant may differ from the private value to a hospital, creating 
agency problems.

Let society value transplants at ​V  >  v​ dollars. The cost-benefit analysis in Held 
et al. (2016) places ​V​ at $1.1 million.28 But, even one-half of that value is much 
higher than hospital profits. This fits our model with social costs

	​ ​SC​​ h​​(​q​​ h​)​  = ​ T​​ h​​(​q​​ h​)​ + ​ 
​K​​ h​​(​q​​ h​)​
 _ 

V
  ​ .​

Hence, the wedge between private and social costs equals

	​ ​C​​ h​​(​q​​ h​)​ − ​SC​​ h​​(​q​​ h​)​  = ​ (​ 1 _ v ​ − ​ 1 _ V ​)​ ⋅ K​(​q​​ h​)​.​

The difference is how much more hospitals care about the costs of participating in a 
kidney exchange platform than society does, measured in transplant units.

To develop intuition for this wedge’s magnitude, assume that the monetary cost 
is linear in the number of submissions, i.e., ​​K​​ h​​(​q​​ h​)​  =  k​∑ i=1​ I  ​ ​q​ i​ h​​​. Then, the wedge is 
roughly ​​(k/v)​​∑ i=1​ I  ​ ​q​ i​ h​​,​ where the approximation holds because the social value of a 
transplant ​V​ is much larger than the monetary cost ​k​. The wedge is large because it 
depends on the platform participation costs borne by the hospitals as a fraction of a 
transplant’s private value, not its social value.

For example, if ​k​ is $10,000 and ​v​ is $50,000, then the wedge is ​k/v  =  0.20​ 
transplants per submission. Hospitals compare this wedge to the rewards vector p, 
which is equal to the probability of matching various submissions in the current 
mechanism. In effect, the wedge creates an incentive for the hospital to not sub-
mit a patient or donor to a national platform. The calculation above suggests that, 
because of agency problems, rewards have to be 20 percentage points higher in 
order to induce a given submission. Therefore, it is likely that agency problems are 
an important part of the kidney exchange market.

C. Optimal Incentives

The following theorem describes optimal rewards.

THEOREM 1 (Optimal Rewards): Consider a vector of rewards ​p​ and an allo-
cation ​​​(​q​​ h​)​​ h=1​ H

  ​​ with strictly positive aggregate quantity ​q​ that maximizes hospi-
tal welfare subject to all hospitals choosing ​​q​​ h​  ∈ ​ S​​ h​​(p)​​ and subject to the total 

28 Even if a kidney exchange patient would have otherwise received an organ from a deceased donor, the kidney 
exchange enables some other patient to receive the deceased donor organ. Therefore, the social benefit of each 
kidney exchange transplant should still be the same as the gain from one transplant.
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rewards allocated being the same as the number of transplants produced, that is, 
​f ​(q)​  =  p ⋅ q​. Then:

	 (i)	 The platform rewards each type of submission with its marginal product 
minus an adjustment term. Specifically,

	​ p  =  ∇f​(q)​ − A​(q)​,​

		  where

		​  A​(q)​  = ​ (​ 
∇f​(q)​ ⋅ q − f ​(q)​

  ____________  
​q ′ ​ ⋅ D​P​S​​​(q)​ ⋅ q  ​)​​q ′ ​ ⋅ D​P​S​​​(q)​,​

		  and ​D​P​S​​​(q)​​ is the Jacobian matrix of the inverse supply.

	 (ii)	 If the production function has constant returns to scale at ​q​, then the reward 
for each type of submission is equal to its marginal product, ​p  =  ∇f​(q)​​. 
Moreover, the allocation ​​​(​q​​ h​)​​ h=1​ H

  ​​ attains first-best hospital welfare.

	 (iii)	 If, in addition, social cost is equal to private cost (​​C​​ h​​(​q​​ h​)​  =  S​C​​ h​​(​q​​ h​)​​ for 
all ​h​), then this allocation attains first-best social welfare.

The first part shows that to maximize hospital welfare, the reward for each submis-
sion must be approximately equal to its marginal product. To build intuition, ignore 
the constraint that the platform cannot allocate more transplants than it produces. 
The platform is similar to a firm that produces a consumption good (transplants) 
using intermediate goods (submissions). Since the supply of intermediate goods 
equates prices p with marginal costs ​∇C​, the first-order condition for maximizing 
hospital welfare implies that efficient prices p must equal to marginal products ​∇f​.

The only complication is the constraint that a platform cannot allocate more 
rewards than the number of transplants produced, which binds if ​f​ does not exhibit 
constant returns to scale. If ​f​ exhibits increasing returns to scale, then the aver-
age product is lower than the marginal product. In this case, ​A​(q)​ ⋅ q​, the opti-
mal level of shading relative to marginal products, summed over all flows, equals 
​∇f​(q)​ ⋅ q − f ​(q)​​. Thus, the optimal level of shading depends on the returns to scale. 
The formula for ​A​(q)​​ shows that the platform should shade more aggressively on 
submissions with less elastic supply.29 Our formula is similar to standard formu-
las in optimal linear commodity taxation (Ramsey 1927), regulation of monopolies 
(Boiteux 1956), and optimal pricing (Lerner 1934). The proofs are identical for kid-
ney exchange platforms, but provide new insight in an application where monetary 
prices are not paid to acquire submissions.

29 To see why, consider the case when the cross-elasticities of supply are zero so that ​D​P​S​​​ is a diagonal matrix. 
Then, for each type ​i​, the reward is marked down from marginal product according to ​(1/​p​i​​)​(​(∂ f/∂ ​q​i​​(q))​ − ​p​i​​)​ = λ/​ε​i​​,​ 
where ​​ε​i​​​ is the own-price supply elasticity and ​λ​ is the Lagrange multiplier on the constraint that all transplants 
produced must be given out as rewards, that is, ​f ​(q)​  =  p ⋅ q​.
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The theorem shows that current platform rules are inefficient. Instead of reward-
ing submissions with their marginal products, current rules reward submissions 
with the probability of being transplanted. Therefore, there is a wedge between the 
social and private benefits of submissions. Under current rules, a hospital chooses 
between serving its own patients or providing a service to the system as a whole. 
A clear example of this dilemma, described in Section IB, is of a hospital with 
two over-demanded pairs. This hospital could match the pairs internally instead of 
submitting them to a platform, but doing so would cause the type of inefficiency 
documented in Section II.

The second part of the theorem shows that, when returns to scale are constant, the 
optimal mechanism rewards submissions exactly according to marginal products. 
The adjustment term in this case equals zero, and optimal rewards achieve first-best 
hospital welfare. As we will show in Section IV, this case is empirically relevant 
because the NKR is well within the region of approximately constant returns to 
scale. Therefore, optimal mechanisms can be calculated in practice by estimating 
marginal products.

Moreover, when there are constant returns to scale, there is no need to consider 
nonlinear rewards because we can achieve first-best hospital welfare with linear 
rewards. One approach for using these results in practice is to introduce a dynamic 
points mechanism. For each submission, a platform can credit points to a hospital 
equal to the marginal product. Then a point can be subtracted whenever a hospital 
conducts a transplant. The platform performs optimal matches with a constraint that 
no hospital’s point balance falls below a certain level. We discuss the design of this 
type of mechanism in Section VA. Another approach is to use a mandate that forces 
hospitals to make the efficient level of submissions. We discuss this type of policy 
response in Section VC.

The third part of the theorem states that if the production function exhibits con-
stant returns to scale and there are no agency problems, then the optimal mechanism 
achieves first-best social welfare. This result clarifies that there are two possible 
sources of inefficiency: suboptimal platform incentives (i.e., rewards that deviate 
from marginal products, ​p  ≠  ∇f​) and agency problems (hospitals failing to fully 
internalize the welfare of the parties they represent, ​​C​​ h​  ≠  S​C​​ h​​).

Figure 4 depicts these two market failures in a graphical framework reminis-
cent of supply and demand. It ignores the adjustment term because estimates in 
Section IV will show that NKR is at approximately constant returns to scale. The 
horizontal axis plots aggregate supply ​q​. The vertical axis plots marginal products, 
social costs, and social benefits. The current vector of rewards, which is equal to 
the probability of matching each pair, is denoted by ​​p​0​​​. The current quantity sup-
plied, ​​q​0​​​, is determined by the aggregate supply curve evaluated at current rewards. 
The curve ​∇SC​(q)​​ is the marginal aggregate social cost if hospitals choose privately 
optimal quantities given rewards ​​P​S​​​(q)​​.30

The hospital-optimal quantity ​​q​​ ⁎​​ equates ​∇f​ with marginal aggregate private 
costs. Thus, the first market failure is that the platform gives inefficient incentives. 
The second market failure is that there are agency problems because hospitals do 

30 Formally, ​SC​(q)​  ≡  ​∑ h=1​ H  ​ S​C​​ h​​(​S​​ h​​(​P​S​​​(q)​)​)​​​ is the reward-moderated social cost. The figure assumes that each 
individual hospital supply is uniquely defined and that ​SC​(q)​​ is differentiable. See online Appendix A.2.
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not fully account for the costs and benefits of other parties (i.e., ​​C​​ h​  ≠  S​C​​ h​​). The 
aggregate quantity ​​q​​ ⁎⁎​​ maximizes social welfare subject to hospitals responding 
optimally given a rewards vector. It attains the first-best social and hospital welfare 
if we also solve agency problems so that ​​C​​ h​  =  S​C​​ h​​, which makes the two welfare 
notions coincide.

In the example above, agency problems can be solved by reimbursing hospi-
tals for the costs of kidney exchange through the platform ​​K​​ h​(​q​​ h​)​. Note that it is 
not possible to reach the first-best social welfare by only improving the mecha-
nism because there are often not enough transplants to set rewards that are high 
enough to solve agency problems (see Proposition A2 in the online Appendix for 
details). Alternatively, under certain assumptions, a regulator can simply enforce the 
first-best allocation with a mandate.

These arguments suggest two alternative approaches for policy. One is to imple-
ment a mandate that, for example, requires that hospitals submit all patients and 
donors to a national platform. Under certain assumptions, this is socially optimal. 
Another approach is both to have exchanges use efficient mechanisms and to create 
policies that solve agency problems. This approach avoids the political barriers that 
a mandate might face and is also optimal, under certain assumptions. Section V 
elaborates on these issues.

An upshot of this analysis is that, much like in traditional markets, many key 
questions about kidney exchange depend on the production function, which we turn 
to next.

IV.  Production Function Estimates and Results

We now recover the production function using data from the dominant kidney 
exchange platform during our sample period, the NKR (see Table 1). We use these 

q0

PS = ∇C

∇SC

∇f

p0

q⁎ q⁎⁎

(Marginal private
cost and supply)

(Marginal
social cost)

(Marginal social prodcuct)

Figure 4. The Two Sources of Market Failure

Notes: The horizontal axis represents aggregate quantity of submissions into the kidney exchange platform. The 
curves represent the marginal product of submissions, ​∇f​(q)​​, the marginal private cost of submissions from the per-
spective of hospitals, ​∇C​(q)​​ (which is equal to ​​P​S​​​(q)​​, the inverse aggregate supply), and the marginal social cost of 
submissions, ​∇SC​(q)​​ (see footnote 30). Both axes represent ​I​-dimensional vectors. The figure depicts the current 
quantity, with agency problems and a suboptimal mechanism, ​​q​0​​​; the quantity from a hospital-optimal mechanism, 
but with agency problems, ​​q​​ ⁎​​; and the first-best quantity, with an efficient mechanism and no agency problems, ​​q​​ ⁎⁎​​.
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estimates to measure the inefficiency due to market fragmentation, calculate the 
rewards in an optimal mechanism, and assess the efficiency gain from moving to an 
optimal mechanism.

A. An Engineering Approach

Production functions are commonly estimated using data on inputs and outputs 
from several firms. The key econometric challenges in this literature are endogene-
ity in the chosen inputs and selection in the set of operating firms (see Marschak 
and Andrews 1944, Olley and Pakes 1996). Unfortunately, this approach is not appro-
priate in our setting for three reasons. First, the standard methods are best suited for 
low-dimensional production functions that only depend on a few inputs, such as 
capital and labor. In our case, the inputs are different submission types, which are 
numerous (they vary by blood type, sensitization, and whether the patient or donor 
is paired). Second, commonly used functional forms, such as Cobb-Douglas, restrict 
all inputs to be substitutes, a property that may not be appropriate in the kidney 
exchange context.31 Third, the standard methods depend on a panel dataset with 
inputs and outputs of multiple firms and exogenous variation of inputs. However, we 
only have data from a single, large platform.

We circumvent these econometric issues by using an engineering approach based 
on detailed institutional knowledge and administrative data on the processes involved 
in organizing kidney exchange. This approach was first introduced within econom-
ics by Chenery (1949), but fell out of favor due to its complexity and because some 
relevant inputs (e.g., managerial resources) were often difficult to measure (Walters 
1963). However, it is particularly well suited for our study because we have detailed 
data on NKR’s operations, and the composition and biological compatibility of its 
patient pool.32

We simulate the various steps involved in organizing kidney exchange to evaluate 
the number of transplants, ​f ​(q; θ)​​, that can be produced with a flow of submissions, ​q​, 
given parameters, ​θ.​ The simulation is dynamic, with each period representing one 
day. There are four steps that take place: hospital submissions, transplant proposal, 
final review and transplantation, and departure. The parameters governing the first 
and last steps are directly estimated from the NKR data; the parameters involved 
in the second step are known; and the parameters from the third step are calibrated 
to fit observed transplantation probabilities for various patient and donor types, as 
well as the average length of chains. Our estimation and calibration methods are 
described in the following paragraphs, with details provided in online Appendix D.

	 (i)	 Submissions: Hospitals submit patients and donors, either individually or 
in pairs, to the platform. These submissions are added to the current pool of 
patients and donors already registered with the exchange. Patients and doc-
tors, at this time, can submit minimal acceptance criteria for a donor.

31 In a transplant production function, one input type may either be a substitute or a complement with another. 
For example, an A–O pair and an O–A pair are complementary since they together produce one pairwise kidney 
exchange. However, an O–A pair is a substitute input for an O–O pair in this setting.

32 One of us (Ashlagi) developed the matching software for several platforms and has worked with NKR.
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		    Submissions arrive according to a Poisson process with arrival rates given 
by a vector ​q​, whose dimension equals the number of submission types, ​I​. 
The NKR baseline is represented by ​​q​0​​​. We estimate the daily arrival rate of 
each submission type ​i​ as average number of arrivals per year. An identical 
arrival process with Poisson arrival rates ​q​ allows us to calculate the produc-
tion function at other arrival rates ​q  ≠ ​ q​0​​​.

		    Our exercises will start by treating each submission as a separate type  
(​I = 1,930​). We will then aggregate types to best predict probabilities of 
matching and marginal products using biological characteristics that are rele-
vant for kidney exchange (e.g., blood type and patient PRA).

	 (ii)	 Transplant Proposal: Each day, the NKR identifies an optimal weighted set 
of potential exchanges within the stock of patients and donors. This algorithm 
incorporates four constraints. First, none of the proposed transplants should 
be (known to be) biologically incompatible or ruled out by preset acceptance 
criteria. These constraints are directly observed in the data. Second, no donor 
or recipient can be involved in more than one transplant. Third, a donor in a 
pair is only asked to donate an organ if her associated recipient is proposed a 
transplant. Finally, the cycle size is limited, because of the logistical difficul-
ties inherent in organizing many simultaneous surgeries.33

		    The parameters of this algorithm are the weights used by the NKR for 
a transplanting a given donor and patient and the maximum cycle size. 
Consistent with NKR policy and observed data, we prohibit all cycles of 
length four or greater. The weights are known to one of the authors (Ashlagi) 
and are detailed in online Appendix D. They prioritize unlikely matches in an 
attempt to utilize hard-to-match donors and transplant hard-to-match patients 
whenever possible. The weights typically only break ties between two 
matches with the same number of transplants in favor of retaining patients 
and donors who are more likely to match in the future.

	 (iii)	 Final Review and Transplantation: Each proposed transplant is reviewed 
by doctors, patients, and donors, and approved before it is performed. Both 
approval and biological testing can take several days. Moreover, patients 
and donors in proposed transplants that are under review on a given day are 
excluded from the maximal matching algorithm on that day. This step also 
involves a final set of blood tests to ensure biological compatibility.34 Cycles 
in which any patient refuses or is found to be incompatible with the proposed 

33 Formally, the NKR maximizes ​​∑ jk​​ ​c​jk​​ ​w​jk​​ ​x​jk​​​​ by picking ​​x​jk​​  ∈  ​{0, 1}​​, where ​​x​jk​​  =  1​ denotes a proposed 
transplant from donor ​k​ to patient ​j​; ​​w​jk​​​ is the weight given to the transplant by the NKR; and ​​c​jk​​​ is an indicator 
for whether the transplant is biologically compatible and acceptable. This problem is subject to three additional 
constraints. First, no donor or patient is involved in more than one transplant, i.e., ​​∑ j​​  ​x​jk​​​  ≤  1 and ​∑ k​​  ​x​jk​​​  ≤  1​. 
Second, if donor ​k​ and patient ​j​ belong to a pair, then ​​x​​j ′ ​k​​  =  1​ for some ​​j ′ ​​ only if ​​x​j​k ′ ​​​  =  1​ for some donor ​​k ′ ​​. To 
write the third constraint, note that a cycle of length ​n​ is an ordered tuple, ​​( ​j​1​​, ​j​2​​, …, ​j​n​​)​​ where ​​x​​j​k​​ ​j​k+1​​​​  =  1​ for ​k  <  n​ 
and ​​x​​j​n​​ ​j​1​​​​  =  1.​ We impose the constraint ​n  ≤  3​. Because there are a very large number of cycle length constraints, 
we first solve a relaxed problem without this last constraint and iteratively add the constraints to prohibit large 
cycles. Online Appendix D provides further details.

34 Failures are recorded by setting ​​c​jk​​  =  0​ (see previous footnote) for future iterations if the donor ​k​ was 
refused by patient ​j.​
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donor are abandoned. NKR usually abandons chains in which the second 
patient cannot be transplanted. For other chains, all proposals until the first 
failure are consummated. The donor belonging to the final patient–donor pair 
in such a chain may initiate new chains in the future, much like an altruistic 
donor. This donor is often referred to as the “bridge” donor. Consistent with 
NKR policy, unpaired patients are prioritized according to the net difference 
between altruistic donors and unpaired patients previously transplanted by 
the patient’s hospital.

		    This step results in frictions within the system that reduce transplantation 
rates (Agarwal et al. 2018). The parameters that govern these frictions are 
the time required for each of the two approval steps, the probability that a 
proposed transplant is abandoned in each step, and the duration for which a 
bridge donor is retained in the pool before donating her kidney to a patient on 
the deceased donor list.

		    Unfortunately, we do not have detailed data on which transplants were 
refused, how often transplants were aborted due to biological testing, or how 
long each review phase takes. Additionally, the NKR does not seem to have 
clear-cut algorithmic policies on how to use bridge donors. Chains would be 
indefinitely long if bridge donors were allowed to initiate new chains forever 
but too short if bridge donors were not used. Although cases of donors reneg-
ing are rare (Cowan et al. 2017), platforms try to transplant bridge donors 
quickly, to an unpaired patient if necessary, to them.

		    We calibrate these parameters by simulating our model to find values 
that most closely replicate the match probabilities, durations, pool size, and 
chain lengths observed in our data. We match average values of each of these 
variables (except for chain length) for altruistic donors, patient–donor pairs, 
and unpaired patients, each partitioned by coarse blood type categories.35 
Moments based on match probabilities and durations are motivated by their 
close relationship to the flow of transplants produced and the incentives for 
hospitals. Pool size seeks to capture aggregate information about the produc-
tivity of the NKR. Finally, chain lengths capture the importance of altruistic 
donors.

		    Our simulations suggest that the best fit to these moments is, for both 
the acceptance and the biological testing phases, a two-week period and 
a one-fifth failure rate. Reducing the failure rates in simulations primarily 
increases chain length and transplantation rates, while reducing the dura-
tion of either phase increases the transplantation rates without having a large 
effect on chain length. For the bridge donor policy, we find that a hold period 
of 30 days best fits the data.

		    Details on the fit of our calibrated parameters are provided in online 
Appendix D.5. Further, online Appendix E repeats all of our analyses under 
alternative parameters to examine robustness of our results.

35 In principle, we could have estimated these parameters using simulated minimum distance. However, a simu-
lation for each parameter value can take weeks, making optimization over the parameter set infeasible.
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		  Departure: Patients and donors often depart the NKR without a transplant. 
A patient and his/her associated donor may leave the platform because the 
patient dies, becomes too sick to transplant, or receives a kidney transplant 
elsewhere. Therefore, we need to estimate the probability that a patient or a 
donor leaves the NKR without a transplant.36

		    We estimate an exponential hazard model of departures by maximum like-
lihood, using the registration and transplantation dates (if transplanted) for 
each patient and donor, and data on how long the patient or donor was reg-
istered in the NKR without a transplant.37 The departure rates in the model 
depend on the fraction of donors (patients) ever registered with the NKR who 
are compatible with a patient (donor), blood type, and age at registration. 
Online Appendix D.2.2 presents the estimates for the model.

This procedure allows us to evaluate a transplant production function for any vector 
of inputs ​q​ by simulating each of these events for each calendar day. Given any 
initial pool of patients and donors in the NKR, these simulations generate a Markov 
chain with a sequence of registrations, transplants, and departures. We initialize 
the NKR pool with the set of patients and donors registered on April 1, 2012, and 
burn-in 2,000 simulation days in each run. The dependence on the initial pool even-
tually fades away. We compute the time average of the total number of transplants 
to estimate ​f​ by

	​ ​ f ˆ ​ ​(q)​  = ​  1 _ T ​  ​ ∑ 
t=1

​ 
T

  ​​ ​y​t​​,​

where ​T​ is the total number of days simulated and ​​y​t​​​ is the total number of trans-
plants in period ​t​ of our simulation. In what follows, we report estimates based on an 
average of 100 simulations. Standard errors are calculated using the non-overlapping 
batch means estimator described in online Appendix D.4.

B. Returns to Scale and Misallocation

Returns to Scale.—We first document the estimated returns to scale in the trans-
plant production function by evaluating it for submission vectors ​q​ with the same 
composition as the NKR (i.e., scalar multiples of ​​q​0​​​). We then consider average prod-
ucts, where scale is measured by the total flow of donors submitted per year, which 

36 Our approach will treat all donor departures as a lost opportunity for a transplant if a better design can use 
that donor for a transplant. To validate this assumption, we tried to determine the outcome of paired patients who 
leave the NKR without a transplant by matching them to the OPTN data on all living- and deceased-donor trans-
plants. Our ability to follow these patients is not perfect, but approximately three-quarters of patients could be 
perfectly matched on the HLA-A, B, and DR loci; gender; and blood type. A majority of patients either remained 
untransplanted or received a deceased-donor transplant, effectively crowding out a kidney from another patient. 
Of those who received a living-donor transplant, most received direct donations and the vast majority did not uti-
lize a multi-hospital kidney exchange platform. These facts support our treatment of departures as an appropriate 
approximation.

37 Specifically, the departure rate for registration ​j​ is given by ​​λ​​g​j​​​​ exp(​z​j​​ β),​ where ​​g​j​​​ denotes whether ​j​ is an altru-
istic donor, a patient–donor pair, or an unpaired patient; ​​λ​​g​j​​​​​ is a group-specific constant departure risk; ​​z​j​​​ denotes a 
vector of characteristics for ​j​; and ​β​ is a conformable vector of coefficients. We fit with the censored observations 
of departure times for each registration in the NKR, where censoring can occur because we only observe a lower 
bound for the departure time if ​j​ was transplanted or remained in the NKR pool at the end of our sample period.
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we denote as ​x​(q)​​. This measure is also the flow of transplants that a platform could 
perform if all donors were utilized. Figure 5 plots the average product measured as ​f ​
(q)​/x​(q)​​.

The figure shows that there are increasing returns to scale, but that productivity 
eventually plateaus. With a scale of donor arrivals per year, the NKR is well within 
the region of approximately constant returns to scale.38,39 The NKR has an average 
product of 0.51 transplants per donor, which varies only slightly once the scale is 
sufficiently large. A platform that is one-half the size of NKR has an average product 
of 0.46 transplants per donor, while a platform that is double the size has an average 
product of 0.547 transplants per donor. Therefore, the market can operate at a high 
level of efficiency even if there are a handful of competing platforms. These esti-
mates suggest that mergers of sufficiently large platforms would have small effects 
on efficiency.

Next, we use these estimates to calculate whether individual-hospital platforms 
operate at an efficient scale. Recall that within-hospital transplants collectively 
account for the majority of kidney exchanges. A challenge with this exercise is that 
we observe neither the number nor the composition of patients and donors available 
to a hospital. To make progress, assume for the moment that hospitals have the same 
production technology and composition as the NKR. Further, assume that hospitals 
conducting within-hospital transplants do not participate in the NKR. Under these 
assumptions, one can use an individual hospital’s observed rate of kidney exchange 
transplants to infer its scale. Specifically, let ​​y​​ h​​ be the flow of within-hospital kidney 
exchange transplants conducted at hospital ​h​. We estimate the flow ​​x​​ h​​ of donors 
available to hospital ​h​ as the flow necessary to produce ​​y​​ h​​ with the same composition 
and technology as the NKR. That is, ​​x​​ h​​ solves ​​y​​ h​ = ​ f ˆ ​ ​(​x​​ h​ ⋅ ​q​0​​/x​(​q​0​​)​)​​, where ​​q​0​​​ is the 
flow of submissions received by the NKR. The potential biases and robustness of 
our results to altering these assumptions are discussed in Section IVB.

This exercise suggests that almost all individual hospitals operate far below the 
efficient scale. The histogram in Figure 5 shows the estimated distribution of hos-
pital scale. The median hospital has a scale of 9 donor arrivals per year. The nineti-
eth percentile is 27 donor arrivals per year. The largest, Methodist Hospital in San 
Antonio, has a scale of 109 donor arrivals per year. The average product at these 

38 The error bars use a non-overlapping batch-means estimator from a simulation of 20,000 periods. These 
errors account for sampling variance in the patient and donor registration process, and simulation error in the 
transplant proposal, refusal, and departure process, but hold the parameters of the simulation model fixed, ignoring 
first-stage estimation error. Accounting for this source of uncertainty is burdensome because we do not have a 
closed-form solution for the asymptotic variance of the production function. Moreover, a bootstrap procedure that 
simulates the entire production function several times is computationally prohibitive. To assess whether first-stage 
estimation error is important, we simulated the production function at NKR’s scale and composition using ten 
bootstrapped estimates of hazard rate parameters. The resulting standard error in the average product across these 
draws was only 0.01 transplants per donor.

39 We assessed whether this finding is driven by our approach to calculating the production function by con-
ducting two complementary exercises. First, we directly investigated the returns to scale at the NKR by examining 
the relationship between the number of transplants conducted by the NKR per quarter and the number of donors 
submitted per quarter. Our estimates are noisy and do not rule out constant returns to scale. This finding is not sen-
sitive to other partitions of time or the use of moving averages. Unfortunately, the variation in the number of donors 
registered is limited because our registration data starts in April 2012. Second, we carried out a simplified static 
simulation of a kidney exchange platform with no matching frictions and only a few types of pairs. As in Figure 5, 
the returns to scale rapidly increase and plateau, consistent with the model in Roth, Sönmez, and Ünver (2007), 
where the number of transplants produced grows linearly in the platform’s size. Details of our simulation and the 
descriptive evidence are available upon request.
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scales is 0.16, 0.29, and 0.42 transplants per donor, respectively. Thus, at our esti-
mated production function, even the largest single-hospital platform does not oper-
ate at an efficient scale. UNOS and APD both have an estimated average product of 
approximately 0.40 transplants per donor. Hence, the implied efficiency losses are 
considerable, even for the largest platform other than the NKR. These results are 
consistent with the evidence presented in Section IIB that hospitals often perform 
matches that are socially inefficient and that UNOS and APD are also less efficient 
than the NKR.

Misallocation: Inefficiency Due to Small Production Scale.—We start by using 
the baseline approach described above to estimate inefficiency due to market frag-
mentation. That is, we estimate how many additional transplants would be per-
formed if the entire kidney exchange market functioned at NKR’s efficiency. We use 
a hospital’s estimated scale to calculate the difference in average product between 
the hospital and NKR. Because NKR operates at constant returns to scale, this dif-
ference multiplied by the hospital scale is the total number of transplants that are 
lost due to the hospital conducting kidney exchange at an inefficiently small scale. 
The aggregate lost transplants equals the total deadweight loss because our social 
welfare function is the total number of transplants nationwide. The estimated dead-
weight loss presented in Table 3 shows that 500.1 transplants are lost per year due 
to market fragmentation (panel A, column 1). This number is large relative to the 
800 transplants conducted through kidney exchange each year. Furthermore, the 
economic value of these lost transplants exceeds $500 million per year based on the 
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Notes: The line plot represents the average product of a kidney exchange platform versus its scale. The histogram is 
based on the estimated scale of various hospitals. The left vertical axis represents average products, defined as the 
share of pairs and altruists who are transplanted. The right vertical axis is the scale for the histogram. The horizon-
tal axis represents scale, measured as the yearly arrival rate of pairs and altruists. The error bars on the estimated 
production function show a 95 percent confidence interval. The plot uses the baseline parameters and the pool com-
position from the NKR.
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Held et al. (2016) estimates of a transplant’s value. The cost savings alone are on the 
order of $150 million per year.

This baseline approach is simple but suffers from four potential biases. First, the 
composition of submissions in hospitals may differ from that of the NKR. We assess 
robustness to this assumption by estimating inefficiency using patient and donor 
compositions from three different groups of hospitals: all hospitals (column 1), hos-
pitals in the top quartile of intensive margin participation rate (column 2), and hos-
pitals in the bottom quartile (column 3).40 If heterogeneity in participation policies 
is correlated with composition, then estimates from a production function using 
patients and donors from each of these groups helps assess robustness to poten-
tial compositional differences between single-hospital platforms and the NKR. For 
example, one hypothesis is that hospitals in the top quartile of participation should 
submit a less selected pool if heterogeneity in participation rates is driven primarily 
by hospital policy.41 Comparing estimates across these three groups suggests that 
overall inefficiency exceeds 430 transplants per year under alternative assumptions 
on composition.

Second, our baseline approach assumes that all within-hospital transplants are 
produced by hospitals in isolation from the rest of the market. The bias due to hos-
pitals that also participate in national platforms does not have a clear direction. 
We address this issue by disaggregating the efficiency losses by whether a hospital 
participates in the NKR, APD, or UNOS and by the fraction of the hospital’s paired 
kidney exchanges that are conducted through the NKR. If we restrict attention to the 
96 hospitals that do not participate in NKR, the efficiency loss in column 1 is 243.5  
transplants per year (panel C, excluding the NKR row). Some of these hospitals par-
ticipate in UNOS or APD and may be producing transplants at a more efficient scale. 
Even if we assume that each of the hospitals that participate in UNOS or APD pro-
duce transplants at the estimated scales for the two platforms, we still estimate that 
the deadweight loss in column 1 would be 143.7 transplants per year.42 However, 
this extremely conservative calculation is likely at slack for two reasons. First, even 
among the non-NKR hospitals that participate in either UNOS or APD, two-thirds 
of kidney exchange transplants are performed within hospital (panel C), while the 
deadweight loss lower bound of 143.7 assumes that all transplants are produced 
at the APD/UNOS scale. Second, it ignores deadweight loss from hospitals that 
participate in NKR. Among the set of NKR participants, just the 17 hospitals in the 
lowest quartile of fraction of transplants performed in NKR contribute an efficiency 

40 We measure participation rate as donors submitted to NKR divided by donors submitted to NKR plus donors 
transplanted in a within-hospital exchange.

41 Some large hospitals submit most of their pairs to NKR as a matter of policy. Smaller hospitals that have 
incurred the costs of becoming an NKR member often submit all of their patients to the platform because they have 
few possibilities of organizing an exchange independently. These facts suggest that the group of hospitals in the 
top quartile should submit a less selected pool if heterogeneity in these policies and hospital size is not correlated 
with composition. It is also possible that hospitals that participate in the NKR exclusively do so precisely because 
they have a particularly hard to match pool. While it is difficult to test these hypotheses without data on the patients 
and donors available to a hospital, our data indicate that hospitals with high NKR participation rates submit easier 
to match patients in terms of PRA (online Appendix Figure E16). This limited evidence points to the former argu-
ments as more important.

42 The deadweight loss from hospitals that do not participate in any of the three national platforms alone is 125.6 
transplants per year. For hospitals that participate only in UNOS or APD, the deadweight loss is 18.1 transplants per 
year, assuming that all kidney exchange transplants from these hospitals are produced at the scale of the platform 
in which they participate.
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loss of 103.1 transplants per year (panel D). In summary, despite potential bias due 
to some hospitals participating in large platforms, this decomposition suggests that 
a loss of 240 transplants per year is a conservative estimate for the costs of market 
fragmentation.

Third, hospitals may use a different matching technology than the NKR. For 
example, Bingaman et al. (2012) reports that Methodist Hospital in San Antonio, 
which is now perhaps the most sophisticated single-hospital program, initially 
used a Microsoft Access Database and that their algorithm was “stratified by ABO 
compatibility and then by HLA compatibility.” Such algorithms are less efficient 
than the linear-programming algorithms used by the NKR.43 On the other hand, 
single-hospital programs face simpler logistical constraints, which may increase their 
productivity vis-à-vis our estimates. The direction of this bias is not unambiguous, 
but it is more likely that single-hospital platforms are less efficient than our esti-
mated production function.44

Fourth, these exercises keep the set of patients and donors interested in kidney 
exchange fixed. However, this flow is endogenous and affects the magnitude of 
the deadweight loss. Although the direction of this bias is ambiguous, our baseline 
approach likely yields a conservative estimate of overall market inefficiency. The 

43 In 2013, Methodist Hospital in San Antonio adopted software written by one of us (Ashlagi).
44 See Agarwal et  al. (2018) for an analysis of how various logistics influence the productivity of a kidney 

exchange platform. NKR’s practices are optimized to maximize the number of transplants given the available 
patients and donors.

Table 3—Total Efficiency Loss

Efficiency loss

Number 
of hospitals

Kidney exchange 
transplants per year

Within hospital 
kidney exchange 

transplants per year

Additional kidney 
exchange transplants

(1) (2) (3)

Panel A. All hospitals
All hospitals 164 800.5 465.4 500.1 432.4 644.7

Panel B. By hospital size (number of KE transplants per year)
Top quartile 42 598.8 358.3 257.1 213.5 343.1
Second quartile 48 143.2 73.4 139.7 122.2 169.7
Third quartile 40 45.7 27.7 76.6 73.4 101.0
Bottom quartile 34 12.7 6.0 26.8 23.4 31.0

Panel C. By platform membership
NKR 68 580.5 297.2 256.6 217.7 335.5
Only UNOS or APD 45 133.0 90.7 117.9 101.9 149.8
None 51 86.9 77.6 125.6 112.8 159.4

Panel D. By NKR participation rate (fraction of KE transplants facilitated through the NKR)
Top quartile 17 65.2 8.2 16.9 15.5 21.5
Second quartile 17 102.3 27.0 47.9 42.9 60.0
Third quartile 17 196.7 98.2 88.7 75.7 114.6
Bottom quartile 17 216.2 163.8 103.1 83.6 139.4

Notes: Column 1 assumes that the typical transplant hospital has a composition of patient-donor pairs and altruistic 
donors given by the average registration in the NKR. Column 2 assumes a composition based on hospitals in the top 
quartile of NKR participation. Column 3 assumes a composition based on hospitals in the lowest quartile of partic-
ipation rate. Transplants per year is calculated using data between April 1, 2012 and December 4, 2014.
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most likely bias comes from hospitals valuing transplants at less than the social 
value and, due to administrative costs, expending inefficiently low effort in recruit-
ing patients and donors. If incentives were optimal, hospitals might try to recruit 
more, and more valuable, donors into kidney exchange. Our approach does not 
account for this margin because we do not observe recruitment efforts; therefore, 
we are likely to underestimate overall market inefficiency.

Table 3 also points to which types of hospitals produce most of the inefficiency. 
Consider column 1 and, for the purposes of this decomposition, ignore the biases 
discussed above. Even though they perform internal exchanges more efficiently, 
large hospitals account for most of the inefficiency because their market share is 
higher (panel B). Indeed, 51.4 percent of the losses come from hospitals that have 
a number of kidney exchange transplants in the top quartile. Moreover, both the 
intensive and extensive margins of participation are important. A little less than one-
half of the efficiency losses are due to hospitals that do not participate in the NKR at 
all, and one-quarter are from hospitals that do not participate in any of the national 
platforms (panel C). Among hospitals that do participate in the NKR, a large share 
of the efficiency loss is due to the hospitals with low participation (panel D).

To summarize, although the baseline estimate of 500.1 lost transplants is poten-
tially biased, a battery of robustness exercises suggest the deadweight loss from 
market fragmentation is at least 240 transplants a year. Additionally, these estimates 
do not appear to be driven by compositional differences in the kidney exchange 
pool. Online Appendix Table E9 further evaluates these results’ robustness to alter-
native choices for the production function parameters that were calibrated. Across 
various specifications, we continue to find that an estimated 240 lost transplants is 
conservative.

These results are consistent with our descriptive finding that hospitals often per-
form inefficient matches, and they are robust to moderately large levels of misspec-
ification. Even the most conservative estimates are significant because the baseline 
estimates suggest inefficiency of 63 percent of the market size. The robustness of 
the shape of the production function is driven, in large part, by basic biological com-
patibility constraints. Finding matches is hard with few patients and donors because 
of both blood-type and tissue-type compatibility constraints. And, as suggested in 
the large market limit of Roth, Sönmez, and Ünver (2007), tissue-type compatibility 
constraints become less of a barrier in a large market.

C. Inefficiency of Current Mechanisms

Theorem 1 shows that optimal rewards are approximately equal to marginal prod-
ucts. That is, ​​p​​ ⁎​  =  ∇f ​(​q​​ ⁎​)​ − A​(​q​​ ⁎​)​​, where ​​q​​ ⁎​​ and ​​p​​ ⁎​​ are the aggregate quantities 
and rewards that maximize hospital welfare. We will test this equality at the aggre-
gate supply and rewards in our data.

Current rewards, ​​p​0​​,​ equal the probabilities of matching for each kind of submis-
sion. These probabilities can be easily estimated from our simulations, and the esti-
mated probabilities closely match those from the data (see online Appendix D.5). 
Marginal products, ​∇f​(​q​0​​)​​, can be estimated by numerically differentiating the pro-
duction function. In principle, calculating the adjustment term requires estimates of 
the supply elasticity matrix, which is not feasible with our data. But, the adjustment 
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term is small because returns to scale are approximately constant for NKR’s size. 
Therefore, optimal rewards are approximately equal to marginal products. Formally, 
Theorem 1 implies that the quantity-weighted average of the adjustment term is 
given by

	​ ​ 
A​(q)​ ⋅ q

 _ ​∥ q ∥​1​​
 ​   = ​ 

∇f​(q)​ ⋅ q
 _ ​∥ q ∥​1​​

 ​  − ​ 
f ​(q)​
 _ ​∥ q ∥​1​​
 ​.​

That is, the average level of shading equals the difference between the average mar-
ginal product and the average product. Evaluating this formula using the estimated 
production function and numerical derivatives for each of the 1,930 submission 
types yields an average shading of only 2.16 × ​​10​​ −4​​ transplants per submission. 
In what follows, we simply approximate optimal rewards with marginal products.

Figure 6 plots current rewards (the probabilities of matching, ​​p​0​​​) versus optimal 
rewards (marginal products, ​∇f​(​q​0​​)​​). Following Roth, Sönmez, and Ünver (2007), 
the patient and donor categories are aggregated by under-demanded, over-demanded, 
and self-demanded types, split by sensitization level.

The marginal products are qualitatively similar to the Roth, Sönmez, and Ünver 
(2007) theoretical predictions discussed in Section I. The marginal product of an 
under-demanded pair is ​0​, both in our estimates and in the model. The estimates 
differ for other types. For example, the marginal product of an over-demanded 
pair with low sensitization is ​2​ transplants per submission in the Roth, Sönmez, 
and Ünver (2007) model, but 1.34 transplants per submission in our estimates. One 
reason for this difference is that, in our data, these pairs are only matched with prob-
ability 0.80. Our empirical model also refines the predictions from the theoretical 
models by showing how marginal products vary with sensitization. For example, 
the marginal products of over-demanded and self-demanded pairs are considerably 
lower if these pairs are sensitized. These finer results can be important when design-
ing practical mechanisms.

The figure shows a large wedge between current and optimal rewards. If current 
rewards were optimal, all points on these two figures would be on the 45-degree 
line. Altruistic donors and over-demanded pairs with low PRA are far below this 
line. Over-demanded pairs with low sensitization have marginal products of 1.34 
transplants per submission, but the probability of matching them is only 0.80. Even 
more extreme, altruistic O donors have a marginal product of 1.74 transplants per 
submission, but their probability of matching is only 0.93. Therefore, hospitals are 
not rewarded enough for submitting these types, which may explain why we see 
relatively few of them submitted to the NKR. Other submission types are drastically 
overpriced. Under-demanded pairs with low sensitization have marginal products 
of approximately 0.05 transplants per submission but have a probability of being 
matched of around 0.36. Similarly, unpaired patients have low marginal products 
but a significant probability of being matched. These differences suggest the plat-
form can do considerably better by increasing rewards to the productive and under-
valued submissions while reducing rewards to the unproductive submissions.

These marginal products are of independent interest as well. For example, Sönmez, 
Ünver, and Yenmez (2018) analyzes policies that incentivize compatible pairs to 
join the platform by prioritizing patients on the deceased donor list in case they need 
a second transplant in the future. While we cannot directly compute the value of a 
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compatible pair using the NKR data, such pairs are most similar to over-demanded 
or self-demanded pairs with low PRA patients. Indeed, our results indicate that these 
pairs have the highest marginal products.45 Another result of interest to a platform is 
that altruistic donors have a marginal product that is much lower than the length of 
a typical chain, which is four. This is because many patients transplanted through a 
chain could have otherwise been transplanted through a cycle.

V.  Discussion

A. Implementing a Point Mechanism

Theorem 1 and the small magnitude of the adjustment term ​A​(q)​​ suggest that 
platforms should set rewards close to marginal products. We will now show that 
marginal products are highly predictable using a small number of patient and donor 
categories. Then, we will discuss the design of point mechanisms that are both 
approximately efficient and simple enough for practical application.

We use a regression tree to construct categories that best predict marginal 
products, allowing for the tree to depend on the patient’s PRA, submission type 
(altruistic, patient–donor pair, unpaired patient), and blood type. Figure 7 shows 

45 The average marginal product of self-demanded pairs with PRA less than 50 is 0.74 transplants per submis-
sion and the average match probability is 0.83. Over-demanded types with PRA less than 50 have an average mar-
ginal product of 1.35 transplants per submission and an average match probability of 0.82. These marginal products 
may differ from those of compatible pairs because a patient with a compatible donor may be more selective than 
incompatible pairs.
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Matching probabilities and marginal products are calculated in the baseline simulation.
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the categories found by a standard algorithm for finding the best cross-validated 
predictor for the marginal products. These categories are intuitive, as they split 
submissions based primarily on submission type, whether the patient/donor is 
blood type O, and immune sensitivity. The within-category mean marginal prod-
ucts, ​∇f​, and probabilities of matching, ​​p​0​​​, are dispersed relative to the (appro-
priately shrunk) within-category standard deviation. This suggests that marginal 
products and probabilities of matching are approximated with a small number of 
categories.

A mechanism that assigns points to a hospital based on these categories can 
be explained to participants with this tree or a simple table (see online Appendix 
Table D8). One implementation of the mechanism is as follows. Each time the 
hospital conducts a transplant for one of its patients, a point is subtracted from 
its account. Points are awarded when a submission is transplanted, since awarding 
them at time of submission creates an incentive for shill submissions. To account for 
the chance a submission is not transplanted, the marginal products should be divided 
by the probability of matching, ​​p​0​​​, to give the appropriate incentives in expectation. 
These rewards are denoted by ​​r​​ ⁎​​ in Figure 7.

While our analysis suggests that a low-dimensional point mechanism would 
likely achieve substantial efficiency gains, it abstracts away from several implemen-
tation issues. For example, our simplified steady-state model does not specify an 
extensive-form game, and hence it cannot be used to fully specify optimal mecha-
nisms or to evaluate them. This raises practical and theoretical questions about how 
to design and implement a dynamic points mechanism. While resolving these details 
is beyond our present scope, we discuss some of the issues.

In both theory and practice, the point system described above is a natural mech-
anism for solving this problem. The dynamic mechanism design literature calls 
such a system a chip, scrip, or token mechanism. Relevant papers include Möbius 
(2001), Hauser and Hopenhayn (2008), and Abdulkadiroğlu and Bagwell (2013), 
which consider dynamic favor exchange, and Guo and Hörner (2015), which con-
siders provision of goods to a consumer with stochastic valuations. The general 
finding of this literature is that token mechanisms, as proposed in Möbius (2001), 
do better than autarky but not as well as an optimal dynamic mechanism. In fact, 
token mechanisms are close to first-best if players are patient and there are many 
time periods. Results in Jackson and Sonnenschein (2007) imply that the ineffi-
ciency of token mechanisms declines as the square root of the number of peri-
ods (see also Guo and Hörner 2015). Thus, the theoretical literature suggests that 
point systems, while not exactly optimal, are simple and achieve a high level of 
efficiency.

Another motivation for using a point mechanism is its simplicity and similarity 
to fiat money. Similar mechanisms have been previously used in market design 
applications. For example, Prendergast (2017) describes how a similar mechanism 
was used to increase the efficiency of food distribution across food banks.

An important issue with point systems is that they require several “plumbing” 
decisions (Duflo 2017). Should the matching algorithm impose a strict bound 
on negative balances? If so, what is the optimal minimum balance constraint? 
A tight constraint provides stronger incentives to hospitals but prior theory sug-
gests that it may reduce efficiency (Möbius 2001; Friedman, Halpern, and Kash 
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2006; Kash, Friedman, and Halpern 2007).46 How often should marginal products 
be recalculated as the composition of patients and donors in the platform changes? 
Recalculating them often is complex and reduces transparency, but recalculating 
infrequently can reduce efficiency if changes in composition affect marginal prod-
ucts. An analysis of this issue requires a non-steady state dynamic model. However, 
previous work on kidney exchange and experiments with our simulations suggest 
that marginal products are not sensitive to the distribution of types. For example, 
marginal products are constant for a wide range of type compositions in the theoret-
ical model of Roth, Sönmez, and Ünver (2007).

46 In models where agents can exchange favors over time through a scrip currency, for any amount of scrip per 
capita, with sufficiently patient players, there are efficient equilibria with a high level of exchange. However, for a 
fixed discount factor, increasing the amount of scrip only increases efficiency up to a point: too much scrip leads to 
inefficient equilibria with no exchange. Similarly, Möbius (2001) shows that token mechanisms with less restrictive 
budget constraints are more efficient, but that these budget constraints must be sufficiently strict relative to the level 
of impatience in order to give agents incentives to provide favors. These results suggest that it is important to give 
participants incentive to trade favors, but that as long as this constraint is satisfied, it is more efficient to have point 
mechanisms with more flexible budget constraints. In kidney exchange, there are often a large number of different 
maximum cardinality matches, because of the large number of under-demanded pairs. This suggests that efficiency 
may not be severely compromised even if budget constraints are strict.
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Figure 7. Regression Tree for Marginal Products

Notes: Categories are determined by regression tree analysis to predict marginal products as a function of whether 
a submission is a pair, an altruistic donor, or an unpaired patient; blood types; and the patient’s PRA. Our proce-
dure followed standard recommendations in Hastie, Tibshirani, and Friedman (2001). Specifically, we used 10-fold 
cross-validation to pick the penalty parameter on the number of nodes, required each leaf to have at least 20 obser-
vations, and pruned a leaf if it did not increase the overall fit by at least 2 percent. Standard errors for the simula-
tions are calculated by following Robert and Casella (2004, chapter 12). The within-category standard deviation is 
estimated using shrinkage methods recommended in Morris (1983). The match probabilities in the current mech-
anism are denoted by ​​p​0​​​, the marginal products are denoted by ​∇f​, and the optimal rewards at transplantation are 
denoted by ​​r​​ ⁎​​. We calculate ​​r​​ ⁎​​ by dividing ​∇f​ by ​​p​0​​​, component-wise, and then subtracting 1 for all types except 
altruistic donors.
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As in other market design applications, it is important to consider whether a pro-
posed system is fair and ethically compelling (Roth 2007; Kominers, Teytelboym, 
and Crawford 2017; Li 2017). It is important to clarify that a points system involves 
no use of monetary payments to donors. Fundamentally, the point system ensures 
that, in the long run, the contributions of each hospital to the exchange are commen-
surate with the transplants performed. Nonetheless, in practice, legal clarification 
with respect to the National Organ Transplantation Act of 1984 and careful explana-
tion of the system to participants may be necessary.47

B. Importance of Each Market Failure

The misallocation analysis of Section IVB yields a conservative lower bound for 
the deadweight loss of about 240 transplants per year, or 30 percent of the market. 
The true deadweight loss is potentially much larger, as most specifications yield 
numbers approximately twice as large. Therefore, it must be the case that at least 
one of the two market failures (inefficient platform incentives and agency problems) 
is quantitatively important. We now report suggestive evidence that both market 
failures are important.

Online Appendix A.1 shows that the deadweight loss from inefficient platform 
incentives is given by a multidimensional version of the Harberger triangle formula. 
We cannot calculate this deadweight loss because we do not have data to reliably 
estimate the elasticity of hospital supply. Nevertheless, the large wedge between 
the current private and social incentives suggests the deadweight loss is significant 
unless the supply elasticity is extremely small.

To formalize this point, online Appendix A.1 estimates the deadweight loss in 
hospital welfare under different assumptions on supply elasticities. We calculated 
the worst-case deadweight loss given a maximum bound on own elasticity. With 
own elasticities bounded below by 2, the deadweight loss is over 40 transplants per 
year. With own elasticities bounded above by 6, the deadweight loss is as high as 100 
transplants per year. These estimates are robust to assumptions on cross-elasticities. 
Because hospitals undervalue transplants if agency problems are important, the loss 
in social welfare is considerably larger. Specifically, if hospital costs are ignored, we 
estimate a loss in social welfare of at least 55 transplants per year and at most 120 
transplants per year for elasticities between 2 and 6.

These results suggest that addressing inefficient platform incentives has a signifi-
cant positive impact unless supply is extremely inelastic. The evidence in Section II 
is typical of markets with elastic supply: most hospitals only register a subset of 
their patients with the NKR, and many other hospitals do not participate. Both facts 
are consistent with many hospitals being on the margin, suggesting that hospitals 
respond to incentives and that supply is at least moderately elastic.48

47 There are two reasons to believe that a points mechanism would be well received. First, previous NKR exper-
imentation with the concept was found to be acceptable in practice. Second, we have discussed this issue with a few 
kidney exchange platforms, and all feel that a points mechanism is acceptable.

48 Additionally, Ellison (2014) surveys transplant coordinators and finds three pieces of qualitative evidence 
that suggest that elasticities are not low. First, hassle costs are an often cited reason for not participating in kidney 
exchange platforms. Second, many transplant coordinators carefully consider whether to submit particular pairs to a 
platform and which platforms to partner with, which suggests that many decisions are marginal. Third, coordinators 
often mention that the time exchanges take to transplant patients is a major concern. Because time to transplant 
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Moreover, the results also imply that agency problems are important unless sup-
ply is extremely elastic. Under the hypothesis that there are no agency problems, 
hospital welfare equals social welfare, and the optimal mechanism reaches first-best 
(Theorem 1). Thus, the total deadweight loss in the misallocation analysis must be 
completely accounted for by the deadweight loss from the Harberger triangle anal-
ysis. Yet, even for a high elasticity bound of 6, our social deadweight loss estimate 
is at most 120 transplants per year. This is still below our lower bound result of 240 
from the misallocation analysis. The only way these estimates can overlap is if we 
have high elasticities and our first-order approximation of deadweight loss is sig-
nificantly downward-biased. Thus, attributing all the deadweight loss to inefficient 
platform incentives requires that supply is very elastic, our approximation is suffi-
ciently convex, and the downward bias in the estimated lower bound on inefficiency 
is small.

While the quantitative magnitudes should be interpreted carefully due to data 
limitations, the upshot is that policies that address either market failure are likely 
to be valuable and generate gains on the order of hundreds of transplants per year. 
But, implementing optimal rewards alone will not eliminate most of the inefficiency. 
Proposition A.2 in the online Appendix formally shows that, typically, the platform 
does not produce enough transplants to correct for agency problems.

C. Mandate

The previous subsection showed that agency problems appear to be first order. 
Hence, a points system of the sort described in Section VA should be complemented 
with subsidies for platform participation. An alternative to this two-pronged approach 
is a mandate that requires hospitals to perform all kidney exchanges in large, national 
platforms. Indeed, participation in a single national platform is required in the United 
Kingdom, the Netherlands, and Canada (Johnson et al. 2008, De Klerk et al. 2005, 
Malik and Cole 2014). A perfectly enforced mandate achieves the first-best welfare 
if all hospitals and platforms have the same production function, and that function 
exhibits (weakly) increasing returns to scale. While design details of a mandate are 
beyond the scope of our paper, we now consider four basic issues.

First, there are different types of mandate, with different welfare impacts. One 
form requires all hospitals to participate fully in one of several national platforms. A 
more heavy-handed mandate could also require existing national platforms to merge 
into a single platform. Our results suggest that most of the gains would come from 
the lighter regulation, since returns to scale are constant once a platform has reached 
NKR’s size. Using the baseline approach from Section  IVB, we estimate that the 
yearly flow of donors in the US kidney exchange market is 1,840 (ranging from 1,711 
to 2,115 if we vary the assumptions used in Table 3 to estimate a hospital’s scale). 
These estimates are between three and four times the current NKR scale. Even at four 
times NKR’s scale, the average product of a monopoly kidney exchange with NKR’s 
composition is 0.555 transplants per donor. If instead, there were two platforms twice 
the size of the NKR, the average product of each would be 0.547 transplants per donor. 

depends on the flow of transplants, it is closely related to matching probabilities in the current mechanism. This 
evidence suggests that coordinators are sensitive to changes in rewards.
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Both of these estimates are not much larger than the current average product of 0.51 
transplants per donor. Therefore, the gains of mandating a single platform instead of 
having a few are minimal.

Second, a mandate might dull competition across platforms, slowing the pace of 
innovation. The history of kidney exchange has several examples of important innova-
tions, such as the widespread use of altruistic pairs in non-simultaneous chains (Rees 
et al. 2009); global kidney exchange (Rees et al. 2017); voucher programs to encour-
age donation by giving future priority (Veale et al. 2017; Wall, Veale, and Melcher 
2017); and improved operational procedures and matching algorithms (Anderson 
et al. 2015). These innovations weigh in favor of preserving a market structure with 
multiple platforms, especially since the efficiency cost of doing so is small.

Third, there is the issue of enforcement. Hospitals could dodge a ban on internal 
exchanges by reporting them as direct donations. But, even if such a ban were pos-
sible, a mandate could have unintended consequences. For instance, it could reduce 
hospital effort to recruit patients, or in extreme cases, move patients from being 
transplanted internally to not being transplanted at all. To see how this is possible, 
consider a model similar to the one in Section III with a single type of submission. 
Hospital ​h​ has a flow of pairs, ​​​q ¯ ​​​ h​​, of which it can internally transplant a fraction ​​t​​ h​​. 
Through the platform, the per-transplant reward is ​p​, which is also the fraction of 
submissions that get transplanted. The average cost of a submission is ​​k​​ h​​ dollars, 
and transplants are valued at ​​v​​ h​​ dollars.

First, consider hospital behavior without a mandate, as in Section III. Hospital 
decisions are driven by the (transplant-denominated) private cost,

	​ ​C​​ h​​(​q​​ h​)​  = ​​ {​​​
​(​t​​ h​ + ​k​​ h​ / ​v​​ h​)​ ⋅ ​q​​ h​

​ 
if ​q​​ h​  ≤ ​​ q ¯ ​​​ h​​   

∞
​ 

if ​q​​ h​  > ​​ q ¯ ​​​ h​.
​​​

Therefore, hospital ​h​ submits all its pairs to the platform if ​p  > ​ t​​ h​ + ​k​​ h​ / ​v​​ h​​; other-
wise, it transplants all pairs internally.

Now, consider a mandate that prohibits hospitals from performing internal trans-
plants, but that cannot force hospitals to submit their pairs. The effect of this policy 
is to reduce the opportunity cost of a submission by ​​t​​ h​​. This leads hospital ​h​ to 
submit all pairs to the platform if ​p  > ​ k​​ h​ / ​v​​ h​​; otherwise, it performs no kidney 
exchanges at all, potentially reducing welfare.49

Although the stark predictions on hospital behavior are driven by the stylized 
assumptions, the example illustrates two points. First, enforceability is important. 
This goes beyond the ability to ban internal exchanges, especially if referrals and 

49 As an illustration, consider the case where the platform can transplant one-half of pairs (i.e., ​p  =  0.5​, 
approximately NKR’s average product), hospital ​h​ can internally match 30 percent of pairs (i.e., ​​t​​ h​  =  0.3​), and its 
value for a transplant is ​​v​​ h​  =  $50,000​. Then, without the mandate, hospital ​h​ will submit all pairs to the platform 
if its cost per submission is less than $10,000 (i.e., when ​​k​​ h​  <  ​(p − ​t​​ h​)​ ⋅ ​v​​ h​)​. With the mandate, this threshold 
increases to $25,000 (i.e., ​p ⋅ ​v​​ h​​). Therefore, if hospital ​h​’s submission cost is less than $10,000, the mandate makes 
no difference. If hospital ​h​’s submission cost is between $10,000 and $25,000, the mandate causes it to submit 
pairs to the platform that it would have otherwise transplanted internally, improving welfare. But, if hospital ​h​’s 
submission cost is greater than $25,000, the mandate results in the hospital doing no kidney exchange transplants 
whatsoever, reducing welfare.
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patient recruiting are important.50 Second, mandates can be complementary to other 
policies. In the example, subsidies to kidney exchange could lower ​​k​​ h​​ enough to 
ensure that hospitals submit all pairs, which would allow the mandate to achieve 
first-best welfare.

Finally, a mandate poses political challenges: it would likely require an act of 
Congress, and a regulator would have to decide which platform(s) to authorize. All 
of the currently operating national platforms are private entities, and in fact, only 
UNOS, the smallest of the three, is formally linked with the US government.

VI.  Conclusion

Kidney exchange improves a patient’s quality of life and extends life expectancy 
while reducing costs. We demonstrate that fragmentation in the US market results in 
an efficiency loss of between 30 and 63 percent of the roughly 800 kidney exchange 
transplants performed per year, implying a waste of hundreds of transplants per year.

The inefficiency arises from two standard market failures. First, platforms 
use inefficient mechanisms that do not reward hospitals according to the mar-
ginal products of their contributions. This induces hospitals to perform inefficient 
within-hospital matches, even if hospitals solely maximize the welfare of their own 
patients. Second, there are agency problems that make hospitals too sensitive to the 
costs of participating in kidney exchange platforms.51 Our analysis shows that both 
market failures are likely important.

These findings have both short-term policy implications and broader implications 
for the design of kidney exchange markets. There are two short-term policy impli-
cations. First, there could be returns to existing platforms experimenting with point 
systems. Such systems can be implemented by individual platforms, and doing so 
will likely help them expand. Second, third-party payers should consider subsidiz-
ing kidney exchange at platforms. We argued that hospitals are likely responsive 
to the cost of participating in kidney exchange platforms, a behavior that leads to 
significant welfare loss. Subsidies from Medicare and private payers could miti-
gate this problem. Moreover, our analysis suggests that this two-pronged approach, 
which addresses the two market failures separately, is likely to be more robust than 
approaches that address both market failures simultaneously.

Consistent with our results, there are initiatives moving in the direction of these 
policy changes. The NKR recently started experimenting with a points system 
through their Center Liquidity Contribution Program. Some private insurers have 

50 Consider a variation of the example above in which hospital ​h​ gets a flow ​​(1 − ​r​​ h​)​ ​​q ¯ ​​​ h​​ of pairs actively seeking 
kidney exchange, and a flow ​​r​​ h​ ​​q ¯ ​​​ h​​ of pairs that can be recruited to participate in kidney exchange, but only if the 
hospital expends effort. Assume a mandate that sees all pairs that ultimately come to the hospital and requires them 
to be submitted. Let ​​p​​ h​  <  ​k​​ h​ / ​v​​ h​​, so that hospital ​h​ prefers to submit as few pairs as possible. Without a mandate, 
hospital ​h​ would have recruited ​​​q ¯ ​​​ h​​ pairs and transplanted ​​t​​ h​ ⋅ ​​q ¯ ​​​ h​​ of them. With the mandate, the hospital does not 
recruit, and the platform arranges ​p​(1 − ​r​​ h​)​ ​​q ¯ ​​​ h​​ transplants. Hence, the mandate produces ​​(p − p ⋅ ​r​​ h​ − ​t​​ h​)​ ​​q ¯ ​​​ h​​ more 
transplants, which is only positive if ​1 − ​t​​ h​ / p  >  ​r​​ h​​, that is, if the fraction of pairs that require recruitment is less 
than 1 minus the ratio of hospital and platform productivity.

51 This decomposition of market failure sources is consistent with long-standing concerns of surgeons, insurers, 
platforms, and researchers, and with recent policy changes. Roth, Sönmez, and Ünver (2005) and Ashlagi and Roth 
(2014) recognized that hospitals may have incentives to match patients internally in static models. Surgeons and 
insurers have noted that it may be in the interest of insurers to subsidize exchanges and have proposed that they do 
so (Rees et al. 2012).
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started covering the costs of participating in kidney exchange platforms. Our results 
indicate that there could be large gains from continuing to move in this direction. 
Further, all platforms could use data-driven rewards systems. Future research can 
contribute to the design and evaluation of these policies.

The kidney exchange market currently represents 15 percent of all living-donor 
kidney transplants. Therefore, kidney exchange is important in absolute terms, 
but is presently small relative to the total shortage of organs discussed in Becker 
and Elías (2007). There are ongoing efforts towards expanding the set of patients 
and donors participating in this market. For example, Mathur et al. (2018) reports 
on the efforts of the National Living Donor Assistance Center to reduce the financial 
burden on donors by reimbursing some of the costs of donating an organ; Sönmez, 
Ünver, and  Yenmez (2018) proposes incentives for compatible pairs to join kid-
ney exchange platforms; and Nikzad et al. (2017) reports on efforts for expanding 
kidney exchange to a global scale. The designs suggested by our analysis are com-
plementary to these innovations because fixing the market failures identified above 
makes better use of the available donors.

Alternatively, a participation mandate might increase welfare under certain 
assumptions. And, the mandate can be simpler than the short-run policies that we 
discussed, even though it may be politically more difficult to implement. The United 
Kingdom, the Netherlands, and Canada have mandated participation in a single 
national program (Johnson et al. 2008, De Klerk et al. 2005, Malik and Cole 2014). 
One concern is that mandating participation in a single platform can reduce compe-
tition between platforms, which has arguably contributed to innovation. However, 
our estimates indicate that it would be close to efficient to have a few large platforms 
in the United States, because most of the potential efficiency gain would come from 
moving the market from individual hospitals to national platforms, rather than merg-
ing the largest platforms.

Although our study focuses on the US kidney exchange market, similar market 
failures arise when countries with independent kidney exchange platforms try to 
arrange cross-border exchanges. Such arrangements are being made between the 
Czech Republic and Austria (Böhmig et  al. 2017) and between Italy, Spain, and 
Portugal.52 In the latter case, these countries first matched their patients and donors 
internally before attempting to cooperate. This problem bears resemblance to frag-
mentation in the US system, suggesting that our insights on returns to scale and 
optimal rewards may be useful more broadly.
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