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Market Failure in Kidney Exchange’
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We show that kidney exchange markets suffer from market failures
whose remedy could increase transplants by 30 to 63 percent. First,
we document that the market is fragmented and inefficient; most trans-
plants are arranged by hospitals instead of national platforms. Second,
we propose a model to show two sources of inefficiency: hospitals only
partly internalize their patients’ benefits from exchange, and current
platforms suboptimally reward hospitals for submitting patients and
donors. Third, we calibrate a production function and show that indi-
vidual hospitals operate below efficient scale. Eliminating this ineffi-
ciency requires either a mandate or a combination of new mechanisms

and reimbursement reforms. (JEL D24, D47,111)

The kidney exchange market in the United States enables approximately 800
transplants per year for kidney patients who have a willing but incompatible live
donor. Exchanges are organized by matching these patient—donor pairs into swaps
that enable transplants. Each such transplant extends and improves the patient’s
quality of life and saves hundreds of thousands of dollars in medical costs, ulti-
mately creating an economic value estimated at more than one million dollars.!
Since monetary compensation for living donors is forbidden and deceased donors
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! Kidney exchange is among a handful of recent innovations that both improve health care delivery and save costs
(see Chandra and Skinner 2012). Transplantation roughly doubles the life expectancy of patients with end-stage
renal disease and is cheaper than the alternative treatment of dialysis. Medicare provides nearly universal coverage,
irrespective of age, for patients with end-stage renal disease, which comprises about 7 percent of Medicare’s annual
budget (see United States Renal Data System 2016). The cost savings of transplantation relative to dialysis alone
have been estimated to be over $270,000 (see Section I).
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are in increasingly short supply, kidney exchange markets play an important role in
mitigating the shortage of organs available for transplant.?

This paper shows that, despite significant success, US kidney exchange suffers
from market failures that result in hundreds of lost transplants per year. Our descrip-
tive evidence shows that the market is fragmented and operates inefficiently. The
inefficiency arises from two standard market failures. First, kidney exchange plat-
forms use inefficient mechanisms: hospitals are not rewarded for submitting high
social value patients and donors to the platform. Second, there are significant agency
problems: hospitals face most of the costs of participating in national platforms but
receive only a fraction of the benefits. These market failures are serious, but fixable.
We show how to combine theory and data to design efficient mechanisms, and dis-
cuss policies such as reimbursement reforms and mandates. Our estimates suggest
that fixing these problems would generate between 240 to 500 additional transplants
per year (25 to 63 percent of the current total).

Our argument has three parts. First, we use administrative datasets to show that
the market is fragmented, inefficient, and shows signs of agency problems. Second,
we develop a simple model to explain the market failures and propose solutions.
Third, we combine the model and data to estimate the magnitude of the inefficien-
cies and to design practical alternative mechanisms and policies.

The first part documents three key facts using data on all transplants in the United
States and proprietary data from the three largest US kidney exchange platforms.
First, the market is highly fragmented. Instead of most transactions being arranged
by a few large platforms, 62 percent of kidney exchange transplants involve patients
and donors from the same hospital. Second, we find direct evidence of inefficient
exchanges in the market. Kidney exchanges performed within hospitals often trans-
plant kidneys from easy-to-match donors to easy-to-match patients, a practice
which existing theory has shown to be inefficient (Roth, Sénmez, and Unver 2007).
Third, hospital behavior is inconsistent with pure maximization of patient welfare.
Evidence suggests that hospitals are sensitive to the financial and administrative
transaction costs of participating in kidney exchange, even though these costs are
small relative to the social value of transplants. Many hospitals do not participate in
national platforms, and even when they do, the typical hospital does not conduct all
kidney exchanges through a national platform.

The second part develops a model to explain these facts and design policy
responses. Although kidney exchange markets do not directly use monetary incen-
tives to acquire organs, we can analyze them with standard neoclassical producer
theory. A kidney exchange platform produces a final good (transplants) from inter-
mediate goods (submissions of patients and donors) supplied by a competitive fringe
(hospitals) according to a production function. This model is motivated by three key
institutional features. First, hospitals are the key decision makers steering partici-
pants toward kidney exchange (Roth, Sénmez, and Unver 2005; Ashlagi and Roth

2There are over 97,000 patients currently waiting for a kidney from a deceased donor, but less than one-fifth are
expected to be transplanted in the next year. Becker and Elias (2007) argues that the wait-list could be completely
eliminated if there were monetary compensation for live donors. However, this type of transaction is widely panned
by bioethicists, and almost all countries forbid it. The National Organ Transplantation Act prohibits compensating
donors to acquire organs in the United States, but explicitly allows for kidney exchange through the Charlie W.
Norwood Living Organ Donation Act.
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2014; Rees et al. 2009). Second, due to biological compatibility constraints, some
patients and donors generate considerably more transplants than others when they
join a platform. Third, the structure of optimal matches makes transplants a natural
numéraire good. Platforms can effectively transfer transplants from one hospital to
another by choosing which hard-to-match patients to match.

Much of the economics of kidney exchange is determined by the shape of the pro-
duction function. Returns to scale determine how large a platform must be to attain
efficiency, which tells us whether a fragmented market can be efficient. Marginal
products determine the values of different types of patients and donors to the plat-
form, which are key factors in designing efficient mechanisms.

Theorem 1 shows that inefficiency comes from the two market failures we dis-
cussed. First, platforms use inefficient mechanisms. When a hospital submits a
patient or a donor to a platform, current mechanisms reward hospitals according to
the probability with which that hospital’s patient is matched. But the theorem shows
that, to maximize hospital welfare, hospitals should be rewarded with the mar-
ginal product of their submissions (the expected number of additional transplants
enabled), plus a small adjustment term. Because existing platforms do not reward
hospitals based on the marginal product of their submissions, even a hospital that
maximizes the number of own-patient transplants has to perform socially inefficient
matches. This problem can be addressed by using a points mechanism that rewards
hospitals according to marginal products. Without making the connection between
kidney exchange and neoclassical producer theory, it is not obvious that this market
failure exists, much less how to fix it. The second market failure is that hospital
objectives may differ from pure social welfare maximization, a problem which we
refer to as an agency problem. For example, hospitals may participate too little in
kidney exchange because they face most of the costs but only receive a fraction of
the benefits. This problem can be addressed with subsidy policies and mandates.

The third part of this paper combines theory and data to quantify inefficiency in
the market and to suggest policy responses. To do so, we recover the production
function using administrative data from the largest US kidney exchange platform
and detailed information on matching algorithms and operational procedures.

The production function yields three sets of results. First, we measure the returns
to scale and estimate the inefficiency from market fragmentation. We find that the
largest kidney exchange platform is well above the minimum efficient scale, while
almost all single-hospital platforms are far below the efficient scale. We estimate that
the gains from moving all production to the efficient scale is at least 200 transplants
per year, and likely closer to 500. These improvements correspond to an economic
value of between $240 million and $500 million annually, of which approximately
one-quarter is due to savings on health care costs. Thus, consistent with the descrip-
tive evidence and the shape of the production function, fragmentation has a large
efficiency cost. Under certain assumptions, mandating that hospitals participate in
national kidney exchange platforms could realize most of these gains. Our results
suggest that the market can support two to three national platforms at close to the
efficient scale. Therefore, a stronger mandate that additionally restricts participation
to a single platform would not generate further gains.

Second, we use the estimated production function to design more efficient mech-
anisms. Optimal mechanisms should reward submissions approximately according
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to marginal products, while current mechanisms reward submissions according to
probabilities of matching. We find that marginal products are considerably different
from probabilities of matching, which implies that existing mechanisms are far from
optimal. We discuss how optimal points mechanisms based on our estimates could
be used to improve hospital incentives.

Third, we study the importance of the two market failures. The loss in hospital
welfare due to the inefficient mechanism depends on the wedge between current and
optimal rewards, and on the elasticity of supply from hospitals. We have estimated
the wedges and the marginal products, but our data do not have enough information
to estimate supply elasticities credibly. Therefore, we calculate this deadweight loss
under a broad range of assumptions on elasticities. Except under the most extreme of
these, the deadweight loss is significant but lower than the inefficiency due to market
fragmentation. Hence, both the current mechanism and agency problems contribute
significant inefficiency in the market. This finding suggests a two-pronged policy
approach: improve mechanisms and encourage participation. This approach is par-
ticularly appealing if a mandate is not politically feasible.

Relation to the Literature.—We build upon several earlier contributions. In kidney
exchange, Roth, Sénmez, and Unver (2004, 2007) and a large subsequent literature
have studied optimal matching algorithms and the technology of kidney exchange.
In particular, Roth, S6nmez, and Unver (2007) calculates the marginal products of
different types of pairs in a simplified theoretical model. Our empirical estimates
of marginal products are, to our knowledge, the first test of their theoretical predic-
tions. We find qualitatively similar marginal products for most types, with differ-
ences because the empirical model accounts for features like immune sensitivity
and matching frictions. Motivated by anecdotal evidence, other papers in the kidney
exchange literature have theoretically analyzed the problem of hospital participa-
tion. Roth, Sénmez, and Unver (2005) showed that hospitals may have incentives
to match patients outside of an exchange and that this may compromise efficiency.
Ashlagi and Roth (2014) proposes a mechanism that addresses this issue in a styl-
ized static model by only considering exchanges in which all patients that a hospital
can transplant on its own are matched.? Hospital rewards in their mechanism differ
from long-run marginal products in a dynamic and stochastic setting when patients
and donors are registered over time. Thus, Theorem 1 suggests that even if their
mechanism provides good incentives in static models, it can be inefficient in prac-
tice.* Rees et al. (2012) advocates for reimbursement policy reform based on the
argument that costs of kidney exchange are a barrier to participation in the market.

We also draw on other areas of economics that are not traditionally used in mar-
ket design. Theorem 1 describes linear rewards that maximize hospital welfare. The
key idea is based on analogies to linear commodity taxation (Ramsey 1927) and reg-
ulation of multi-product monopolists (Boiteux 1956). Our theoretical contribution
is to apply these classic ideas and proofs to kidney exchange. A difference is that

3Toulis and Parkes (2015) proposes an alternative algorithm in the same lines as Ashlagi and Roth (2014).

“Hajaj et al. (2015) also proposes a dynamic “credit mechanism” for kidney exchange; however, their mecha-
nism rewards each hospital based on the total number of pairs that it submits, irrespective of type. In this way, their
suggested rewards differ from the marginal-product rewards that we suggest in Section ITIC.
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we recognize the possibility that hospital welfare and social welfare differ, which
we model as a general wedge between the two, as in the modern behavioral public
finance literature (Farhi and Gabaix 2017). Our paper is also related to the industrial
organization literature on platforms. Platforms bring together market participants,
much like kidney exchange platforms. A key issue in this literature is the structure of
optimal prices, commonly studied for two-sided platforms (Rochet and Tirole 2003,
Weyl 2010). Our analysis of kidney exchange involves pricing to only one side of
the market: hospitals. Finally, we measure the total number of transplants lost due
to market fragmentation using a misallocation analysis. This exercise is similar in
spirit to the literature documenting and quantifying the efficiency implications of
productivity dispersion (see Bartelsman and Doms 2000, Hsieh and Klenow 2009).

I. Background and Data
A. Basics of Kidney Exchange

End-stage renal disease (ESRD) afflicts more than half a million Americans. The
disease is almost universally covered by Medicare, even for patients under the age
of 65. The Medicare ESRD program accounts for 7 percent of its budget, mostly
spent on patients undergoing dialysis (United States Renal Data System 2016). The
preferred treatment for ESRD patients is transplantation, which increases the qual-
ity and length of life by several years and is cheaper than dialysis. Transplantation
saves approximately $270,000 per Medicare beneficiary and even more for privately
insured patients (Wolfe et al. 1999, Irwin et al. 2012, Held et al. 2016). Moreover,
the health risks to living donors are small. Taken together, these facts indicate that
a living-donor kidney transplant has large economic value. Held et al. (2016) esti-
mates this value at $1.1 million using a detailed cost-benefit analysis.>

There is a severe shortage of organs for transplantation. Each year, approx-
imately 13,000 patients are transplanted using organs from deceased donors and
another 5,500 from living donors. Demand far outstrips this supply with approxi-
mately 35,000 patients added to the deceased donor kidney wait-list in each of the
recent few years. The shortage has resulted in the kidney wait-list growing to almost
100,000 patients, with about 8,000 patients per year dying or being categorized as
too sick to transplant.® Monetary compensation cannot be used to address this short-
age because of ethical and legal reasons: it is forbidden in almost every country,
including the United States (Becker and Elias 2007).

Kidney exchange is an innovative way to ameliorate this shortage (Roth, Sonmez,
and Unver 2004; Soénmez and Unver 2013). It serves patients who have a willing
live donor with whom they are not biologically compatible. Such patients can swap
donors with others in the same situation, enabling transplants for many patients.

SMost of the $1.1 million comes from gains in quality-adjusted life-years (QALYs), valued at $200,000. Even
if each QALY is valued at only $100,000, the estimated economic value only drops to $660,000. This drop is less
than 50 percent because the cost savings on dialysis are also significant. In 2014, Medicare paid $87,638 per year
per dialysis patient but only $32,586 in post-transplant costs per year per patient (United States Renal Data System
2016, chapters 7 and 11).

6 Statistics taken from https:/optn.transplant.hrsa.gov/data/view-data-reports/national-data/ (accessed December
21,2017).
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These swaps are organized by kidney exchange platforms that match patients and
donors registered with them. The platforms receive three types of submissions. The
most common type is a pair, consisting of a patient and a living donor. The second
type is an altruistic donor, who is willing to donate a kidney to a stranger without
requiring a transplant for an associated patient. Finally, there are some unpaired
patients, who do not have a willing live donor.

Platforms organize transplants in two ways. The first, called a cycle, involves
a set of pairs. The kidney from one pair’s donor is transplanted into the patient in
the next pair, and so on, until the cycle is closed. All transplants are carried out
simultaneously to reduce the risk that a pair donates a kidney without also receiving
one. Cycles are usually limited to at most three pairs due to logistical constraints.
The second type, called a chain, is initiated when an altruistic donor donates to a
patient in an incompatible pair. The donor from this pair can then continue the chain
by donating to the next pair, and so on, until the chain terminates with an unpaired
patient. Chains can be very long in principle because transplants do not have to
be performed simultaneously, easing medical logistics.” However, our data from
the National Kidney Registry (NKR), the largest US kidney exchange platform,
show that most chains involve four to five transplants. Initially, cycles were the most
common type of transaction, but chains became more important over time and now
account for about 90 percent of transplants.

There are two types of biological compatibility constraints on kidney transplants:
blood-type and tissue-type compatibility (Danovitch 2009). A donor is blood-type
incompatible with a patient if the donor has a blood antigen that the patient lacks.
There are two blood antigens, known as A and B. Blood type is A or B if the blood
has only the A or the B antigen, respectively, AB if it has both, and O if it has neither.
A donor is tissue-type incompatible with a patient if the donor has human leukocyte
antigens (HLA) to which the patient has an immune response.® The most common
measure of sensitization, that is, how likely a patient is to reject a transplant due to
tissue-type incompatibility, is the Panel Reactive Antibody (PRA) score. A patient’s
PRA is between 0 and 100 and denotes the percentage of a representative population
of donors with whom a patient is tissue-type incompatible. Because this measure
depends on the choice of representative population, the NKR’s algorithm uses an
alternative measure tailored to its own pool called match power. It measures, for a
given recipient (donor), the fraction of donors (recipients) on the platform that are
both blood-type and tissue-type compatible.

7Rees et al. (2009) reports on an early chain involving ten transplants conducted over the course of eight
months. One reason chains can be executed over a long period of time is that donors rarely renege (Cowan et al.
2017). This trust allows chains in which a patient can receive a transplant before her related donor donates to the
next patient in the chain.

8 Each patient has a list of antibodies to some, possibly large, subset of HLA antigens. If the recipient has an
antibody to one of the donor kidney’s antigens, the recipient’s immune system will attack the kidney, leading to
immediate rejection. A recipient is tissue-type compatible with a donor’s kidney if she has no antibodies corre-
sponding to the major HLA antigens of the donor’s kidney (Danovitch 2009). Note that recent developments in
desensitization techniques have allowed some of these incompatibilities to be overcome (Orandi et al. 2014).
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B. Institutional Features and the Economics of Kidney Exchange

There are three institutional features that are crucial for the economics of kid-
ney exchange. First, kidney exchange takes place both in large, national platforms
and within individual hospitals. There are three major national platforms currently
operating in the United States: the National Kidney Registry (NKR), which is the
largest; the Alliance for Paired Kidney Donation (APD); and the United Network
for Organ Sharing (UNOS) Kidney Paired Donation Pilot Program. These large
platforms match patients using optimization software that maximizes a weighted
number of transplants. They differ in terms of exact algorithms and operational
details.” Once an exchange has been arranged, standard medical procedures are used
to conduct the transplant with no known differences across the platforms. Platforms
also do not influence a patient or donor’s surgeon choice. Besides these major plat-
forms, there are small regional platforms and individual hospitals that also organize
kidney exchanges.

Hospitals are not forced to participate in platforms. In fact, most hospitals that
participate in large national platforms also match patients outside those platforms.
When multi-hospital kidney exchange platforms were conceived, hospital partici-
pation was assumed to be all or nothing. As the market developed, it became clear
that platforms effectively reward hospitals with transplants in order to receive sub-
missions. For this reason, most platforms explicitly reward hospitals that submit
altruistic donors by matching one of their unpaired patients.'°

The second important institutional feature is that biological compatibility creates
substantial variation in the social value of different submissions. One reason for this
variation is blood-type compatibility. To simplify exposition, assume that there are
only two blood types, O and A. These two types together are a significant majority
of patients and donors in the United States. Denote a pair with patient blood type X
and donor blood type Y as X-Y, and let gx_y be the number of such pairs in a pool.
Assume that g5_o < ¢o_a, Which is the empirically relevant case.'! For this sim-
plified case, Roth, Sénmez, and Unver (2007) showed that, in the large market limit,
the number of transplants that can be performed, f (q), is

(1) f(Q) =2-gaot1- (CIA—A + 610—0) +0-go-a-

This result follows because A—A and O-O pairs can be matched with pairs of
the same type. Roth, Sénmez, and Unver (2007) calls these pairs self-demanded.
Self-demanded pairs have a marginal product of 1, in the sense that they gener-
ate 1 additional transplant when they join the pool. However, an O—A pair can
only be transplanted using a cycle with one of the valuable A—O pairs. Thus, there
will be many leftover O—A pairs that can only be transplanted if more A-O pairs

9See Abraham, Blum, and Sandholm (2007); Ashlagi et al. (2019); Anderson et al. (2014); Dickerson,
Procaccia, and Sandholm (2012); and Agarwal et al. (2018).

19Until recently, matching an unpaired patient in return for submitting an altruistic donor has been the only
form of reward used by these platforms. After the end of our sample, the NKR started experimenting with a more
complex rewards system to encourage the registration of easy-to-match patients and donors. To our knowledge, it
is not based on the marginal products.

"' This fact is confirmed for patients and donors registered in the NKR. See Table 2.



VOL. 109 NO. 11 AGARWAL ET AL.: MARKET FAILURE IN KIDNEY EXCHANGE 4033

join the pool. A—O pairs are called over-demanded and have a marginal product
of 2. O—A pairs are called under-demanded and have a marginal product of 0. An
under-demanded pair competes with another under-demanded pair and adds no
value to the pool. Roth, Sonmez, and Unver (2007) showed that this qualitative
pattern holds even in a model with all possible blood types.

Current platform rules largely ignore this variation in the social value of submis-
sions, inducing hospitals to perform socially inefficient matches. Consider a hospital
with two over-demanded pairs. The hospital could perform a pairwise exchange to
conduct two transplants. However, if the hospital submits both pairs to the platform,
then in expectation, the hospital receives a number of transplants equal to twice the
probability that one of them is matched. According to our data, this probability is
0.8, so the hospital expects only 1.6 transplants from submitting, which pushes it
to match its patients outside the platform. However, each pair the hospital submits
to the platform generates its marginal product, which the Roth, Sénmez, and Unver
(2007) model puts at 2. This suggests that the platform could generate four trans-
plants if the hospital would submit both its pairs. Using a more realistic empirical
model, we estimate just under three additional transplants (Section IV). Either way,
matching these two pairs within the hospital is socially inefficient despite the hospi-
tal acting in the best interest of its patients.

An important corollary of Roth, Sénmez, and Unver’s (2007) results is that trans-
plants are a natural numéraire in a kidney exchange platform. Because hospitals
have a large number of under-demanded pairs, it is easy for a platform to transfer
transplants from one hospital to another without compromising efficiency, simply
by choosing which under-demanded pairs to match.

The third important institutional feature is that hospitals do not necessarily max-
imize a utilitarian measure of the welfare of the patients and third-party payers who
they represent. We refer to such behavior as a broadly defined agency problem, since
hospitals incur most of the transaction costs of kidney exchange. The social value
from one transplant is more than $1,000,000, of which the majority is savings in
health care costs and gains in quality-adjusted life years. But, hospital revenues are
between $100,000 to $160,000 per transplant.'? Variable profits are likely much
smaller. Thus, even socially insignificant transaction costs of performing kidney
exchange through a platform can be important for hospitals. Conversations with hos-
pital staff indicate that participation in kidney exchange platforms involves logistical
and administrative hassle in addition to direct costs arising from biological testing
and platform fees.!® Previous surveys and interviews have found that these trans-
action costs are commonly cited barriers to participation (Ellison 2014, American
Society of Transplant Surgeons 2016). Besides costs, hospitals may also have behav-
ioral reasons for not perfectly maximizing patient welfare. For example, there is

12See Held et al. (2016) and United States Renal Data System (2013). The revenues include payments for
surgery teams, drugs, equipment, and capital.

13 Platforms require extensive biological testing, which is particularly complicated because donors and patients
are in different hospitals. Platforms also charge fees, which are paid by hospitals. NKR charges an annual fee of
about $10,000 plus about $4,000 per transplant. See National Kidney Registry (2016) for NKR’s fees, and Rees
et al. (2012) and Wall, Veale, and Melcher (2017) for a broader discussion of the kidney exchange costs borne by
hospitals.
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considerable heterogeneity regarding hospital sophistication: some hospitals use
optimization software to match patients while others do so manually.

C. Data

We assembled two datasets for this paper. The first, the transplant dataset, records
all kidney exchange transplants in the United States. We use this dataset to docu-
ment fragmentation, inefficiency, and participation in the kidney exchange market.
The second, the NKR dataset, records all patients and donors who registered with
the largest US kidney exchange platform, the NKR. We use this dataset to estimate
a transplant production function.

The transplant dataset consists of anonymized records of every kidney transplant
conducted in the United States between January 1, 2008 and December 4, 2014.
We obtained this dataset from the Organ Procurement and Transplantation Network
(OPTN), a contractor for the US Department of Health and Human Services.'* The
OPTN dataset includes each transplant’s date and location; whether it is part of a
kidney exchange; the age, sex, weight, height, body mass index (BMI), blood type,
and HLA antigens of the donor and recipient; and the unacceptable antigens and
days on dialysis of the recipient. See online Appendix C for details.

Although a comprehensive source for data on transplants, the only field in the
OPTN dataset that specifically pertains to kidney exchange is an indicator for which
transplants were part of such an exchange. Therefore, the OPTN dataset does not
identify which, if any, multi-hospital kidney exchange platform organized a given
transplant.

To address this limitation, we separately obtained anonymized records of all
transplants organized by each of the three largest multi-hospital kidney exchange
platforms in the United States: NKR, APD, and UNOS. By merging the data from
these platforms with the OPTN data, we identified which transplants were organized
through NKR, APD, UNOS, or other avenues. This merge is not straightforward
because all of our datasets are anonymized. Fortunately, the rich biological data
allow us to match transplants across datasets on the blood type, sex, and HLA anti-
gens of the recipient and donor; and the date and location of the transplant. See
online Appendix C for more details. We were able to match approximately 94 per-
cent of transplants at these platforms to the corresponding OPTN data with a high
degree of certainty. !

The transplant dataset contains information on transplants that were performed,
but not on the pool of patients and donors that were available for kidney exchange.
This information is needed to estimate a platform’s transplant production function.
Therefore, we assembled the NKR dataset. It records all patients and donors who

14 This study uses data from the Organ Procurement and Transplantation Network (OPTN). The OPTN data
system includes data on all donors, wait-listed candidates, and transplant recipients in the United States, submitted
by members of the Organ Procurement and Transplantation Network (OPTN). The Health Resources and Services
Administration (HRSA), US Department of Health and Human Services provides oversight to the activities of the
OPTN contractor.

150f the matches, 90 percent were within 1 day on the transplant date, within 5 years on donor and recipient
age, and agreed on the hospital where the transplant was conducted as well as the blood type, sex, and all six major
human leukocyte antigen (HLA) alleles relevant for kidney transplantation (2 alleles each at the HLA-A, B, and DR
loci) for both the donor and recipient.
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registered with the NKR between April 2, 2012 and December 4, 2014. This dataset
is sourced from the administrative records the NKR uses to organize transplants.
It includes the registration date, blood type, age, sex, and HLA antigens for both
patients and donors. It also records whether the patient or donor left NKR’s system,
and the date and reason for departure (transplantation or otherwise). In addition, it
includes information on pairings between donors and patients (if any), unacceptable
antigens, and all the restrictions a patient places on which organs are acceptable.
These fields allow us to determine the set of transplants the NKR considers accept-
able and medically feasible. We also have detailed data on how the transplants were
organized, including the donors and patients involved, and the chain or cycle config-
uration. Online Appendix C provides details on how we assembled the NKR dataset.

II. Descriptive Evidence

We now document three key facts: the kidney exchange market is highly frag-
mented, this fragmentation leads to inefficiency, and there is evidence of agency
problems.

A. Fragmentation

We first document that the market is highly fragmented. Most kidney exchange
transactions are matched internally by individual hospitals, as opposed to by large,
national kidney exchange platforms. A kidney exchange transplant is defined
as within hospital if the donor’s operation took place in the same hospital as the
patient’s, and across hospitals if the donor’s and patient’s operations took place in
different hospitals.!® We also classify transplants based on which platform coordi-
nated the exchange: NKR, APD, or UNOS. Transplants that were not organized by
one of these platforms are classified as being performed by other platforms, includ-
ing single-hospital programs and small regional platforms.

Figure 1 shows that the market is highly fragmented. The three largest
multi-hospital platforms together only account for a minority share of the kidney
exchange market. Of all kidney exchange transplants, 62 percent are within-hospital
transplants that are not facilitated by the NKR, APD, or UNOS. Over 100 hospitals
performed kidney exchanges outside these three platforms during this period.

Unlike the dominance of within-hospital exchanges in the overall market, a large
majority of the transplants facilitated by multi-hospital platforms are across hospi-
tals. This contrast between the overall market and the platforms is striking as the
platforms do not prioritize across-hospital exchanges as a rule; such exchanges are
a by-product of maximizing the total number of transplants. This suggests that coor-
dinating across hospitals has potential gains.

16 The common practice is to transport the organ after recovery instead of transporting the donor and recovering
the organ elsewhere. Conversations with surgeons suggest that the primary motivation for this practice is to safe-
guard the donor’s interests: she has built relationships at her hospital, and the donation surgery requires extensive
pre-planning and follow-up care.
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FIGURE 1. MARKET FRAGMENTATION AND TRENDS IN KIDNEY EXCHANGE

Notes: The figure displays the number of kidney exchange transplants in different categories. The category Other
represents transplants that were not facilitated by NKR, APD, or UNOS. Single-hospital platforms fall under this
category. Within hospital and across hospital classify a transplant into whether the donor’s hospital was the same
as the patient’s hospital.

Figure 1 also shows that the total number of kidney exchange transplants grew
from about 400 in 2008 to about 800 in 2014.!” However, overall market growth
seems to have slowed in recent years. The total number in 2017 remains at around
800,"® well below some estimates of the potential size of the market (Bingaman
et al. 2012, Massie et al. 2013).

The growth in kidney exchange between 2010 and 2014 is concurrent with the
NKR becoming the dominant kidney exchange platform. The NKR accounted for
33.1 percent of all kidney exchange transplants in 2014 and facilitated more than
5 times as many transplants as the APD and UNOS combined.'® The importance
of the NKR during our sample period motivates our focus on the platform in the
subsequent sections.

B. Evidence of Inefficiency

Market fragmentation creates inefficiency if there are increasing returns to scale
and hospitals are operating below efficient scale. We now present direct evidence of
hospitals conducting exchanges that are inefficient from a social perspective.

One easily detectable inefficiency is a transplant between a blood-type O donor
and a non-O patient. As explained in Roth, S6nmez, and Unver (2007) and in
Section I, O donors are scarce while O patients are abundant. If all transplants are of
equal social value, optimal matches in a large market should only transplant organs

70ur data for the NKR extend until December 4, 2014. This censoring may account for the slight drop in
transplants in the last year of this figure.

13 Source: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/ (accessed December 21, 2017).

19The APD has grown in recent years, significantly closing the gap.
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FIGURE 2. EVIDENCE OF HOSPITALS PERFORMING INEFFICIENT MATCHES

Notes: The bars display the percentage of O donors whose kidneys were transplanted into non-O patients for dif-
ferent categories of transplants. Other indicates a transplant not organized by NKR, APD, or UNOS. This category
includes transplants organized by single-hospital platforms. Within hospital and across hospital classify a transplant
into whether the donor hospital was the same as the patient hospital. The colors decompose this total into highly
sensitized patients (PRA > 90) and non-highly sensitized patients. The error bars depict 95 percent confidence
intervals for the totals.

from O donors to O patients because O patients cannot accept other blood types.>°
The exception to this rule is for a highly sensitized patient, that is, one with a very
high PRA. The platform might want to match an O donor with such a patient if it
were the only way to get her transplanted.

Figure 2 displays the fraction of O donors that are used to transplant non-O
patients, categorized into NKR transplants, APD /UNOS transplants, across-hospital
transplants at other platforms, and within-hospital transplants at other platforms.
Among NKR transplants, only 6.5 percent of O donors are used for non-O patients.
In contrast, among within-hospital transplants outside the three platforms, this fig-
ure is 22.8 percent. The difference is statistically significant (p < 0.01) and con-
stitutes strong evidence that hospitals often perform inefficient matches outside the
platform. The figures for APD, UNOS, and across-hospital transplants at other plat-
forms are in between these two categories, but much closer to the NKR.

An alternative explanation for inefficient matching is that within-hospital trans-
plants use O donors to help highly sensitized patients who would otherwise remain
untransplanted. However, Figure 2 shows that almost none of the potentially inef-
ficient transplants in the Other (within hospital) category involve highly sensitized
patients. In contrast, about one-half of the potentially inefficient NKR transplants
involve highly sensitized patients.

This exercise treats the value of all transplants as equal, irrespective of patient
or donor blood type and whether the exchange was organized through a platform.

20Strictly speaking, efficiency as discussed here means maximizing the total number of transplants. However,
transplanting an O donor to a non-O patient is also likely to be Pareto inefficient: if a pairwise exchange between
two over-demanded A-O pairs were replaced by two A—-O to O-A exchanges, then all parties would be better off
(assuming the under-demanded O—A pairs would otherwise be unmatched).
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TABLE 1—SUMMARY STATISTICS FOR KIDNEY EXCHANGE TRANSPLANTS

Other platforms
NKR APD/UNOS Across hospital ~ Within hospital
Observations 1,118 198 341 2,719
Patient blood type (%)
A 347 36.4 37.2 37.1
B 19.0 21.2 17.6 17.0
AB 5.7 35 7.0 5.7
(¢} 40.6 38.9 38.1 40.2
Donor blood type (%)
A 36.8 354 375 33.4
B 18.2 20.2 14.7 13.8
AB 3.9 1.5 6.7 29
(¢} 41.1 42.9 41.1 49.9
Panel reactive antibody (PRA) (sensitization)
Mean 35.0 43.0 30.4 17.6
Standard deviation 39.7 40.8 375 30.8
Percent >90 16.4 20.6 12.0 5.1
Transplant outcomes and quality measures
Donor age
Mean 44.1 44.6 44.1 432
Standard deviation 11.8 11.1 11.3 11.8
Donor body mass index (BMI)
Mean 26.5 27.0 26.6 26.5
Standard deviation 4.0 4.0 4.1 4.2
Donor height (cm)
Mean 169.4 168.0 169.6 169.3
Standard deviation 9.8 9.6 10.3 9.8
Donor weight (kg)
Mean 76.3 76.3 76.9 76.3
Standard deviation 15.1 13.9 15.4 15.1
Tissue type mismatch (0-6)
Mean 42 42 42 4.4
Standard deviation 1.3 1.4 1.2 1.2
Mean days on dialysis
Mean 1,026.6 1,048.4 1,063.1 969.1
Standard deviation 1,088.1 848.1 1,269.5 990.9

Note: Sample of all kidney exchange transplants between January 1, 2008 and December 4, 2014.

The total number of transplants provides a transparent and economically relevant
measure of market outcomes. Although not reported, our data show that indicators
of the life-years benefit of kidney exchange, such as patient or donor age, do not
significantly differ by blood type.

The remaining concern is that transplants organized through a platform may dif-
fer in quality or costs. However, Section IA argues that transaction costs of conduct-
ing transplants through a platform are negligible relative to the value of transplants
lost by matching O donors to non-O patients. Moreover, Table 1 shows that there are
no substantial differences in donor or match quality across our platform types. One
reason patients considering a multi-hospital platform need not worry about donor
quality is that the platforms allow patients and doctors to specify donor acceptabil-
ity criteria. They also allow patients to refuse proposed transplants if the donor is
unsuitable. The only noticeable difference in Table 1 is that patients who receive
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a transplant through a platform typically spend only two more months on dialysis
than do patients who receive a within-hospital transplant. Given the average patient
wait time of about 32 months, this difference represents only an 8 percent increase.
The longer waiting time at the platforms should be expected because, as we discuss
below, patients transplanted through the platform are, on average, harder to match.

If each of these inefficient transplants from O donors to non-O patients comes at
the cost of one other transplant, as in the Roth, Sénmez, and Unver (2007) model,
then achieving the level of efficiency obtained by the NKR would have resulted in
about 250 additional transplants between 2008 and 2014.2! The advantage of con-
sidering only the clearly inefficient transplants is that the results provide transparent
evidence of inefficiency. The total inefficiency can be much larger.

C. Hospital Participation and Evidence of Agency Problems

Why do hospitals fail to participate more in national platforms? We start by doc-
umenting key facts about hospital behavior and argue that hospitals do not purely
maximize the number of transplanted patients. Instead, they seem to maximize com-
plex and heterogeneous objectives, including, but not limited to, profits and patient
welfare.

Descriptive Evidence.—We focus on participation behavior at the NKR because
it is the primary multi-hospital kidney exchange platform during our sample period
(Table 1). Panel A of Figure 3 depicts the extensive margin of participation among
hospitals conducting kidney exchange transplants. A hospital is considered an NKR
participant if it conducted at least one transplant through the NKR during our sample
period. The figure is a binned scatterplot of the fraction of hospitals that participate
in the NKR versus hospital size (measured by the total number of kidney transplants
performed, both living and deceased).?” Panel B depicts the intensive margin of
participation. The vertical axis in this scatterplot is the fraction of kidney exchange
transplants that a hospital performs through the NKR. The results are qualitatively
similar if we consider participation at any of the three largest kidney exchange plat-
forms because the APD and UNOS are relatively small during our sample period.

The figures reveal four key facts about participation. First, both the extensive
and intensive margins are important drivers of market fragmentation. Only 41.4
percent of hospitals participate in the NKR. Within those participating hospitals,
only 59.1 percent of transplants are conducted through the NKR. These results are
qualitatively similar if participation in any of the three national platforms (NKR,
APD, or UNOS) is considered because only a few hospitals participate in multiple
platforms.?® Second, larger hospitals are considerably more likely to participate in

2 Table 1 shows that within-hospital platforms have a larger gap between the fraction of O donors and patients
than the NKR. The difference in this gap, multiplied by the number of within-hospital transplants, is a measure of
transplants lost due to inefficient use of O donors in within-hospital transplants.

22This broad measure of size limits the endogenous effect of NKR participation on hospital size since deceased
donor and direct living-donor transplants form the bulk of kidney transplants. During our sample period, the total
number of kidney transplants has remained stable relative to the growth in kidney exchange.

230nly 10 hospitals out of the 64 that participated in the NKR between 2012 and 2014 also conducted a trans-
plant through the APD or UNOS. Most of these hospitals did not do so in all three years and conducted only a
handful of transplants through the other platforms.
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FIGURE 3. HETEROGENEITY IN PARTICIPATION IN THE NKR

the NKR. The probability of participating at all is about 80 percent for a hospital
that performs approximately 250 transplants per year but only about 30 percent for
a hospital that performs about 50 transplants per year (panel A of Figure 3). Third,
conditional on participating, large hospitals conduct more of their matches outside
the platform (panel B). Although size positively correlates with the fraction of kid-
ney exchange transplants performed in the NKR, the relationship is negative if we
focus exclusively on hospitals that participate at all (panel B). Fourth, there is a high
degree of heterogeneity in intensive margin participation. Even among hospitals
with similar size, participation varies considerably (panel B). For example, among
the five transplant hospitals that perform more than 300 transplants per year, one
does not participate at all (Jackson Memorial), one has a participation rate close to
zero (UC Davis Medical Center), one has a rate in the 50-60 percent range (UCSF
Medical Center), and two have rates greater than 75 percent (UCLA Medical Center
and the University of Wisconsin Hospital).

The data also provide information on the characteristics of patients submitted to
the NKR and of the patients transplanted by each hospital, categorized by how the
transplant was facilitated. Tables 1 and 2 reveal three main facts.

First, the NKR receives submissions that are very hard to match compared to the
general population (Table 2). The blood types of both altruistic and paired donors skew
away from O donors and toward A donors relative to the US population. The deceased
donor population has about 45 percent O donors and 40 percent A donors. In contrast,
patients in pairs are disproportionately likely to have blood type O (58.6 percent), and
their related donors are unlikely to have blood type O (31.9 percent). Only a small
fraction of pairs (13.8 percent) are over-demanded. Interestingly, unpaired patients
are much more likely to have an easy-to-match blood type (the majority having A).
The average PRA for patients registered with the NKR is 47.6, which corresponds to
tissue-type incompatibility with almost one-half of the reference population.

Second, the NKR transplants patients who are considerably harder to match than
patients transplanted by single hospitals (Table 1). Approximately 40 percent of the
patients and donors transplanted through the NKR are blood type O. The PRA of
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TABLE 2—SUMMARY STATISTICS FOR NKR SUBMISSIONS

Altruistic donors Pairs Unpaired patients
Observations 164 1,265 501
Patient blood type (%)
A — 23.8 511
B — 15.0 16.0
AB — 2.6 19.0
O — 58.6 14.0
Donor blood type (%)
A 44.5 444 —
B 14.0 18.5 —
AB 3.7 5.2 —
(0} 37.8 31.9 —
Match power
Recipient/pair
Mean — 0.218 0.431
Standard deviation — 0.210 0.392
Donor
Mean 0.279 0.258 —
Standard deviation 0.162 0.159 —
Panel reactive antibody (PRA) (sensitization)
Mean — 48.8 44.4
Standard deviation — 41.1 45.1
Pair type (%)
Over-demanded — 13.8 —
Under-demanded — 41.9 —

Notes: A pair is over-demanded if the patient is blood-type compatible with the related donor, but not of the same
blood type. Under-demanded pairs are either blood-type O patients without blood-type O donors or are blood
type-AB donors without blood-type AB patients. Sample is all patients and donors registered in the NKR between
April 2, 2012 and December 4, 2014.

the patients transplanted through the NKR is approximately 35, and about one in six
patients have a PRA above 90. These statistics are similar for across-hospital kidney
exchanges not facilitated by the NKR and transplants facilitated by APD or UNOS.
In contrast, among within-hospital kidney exchanges not conducted by a large
platform, almost 50 percent of the donors are blood type O, but only 40 percent
of the patients. The average PRA of patients transplanted through within-hospital
exchanges is only 18. This is almost one-half of the mean PRA for patients trans-
planted through one of the three national platforms.

Third, transplants on all platforms look similar in donor quality measures that do
not affect compatibility, such as weight, body mass index, and age (Table 1). This
supports our equal treatment of all transplants for welfare calculations, irrespective
of whether they are facilitated through a national platform.

Implications for Hospital Behavior—The facts above have implications for
different hypotheses about hospital behavior. In the discussion that follows, we
approximate total patient welfare with the total number of transplants because, as
we argued in Section I, kidney exchange transaction costs are small relative to the
benefits of transplantation.

The first hypothesis is that hospitals maximize the total welfare of all patients in
the system, regardless of the hospital to which a patient belongs. This hypothesis
is strongly rejected by several features of the data, such as the evidence of socially
inefficient matches (Figure 2).
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A second hypothesis is that hospitals only maximize the welfare of their own
patients. This hypothesis was investigated theoretically by Ashlagi and Roth (2014),
which argues that hospitals will try to match as many of their patients internally as
possible and only submit the remaining patients to a multi-hospital kidney exchange
platform. This hypothesis fits some qualitative patterns in the data, but not others.
For example, it explains why larger hospitals in the NKR perform fewer transplants
through the platform: these hospitals have more opportunities to match patients out-
side the platform (panel B of Figure 3). However, it does not explain why many hospi-
tals do not participate in a national platform at all, even though all hospitals likely have
patients who cannot be matched.?* Moreover, many small hospitals do not participate
in the NKR, even though these hospitals, due to their size, are least likely to find
matches within the hospital. The patterns suggest that hospitals respond to fixed costs
of participating in kidney exchange platforms, even though these transaction costs are
small relative to benefits to patients and cost savings from dialysis to insurers.

A third hypothesis is that hospitals are profit maximizers. This hypothesis is consis-
tent with the fact that small hospitals are less likely to participate in the NKR (panel A
of Figure 3) because the fixed costs of participation may not compensate for the gains
in profits from additional transplants. However, this theory alone cannot fully explain
the large variation in the degree of participation, especially among large hospitals.
For example, transplant coordinators at Cornell Medical Center (a large hospital with
a high NKR participation rate) report that a primary reason for participating is the
importance of contributing to a national kidney exchange platform (Ellison 2014).

Taken together, the evidence on hospital participation suggests that hospitals
maximize complex and heterogeneous objectives. This finding is consistent with the
anecdotal evidence on kidney exchange reviewed in Section I, as well as the stan-
dard view in health care economics (Arrow 1963) and more recent findings about
the behavior of health care providers (Kolstad 2013, Clemens and Gottlieb 2014).

The facts about selection into which patients and donors are submitted to the NKR
also indicate that two of these theories, maximizing profits and maximizing their
own patients’ welfare, can explain many hospitals’ behavior. These theories’ shared
implication is that pairs submitted to national platforms are negatively selected, in
the sense of being hard to match. In both cases, a hospital only submits a pair to a
platform if an internal match is not possible. Unfortunately, we cannot directly test
this prediction because we do not have data on the entire pool of patients available
to individual hospitals. But, it is reassuring that the results on selection do not falsify
the two theories that best fit the participation behavior.

To summarize, these findings have two important implications. First, there is
clear evidence of agency problems, as we defined broadly in Section 1. Second, the
data indicate that none of the simple models describe the behavior of all hospitals.

III. Theory

The evidence above shows that kidney exchange markets are fragmented, which
leads to real efficiency loss. We now build a model similar to one of a traditional

24Recall that over-demanded pairs are typically scarce. We will see in Section IV that even the NKR is able to
match only about 50 percent of its donors.
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market in which the platform procures submissions (donors and patients) from hos-
pitals and rewards these hospitals with transplants. We use the model to explain how
inefficiency arises, to quantify it, and to develop responses. In particular, under cer-
tain assumptions, policy responses like participation mandates and providing incen-
tives can improve outcomes.

A. Model

A kidney exchange platform procures submissions from hospitals and rewards
them with transplants. The platform’s ability to produce transplants is described by
a production function f. We consider types of submissions i = 1, ...,I. A (column)
vector of submissions q = (q,-) I in Ri specifies a quantity ¢; of each submission
type available to the platform, where R, is the set of non-negative real numbers.
Given a vector of submissions q, the platform can produce f(q) transplants. The
model can be interpreted as either static or as a steady state from a dynamic model.
We will use the steady-state interpretation in the empirical analysis. All variables are
measured in flows (i.e., transplants per year).

The production function f(q) summarizes what matches are possible. Roth,
Sonmez, and Unver (2007) calculated the production function using a simple model
that we described in Section I. Since that paper assumed that all submissions are
pairs and that only blood-type compatibility matters, its model has I = 16 types.
Our analysis applies both to such theoretically tractable production functions as
well as to more complex ones. Section IV uses an empirical production function
that allows submissions to differ by whether they are patient—donor pairs, altru-
istic donors, or unpaired patients, and by a host of variables including blood
type and antigen and antibody profiles. Thus, the number of types [ is potentially
large.

We say that the production function fhas constant returns to scale at q if its elas-
ticity with respect to scale at  is equal to 1. That is, ((a/f(oq)) - (af(aq)/aa)) ’a:l
= 1, which is equivalent to Vf (q) q = f(q). The Roth, Sénmez, and Unver
(2007) model considers a large platform with constant returns to scale. Our empir-
ical production function in Section IV will measure the returns to scale for the
NKR.

The platform produces transplants using submissions provided by hospi-
tals h = 1,...,H. Hospitals are rewarded for these submissions with transplants.
We assume these rewards are linear in submissions and anonymous. That is, there
exists a (row) vector of rewards p = (p;)i—; in R’ where the i-th component
denotes the (expected) number of transplants awarded to the hospital per submission
of type i. The units of p; are transplants per submission. A hospital that submits a
flow q" in R’ of submissions receives a flow p - q" of transplants, where - represents
matrix multiplication. Since all transplants that are performed must be allocated to
some hospital, a platform must satisfy the constraint that f (Z hqh) =>,p- q".

This linear reward schedule is a good approximation of current platforms’ rules
because their matching algorithms maximize a weighted sum of the number of
matches without considering which patients and donors are submitted by each hos-
pital (Sonmez and Unver 2013, Anderson et al. 2015). That is, when a hospital
submits an additional pair, the probability that the platform matches a different pair
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from the same hospital does not significantly change. Therefore, the current reward
for submitting a type i pair is equal to the probability p; that the pair is matched.
We assume that hospital utility equals the number of transplants received from
the platform minus a private cost of submissions, C h(qh), measured in transplant
units. For instance, if a hospital maximizes the number of its own patients that are
transplanted, then C h(qh) is the number of within-hospital transplants that the hos-
pital must forgo in order to submit q". However, C h(th)) could also include a weight
on additional hospital profits from within-hospital transplants. Our analysis will
remain agnostic about the specific form of C h(qh), except when explicitly noted.

Welfare is defined over an allocation (qh)le that specifies the quantity of pairs
supplied by each hospital. We will use two welfare notions, both of which use trans-
plants as a numéraire because platforms can effectively transfer transplants between
hospitals by choosing which under-demanded submissions to match (see Section I).

The first notion is hospital welfare W (ql, .. .,qH), which is the total welfare
measured from the point of view of hospitals. Hospital welfare equals the total num-
ber of transplants produced (which is the same number of transplants that hospitals
receive) minus the private costs. That is,

2) wh(q',....q") = f(ih:qh) - éch(qh)-

This is a compelling notion of welfare if the goal is to help key market participants
(hospitals, in this case) achieve their objectives.

Hospital welfare is not compelling if hospitals do not purely maximize patient and
insurer welfare. As discussed in Sections IA and II, there is anecdotal and empirical
evidence of such agency problems. For this reason, we also consider a utilitarian
welfare measure, which we term social welfare.?>

Define SCh(qh) as the social cost for hospital & to supply a vector q” submissions.
If there are agency problems, then social and private costs are different, and there
is an agency externality from hospital 4’s submissions because C h(qh) #+ SC h(qh).
For example, C h(qh) is larger than SC h(qh) if hospital / acts as though the financial
and logistical costs of participating in kidney exchange platforms are significant
relative to the private value of a transplant. The externality represents the benefits
to stakeholders other than the hospital itself. We will refer to any such wedge as
a (broadly defined) agency problem.?® In the particular case where there are no
agency problems, we have Ch(qh) = SCh(qh) for all h. Define social welfare to be

sw(q',....q") = f(q) - hilSCh(qh).

25 The theory does not make specific assumptions about social welfare. In the empirical application, we will con-
sider social welfare to be equal to the number of transplants performed because the costs of organizing exchanges
and transplants are small relative to the social benefit of a transplant.

26The wedge between C" and SC” includes all reasons why hospitals’ objectives deviate from social goals.
But, it can be decomposed into behavioral reasons why hospitals do not maximize social welfare (such as inatten-
tion) and differences in payoffs if hospitals were rational. We follow the behavioral public finance literature (Farhi
and Gabaix 2017) in letting the wedge include all of these differences. We use the term agency for two reasons.
First, Section I argues that hospitals represent patients and insurers, and that the additional costs of participating in
kidney exchange are negligible when compared to the value of a transplant. Second, survey and anecdotal evidence
suggests that these costs influence decisions, indicating that agency problems are important. We cannot rule out
behavioral biases resulting in suboptimal hospital behavior.
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Define first-best hospital welfare as the supremum of W and first-best social wel-
fare as the supremum of SW.
Given these primitives, for a vector of rewards p, the hospital supply of hospital / is

S"(p) = argmax [p q" - Ch<qh>].
q"eR’,

Define the aggregate cost, C (q), to be the minimum sum of hospital private costs
necessary to ensure that hospitals supply q = Y_, q" in aggregate. Let the aggre-
gate supply correspondence be

S(p) = argmax|p-q— C(q)].
qeR%
We assume that the production function, social and private costs, and aggregate cost
functions are defined over all non-negative real vectors and are smooth. The max-
imum of each hospital’s objective is attained for some quantity for every vector of
rewards. Further, assume that aggregate cost is strictly convex.

Online Appendix B shows that aggregating individual hospital supplies yields
S(p). Denote the aggregate inverse supply with Pg(q) = {p € R'qc¢ S(p)}.
Further, online Appendix B shows that, for strictly positive q, the aggregate inverse
supply is single-valued and Ps(q) = VC(q), where we use the convention that
gradients are row vectors. This result is similar to how firms supply at price equal to
marginal cost in a competitive market.

B. lllustrative Example: Agency and the Wedge between Private and Social Costs

Our model of the kidney exchange market is framed in terms of transplants as
a numéraire, and captures agency problems as a wedge between private and social
costs. We now present a particular example to clarify these two features of the model.
The specific assumptions in this section are not necessary for our results.

Let K h(qh) be the monetary costs borne by hospital % of sending q” submissions
to a kidney exchange platform. These can include platform fees, costs of rearranging
the hospital’s schedule around the platform, and funds for hiring additional trans-
plant coordinators (see Section IA). Let Th(q h) be the flow of kidney exchange
transplants that hospital & forgoes when submitting q” to the platform because it
cannot match these patients and donors internally.?’

To combine the monetary costs and the transplant costs of submitting, we need
a rate of exchange between the two. Let hospitals value each transplant at v dol-
lars, which includes profits and the value that hospitals place on transplanting their
patients. Gross revenues from a transplant are approximately $150,000 (United
States Renal Data System 2013, Held et al. 2016). For illustrative purposes, take v to
be $50,000, which represents a generous 50 percent markup on costs. In transplant
units, hospital 4’s cost function is

271f the hospital cannot supply a quantity q”, define Th(qh) as infinity.
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The private value of a transplant just discussed does not account for any benefits
that fall to non-hospital stakeholders. Such benefits include the value a patient has
for a transplant beyond the value the hospital places on it and the savings in health
care costs to insurers. Hospitals contract with these agents, but may not account for
all of their benefits because they are not incentivized to do so. For this reason, the
social value of a transplant may differ from the private value to a hospital, creating
agency problems.

Let society value transplants at V' > v dollars. The cost-benefit analysis in Held
et al. (2016) places V at $1.1 million.?® But, even one-half of that value is much
higher than hospital profits. This fits our model with social costs

sc'(q") = T"(a") +

Hence, the wedge between private and social costs equals

cM(a") - sc'(a’) = (§-) - Kla").

The difference is how much more hospitals care about the costs of participating in a
kidney exchange platform than society does, measured in transplant units.

To develop intuition for this wedge’s magnitude, assume that the monetary cost
is linear in the number of submissions, i.e., Kh<qh) = kz,’»: lq?. Then, the wedge is
roughly (k/ v) I qu’, where the approximation holds because the social value of a
transplant V is much larger than the monetary cost k. The wedge is large because it
depends on the platform participation costs borne by the hospitals as a fraction of a
transplant’s private value, not its social value.

For example, if k is $10,000 and v is $50,000, then the wedge is k/v = 0.20
transplants per submission. Hospitals compare this wedge to the rewards vector p,
which is equal to the probability of matching various submissions in the current
mechanism. In effect, the wedge creates an incentive for the hospital to not sub-
mit a patient or donor to a national platform. The calculation above suggests that,
because of agency problems, rewards have to be 20 percentage points higher in
order to induce a given submission. Therefore, it is likely that agency problems are
an important part of the kidney exchange market.

C. Optimal Incentives
The following theorem describes optimal rewards.
THEOREM 1 (Optimal Rewards): Consider a vector of rewards p and an allo-

cation (qh),fil with strictly positive aggregate quantity q that maximizes hospi-
tal welfare subject to all hospitals choosing " € Sh(p) and subject to the total

28Even if a kidney exchange patient would have otherwise received an organ from a deceased donor, the kidney
exchange enables some other patient to receive the deceased donor organ. Therefore, the social benefit of each
kidney exchange transplant should still be the same as the gain from one transplant.
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rewards allocated being the same as the number of transplants produced, that is,
(@) = p-q. Then:

(i) The platform rewards each type of submission with its marginal product
minus an adjustment term. Specifically,

p = Vf(q) — A(q),

where

Alg) = <Z€<fl]>)i,?<;)f <;l>>q’-DPs(Q),

and DPS(q) is the Jacobian matrix of the inverse supply.

(ii) If the production function has constant returns to scale at q, then the reward
for each type of submission is equal to its marginal product, p = Vf(q).
Moreover, the allocation (q h)ff:l attains first-best hospital welfare.

(iii) If, in addition, social cost is equal to private cost (Ch(qh) = SCh(qh) for
all h), then this allocation attains first-best social welfare.

The first part shows that to maximize hospital welfare, the reward for each submis-
sion must be approximately equal to its marginal product. To build intuition, ignore
the constraint that the platform cannot allocate more transplants than it produces.
The platform is similar to a firm that produces a consumption good (transplants)
using intermediate goods (submissions). Since the supply of intermediate goods
equates prices p with marginal costs VC, the first-order condition for maximizing
hospital welfare implies that efficient prices p must equal to marginal products Vf.

The only complication is the constraint that a platform cannot allocate more
rewards than the number of transplants produced, which binds if f does not exhibit
constant returns to scale. If f exhibits increasing returns to scale, then the aver-
age product is lower than the marginal product. In this case, A(q) - g, the opti-
mal level of shading relative to marginal products, summed over all flows, equals
Vf(q) -q—f (q) Thus, the optimal level of shading depends on the returns to scale.
The formula for A(q) shows that the platform should shade more aggressively on
submissions with less elastic supply.>® Our formula is similar to standard formu-
las in optimal linear commodity taxation (Ramsey 1927), regulation of monopolies
(Boiteux 1956), and optimal pricing (Lerner 1934). The proofs are identical for kid-
ney exchange platforms, but provide new insight in an application where monetary
prices are not paid to acquire submissions.

29To see why, consider the case when the cross-elasticities of supply are zero so that DPy is a diagonal matrix.
Then, for each type i, the reward is marked down from marginal product according to (1/p;) ( (0f/0q/(q)) — p,-) = \e;
where ¢; is the own-price supply elasticity and A is the Lagrange multiplier on the constraint that all transplants
produced must be given out as rewards, that is, f(q) = p-q.



4048 THE AMERICAN ECONOMIC REVIEW NOVEMBER 2019

The theorem shows that current platform rules are inefficient. Instead of reward-
ing submissions with their marginal products, current rules reward submissions
with the probability of being transplanted. Therefore, there is a wedge between the
social and private benefits of submissions. Under current rules, a hospital chooses
between serving its own patients or providing a service to the system as a whole.
A clear example of this dilemma, described in Section IB, is of a hospital with
two over-demanded pairs. This hospital could match the pairs internally instead of
submitting them to a platform, but doing so would cause the type of inefficiency
documented in Section II.

The second part of the theorem shows that, when returns to scale are constant, the
optimal mechanism rewards submissions exactly according to marginal products.
The adjustment term in this case equals zero, and optimal rewards achieve first-best
hospital welfare. As we will show in Section IV, this case is empirically relevant
because the NKR is well within the region of approximately constant returns to
scale. Therefore, optimal mechanisms can be calculated in practice by estimating
marginal products.

Moreover, when there are constant returns to scale, there is no need to consider
nonlinear rewards because we can achieve first-best hospital welfare with linear
rewards. One approach for using these results in practice is to introduce a dynamic
points mechanism. For each submission, a platform can credit points to a hospital
equal to the marginal product. Then a point can be subtracted whenever a hospital
conducts a transplant. The platform performs optimal matches with a constraint that
no hospital’s point balance falls below a certain level. We discuss the design of this
type of mechanism in Section VA. Another approach is to use a mandate that forces
hospitals to make the efficient level of submissions. We discuss this type of policy
response in Section VC.

The third part of the theorem states that if the production function exhibits con-
stant returns to scale and there are no agency problems, then the optimal mechanism
achieves first-best social welfare. This result clarifies that there are two possible
sources of inefficiency: suboptimal platform incentives (i.e., rewards that deviate
from marginal products, p # Vf) and agency problems (hospitals failing to fully
internalize the welfare of the parties they represent, C" # SC h).

Figure 4 depicts these two market failures in a graphical framework reminis-
cent of supply and demand. It ignores the adjustment term because estimates in
Section IV will show that NKR is at approximately constant returns to scale. The
horizontal axis plots aggregate supply q. The vertical axis plots marginal products,
social costs, and social benefits. The current vector of rewards, which is equal to
the probability of matching each pair, is denoted by p,. The current quantity sup-
plied, q, is determined by the aggregate supply curve evaluated at current rewards.
The curve VSC(q) is the marginal aggregate social cost if hospitals choose privately
optimal quantities given rewards PS(q).3O

The hospital-optimal quantity q* equates Vf with marginal aggregate private
costs. Thus, the first market failure is that the platform gives inefficient incentives.
The second market failure is that there are agency problems because hospitals do

30Formally, SC(q) = EhH:lSCh(Sh(Ps(q))) is the reward-moderated social cost. The figure assumes that each
individual hospital supply is uniquely defined and that SC(q) is differentiable. See online Appendix A.2.
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Ps=VC
(Marginal private
cost and supply)

Vf (Marginal social prodcuct)

VSC (Marginal
social cost)
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FIGURE 4. THE TWO SOURCES OF MARKET FAILURE

Notes: The horizontal axis represents aggregate quantity of submissions into the kidney exchange platform. The
curves represent the marginal product of submissions, Vf(q), the marginal private cost of submissions from the per-
spective of hospitals, VC(q) (which is equal to Ps(q), the inverse aggregate supply), and the marginal social cost of
submissions, VSC(q) (see footnote 30). Both axes represent I-dimensional vectors. The figure depicts the current
quantity, with agency problems and a suboptimal mechanism, qq; the quantity from a hospital-optimal mechanism,
but with agency problems, q*; and the first-best quantity, with an efficient mechanism and no agency problems, q**.

not fully account for the costs and benefits of other parties (i.e., C h £ sC h). The
aggregate quantity q** maximizes social welfare subject to hospitals responding
optimally given a rewards vector. It attains the first-best social and hospital welfare
if we also solve agency problems so that C" = SC", which makes the two welfare
notions coincide.

In the example above, agency problems can be solved by reimbursing hospi-
tals for the costs of kidney exchange through the platform Kh(qh). Note that it is
not possible to reach the first-best social welfare by only improving the mecha-
nism because there are often not enough transplants to set rewards that are high
enough to solve agency problems (see Proposition A2 in the online Appendix for
details). Alternatively, under certain assumptions, a regulator can simply enforce the
first-best allocation with a mandate.

These arguments suggest two alternative approaches for policy. One is to imple-
ment a mandate that, for example, requires that hospitals submit all patients and
donors to a national platform. Under certain assumptions, this is socially optimal.
Another approach is both to have exchanges use efficient mechanisms and to create
policies that solve agency problems. This approach avoids the political barriers that
a mandate might face and is also optimal, under certain assumptions. Section V
elaborates on these issues.

An upshot of this analysis is that, much like in traditional markets, many key
questions about kidney exchange depend on the production function, which we turn
to next.

IV. Production Function Estimates and Results

We now recover the production function using data from the dominant kidney
exchange platform during our sample period, the NKR (see Table 1). We use these
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estimates to measure the inefficiency due to market fragmentation, calculate the
rewards in an optimal mechanism, and assess the efficiency gain from moving to an
optimal mechanism.

A. An Engineering Approach

Production functions are commonly estimated using data on inputs and outputs
from several firms. The key econometric challenges in this literature are endogene-
ity in the chosen inputs and selection in the set of operating firms (see Marschak
and Andrews 1944, Olley and Pakes 1996). Unfortunately, this approach is not appro-
priate in our setting for three reasons. First, the standard methods are best suited for
low-dimensional production functions that only depend on a few inputs, such as
capital and labor. In our case, the inputs are different submission types, which are
numerous (they vary by blood type, sensitization, and whether the patient or donor
is paired). Second, commonly used functional forms, such as Cobb-Douglas, restrict
all inputs to be substitutes, a property that may not be appropriate in the kidney
exchange context.?! Third, the standard methods depend on a panel dataset with
inputs and outputs of multiple firms and exogenous variation of inputs. However, we
only have data from a single, large platform.

We circumvent these econometric issues by using an engineering approach based
on detailed institutional knowledge and administrative data on the processes involved
in organizing kidney exchange. This approach was first introduced within econom-
ics by Chenery (1949), but fell out of favor due to its complexity and because some
relevant inputs (e.g., managerial resources) were often difficult to measure (Walters
1963). However, it is particularly well suited for our study because we have detailed
data on NKR’s operations, and the composition and biological compatibility of its
patient pool.>?

We simulate the various steps involved in organizing kidney exchange to evaluate
the number of transplants, f (q; B), that can be produced with a flow of submissions, q,
given parameters, 0. The simulation is dynamic, with each period representing one
day. There are four steps that take place: hospital submissions, transplant proposal,
final review and transplantation, and departure. The parameters governing the first
and last steps are directly estimated from the NKR data; the parameters involved
in the second step are known; and the parameters from the third step are calibrated
to fit observed transplantation probabilities for various patient and donor types, as
well as the average length of chains. Our estimation and calibration methods are
described in the following paragraphs, with details provided in online Appendix D.

(i) Submissions: Hospitals submit patients and donors, either individually or
in pairs, to the platform. These submissions are added to the current pool of
patients and donors already registered with the exchange. Patients and doc-
tors, at this time, can submit minimal acceptance criteria for a donor.

3!In a transplant production function, one input type may either be a substitute or a complement with another.
For example, an A—O pair and an O-A pair are complementary since they together produce one pairwise kidney
exchange. However, an O—A pair is a substitute input for an O-O pair in this setting.

320ne of us (Ashlagi) developed the matching software for several platforms and has worked with NKR.
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Submissions arrive according to a Poisson process with arrival rates given
by a vector q, whose dimension equals the number of submission types, 1.
The NKR baseline is represented by q,. We estimate the daily arrival rate of
each submission type i as average number of arrivals per year. An identical
arrival process with Poisson arrival rates q allows us to calculate the produc-
tion function at other arrival rates q # qq.

Our exercises will start by treating each submission as a separate type
(I = 1,930). We will then aggregate types to best predict probabilities of
matching and marginal products using biological characteristics that are rele-
vant for kidney exchange (e.g., blood type and patient PRA).

(ii) Transplant Proposal: Each day, the NKR identifies an optimal weighted set
of potential exchanges within the stock of patients and donors. This algorithm
incorporates four constraints. First, none of the proposed transplants should
be (known to be) biologically incompatible or ruled out by preset acceptance
criteria. These constraints are directly observed in the data. Second, no donor
or recipient can be involved in more than one transplant. Third, a donor in a
pair is only asked to donate an organ if her associated recipient is proposed a
transplant. Finally, the cycle size is limited, because of the logistical difficul-
ties inherent in organizing many simultaneous surgeries.>*

The parameters of this algorithm are the weights used by the NKR for
a transplanting a given donor and patient and the maximum cycle size.
Consistent with NKR policy and observed data, we prohibit all cycles of
length four or greater. The weights are known to one of the authors (Ashlagi)
and are detailed in online Appendix D. They prioritize unlikely matches in an
attempt to utilize hard-to-match donors and transplant hard-to-match patients
whenever possible. The weights typically only break ties between two
matches with the same number of transplants in favor of retaining patients
and donors who are more likely to match in the future.

(iii) Final Review and Transplantation: Each proposed transplant is reviewed
by doctors, patients, and donors, and approved before it is performed. Both
approval and biological testing can take several days. Moreover, patients
and donors in proposed transplants that are under review on a given day are
excluded from the maximal matching algorithm on that day. This step also
involves a final set of blood tests to ensure biological compatibility.>* Cycles
in which any patient refuses or is found to be incompatible with the proposed

33Formally, the NKR maximizes ijcjkwjkxjk by picking x; € {O, 1}, where xj = 1 denotes a proposed
transplant from donor & to patient j; wy is the weight given to the transplant by the NKR; and cj is an indicator
for whether the transplant is biologically compatible and acceptable. This problem is subject to three additional
constraints. First, no donor or patient is involved in more than one transplant, i.e., ijjk < 1 and Ek X < 1.
Second, if donor k and patient j belong to a pair, then xj; = 1 for some j' only if x3 = 1 for some donor k. To
write the third constraint, note that a cycle of length n is an ordered tuple, (. ja, - - -.j,) Where X, = lfork < n
and x; ; = 1. We impose the constraintn < 3. Because there are a very large number of cycle length constraints,
we first solve a relaxed problem without this last constraint and iteratively add the constraints to prohibit large
cycles. Online Appendix D provides further details.

34Failures are recorded by setting cx = 0 (see previous footnote) for future iterations if the donor k was
refused by patient j.
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donor are abandoned. NKR usually abandons chains in which the second
patient cannot be transplanted. For other chains, all proposals until the first
failure are consummated. The donor belonging to the final patient—donor pair
in such a chain may initiate new chains in the future, much like an altruistic
donor. This donor is often referred to as the “bridge” donor. Consistent with
NKR policy, unpaired patients are prioritized according to the net difference
between altruistic donors and unpaired patients previously transplanted by
the patient’s hospital.

This step results in frictions within the system that reduce transplantation
rates (Agarwal et al. 2018). The parameters that govern these frictions are
the time required for each of the two approval steps, the probability that a
proposed transplant is abandoned in each step, and the duration for which a
bridge donor is retained in the pool before donating her kidney to a patient on
the deceased donor list.

Unfortunately, we do not have detailed data on which transplants were
refused, how often transplants were aborted due to biological testing, or how
long each review phase takes. Additionally, the NKR does not seem to have
clear-cut algorithmic policies on how to use bridge donors. Chains would be
indefinitely long if bridge donors were allowed to initiate new chains forever
but too short if bridge donors were not used. Although cases of donors reneg-
ing are rare (Cowan et al. 2017), platforms try to transplant bridge donors
quickly, to an unpaired patient if necessary, to them.

We calibrate these parameters by simulating our model to find values
that most closely replicate the match probabilities, durations, pool size, and
chain lengths observed in our data. We match average values of each of these
variables (except for chain length) for altruistic donors, patient—donor pairs,
and unpaired patients, each partitioned by coarse blood type categories.>>
Moments based on match probabilities and durations are motivated by their
close relationship to the flow of transplants produced and the incentives for
hospitals. Pool size seeks to capture aggregate information about the produc-
tivity of the NKR. Finally, chain lengths capture the importance of altruistic
donors.

Our simulations suggest that the best fit to these moments is, for both
the acceptance and the biological testing phases, a two-week period and
a one-fifth failure rate. Reducing the failure rates in simulations primarily
increases chain length and transplantation rates, while reducing the dura-
tion of either phase increases the transplantation rates without having a large
effect on chain length. For the bridge donor policy, we find that a hold period
of 30 days best fits the data.

Details on the fit of our calibrated parameters are provided in online
Appendix D.5. Further, online Appendix E repeats all of our analyses under
alternative parameters to examine robustness of our results.

351In principle, we could have estimated these parameters using simulated minimum distance. However, a simu-
lation for each parameter value can take weeks, making optimization over the parameter set infeasible.
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Departure: Patients and donors often depart the NKR without a transplant.
A patient and his/her associated donor may leave the platform because the
patient dies, becomes too sick to transplant, or receives a kidney transplant
elsewhere. Therefore, we need to estimate the probability that a patient or a
donor leaves the NKR without a transplant.®

We estimate an exponential hazard model of departures by maximum like-
lihood, using the registration and transplantation dates (if transplanted) for
each patient and donor, and data on how long the patient or donor was reg-
istered in the NKR without a transplant.>” The departure rates in the model
depend on the fraction of donors (patients) ever registered with the NKR who
are compatible with a patient (donor), blood type, and age at registration.
Online Appendix D.2.2 presents the estimates for the model.

This procedure allows us to evaluate a transplant production function for any vector
of inputs q by simulating each of these events for each calendar day. Given any
initial pool of patients and donors in the NKR, these simulations generate a Markov
chain with a sequence of registrations, transplants, and departures. We initialize
the NKR pool with the set of patients and donors registered on April 1, 2012, and
burn-in 2,000 simulation days in each run. The dependence on the initial pool even-
tually fades away. We compute the time average of the total number of transplants
to estimate f by

a) = £ x,

where T is the total number of days simulated and y, is the total number of trans-
plants in period ¢ of our simulation. In what follows, we report estimates based on an
average of 100 simulations. Standard errors are calculated using the non-overlapping
batch means estimator described in online Appendix D.4.

B. Returns to Scale and Misallocation

Returns to Scale.—We first document the estimated returns to scale in the trans-
plant production function by evaluating it for submission vectors ¢ with the same
composition as the NKR (i.e., scalar multiples of q). We then consider average prod-
ucts, where scale is measured by the total flow of donors submitted per year, which

36Qur approach will treat all donor departures as a lost opportunity for a transplant if a better design can use
that donor for a transplant. To validate this assumption, we tried to determine the outcome of paired patients who
leave the NKR without a transplant by matching them to the OPTN data on all living- and deceased-donor trans-
plants. Our ability to follow these patients is not perfect, but approximately three-quarters of patients could be
perfectly matched on the HLA-A, B, and DR loci; gender; and blood type. A majority of patients either remained
untransplanted or received a deceased-donor transplant, effectively crowding out a kidney from another patient.
Of those who received a living-donor transplant, most received direct donations and the vast majority did not uti-
lize a multi-hospital kidney exchange platform. These facts support our treatment of departures as an appropriate
approximation.

37 Specifically, the departure rate for registration j is given by A exp(zj ), where g; denotes whether j is an altru-
istic donor, a patient—donor pair, or an unpaired patient; )\ is a group-specific constant departure risk; z; denotes a
vector of characteristics for j; and (3 is a conformable vector of coefficients. We fit with the censored observations
of departure times for each registration in the NKR, where censoring can occur because we only observe a lower
bound for the departure time if j was transplanted or remained in the NKR pool at the end of our sample period.
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we denote as x(q). This measure is also the flow of transplants that a platform could
perform if all donors were utilized. Figure 5 plots the average product measured as f
(9)/x(q)-

The figure shows that there are increasing returns to scale, but that productivity
eventually plateaus. With a scale of donor arrivals per year, the NKR is well within
the region of approximately constant returns to scale.>®3° The NKR has an average
product of 0.51 transplants per donor, which varies only slightly once the scale is
sufficiently large. A platform that is one-half the size of NKR has an average product
of 0.46 transplants per donor, while a platform that is double the size has an average
product of 0.547 transplants per donor. Therefore, the market can operate at a high
level of efficiency even if there are a handful of competing platforms. These esti-
mates suggest that mergers of sufficiently large platforms would have small effects
on efficiency.

Next, we use these estimates to calculate whether individual-hospital platforms
operate at an efficient scale. Recall that within-hospital transplants collectively
account for the majority of kidney exchanges. A challenge with this exercise is that
we observe neither the number nor the composition of patients and donors available
to a hospital. To make progress, assume for the moment that hospitals have the same
production technology and composition as the NKR. Further, assume that hospitals
conducting within-hospital transplants do not participate in the NKR. Under these
assumptions, one can use an individual hospital’s observed rate of kidney exchange
transplants to infer its scale. Specifically, let y” be the flow of within-hospital kidney
exchange transplants conducted at hospital s. We estimate the flow x” of donors
available to hospital / as the flow necessary to produce y” with the same composition
and technology as the NKR. That is, x” solves y" = ]Af(xh . qo/x(qo)), where q is the
flow of submissions received by the NKR. The potential biases and robustness of
our results to altering these assumptions are discussed in Section IVB.

This exercise suggests that almost all individual hospitals operate far below the
efficient scale. The histogram in Figure 5 shows the estimated distribution of hos-
pital scale. The median hospital has a scale of 9 donor arrivals per year. The nineti-
eth percentile is 27 donor arrivals per year. The largest, Methodist Hospital in San
Antonio, has a scale of 109 donor arrivals per year. The average product at these

38The error bars use a non-overlapping batch-means estimator from a simulation of 20,000 periods. These
errors account for sampling variance in the patient and donor registration process, and simulation error in the
transplant proposal, refusal, and departure process, but hold the parameters of the simulation model fixed, ignoring
first-stage estimation error. Accounting for this source of uncertainty is burdensome because we do not have a
closed-form solution for the asymptotic variance of the production function. Moreover, a bootstrap procedure that
simulates the entire production function several times is computationally prohibitive. To assess whether first-stage
estimation error is important, we simulated the production function at NKR’s scale and composition using ten
bootstrapped estimates of hazard rate parameters. The resulting standard error in the average product across these
draws was only 0.01 transplants per donor.

39We assessed whether this finding is driven by our approach to calculating the production function by con-
ducting two complementary exercises. First, we directly investigated the returns to scale at the NKR by examining
the relationship between the number of transplants conducted by the NKR per quarter and the number of donors
submitted per quarter. Our estimates are noisy and do not rule out constant returns to scale. This finding is not sen-
sitive to other partitions of time or the use of moving averages. Unfortunately, the variation in the number of donors
registered is limited because our registration data starts in April 2012. Second, we carried out a simplified static
simulation of a kidney exchange platform with no matching frictions and only a few types of pairs. As in Figure 5,
the returns to scale rapidly increase and plateau, consistent with the model in Roth, S6nmez, and Unver (2007),
where the number of transplants produced grows linearly in the platform’s size. Details of our simulation and the
descriptive evidence are available upon request.
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Notes: The line plot represents the average product of a kidney exchange platform versus its scale. The histogram is
based on the estimated scale of various hospitals. The left vertical axis represents average products, defined as the
share of pairs and altruists who are transplanted. The right vertical axis is the scale for the histogram. The horizon-
tal axis represents scale, measured as the yearly arrival rate of pairs and altruists. The error bars on the estimated
production function show a 95 percent confidence interval. The plot uses the baseline parameters and the pool com-
position from the NKR.

scales is 0.16, 0.29, and 0.42 transplants per donor, respectively. Thus, at our esti-
mated production function, even the largest single-hospital platform does not oper-
ate at an efficient scale. UNOS and APD both have an estimated average product of
approximately 0.40 transplants per donor. Hence, the implied efficiency losses are
considerable, even for the largest platform other than the NKR. These results are
consistent with the evidence presented in Section IIB that hospitals often perform
matches that are socially inefficient and that UNOS and APD are also less efficient
than the NKR.

Misallocation: Inefficiency Due to Small Production Scale.—We start by using
the baseline approach described above to estimate inefficiency due to market frag-
mentation. That is, we estimate how many additional transplants would be per-
formed if the entire kidney exchange market functioned at NKR’s efficiency. We use
a hospital’s estimated scale to calculate the difference in average product between
the hospital and NKR. Because NKR operates at constant returns to scale, this dif-
ference multiplied by the hospital scale is the total number of transplants that are
lost due to the hospital conducting kidney exchange at an inefficiently small scale.
The aggregate lost transplants equals the total deadweight loss because our social
welfare function is the total number of transplants nationwide. The estimated dead-
weight loss presented in Table 3 shows that 500.1 transplants are lost per year due
to market fragmentation (panel A, column 1). This number is large relative to the
800 transplants conducted through kidney exchange each year. Furthermore, the
economic value of these lost transplants exceeds $500 million per year based on the
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Held et al. (2016) estimates of a transplant’s value. The cost savings alone are on the
order of $150 million per year.

This baseline approach is simple but suffers from four potential biases. First, the
composition of submissions in hospitals may differ from that of the NKR. We assess
robustness to this assumption by estimating inefficiency using patient and donor
compositions from three different groups of hospitals: all hospitals (column 1), hos-
pitals in the top quartile of intensive margin participation rate (column 2), and hos-
pitals in the bottom quartile (column 3).% If heterogeneity in participation policies
is correlated with composition, then estimates from a production function using
patients and donors from each of these groups helps assess robustness to poten-
tial compositional differences between single-hospital platforms and the NKR. For
example, one hypothesis is that hospitals in the top quartile of participation should
submit a less selected pool if heterogeneity in participation rates is driven primarily
by hospital policy.*! Comparing estimates across these three groups suggests that
overall inefficiency exceeds 430 transplants per year under alternative assumptions
on composition.

Second, our baseline approach assumes that all within-hospital transplants are
produced by hospitals in isolation from the rest of the market. The bias due to hos-
pitals that also participate in national platforms does not have a clear direction.
We address this issue by disaggregating the efficiency losses by whether a hospital
participates in the NKR, APD, or UNOS and by the fraction of the hospital’s paired
kidney exchanges that are conducted through the NKR. If we restrict attention to the
96 hospitals that do not participate in NKR, the efficiency loss in column 1 is 243.5
transplants per year (panel C, excluding the NKR row). Some of these hospitals par-
ticipate in UNOS or APD and may be producing transplants at a more efficient scale.
Even if we assume that each of the hospitals that participate in UNOS or APD pro-
duce transplants at the estimated scales for the two platforms, we still estimate that
the deadweight loss in column 1 would be 143.7 transplants per year.*> However,
this extremely conservative calculation is likely at slack for two reasons. First, even
among the non-NKR hospitals that participate in either UNOS or APD, two-thirds
of kidney exchange transplants are performed within hospital (panel C), while the
deadweight loss lower bound of 143.7 assumes that all transplants are produced
at the APD/UNOS scale. Second, it ignores deadweight loss from hospitals that
participate in NKR. Among the set of NKR participants, just the 17 hospitals in the
lowest quartile of fraction of transplants performed in NKR contribute an efficiency

40We measure participation rate as donors submitted to NKR divided by donors submitted to NKR plus donors
transplanted in a within-hospital exchange.

41 Some large hospitals submit most of their pairs to NKR as a matter of policy. Smaller hospitals that have
incurred the costs of becoming an NKR member often submit all of their patients to the platform because they have
few possibilities of organizing an exchange independently. These facts suggest that the group of hospitals in the
top quartile should submit a less selected pool if heterogeneity in these policies and hospital size is not correlated
with composition. It is also possible that hospitals that participate in the NKR exclusively do so precisely because
they have a particularly hard to match pool. While it is difficult to test these hypotheses without data on the patients
and donors available to a hospital, our data indicate that hospitals with high NKR participation rates submit easier
to match patients in terms of PRA (online Appendix Figure E16). This limited evidence points to the former argu-
ments as more important.

42The deadweight loss from hospitals that do not participate in any of the three national platforms alone is 125.6
transplants per year. For hospitals that participate only in UNOS or APD, the deadweight loss is 18.1 transplants per
year, assuming that all kidney exchange transplants from these hospitals are produced at the scale of the platform
in which they participate.
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TABLE 3—ToTAL EFFICIENCY LoSs

Efficiency loss

Within hospital Additional kidney
Number Kidney exchange kidney exchange exchange transplants

of hospitals transplants per year  transplants per year (1) (2) (3)
Panel A. All hospitals
All hospitals 164 800.5 465.4 500.1 4324 6447
Panel B. By hospital size (number of KE transplants per year)
Top quartile 42 598.8 358.3 257.1 2135  343.1
Second quartile 48 143.2 734 139.7 1222 169.7
Third quartile 40 45.7 27.7 76.6 734 101.0
Bottom quartile 34 12.7 6.0 26.8 23.4 31.0
Panel C. By platform membership
NKR 68 580.5 297.2 256.6  217.7 3355
Only UNOS or APD 45 133.0 90.7 1179 1019 149.8
None 51 86.9 77.6 125.6 1128 1594
Panel D. By NKR participation rate (fraction of KE transplants facilitated through the NKR)
Top quartile 17 65.2 8.2 16.9 15.5 21.5
Second quartile 17 102.3 27.0 479 429 60.0
Third quartile 17 196.7 98.2 88.7 75.7 114.6
Bottom quartile 17 216.2 163.8 103.1 83.6 1394

Notes: Column 1 assumes that the typical transplant hospital has a composition of patient-donor pairs and altruistic
donors given by the average registration in the NKR. Column 2 assumes a composition based on hospitals in the top
quartile of NKR participation. Column 3 assumes a composition based on hospitals in the lowest quartile of partic-
ipation rate. Transplants per year is calculated using data between April 1, 2012 and December 4, 2014.

loss of 103.1 transplants per year (panel D). In summary, despite potential bias due
to some hospitals participating in large platforms, this decomposition suggests that
a loss of 240 transplants per year is a conservative estimate for the costs of market
fragmentation.

Third, hospitals may use a different matching technology than the NKR. For
example, Bingaman et al. (2012) reports that Methodist Hospital in San Antonio,
which is now perhaps the most sophisticated single-hospital program, initially
used a Microsoft Access Database and that their algorithm was “stratified by ABO
compatibility and then by HLA compatibility.” Such algorithms are less efficient
than the linear-programming algorithms used by the NKR.** On the other hand,
single-hospital programs face simpler logistical constraints, which may increase their
productivity vis-a-vis our estimates. The direction of this bias is not unambiguous,
but it is more likely that single-hospital platforms are less efficient than our esti-
mated production function.**

Fourth, these exercises keep the set of patients and donors interested in kidney
exchange fixed. However, this flow is endogenous and affects the magnitude of
the deadweight loss. Although the direction of this bias is ambiguous, our baseline
approach likely yields a conservative estimate of overall market inefficiency. The

“31n 2013, Methodist Hospital in San Antonio adopted software written by one of us (Ashlagi).

#4See Agarwal et al. (2018) for an analysis of how various logistics influence the productivity of a kidney
exchange platform. NKR’s practices are optimized to maximize the number of transplants given the available
patients and donors.
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most likely bias comes from hospitals valuing transplants at less than the social
value and, due to administrative costs, expending inefficiently low effort in recruit-
ing patients and donors. If incentives were optimal, hospitals might try to recruit
more, and more valuable, donors into kidney exchange. Our approach does not
account for this margin because we do not observe recruitment efforts; therefore,
we are likely to underestimate overall market inefficiency.

Table 3 also points to which types of hospitals produce most of the inefficiency.
Consider column 1 and, for the purposes of this decomposition, ignore the biases
discussed above. Even though they perform internal exchanges more efficiently,
large hospitals account for most of the inefficiency because their market share is
higher (panel B). Indeed, 51.4 percent of the losses come from hospitals that have
a number of kidney exchange transplants in the top quartile. Moreover, both the
intensive and extensive margins of participation are important. A little less than one-
half of the efficiency losses are due to hospitals that do not participate in the NKR at
all, and one-quarter are from hospitals that do not participate in any of the national
platforms (panel C). Among hospitals that do participate in the NKR, a large share
of the efficiency loss is due to the hospitals with low participation (panel D).

To summarize, although the baseline estimate of 500.1 lost transplants is poten-
tially biased, a battery of robustness exercises suggest the deadweight loss from
market fragmentation is at least 240 transplants a year. Additionally, these estimates
do not appear to be driven by compositional differences in the kidney exchange
pool. Online Appendix Table E9 further evaluates these results’ robustness to alter-
native choices for the production function parameters that were calibrated. Across
various specifications, we continue to find that an estimated 240 lost transplants is
conservative.

These results are consistent with our descriptive finding that hospitals often per-
form inefficient matches, and they are robust to moderately large levels of misspec-
ification. Even the most conservative estimates are significant because the baseline
estimates suggest inefficiency of 63 percent of the market size. The robustness of
the shape of the production function is driven, in large part, by basic biological com-
patibility constraints. Finding matches is hard with few patients and donors because
of both blood-type and tissue-type compatibility constraints. And, as suggested in
the large market limit of Roth, Sénmez, and Unver (2007), tissue-type compatibility
constraints become less of a barrier in a large market.

C. Inefficiency of Current Mechanisms

Theorem 1 shows that optimal rewards are approximately equal to marginal prod-
ucts. That is, p* = VI(q") — A(q"), where q* and p” are the aggregate quantities
and rewards that maximize hospital welfare. We will test this equality at the aggre-
gate supply and rewards in our data.

Current rewards, py, equal the probabilities of matching for each kind of submis-
sion. These probabilities can be easily estimated from our simulations, and the esti-
mated probabilities closely match those from the data (see online Appendix D.5).
Marginal products, V£(qp), can be estimated by numerically differentiating the pro-
duction function. In principle, calculating the adjustment term requires estimates of
the supply elasticity matrix, which is not feasible with our data. But, the adjustment
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term is small because returns to scale are approximately constant for NKR’s size.
Therefore, optimal rewards are approximately equal to marginal products. Formally,
Theorem 1 implies that the quantity-weighted average of the adjustment term is
given by

Alq)-q  Vf(q)-q f(q)

fali— Tali Tall

That is, the average level of shading equals the difference between the average mar-
ginal product and the average product. Evaluating this formula using the estimated
production function and numerical derivatives for each of the 1,930 submission
types yields an average shading of only 2.16 x 10~* transplants per submission.
In what follows, we simply approximate optimal rewards with marginal products.

Figure 6 plots current rewards (the probabilities of matching, p,) versus optimal
rewards (marginal products, V£(qp)). Following Roth, Sénmez, and Unver (2007),
the patient and donor categories are aggregated by under-demanded, over-demanded,
and self-demanded types, split by sensitization level.

The marginal products are qualitatively similar to the Roth, Sénmez, and Unver
(2007) theoretical predictions discussed in Section I. The marginal product of an
under-demanded pair is 0, both in our estimates and in the model. The estimates
differ for other types. For example, the marginal product of an over-demanded
pair with low sensitization is 2 transplants per submission in the Roth, S6nmez,
and Unver (2007) model, but 1.34 transplants per submission in our estimates. One
reason for this difference is that, in our data, these pairs are only matched with prob-
ability 0.80. Our empirical model also refines the predictions from the theoretical
models by showing how marginal products vary with sensitization. For example,
the marginal products of over-demanded and self-demanded pairs are considerably
lower if these pairs are sensitized. These finer results can be important when design-
ing practical mechanisms.

The figure shows a large wedge between current and optimal rewards. If current
rewards were optimal, all points on these two figures would be on the 45-degree
line. Altruistic donors and over-demanded pairs with low PRA are far below this
line. Over-demanded pairs with low sensitization have marginal products of 1.34
transplants per submission, but the probability of matching them is only 0.80. Even
more extreme, altruistic O donors have a marginal product of 1.74 transplants per
submission, but their probability of matching is only 0.93. Therefore, hospitals are
not rewarded enough for submitting these types, which may explain why we see
relatively few of them submitted to the NKR. Other submission types are drastically
overpriced. Under-demanded pairs with low sensitization have marginal products
of approximately 0.05 transplants per submission but have a probability of being
matched of around 0.36. Similarly, unpaired patients have low marginal products
but a significant probability of being matched. These differences suggest the plat-
form can do considerably better by increasing rewards to the productive and under-
valued submissions while reducing rewards to the unproductive submissions.

These marginal products are of independent interest as well. For example, Sonmez,
Unver, and Yenmez (2018) analyzes policies that incentivize compatible pairs to
join the platform by prioritizing patients on the deceased donor list in case they need
a second transplant in the future. While we cannot directly compute the value of a
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FIGURE 6. PRIVATE VERSUS SOCIALLY OPTIMAL REWARDS FOR SUBMISSION TYPES

Notes: The vertical axis is the probability of a submission being matched, which are the private rewards that hos-
pitals receive according to current exchange rules. The horizontal axis plots the marginal product of a submission
(in transplants per submission), which equals the social contribution of the submission in terms of transplants.
Matching probabilities and marginal products are calculated in the baseline simulation.

compatible pair using the NKR data, such pairs are most similar to over-demanded
or self-demanded pairs with low PRA patients. Indeed, our results indicate that these
pairs have the highest marginal products.*> Another result of interest to a platform is
that altruistic donors have a marginal product that is much lower than the length of
a typical chain, which is four. This is because many patients transplanted through a
chain could have otherwise been transplanted through a cycle.

V. Discussion
A. Implementing a Point Mechanism

Theorem 1 and the small magnitude of the adjustment term A(q) suggest that
platforms should set rewards close to marginal products. We will now show that
marginal products are highly predictable using a small number of patient and donor
categories. Then, we will discuss the design of point mechanisms that are both
approximately efficient and simple enough for practical application.

We use a regression tree to construct categories that best predict marginal
products, allowing for the tree to depend on the patient’s PRA, submission type
(altruistic, patient—donor pair, unpaired patient), and blood type. Figure 7 shows

45 The average marginal product of self-demanded pairs with PRA less than 50 is 0.74 transplants per submis-
sion and the average match probability is 0.83. Over-demanded types with PRA less than 50 have an average mar-
ginal product of 1.35 transplants per submission and an average match probability of 0.82. These marginal products
may differ from those of compatible pairs because a patient with a compatible donor may be more selective than
incompatible pairs.
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the categories found by a standard algorithm for finding the best cross-validated
predictor for the marginal products. These categories are intuitive, as they split
submissions based primarily on submission type, whether the patient/donor is
blood type O, and immune sensitivity. The within-category mean marginal prod-
ucts, V£, and probabilities of matching, py, are dispersed relative to the (appro-
priately shrunk) within-category standard deviation. This suggests that marginal
products and probabilities of matching are approximated with a small number of
categories.

A mechanism that assigns points to a hospital based on these categories can
be explained to participants with this tree or a simple table (see online Appendix
Table D8). One implementation of the mechanism is as follows. Each time the
hospital conducts a transplant for one of its patients, a point is subtracted from
its account. Points are awarded when a submission is transplanted, since awarding
them at time of submission creates an incentive for shill submissions. To account for
the chance a submission is not transplanted, the marginal products should be divided
by the probability of matching, py, to give the appropriate incentives in expectation.
These rewards are denoted by r* in Figure 7.

While our analysis suggests that a low-dimensional point mechanism would
likely achieve substantial efficiency gains, it abstracts away from several implemen-
tation issues. For example, our simplified steady-state model does not specify an
extensive-form game, and hence it cannot be used to fully specify optimal mecha-
nisms or to evaluate them. This raises practical and theoretical questions about how
to design and implement a dynamic points mechanism. While resolving these details
is beyond our present scope, we discuss some of the issues.

In both theory and practice, the point system described above is a natural mech-
anism for solving this problem. The dynamic mechanism design literature calls
such a system a chip, scrip, or token mechanism. Relevant papers include M&bius
(2001), Hauser and Hopenhayn (2008), and Abdulkadiroglu and Bagwell (2013),
which consider dynamic favor exchange, and Guo and Hérner (2015), which con-
siders provision of goods to a consumer with stochastic valuations. The general
finding of this literature is that token mechanisms, as proposed in Mobius (2001),
do better than autarky but not as well as an optimal dynamic mechanism. In fact,
token mechanisms are close to first-best if players are patient and there are many
time periods. Results in Jackson and Sonnenschein (2007) imply that the ineffi-
ciency of token mechanisms declines as the square root of the number of peri-
ods (see also Guo and Horner 2015). Thus, the theoretical literature suggests that
point systems, while not exactly optimal, are simple and achieve a high level of
efficiency.

Another motivation for using a point mechanism is its simplicity and similarity
to fiat money. Similar mechanisms have been previously used in market design
applications. For example, Prendergast (2017) describes how a similar mechanism
was used to increase the efficiency of food distribution across food banks.

An important issue with point systems is that they require several “plumbing”
decisions (Duflo 2017). Should the matching algorithm impose a strict bound
on negative balances? If so, what is the optimal minimum balance constraint?
A tight constraint provides stronger incentives to hospitals but prior theory sug-
gests that it may reduce efficiency (M6bius 2001; Friedman, Halpern, and Kash
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FIGURE 7. REGRESSION TREE FOR MARGINAL PRODUCTS

Notes: Categories are determined by regression tree analysis to predict marginal products as a function of whether
a submission is a pair, an altruistic donor, or an unpaired patient; blood types; and the patient’s PRA. Our proce-
dure followed standard recommendations in Hastie, Tibshirani, and Friedman (2001). Specifically, we used 10-fold
cross-validation to pick the penalty parameter on the number of nodes, required each leaf to have at least 20 obser-
vations, and pruned a leaf if it did not increase the overall fit by at least 2 percent. Standard errors for the simula-
tions are calculated by following Robert and Casella (2004, chapter 12). The within-category standard deviation is
estimated using shrinkage methods recommended in Morris (1983). The match probabilities in the current mech-
anism are denoted by py, the marginal products are denoted by Vf, and the optimal rewards at transplantation are
denoted by r*. We calculate r* by dividing Vf by py, component-wise, and then subtracting 1 for all types except
altruistic donors.

2006; Kash, Friedman, and Halpern 2007).*¢ How often should marginal products
be recalculated as the composition of patients and donors in the platform changes?
Recalculating them often is complex and reduces transparency, but recalculating
infrequently can reduce efficiency if changes in composition affect marginal prod-
ucts. An analysis of this issue requires a non-steady state dynamic model. However,
previous work on kidney exchange and experiments with our simulations suggest
that marginal products are not sensitive to the distribution of types. For example,
marginal products are constant for a wide range of type compositions in the theoret-
ical model of Roth, Sénmez, and Unver (2007).

46Tn models where agents can exchange favors over time through a scrip currency, for any amount of scrip per
capita, with sufficiently patient players, there are efficient equilibria with a high level of exchange. However, for a
fixed discount factor, increasing the amount of scrip only increases efficiency up to a point: too much scrip leads to
inefficient equilibria with no exchange. Similarly, Mobius (2001) shows that token mechanisms with less restrictive
budget constraints are more efficient, but that these budget constraints must be sufficiently strict relative to the level
of impatience in order to give agents incentives to provide favors. These results suggest that it is important to give
participants incentive to trade favors, but that as long as this constraint is satisfied, it is more efficient to have point
mechanisms with more flexible budget constraints. In kidney exchange, there are often a large number of different
maximum cardinality matches, because of the large number of under-demanded pairs. This suggests that efficiency
may not be severely compromised even if budget constraints are strict.
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As in other market design applications, it is important to consider whether a pro-
posed system is fair and ethically compelling (Roth 2007; Kominers, Teytelboym,
and Crawford 2017; Li 2017). It is important to clarify that a points system involves
no use of monetary payments to donors. Fundamentally, the point system ensures
that, in the long run, the contributions of each hospital to the exchange are commen-
surate with the transplants performed. Nonetheless, in practice, legal clarification
with respect to the National Organ Transplantation Act of 1984 and careful explana-
tion of the system to participants may be necessary.*’

B. Importance of Each Market Failure

The misallocation analysis of Section IVB yields a conservative lower bound for
the deadweight loss of about 240 transplants per year, or 30 percent of the market.
The true deadweight loss is potentially much larger, as most specifications yield
numbers approximately twice as large. Therefore, it must be the case that at least
one of the two market failures (inefficient platform incentives and agency problems)
is quantitatively important. We now report suggestive evidence that both market
failures are important.

Online Appendix A.1 shows that the deadweight loss from inefficient platform
incentives is given by a multidimensional version of the Harberger triangle formula.
We cannot calculate this deadweight loss because we do not have data to reliably
estimate the elasticity of hospital supply. Nevertheless, the large wedge between
the current private and social incentives suggests the deadweight loss is significant
unless the supply elasticity is extremely small.

To formalize this point, online Appendix A.l estimates the deadweight loss in
hospital welfare under different assumptions on supply elasticities. We calculated
the worst-case deadweight loss given a maximum bound on own elasticity. With
own elasticities bounded below by 2, the deadweight loss is over 40 transplants per
year. With own elasticities bounded above by 6, the deadweight loss is as high as 100
transplants per year. These estimates are robust to assumptions on cross-elasticities.
Because hospitals undervalue transplants if agency problems are important, the loss
in social welfare is considerably larger. Specifically, if hospital costs are ignored, we
estimate a loss in social welfare of at least 55 transplants per year and at most 120
transplants per year for elasticities between 2 and 6.

These results suggest that addressing inefficient platform incentives has a signifi-
cant positive impact unless supply is extremely inelastic. The evidence in Section II
is typical of markets with elastic supply: most hospitals only register a subset of
their patients with the NKR, and many other hospitals do not participate. Both facts
are consistent with many hospitals being on the margin, suggesting that hospitals
respond to incentives and that supply is at least moderately elastic.*®

47 There are two reasons to believe that a points mechanism would be well received. First, previous NKR exper-
imentation with the concept was found to be acceptable in practice. Second, we have discussed this issue with a few
kidney exchange platforms, and all feel that a points mechanism is acceptable.

48 Additionally, Ellison (2014) surveys transplant coordinators and finds three pieces of qualitative evidence
that suggest that elasticities are not low. First, hassle costs are an often cited reason for not participating in kidney
exchange platforms. Second, many transplant coordinators carefully consider whether to submit particular pairs to a
platform and which platforms to partner with, which suggests that many decisions are marginal. Third, coordinators
often mention that the time exchanges take to transplant patients is a major concern. Because time to transplant
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Moreover, the results also imply that agency problems are important unless sup-
ply is extremely elastic. Under the hypothesis that there are no agency problems,
hospital welfare equals social welfare, and the optimal mechanism reaches first-best
(Theorem 1). Thus, the total deadweight loss in the misallocation analysis must be
completely accounted for by the deadweight loss from the Harberger triangle anal-
ysis. Yet, even for a high elasticity bound of 6, our social deadweight loss estimate
is at most 120 transplants per year. This is still below our lower bound result of 240
from the misallocation analysis. The only way these estimates can overlap is if we
have high elasticities and our first-order approximation of deadweight loss is sig-
nificantly downward-biased. Thus, attributing all the deadweight loss to inefficient
platform incentives requires that supply is very elastic, our approximation is suffi-
ciently convex, and the downward bias in the estimated lower bound on inefficiency
is small.

While the quantitative magnitudes should be interpreted carefully due to data
limitations, the upshot is that policies that address either market failure are likely
to be valuable and generate gains on the order of hundreds of transplants per year.
But, implementing optimal rewards alone will not eliminate most of the inefficiency.
Proposition A.2 in the online Appendix formally shows that, typically, the platform
does not produce enough transplants to correct for agency problems.

C. Mandate

The previous subsection showed that agency problems appear to be first order.
Hence, a points system of the sort described in Section VA should be complemented
with subsidies for platform participation. An alternative to this two-pronged approach
is a mandate that requires hospitals to perform all kidney exchanges in large, national
platforms. Indeed, participation in a single national platform is required in the United
Kingdom, the Netherlands, and Canada (Johnson et al. 2008, De Klerk et al. 2005,
Malik and Cole 2014). A perfectly enforced mandate achieves the first-best welfare
if all hospitals and platforms have the same production function, and that function
exhibits (weakly) increasing returns to scale. While design details of a mandate are
beyond the scope of our paper, we now consider four basic issues.

First, there are different types of mandate, with different welfare impacts. One
form requires all hospitals to participate fully in one of several national platforms. A
more heavy-handed mandate could also require existing national platforms to merge
into a single platform. Our results suggest that most of the gains would come from
the lighter regulation, since returns to scale are constant once a platform has reached
NKR’s size. Using the baseline approach from Section IVB, we estimate that the
yearly flow of donors in the US kidney exchange market is 1,840 (ranging from 1,711
to 2,115 if we vary the assumptions used in Table 3 to estimate a hospital’s scale).
These estimates are between three and four times the current NKR scale. Even at four
times NKR’s scale, the average product of a monopoly kidney exchange with NKR’s
composition is 0.555 transplants per donor. If instead, there were two platforms twice
the size of the NKR, the average product of each would be 0.547 transplants per donor.

depends on the flow of transplants, it is closely related to matching probabilities in the current mechanism. This
evidence suggests that coordinators are sensitive to changes in rewards.
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Both of these estimates are not much larger than the current average product of 0.51
transplants per donor. Therefore, the gains of mandating a single platform instead of
having a few are minimal.

Second, a mandate might dull competition across platforms, slowing the pace of
innovation. The history of kidney exchange has several examples of important innova-
tions, such as the widespread use of altruistic pairs in non-simultaneous chains (Rees
et al. 2009); global kidney exchange (Rees et al. 2017); voucher programs to encour-
age donation by giving future priority (Veale et al. 2017; Wall, Veale, and Melcher
2017); and improved operational procedures and matching algorithms (Anderson
et al. 2015). These innovations weigh in favor of preserving a market structure with
multiple platforms, especially since the efficiency cost of doing so is small.

Third, there is the issue of enforcement. Hospitals could dodge a ban on internal
exchanges by reporting them as direct donations. But, even if such a ban were pos-
sible, a mandate could have unintended consequences. For instance, it could reduce
hospital effort to recruit patients, or in extreme cases, move patients from being
transplanted internally to not being transplanted at all. To see how this is possible,
consider a model similar to the one in Section III with a single type of submission.
Hospital 4 has a flow of pairs, ", of which it can internally transplant a fraction ¢".
Through the platform, the per-transplant reward is p, which is also the fraction of
submissions that get transplanted. The average cost of a submission is k" dollars,
and transplants are valued at v" dollars.

First, consider hospital behavior without a mandate, as in Section III. Hospital
decisions are driven by the (transplant-denominated) private cost,

(th—i—kh/vh)-qh if g" <
ca’) = {oo if g" > g".

h

BN]

Therefore, hospital 4 submits all its pairs to the platform if p > " + k" / v other-
wise, it transplants all pairs internally.

Now, consider a mandate that prohibits hospitals from performing internal trans-
plants, but that cannot force hospitals to submit their pairs. The effect of this policy
is to reduce the opportunity cost of a submission by 7”. This leads hospital 4 to
submit all pairs to the platform if p > k" / v otherwise, it performs no kidney
exchanges at all, potentially reducing welfare.*”

Although the stark predictions on hospital behavior are driven by the stylized
assumptions, the example illustrates two points. First, enforceability is important.
This goes beyond the ability to ban internal exchanges, especially if referrals and

49 As an illustration, consider the case where the platform can transplant one-half of pairs (i.e., p = 0.5,
approximately NKR’s average product), hospital 4 can internally match 30 percent of pairs (i.e., #" = 0.3), and its
value for a transplant is v = $50,000. Then, without the mandate, hospital z will submit all pairs to the platform
if its cost per submission is less than $10,000 (i.e., when k" < (p — th) -v"). With the mandate, this threshold
increases to $25,000 (i.e., p - v/’). Therefore, if hospital 4’s submission cost is less than $10,000, the mandate makes
no difference. If hospital 4’s submission cost is between $10,000 and $25,000, the mandate causes it to submit
pairs to the platform that it would have otherwise transplanted internally, improving welfare. But, if hospital /’s
submission cost is greater than $25,000, the mandate results in the hospital doing no kidney exchange transplants
whatsoever, reducing welfare.
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patient recruiting are important.>® Second, mandates can be complementary to other
policies. In the example, subsidies to kidney exchange could lower k" enough to
ensure that hospitals submit all pairs, which would allow the mandate to achieve
first-best welfare.

Finally, a mandate poses political challenges: it would likely require an act of
Congress, and a regulator would have to decide which platform(s) to authorize. All
of the currently operating national platforms are private entities, and in fact, only
UNOS, the smallest of the three, is formally linked with the US government.

VI. Conclusion

Kidney exchange improves a patient’s quality of life and extends life expectancy
while reducing costs. We demonstrate that fragmentation in the US market results in
an efficiency loss of between 30 and 63 percent of the roughly 800 kidney exchange
transplants performed per year, implying a waste of hundreds of transplants per year.

The inefficiency arises from two standard market failures. First, platforms
use inefficient mechanisms that do not reward hospitals according to the mar-
ginal products of their contributions. This induces hospitals to perform inefficient
within-hospital matches, even if hospitals solely maximize the welfare of their own
patients. Second, there are agency problems that make hospitals too sensitive to the
costs of participating in kidney exchange platforms.>! Our analysis shows that both
market failures are likely important.

These findings have both short-term policy implications and broader implications
for the design of kidney exchange markets. There are two short-term policy impli-
cations. First, there could be returns to existing platforms experimenting with point
systems. Such systems can be implemented by individual platforms, and doing so
will likely help them expand. Second, third-party payers should consider subsidiz-
ing kidney exchange at platforms. We argued that hospitals are likely responsive
to the cost of participating in kidney exchange platforms, a behavior that leads to
significant welfare loss. Subsidies from Medicare and private payers could miti-
gate this problem. Moreover, our analysis suggests that this two-pronged approach,
which addresses the two market failures separately, is likely to be more robust than
approaches that address both market failures simultaneously.

Consistent with our results, there are initiatives moving in the direction of these
policy changes. The NKR recently started experimenting with a points system
through their Center Liquidity Contribution Program. Some private insurers have

30 Consider a variation of the example above in which hospital 4 gets a flow (1 — rh) g" of pairs actively seeking
kidney exchange, and a flow /3" of pairs that can be recruited to participate in kidney exchange, but only if the
hospital expends effort. Assume a mandate that sees all pairs that ultimately come to the hospital and requires them
to be submitted. Let p" < k"/v", so that hospital & prefers to submit as few pairs as possible. Without a mandate,
hospital # would have recruited " pairs and transplanted ¢” - g" of them. With the mandate, the hospital does not
recruit, and the platform arranges p(l — r")g" transplants. Hence, the mandate produces (p — p - ' — t”) 7" more
transplants, which is only positive if 1 — ¢" /p > 7", that is, if the fraction of pairs that require recruitment is less
than 1 minus the ratio of hospital and platform productivity.

51 This decomposition of market failure sources is consistent with long-standing concerns of surgeons, insurers,
platforms, and researchers, and with recent policy changes. Roth, Sénmez, and Unver (2005) and Ashlagi and Roth
(2014) recognized that hospitals may have incentives to match patients internally in static models. Surgeons and
insurers have noted that it may be in the interest of insurers to subsidize exchanges and have proposed that they do
so (Rees et al. 2012).
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started covering the costs of participating in kidney exchange platforms. Our results
indicate that there could be large gains from continuing to move in this direction.
Further, all platforms could use data-driven rewards systems. Future research can
contribute to the design and evaluation of these policies.

The kidney exchange market currently represents 15 percent of all living-donor
kidney transplants. Therefore, kidney exchange is important in absolute terms,
but is presently small relative to the total shortage of organs discussed in Becker
and Elias (2007). There are ongoing efforts towards expanding the set of patients
and donors participating in this market. For example, Mathur et al. (2018) reports
on the efforts of the National Living Donor Assistance Center to reduce the financial
burden on donors by reimbursing some of the costs of donating an organ; Sonmez,
Unver, and Yenmez (2018) proposes incentives for compatible pairs to join kid-
ney exchange platforms; and Nikzad et al. (2017) reports on efforts for expanding
kidney exchange to a global scale. The designs suggested by our analysis are com-
plementary to these innovations because fixing the market failures identified above
makes better use of the available donors.

Alternatively, a participation mandate might increase welfare under certain
assumptions. And, the mandate can be simpler than the short-run policies that we
discussed, even though it may be politically more difficult to implement. The United
Kingdom, the Netherlands, and Canada have mandated participation in a single
national program (Johnson et al. 2008, De Klerk et al. 2005, Malik and Cole 2014).
One concern is that mandating participation in a single platform can reduce compe-
tition between platforms, which has arguably contributed to innovation. However,
our estimates indicate that it would be close to efficient to have a few large platforms
in the United States, because most of the potential efficiency gain would come from
moving the market from individual hospitals to national platforms, rather than merg-
ing the largest platforms.

Although our study focuses on the US kidney exchange market, similar market
failures arise when countries with independent kidney exchange platforms try to
arrange cross-border exchanges. Such arrangements are being made between the
Czech Republic and Austria (Bohmig et al. 2017) and between Italy, Spain, and
Portugal.>? In the latter case, these countries first matched their patients and donors
internally before attempting to cooperate. This problem bears resemblance to frag-
mentation in the US system, suggesting that our insights on returns to scale and
optimal rewards may be useful more broadly.
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