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Structure and Tracer Kinetics-Driven
Dynamic PET Reconstruction

Jianan Cui , Zhongya Qin, Shuhang Chen, Yunmei Chen, and Huafeng Liu , Member, IEEE

Abstract—Dynamic positron emission tomography (dPET) is
a nuclear medical imaging technology that shows the changes
in radioactivity over time. In this article, we propose a struc-
ture and tracer kinetics-constrained reconstruction framework
for dPET imaging. Given the Poisson nature of PET imaging,
we integrate the sparse penalty on a dual dictionary into a
Poisson-likelihood estimator. Explicit anatomical constraints with
a structural dictionary constructed from magnetic resonance or
computed tomography images are employed to take advantage
of the anatomical imaging modalities. In the kinetic dictionary,
we treat tracer kinetics as random variables in a physiologically
plausible range based on a compartmental model. We demon-
strate the performance of our proposed framework with a direct
simulated data set and real patient data.

Index Terms—Compartmental model, dictionary learning
and sparse representation, dynamic PET (dPET) image
reconstruction.

I. INTRODUCTION

THROUGH scanning for a period of time, dynamic
positron emission tomography (dPET) imaging acquires

data in a series of frames. The reconstructed images of dPET
can show the changes in radioactivity over time. This is useful
in oncology, where there is a need to identify the characteris-
tics of cancer, which might go undetected using conventional
static PET imaging [1]–[3]. Numerous studies have shown that
dPET is a powerful tool for detecting the alterations in glucose
metabolism to diagnose cardiovascular diseases [4], [5] as well
as myocardial blood-flow analysis [6]. In neurology, dPET is
helpful for the study of Alzheimer disease [7] and epilepsy [8].
The main challenge of dPET is the tradeoff between spatial
and temporal resolution. To maintain a high-temporal resolu-
tion to capture the variation in the tissue, we especially need to
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limit the photon counts in each frame of dPET images, which
may lead to very noisy images [9], [10].

AS PET imaging reconstruction is an ill-posed problem,
introducing additional penalty constraints is a well-appreciated
approach [11]. Many penalty constraints have been adapted
to assist with the reconstruction, including the use of
quadratic smoothness [12], log-cosh penalization [13], gen-
eralized Gaussian [14], Huber potential function [15], Gibbs
distribution [16], total variation [17], nonlocal mean [18], tem-
poral basis functions [19], and deep neural network-based
prior [20], [21]. In recent studies, advances in hybrid imag-
ing have made the use of anatomical images from computed
tomography (CT) and magnetic resonance imaging (MRI) [22]
possible. In [23], a modified regularizer, which accounts
for the anatomical boundary side information, was intro-
duced into a penalized-likelihood single-photon emission CT
(SPECT) reconstruction method to achieve accurate estimates
of the activity distribution. Chen et al. [24] tried to utilize
a structural dictionary, trained from CT images, to provide
intrinsic anatomical structures when they reconstructed the
PET images. Chen et al. [25] showed the effectiveness of
reconstructing different MR images under the same acquisi-
tion sequence via sparse representation by a dictionary trained
from the same sequence.

Considering kinetics-based priors can provide physiological
and pathophysiological information about the metabolism of
substances in a biological system [26], some research efforts
have attempted to incorporate a kinetic model that can quan-
tify the underlying physiological processes to help in the dPET
reconstruction [27], [28]. Verhaeghe et al. [29] introduced
exponential-spline wavelets (E-spline wavelets) as base func-
tions for dPET reconstruction. The E-spline wavelets naturally
arise from the compartmental description of the dynamics of
the tracer distribution [29]. Tong and Shi [30] described a
method that formulates the dPET reconstruction in a state-
space representation, where a compartmental model serves as a
continuous-time system equation to describe the tracer kinetic
processes.

Recently, with the development of PET-MR and PET-CT
scanners, more accurate co-registration images and functional
data could be acquired and made it possible to combine
both anatomical and kinetic constraints together into dPET
reconstruction, which might further improve the quality of
dPET image. Tang et al. [31] proposed a direct kinetic
parameter reconstruction method in which a co-registered MR
image provided prior information by a joint entropy penalty.
Novosad and Reader [32] developed a highly constrained
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dPET reconstruction method using both spectral analysis tem-
poral basis functions and spatial basis functions derived from
the kernel method applied to a co-registered T1-weighted MR
image. Gong et al. [33] added MRI information into a Patlak
reconstruction model based on the kernel method.

In this article, we describe a tracer kinetics-constrained
framework for dynamic reconstruction from the sequences of
acquired sinograms with the aid of structural constraints. Our
efforts are different from the previous reconstruction studies
in two aspects. First, instead of making ad hoc mathematical
assumptions, we construct a kinetic dictionary in which the
parameters of the tracer kinetics are treated as random vari-
ables within a physiologically plausible range based on the
general compartmental model. Second, we do have explicit
anatomical constraints with a structural dictionary constructed
from MR or CT images to take advantage of the strengths of
anatomical imaging modalities. Given the Poisson nature of
PET measurements, we integrate the sparse penalty on a dual
dictionary (DD) into a Poisson-likelihood estimator in which
an efficient expectation-maximization (EM) method is used to
solve the optimization problem.

The main contributions of this article include: 1) combin-
ing the kinetic dictionary and structure dictionary together to
constrain PET image reconstruction and 2) using the general
tracer compartmental model to construct the kinetic dictionary.
Traditional direct reconstruction methods [33]–[36] require the
accurate kinetic models to be known, which may be violated in
patient data given spatial heterogeneity. The proposed method
(essentially indirect reconstruction) uses tracer kinetics as a
soft constraint and may be more flexible to handle model
mismatch.

II. METHOD

We treat the images of the activity maps as state vari-
ables and estimate them from dynamic data by using a robust
iterative algorithm. The framework consists of five com-
ponents: 1) a dPET imaging model; 2) a spatial sparsity
constraint via a structural dictionary containing anatomical
information; 3) a temporal sparsity constraint via a kinetic
dictionary derived from the compartmental model; 4) a for-
mulation of the reconstruction problem using both kinetic and
structural penalty constraints; and 5) a robust iterative solu-
tion. Each of the five components is presented in the following
sections.

A. PET Data and Imaging Model
By scanning from several detector bins over time, we can get

the sequence Y ∈ R
I×F , which is organized as an array of coin-

cidence events yif collected by all the I detector pairs indexed
by i = 1, . . . , I from all the F frames indexed by f = 1, . . . , F.
The aim of dPET reconstruction is to acquire the set of true
activity maps X ∈ R

J×F = {xjf , j = 1, . . . , J, f = 1, . . . , F},
where j is the jth pixel of the total J pixels. The f th frame of
the activity maps can be denoted as Xf ∈ R

J×1.
Because PET data follow the Poisson distribution, the mea-

sured data yif in the f th frame can be described as a collection

of independent Poisson random variables with expectation val-
ues ȳif. ȳif are related to the unknown activities xjf through an
affine transform

yif ∼ Poisson{ȳif} s.t. ȳif =
J∑

j
gijxjf + rif + sif (1)

where gij represents the ijth entry of the system matrix G ∈
R

I×J , and rif and sif are the expectation of random events and
scattered events, respectively.

The likelihood function of Y is

Pr(Y|X ) =
F∏

f

I∏

i
e−ȳif

ȳyif
if

yif!
. (2)

To calculate more conveniently, we do not maximize the above
likelihood function directly. Instead, we minimize its negative
log-likelihood function to estimate X

min
X

L(X) = min
X

− log Pr(Y|X )

= min
X

⎛

⎝
F∑

f

I∑

i
ȳif − yif log ȳif

⎞

⎠

s.t. ȳif =
J∑

j
gijxjf + rif + sif. (3)

In (3), the constant term log(yif!) has been neglected. Because
PET reconstruction is an ill-posed problem, penalty terms will
be incorporated into this likelihood function to assist in the
reconstruction.

B. Spatial Sparse Representation
In this section, we construct a structural dictionary learned

from anatomical images with structures similar to those of
PET images.

First, a structural dictionary DS that contains local fea-
tures from the corresponding images is trained by the K-SVD
algorithm [37]. This algorithm achieves this by using an
iterative method that alternates between the sparse coding of
the anatomical image based on the current dictionary and a
process that updates the dictionary atoms to better fit the said
image [37]. Then, the learned dictionary (a set of overcom-
plete bases) is set as the structural dictionary for the proposed
method. The inherent redundancy of the structural dictionary
will lead to a sparser representation of our reconstructed PET
image.

The procedure to drive the structural penalty constraint is
described next. Each frame of the PET images to be recon-
structed is decomposed into V overlapping patches. The size
of a patch is

√
n × √

n, and it can be expressed as an n-
dimensional vector. Ev is a matrix operator for extracting the
vth patch from the f th frame activity map, Patchvf = EvXf ∈
R

n, v = 1, . . . , V . The vth patch from the f th frame can be
sparsely represented by the elements of the learned structural
dictionary DS ∈ R

n×Z as Patchvf = DSαvf . Here, Z is the
number of atoms in the dictionary to be trained and the variate
αvf ∈ R

Z×1 is the sparse coefficient of Patchvf [37]. Therefore,
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Fig. 1. General tracer compartmental model. There are Q tissue compart-
ments in this model.

the sparsity of Xf under the representation of DS can be intro-
duced as a regularization in the reconstruction. The structural
sparse penalty is as follows:

SS(X, α) =
F∑

f

V∑

v

��EvXf − DSαvf
��2

2 + μS
��αvf

��
1 (4)

where α = {αvf , v = 1, . . . , V, f = 1, . . . , F}, μS is a weight-
ing parameter, and � · �1 is the l1-norm. The first term in (4)
means that the vth patch from the f th frame image can be
represented by a linear combination of the learned structure
dictionary DS through the coefficient αvf . The second term
in (4) indicates that the coefficient αvf must be sparse.

C. Tracer Kinetics Prior and Temporal Sparsity
In this section, we will construct a kinetic dictionary DK

from the compartmental model.
The compartmental model is usually adopted to describe the

distribution of radiolabeled tracers in vivo. A compartment is
a mathematical abstraction that represents a particular form
or location of a tracer behaving in a kinetically equivalent
manner. The interconnections between the compartments are
due to the fluxes of material and biochemical conversions [38].
Several groups have introduced compartmental models to help
reconstruct PET images [29], [30], [34], [39]. Among these
models, the two-compartmental model is the most widely used.
However, in this article, we would like to introduce a general
tracer compartmental model [40], the structure of which is
shown in Fig. 1.

In the general tracer compartmental model (see Fig. 1), CP
represents the arterial tracer concentration in the plasma and
CT is the total tissue radioactivity concentration. There are Q
different compartments in this model, and the tracer exchange
rates vary between different compartments. According to this
general tracer compartmental model, the kinetic process in any
voxel is dominated by a set of first-order linear differential
equations [40]. The kinetic equations of the above system were
solved by Gunn et al. [38], [40]. They found an expression
for the total tissue radioactivity concentration CT in terms of
a plasma input function

CT(t) =
⎡

⎣β0δ(t) +
Q∑

q
βqe−θqt

⎤

⎦ ⊗ CI(t) (5)

where CT(t) is the total tissue radioactivity concentration at
time t. Here, ⊗ is the convolution operator, CI(t) is the con-
centration of the input function (plasma) at time t, and δ(t)
is an impulse function. In this model, the number of com-
partments is not set in advance, and, therefore, it is expressed
by the parameter q, which represents the qth number of the
total number Q of tissue compartments in the target tissue.
When q = 1, . . . , Q, βq and θq are the coefficients for differ-
ent compartments, whereas β0 is the coefficient for the input
function.

Equation (5) can be expressed as an expansion in the basis

CT(t) =
Q∑

q=0

βqϕq (6)

where ϕ0(t) = CI(t) and ϕq(t) = 
 t
0 e−θq(t−τ)CI(τ )dτ .

The total tissue radioactivity concentration CT generates
the PET measurements directly through positron emission.
Therefore, in dPET imaging, the activity in the f th frame
represents the accumulation of the total concentration of
radioactivity in the scanning time interval [tsf , tef ]. The value
of the jth pixel in the activity map at the f th frame can be
expressed by the integral of Cj

T as

xjf =
� tef

tsf
Cj

T(t)dt (7)

where Cj
T(t) is the concentration of the target tissue for the

jth pixel, whereas tsf and tef are the start and end scan times,
respectively, of the f th frame.

Then, combining (6) and (7), we can represent the entire
activity maps as

X� = DKβ (8)

where the superscript � refers to the transpose of the matrix,
β ∈ R

(W+1)×J is a coefficient matrix, and DK ∈ R
F×(W+1) is

given by

DK =

⎡

⎢⎢⎢⎢⎢⎢⎣

dk01 · · · dkw1 · · · dkW1
...

. . .
...

. . .
...

dk0f · · · dkwf · · · dkWf
...

. . .
...

. . .
...

dk0F · · · dkwF · · · dkWF

⎤

⎥⎥⎥⎥⎥⎥⎦

dk0f =
� tef

tsf
CI(t)dt

dkwf =
� tef

tsf

� t

0
e−θw(t−τ)CI(τ )dτdt. (9)

Because the delayed coefficient θq in (6) is unknown,
and assuming that θq is in a physiologically plausible range
[θmin, θmax], we would like to preselect W delayed coefficients
in this range as a kinetic spectrum. Here, θw(w = 1, . . . , W)

is used to express the wth preselected delayed coefficient. The
values of θw are spaced logarithmically. We try to obtain a
good coverage of the kinetic spectrum by choosing a large
enough value for W, which leads to an overcomplete basis
(W + 1 > F) [40]. In the kinetic dictionary DK , each row
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Fig. 2. Normalized kinetic dictionary. The green line shows the plasma input
basis with w = 0. The blue lines show the plasma input basis with different
values of w.

refers to the kinetic spectrum in a frame. Each column of
the dictionary DK is a function that changes with time, which
acts as a basis function of the time-activity curve (TAC). By
choosing several functions from the kinetic dictionary DK and
combining them linearly with a suitable coefficient matrix β,
as shown in (8), we can fit the TAC of a region of interest
(ROI) or a voxel. The normalized kinetic dictionary is shown
in Fig. 2.

On the basis of the compartmental model, we can fit the
TAC by choosing a few elements in the kinetic dictionary.
This idea leads to the following penalty term:

SK(X, β) =
���X� − DKβ

���
2

2
+ μK�β�1 (10)

where μK is a relative weighting parameter for the kinetic
sparse constraint.

D. Objective Function
To improve the quality of the reconstructed image, we

include information about the structure and tracer kinetics. We
try to introduce both structural and kinetic dictionaries to rep-
resent the reconstructed dPET images sparsely. For a penalized
maximum-likelihood reconstruction algorithm, we estimate the
activity maps X by minimizing an objective function consisting
of a likelihood function and penalty terms. Thus, the objective
function is defined as

min
X,α,β

�(X, α, β) = min
X,α,β

L(X)

+ pSSS(X, α) + pKSK(X, β) (11)

where SS(X, α) is the structural penalty term in (4) and
SK(X, β) is the kinetic penalty term in (10), whereas pS and
pK are the corresponding weighting parameters. By adjust-
ing the value of the weighting parameters, we can control the
contribution of each penalty term.

E. Optimization Technique
We aim to find an optimization algorithm to minimize the

objective function (11). Because there are three unknown vari-
ables, namely, X, α, and β, we choose a method that calculates
one of the variables while the other two are held fixed. The
specific algorithm is as follows.

1) X Subproblem: Because the X subproblem is a typ-
ical maximum a posterior (MAP) reconstruction problem,
we choose an efficient EM-based algorithm to optimize it.
When α and β are fixed, the optimization function of the X
subproblem is

X = arg min
X

�X(X, α, β)

= arg min
X

F∑

f

I∑

i
ȳif − yif log ȳif

+ pS

F∑

f

V∑

v

��EvXf − DSαvf
��2

2 + pK

���X� − DKβ

���
2

2

s.t. ȳif =
J∑

j
gijxjf + rif + sif. (12)

Following the hidden variable formulation [41], (12) is
equivalent to

X = arg min
X

�X
(
cijf , X, α, β

)

= arg min
X

F∑

f

J∑

j

I∑

i
(gijxjf − cijf log(gijxjf ))

+ pS

F∑

f

V∑

v

��EvXf − DSαvf
��2

2 + pK

���X� − DKβ

���
2

2

(13)

where a hidden variable cijf is introduced to (12). It repre-
sents the number of photons emitted from image pixel j and
detected at the line of response i in the f th frame. Then, the
EM algorithm proceeds in two steps.

In the E-step, the hidden variable cijf is estimated from a
conditional expectation ξ(cijf |yif, xk

jf ), as shown in (14) [41].
Then, the estimated value ĉijf is added to �X(cijf , X, α, β) to
obtain a new �̂X (̂cijf , X, α, β)

ĉijf = ξ
(

cijf
∣∣yif, xk

jf

)
= gijxk

jf∑J
j gijxk

jf + rif + sif
yif

(14)

�̂X
(
ĉijf , X, α, β

) =
F∑

f

I∑

i

J∑

j
gijxjf − ĉijf log

(
gijxjf

)

+ pS

F∑

f

V∑

v

��EvXf − DSαvf
��2

2

+ pK

���X� − DKβ

���
2

2
(15)

where xk
jf means the current estimate in the kth iteration.

In the M-step, the intermediate function �̂X (̂cijf , X, α, β)

is minimized by zeroing its derivative with respect to
X. When we minimize the function �̂X (̂cijf , X, α, β), we
cannot obtain its derivative directly because the term∑F

f
∑V

v �EvXf − DSαvf �2
2 is not separable. Therefore, we
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choose the one-step-late method to describe [EvXf ]l as [12]

��EvXf − DSαvf
��2

2 =
L∑

l

([
EvXf

]
l − [

DSαvf
]

l
)2

≤
L∑

l

J∑

j
ηv,lj

(
ev,lj

ηv,lj

(
xjf − xk

jf

)
+

[
EvXk

f

]

l
− [

DSαvf
]

l

)2

s.t. ηv,lj = ev,lj∑N
j ev,lj

(16)

where [EvXf ]l = ∑J
j ηv,lj([ev,lj/ηv,lj](xjf − xk

jf ) + [EvXk
f ]

l
) and

[DSαvf ]l are the lth entries of the vectors EvXf and DSαvf ,
respectively. ev,lj is the ljth entry of the matrix Ev. Applying
the inequality (16) to (15), we arrive at its convex separable
surrogate function �(X; Xk)

�
(

X; Xk
)

=
F∑

f

J∑

j

I∑

i

(
gijxjf − ĉijf log

(
gijxjf

))

+ pK(X − DKβ)2 + pS

F∑

f

V∑

v

L∑

l

J∑

j
ηv,lj

×
(

ev,lj

ηv,lj

(
xjf − xk

jf

)
+

[
EvXk

f

]

l
− [

DSαvf
]

l

)2
.

(17)

We minimize (17) by differentiating with respect to xjf

∂�
(
X; Xk)

∂xjf
=

I∑

i
gij −

I∑

i
ĉijf

1
xjf

+ 2pK
(
xjf − [DKβ]jf

)

+ 2pS

V∑

v

L∑

l

ev,lj

(
ev,lj

ηv,lj

(
xjf − xk

jf

)

+
[
EvXk

f

]

l
− [

DSαvf
]

l

)

= 0. (18)

From (18), we find that xk+1
jf is the solution of a second-

order polynomial equation Axjf + B + C(1/xjf ) = 0, where

A = 2pS

V∑

v

L∑

l

ev,lj

J∑

j
ev,lj + 2pK, C = −

I∑

i
ĉijf

B = 2pS

V∑

v

L∑

l

ev,lj

([
EvXk

f

]

l
− [

DSαvf
]

l

)

− (
Ajf − 2pK

)
xk

jf +
I∑

i
gij − 2pK[DKβ]jf (19)

and where Aij and [DKβ]jf are the ijth entries of A and DKβ,
respectively.

After several iterations of the E-step and M-step, we can
approximately find the true X.

2) α Subproblem: When X and β are fixed, the optimization
function of the α subproblem is

min
α

F∑

f

V∑

v

���EvXk
f − DSαvf

���
2

2
+ μS

��αvf
��

1. (20)

Fig. 3. Structure of the brain phantom (left) and the corresponding TAC
curves (right).

It can be solved by the fast-iterative shrinkage threshold-
ing algorithm (FISTA) [42]. FISTA considers minimizing the
problem

min f (u) + λg(u). (21)

In the α subproblem, f (αvf ) = (1/2)�EvXk
f − DSαvf �2

2,
g(αvf ) = �αvf �1, and λ = (μS/2). The kth iteration of the
FISTA algorithm is

uk = proxtk(λg)

(
rk − 1

L
∇f

(
rk

))

tk+1 = 1 +
√

1 + 4
(
tk

)2

2

rk+1 = uk +
(

tk − 1
tk+1

)(
uk − uk+1

)
(22)

where L is a Lipschitz constant. The proximal map is defined
by proxρ(λg)(h) = arg minu{λg(u) + (1/2ρ)�u − h�2}.
Because the proximal map is the same as the soft-thresholding
function, the solution of the proximal map can be written as
u = soft(h, ρλ) = sign(h) max{|h| − ρλ, 0}.

3) β Subproblem: When X and α are fixed, the optimization
function of the β subproblem is

min
β

���X� − DKβ

���
2

2
+ μK�β�1. (23)

It can also be solved by FISTA [42], where f (β) =
(1/2)�X� − DKβ�2

2, g(β) = �β�1, and λ = (μK/2).

III. EXPERIMENTS AND RESULTS

A. Evaluation Criteria
We used brain phantom data and real patient data to eval-

uate the accuracy of our algorithm. We verified the accuracy
of the proposed algorithm by comparing the reconstruction
results to the ground truth. To compare the results quantita-
tively, we used the relative error bias, variance, and MSE.
These parameters are defined as follows:

bias = 1
JF

F∑

f

J∑

j

∣∣∣xjf − �xjf

∣∣∣
/

�xjf (24)

var = 1
F

1
J − 1

F∑

f

J∑

j

(
xjf − x̄jf

/
�xjf

)2
(25)

MSE = 1
F

1
J

∑F

f

∑J

j

���xjf − �xjf

���
2

2
. (26)
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Fig. 4. Left to right: ground truth and the reconstruction results of the MLEM, MLEM+NLM-ST, MLEM+NLM-A, Kernel methods, and DD. First line:
the 12th frame; second line: the 22nd frame.

Here, J is the number of pixels in the ROI, whereas xjf and
�xjf are our reconstruction value and ground truth, respec-
tively, in the jth pixel at the f th frame. x̄jf is the mean
value of 10 realizations. The bias and variance were aver-
aged over the F frames of the reconstructed images. The
bias-variance tradeoff curves were plotted to show the effect
of the reconstruction and denoising results. The proposed
method (DD) was compared with the classical maximum-
likelihood-EM (MLEM) method [41], the dPET images nonlo-
cal means denoising method (NLM-TS) [18], anatomical-prior
guided NLM (NLM-A) [43], and PET reconstruction with
kernel method [44]. The NLM-TS and NLM-A methods used
spatiotemporal image patches and corresponding anatomical
image patches for similarity computation, respectively. As for
the kernel method, the kernel matrix was generated from com-
posite frames in dPET (Kernel) [44]. In order to evaluate the
reconstruction quality of real data, contrast-to-noise ratio is
used for quantitative comparison. The CNR is calculated by
CNR = (msignal − mbackground)/stdbackground, where msignal and
mbackground are mean value in the corresponding ROIs and
stdbackground is the standard deviation of background.

B. Brain Simulation
The brain phantom simulation was performed to evaluate

the effect of the proposed method. The computer simulation
modeled the Hamamatsu SHE-22000 scanner. The MRI image
(T1, 256 × 256, 1-mm isotropic) was acquired from Brain
Web [45]. The PET brain phantom was generated according
to the segmented gray matter and white matter in MRI image
and a tumor with a diameter of 5 mm was inserted in the white
matter. The structure of the PET brain phantom was shown in
Fig. 3. The regional TAC curves are shown in the right side
of Fig. 3. All the kinetic parameters were followed [46]. The
dynamic scan time is 4 × 20 s, 4 × 40 s, 4 × 60 s, 4 × 180 s,
and 8 × 300 s with total 8 million number of events.

Fig. 4 shows the results using different methods in the 12th
frame (up) and 22nd frame (down). Frame 12 has 60-s scan
duration and frame 22 has 5-min scan duration. The first col-
umn in Fig. 4 is the ground truth. The next five columns
are the reconstruction and denoising results of the MLEM,

Fig. 5. Tradeoff of bias versus variance for brain phantom using MLEM,
MLEM+NLM-TS, MLEM+NLM-A, Kernel, and DD.

Fig. 6. Left: normal MRI image and its corresponding dictionary for DD;
Right: MRI image with hypointense tumor and its corresponding dictionary
for DD-T. Pseudo tumor was pointed by red arrow.

MLEM+NLM-TS, MLEM+NLM-A, Kernel, and DD, respec-
tively. For the NLM-ST, the smoothing parameter was set to
0.25. For the MLEM+NLM-A method, the similarity matrix
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Fig. 7. Reconstruction results for the proposed method using structure dictionary learned from normal MRI image (up) and tumor MRI image (down). Left:
12th frame. Right: 22nd frame.

was generated from the MRI image with a window size of
7 × 7 and a weighting factor of 1. For the Kernel method, the
number of nearest neighbors is 48 and the weighting factor is
set to 1. In Fig. 4, the reconstruction images of DD not only
maintain a low noise level but also keep clear structure detail
in both the 12th and 22nd frames. The NLM-TS results are
very smooth, but it is hard to distinguish the boundaries of dif-
ferent structures. Although with the help of anatomical prior
from the MRI image, the 12th frame result of MLEM+NLM-
A is distorted. This is because MLEM+NLM-A is a static
reconstruction method, and its performance was suppressed
by the low count number in this frame. In the 22nd frame, the
scan duration is longer and MLEM+NLM-A result is much
better than the result in the 12th frame. As for the results
of the Kernel, the structure was clear, but the noise level
is high when compared with DD. The bias versus variance
curves are plotted in Fig. 5. It seems when in the same vari-
ance level, DD has the lowest bias compared with the other
methods.

In order to investigate the impact of the structure dic-
tionary, a hypointense tumor was added to the MRI image
at the same location as the PET image, shown in Fig. 6.
To avoid a sharp boundary, the tumor was smoothed by a
Gaussian filter. The dictionaries learned from normal MRI
image and tumor MRI image are shown at the bottom of
Fig. 6. Fig. 7 shows the reconstruction results of the proposed
method considering situations that tumor is not manifested in
the MR image (DD) and tumor is manifested in the MR image
(DD-T). The structure dictionary for DD and DD-T is learned
from normal MRI image and MRI image with hypointense
tumor, which are shown at the bottom of Fig 6. In Fig. 7,
DD and DD-T results are nearly the same by visual. The
tradeoff bias versus variance curves in tumor ROI for DD
and DD-T using different ps are plotted in Fig. 8. The curves
show that DD-T only has a little bit lower bias than DD in the
same variance level. It seems that even the lesion is unclear
or invisible in the corresponding anatomical image, similar
basis from the structure dictionary can represent lesion in PET
image.

Fig. 8. Tradeoff of bias versus variance for the DD and DD-T.

Fig. 9. Dependence of the relative MSE on the different parameters.
(a) Structural weighting parameter pS. (b) Kinetic weighting parameter pK .
(c) Structural sparse parameter μs. (d) Kinetic sparse parameter μk .

C. Implementation Analysis
1) Tuning Parameters: There are four main parameters in

our dual-dictionary reconstruction: 1) the structural weight-
ing parameter pS; 2) the kinetic weighting parameter pK ;
3) the structural sparse parameter μs; and 4) the kinetic sparse
parameter μk. We are going to analyze the impact of these
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Fig. 10. Reconstruction and denoising result of the real patient data. Left to right: MLEM, MLEM+NLM-ST, Kernel, and DD. Top to bottom: the 4th, and
12th frames.

four parameters on the reconstruction result of the direct sim-
ulated data. If we fix pK = 0.5, μs = 5, and μk = 0.5, and
let pS range from {0.01, 0.1, 0.5, 1, 5, 10}, the relative MSE
is shown in Fig. 9(a). If we fix pS = 0.5, μs = 5, and
μk = 0.5, and let pK range from 0.01 to 10, the relative
MSE is shown in Fig. 9(b). The structural sparse parame-
ter μs and the kinetic sparse parameter μk are also tuned
on the condition that pS = 0.5 and pk = 0.5. The relative
MSE of μs and μk is shown in Fig. 9(c) and (d), respectively.
After the tuning, the most suitable parameters can be set as
pS = 0.5, pk = 0.5, μs = 5, and μk = 0.5. The structural
weighting parameter pS and the kinetic weighting parameter
pK control the weight of the structural constraint and kinetic
constraint, respectively. If pS is too small, the effect of the
structural constraint has little impact on the result, which leads
to a result with high noise. However, if pS is too large, some
boundary details may be lost owing to over smoothing. A rel-
atively large pK enables the kinetic constraint to preserve the
edge efficiently. Both structural sparse parameter μs and the
kinetic sparse parameter μk have good effect when their values
are small.

2) Dictionary: In this article, we have proposed a method
that exploits a DD to reconstruct a PET image. Therefore, it
is important to decide the size of both dictionaries.

The structural dictionary is trained from an anatomi-
cal image such as an MR image by using the K-SVD
algorithm [37]. According to our experiments, the most
suitable size of the structural dictionary was 49 × 256
with a 7 × 7 patch size. Choosing a larger patch size
may fail to capture fine local structures, whereas choos-
ing a smaller size incurs a longer computational time [24].
Therefore, we chose 7 × 7 as the most suitable size of the
patch.

The compartmental model is used to construct the dic-
tionary of kinetic parameters, which expresses the physical
process of nuclide concentration changes over time. When we
construct the dictionary, we first need to select a series of
coefficients, θw. In the experiment, we assumed that the tracer
was 18F-FDG. The decay of the isotope is λ = 0.0001052 s−1.
In accordance with the research of Gunn et al. [40], we choose

Fig. 11. Background (red) and signal ROIs (blue circle) used to
calculate CNR.

θmin = λ and let θmax = 0.3 s−1. Then, we set W = 64, which
should be large enough to keep the dictionary overcomplete. θw
is chosen from θmin to θmax in a logarithm interval. This pro-
duces the kinetic dictionary shown in Fig. 2. This is the input
basis of the compartmental model, and several curves spanning
the range of W numbers will be chosen in the reconstruction.
The real input basis is within the scope of the kinetic dictio-
nary. If W is too small, it cannot cover the real input basis. If
W is too large, the spacing of the curves will be small, which
is unnecessary.

D. Real Patient Data
A dynamic data set was acquired from a volunteer by the

Hamamatsu SHE-22000 whole-body PET scanner with 32
crystal rings. The tracer was 18F-FDG, and the transaxial res-
olution of the central field of view was about 3.7 mm/pixel.
There were 19 frames in the sinogram, and each of them had
130×96 projections. The size of our reconstructed image was
96 × 96. The dynamic scan time is 8×15 s, 2×30 s, 2×120
s, 1×180 s, and 6×300 s. Fig. 10 shows the results for the
MLEM, MLEM+NLM-ST, Kernel, and DD methods (left to
right) in the 4th and 12th frame (up to down) in parula col-
ormap. Frame 4 has 15-s scan duration and frame 12 has 120-s
scan duration. In Fig. 10, DD results show a clear myocardium
structure at a low noise level. And the CNRs were calculated
to evaluate those reconstruction results. Based on the MLEM
reconstruction image, two ROI regions were extracted as sig-
nal and background, which is shown in Fig. 11. The CNRs

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2020 at 20:16:34 UTC from IEEE Xplore.  Restrictions apply. 



408 IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 4, NO. 4, JULY 2020

TABLE I
CNRS FOR MLEM, MLEM+NLM-ST, KERNEL,

AND DD OF REAL PATIENT DATA

are shown in Table I. The proposed DD method has the high-
est CNR values among other methods in both 4th and 12th
frames.

IV. CONCLUSION

We tested our proposed method on direct simulation data of
brain phantom and real patient data. MLEM, MLEM+NLM-
ST, MLEM+NLM-A, and Kernel were used for comparison.
We found that the proposed DD method was effective for PET
image reconstruction. With both structural and kinetic penal-
ties, our method showed a good performance for the direct
simulation data and real patient data. The bias versus vari-
ance image in Fig. 5 and CNRs of real patient data also
demonstrated quantitatively that our method was robust. In the
simulation experiment, we also used two MR images, one with
lesion and the other without. The results show that the struc-
ture dictionary works well even if the lesion is invisible in the
anatomical image. In addition, we analyzed the influence that
the weighting parameters, the size of the patch, and the num-
ber of kinetic dictionaries had on our reconstruction results.
The analysis results were useful in enhancing the accuracy of
our method.

However, there are some concerns with this reconstruc-
tion framework that need to be addressed. There are several
parameters in this method. How to choose the parameters
need to be carefully considered. Maybe a bilevel learning
method can be used to construct a parametrized model to
learn parameters by itself. The computing time of our method
is obviously longer than that for MLEM. We can possibly
use a parallel computing unit, such as a GPU [47] or an
FPGA [48] to accelerate our algorithm and make it more prac-
tical. A variety of joint imaging patterns, such as PET-CT and
PET-MRI that have been recently developed to provide more
information on the structure and function for the diagnosis
of diseases [49], [50]. Therefore, the DD-based PET imaging
reconstruction algorithm can be applied to PET-CT or PET-
MR for further analysis. We are planning to carry out further
research in this direction. In addition, recent developments
on dictionary learning show that it is possible to learn new
consecutive tasks based on the previously accumulated expe-
riences [51], [52]. It may be a new direction for us to improve
our dictionary designing.
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