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ARTICLE INFO ABSTRACT

Keywords: Solar energy is a technically and economically feasible solution for transitioning to renewable sources for
Solar energy electrification. Physical and socio-economic conditions that are important determinants of solar access and use
Photovoltaics

have been discussed in the literature. However, the relative access of different population groups to surfaces able

. ) to accommodate equipment to generate solar energy (both individual and community levels) is rarely investi-
Socio-demographic groups . . . . . .
Uneven distribution gated. In this study, we use remote sensing (e.g., LIDAR) and land use data (e.g., tax parcels) to identify resi-
LiDAR dential rooftop and community solar potential (SP) in Erie County, New York. Underlying socio-demographic
and urbanization context are then examined to show if community solar is a solution for population groups who
have limited access to rooftop solar. Results indicate that rooftop and community SP have similar distributions
among socio-demographic groups. Low income and minority population have not only relatively low access to
rooftop solar (54% compared to affluent households, 60% compared to white households), but also have limited
access to potential community solar sites in their neighborhoods (37% compared to affluent households, 16%
compared to white households). Nevertheless, our methodology provides a way to identify neighborhoods where
community solar can be a solution for population with limited access to rooftop solar. Results show that in
selected areas with available space (e.g., brownfields), community solar is an accessible alternative. The results
imply the need for policy development to address such access issues so that technological advancements can
benefit different communities.

Solar potential assessment

from solar use (Bouzarovski and Simcock, 2017; Forman, 2017; Sova-
cool and Dworkin, 2015).

1. Introduction

Adopting solar technology (e.g., photovoltaic or PV) is one sustain-
able option for mitigating effects of energy burden (Bohr and McCreery,
2019; Byrne et al., 2015; Gooding et al., 2013). Energy burdened
households spend more than 10 percent of their income on energy ser-
vices. Supplying solar energy may reduce household energy expendi-
tures, reduce government subsidy dependence for energy, and provide
opportunities for the household to better utilize their resources. How-
ever, solar energy adoption is a complex phenomenon reliant on envi-
ronmental, economic, technological, socio-demographic, as well as
household level factors embedded in a multi-scalar policy framework.
Residential rooftop solar provides economic benefits to households and
reduces the environmental impact of traditional nonrenewable energy
(Byrne et al., 2015; Gagnon et al., 2018; Melius et al., 2013; Rodriguez
et al., 2017; Rylatt et al., 2003), but access to the technology is uneven.
Spatial variations in access to energy, in turn, results in uneven benefits
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However, analyses of access to solar potential (SP) are rare and are
mostly inferred from surveys with a limited sample size (e.g., Rai et al.,
2016). The spatial distribution of SP and unevenness in access to SP are
often overlooked. Studies investigating the relationship between SP and
socio-demographic factors are usually at the city or neighborhood level
(Gooding et al., 2013; Suomalainen et al., 2017), finding that renters and
poor population groups face barriers accessing the technology (Kar-
akaya and Sriwannawit, 2015). Community solar projects are an op-
portunity for these groups to obtain solar energy. However, questions
remain if people without access to traditional solar delivery forms (e.g.,
rooftop PV) can establish the new technology in their community.

In this paper, we analyze the relationship between access to SP and
socio-demographic factors, aiming to answer the following three ques-
tions: (1) Is the distribution of community SP different from residential
rooftop SP? (2) Which socio-demographic groups are disadvantaged in

E-mail addresses: torstens@buffalo.edu (T. Schunder), damengyi@buffalo.edu (D. Yin), geosbs@buffalo.edu (S. Bagchi-Sen), krajan3@buffalo.edu (K. Rajan).

https://doi.org/10.1016/j.rsase.2020.100355

Received 10 January 2020; Received in revised form 27 June 2020; Accepted 27 June 2020

Available online 3 July 2020
2352-9385/© 2020 Elsevier B.V. All rights reserved.


mailto:torstens@buffalo.edu
mailto:damengyi@buffalo.edu
mailto:geosbs@buffalo.edu
mailto:krajan3@buffalo.edu
www.sciencedirect.com/science/journal/23529385
https://http://www.elsevier.com/locate/rsase
https://doi.org/10.1016/j.rsase.2020.100355
https://doi.org/10.1016/j.rsase.2020.100355
https://doi.org/10.1016/j.rsase.2020.100355
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rsase.2020.100355&domain=pdf

T. Schunder et al.

their access to SP? (3) What is the spatial distribution of the disadvan-
tage? To achieve this goal, we quantified rooftop and community SP at
the census tract level by measuring suitable area for solar installation.
The estimated SP data are linked to census data, to investigate the
relative distribution of access to rooftop and community SP among
different socio-demographic groups and urbanization contexts. The
contribution of individual census tracts to differences in SP distribution
is identified and mapped to visualize spatial patterns of SP access.

2. Factors influencing solar adoption
2.1. Rooftop solar

External household environment. The policy framework surrounding
rooftop solar adoption is an important determinant of adoption because
policies help mitigate the cost of solar adoption, and increase technology
competitiveness over other energy sources (Crago and Chernya-
khovskiy, 2017; Karakaya and Sriwannawit, 2015; Kwan, 2012; Sigrin
et al., 2015). In the United States (US), differences in state-level policies
are found to cause regional variation in adoption rates (Crago and
Chernyakhovskiy, 2017; Kwan, 2012). In general, the presence/activity
of local solar promotion programs (e.g., renewable energy fairs, edu-
cation programs, and pooled purchase programs) are positively associ-
ated with solar adoption - these programs are especially effective if
reliant on established social and organizational networks in commu-
nities and provide access to financing or discounts (Graziano and Gil-
lingham, 2014; Noll et al., 2014; Schelly, 2014).

Households are sensitive to economic feasibility and amortization
period in their decision-making process (Rai and McAndrews, 2012; Rai
and Sigrin, 2013; Schelly, 2014). Economic feasibility is a result of price,
the relative pricing of solar to other energy sources, environmental
conditions, and the policy environment. A relatively lower solar price,
compared to other energy sources, promotes adoption (Crago and
Chernyakhovskiy, 2017; Graziano and Gillingham, 2014; Kwan, 2012).

Uncertainty, technological and political, deters solar adoption
because initial investment cost is high and the risk of changing policy
frameworks affects economic feasibility. While immediate or short-term
policy incentives like rebates and tax credits increase adoption, long-
term regulations and policy support reduce uncertainty and is very
useful in promoting solar adoption (Bauner and Crago, 2015). Empirical
evidence suggests that the presence of rooftop solar systems in a
neighborhood or social network encourages further adoption by making
benefits observable and reducing uncertainty (Graziano and Gillingham,
2014; Rai and Robinson, 2013).

Geographic context is a major determinant of rooftop solar adoption.
High levels of solar radiation increase the technical and economic
feasibility of solar home systems. Energy yield is positively correlated
with solar radiation (Crago and Chernyakhovskiy, 2017; Kwan, 2012;
Sarzynski et al., 2012). This results in uneven solar adoption across the
US, with higher adoption rates found in states with high solar influx like
California and Arizona.

Urban morphology influences solar adoption - rural and suburban
areas tend to have higher solar adoption rates than urban areas (Crago
and Chernyakhovskiy, 2017; Kwan, 2012; Li et al., 2005). This is a result
of more available space and homeownership representing control over
solar adoption. Urban areas with high population densities, people
renting apartments in high-rise buildings, and lacking control over
rooftops have low solar adoption rates (Graziano and Gillingham, 2014;
Karakaya and Sriwannawit, 2015).

Household factors. In this section, the internal characteristics of
households or decision-makers associated with rooftop solar adoption
are identified to understand which population groups are likely to adopt
solar and who may face barriers. The architecture of a building strongly
affects the viability of solar as an energy alternative (Karakaya and
Sriwannawit, 2015; Paidipati et al., 2008). Solar panels need a suffi-
ciently sized area for installation and need to be oriented towards the
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sun to maximize energy output. In that regard, roof size, roof orienta-
tion, and roof slope are essential variables determining the energy
output of a PV system (Gagnon et al., 2018; Paidipati et al., 2008).
Furthermore, roofs need to able to support the weight of a solar instal-
lation adding structural requirements and excluding dilapidated struc-
tures. Estimates predict that only approximately 25% of residential
rooftops in the US can support solar (Paidipati et al., 2008).

Solar adoption is linked to wealth. Income represents spending
power and the ability to invest in new technology (Sigrin et al., 2015).
The median value of a house is associated with solar adoption, too
(Crago and Chernyakhovskiy, 2017; Kwan, 2012). House values repre-
sent equity, which may be used as collateral for solar investment loans. A
different interpretation assumes that high-value homes can realize the
highest financial benefit.

Adopters are usually young, and increasing age has a negative as-
sociation with adoption (Crago and Chernyakhovskiy, 2017; Kwan,
2012). Younger population may have a higher willingness to use new
technologies than older population. This encourages solar adoption
among the young population.

Education is assumed to have an impact on solar adoption, but re-
sults differ across studies (Kwan, 2012; Zahran et al., 2008). Kwan
(2012) and Rai and McAndrews (2012) found that population with
bachelor’s degree or higher is associated with solar adoption in the US.
However, Crago and Chernyakhovskiy (2017) found no significant
relationship between educational attainment and solar adoption.

Race/ethnicity is found to be an indicator of solar adoption. High
shares of African American population are associated with lower levels
of solar adoption (Kwan, 2012). Whittaker et al. (2005) found that
Whites are more likely to adopt pro-environment practices than other
racial/ethnic  groups. Sunter et al. (2019) found that
minority-dominated census tracts have lower levels of PV adoption than
white-majority census tracts.

Personal values and norms related to green energy affect the
household adoption decision (Crago and Chernyakhovskiy, 2017;
Schelly, 2014; Wolske et al., 2017). Non-financial factors like altruism,
the prestige associated with green energy adoption, and technology af-
finity were found to promote adoption. Furthermore, political beliefs are
influential - the share of Democratic Party votes is positively associated
with solar adoption in studies investigating the adoption of solar hot
water and PV systems (Crago and Chernyakhovskiy, 2017; Kwan, 2012;
Zahran et al., 2008).

2.2. Community solar

For renters and low-income households to benefit from solar tech-
nology, new strategies and technology delivery models are needed.
Community solar is an option (Funkhouser et al., 2015). Definitions of
community solar vary (Creamer et al, 2018), and we focus on
community-owned and organized solar installations (e.g.,
community-owned solar power plants) in this study. Participation in a
community solar project is less costly than installing a residential PV
system. Although consumers still pay transmission charges and the
operation cost of a third party, the electricity bills of households are
reduced compared to traditional energy sources. Similar to rooftop solar
adoption (Graziano and Gillingham, 2014; Noll et al., 2014), adoption
and support of community solar may depend on observability, and
proximity between the community and solar installation seems to sus-
tain support, marketing, and engagement (Creamer et al., 2018).

Community solar deployment faces social and physical constraints
(Carrién et al., 2008; Gomez et al., 2010; Sanchez-Lozano et al., 2014;
Watson and Hudson, 2015). Avoiding competition with recreational,
conservational, industrial, and agricultural uses is important, otherwise
it will increase cost and lower support for installations. Low infra-
structure cost is also preferred which calls for proximity to streets and
electricity grid access. To maximize efficiency, solar plants need to be
able to generate economies of scale requiring sufficiently sized
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Table 1
Data description.

Data Description Use Data Source
LiDAR Data Erie e 3D information e Rooftop New York State

County, NY of the buildings suitability (NYS)

(2008) e Average point characterization Department of
density: 1.26 (roof slope, roof Environmental
points/m? aspect, roof Conservation

shading, building ~ (NYSDEC)
height)
o Community
suitability
characterization
(land slope, land
surface)
Microsoft e Building e Rooftop Microsoft Bing
Building footprints identification Maps Team
Footprint Data created from

Google’s Project
Sunroof data
(G-PS)

National
Hydrography
Data (NHD)

OpenStreetMap
(OSM)

NYS Statewide
2016 Parcels
for Public Use

American
Community
Survey 2012-
2016 5-year
estimates

NYS Civil
Boundaries
(City/Town)

2016 TIGER/Line
Shapefiles:
Urban Areas

Bing images.
SP at roof scale
Covers heavily
populated
areas in the US
Waterbody
boundaries

Waterboy
boundaries

Contains data
related to land
use and spatial
extent of
individual tax
parcels

Socio-
demographic
characteristics

Contains
boundaries of
Municipalities
in NYS

Boundaries of
urban areas
across US

Validation at roof
scale

e Land
identification

e Land
identification

Identification of
relevant land
uses for solar
adoption

Unevenness
assessment

Assign census
tracts to Central
City (Buffalo) for
unevenness
assessment
Identify census
tracts as
suburban/rural
for unevenness
assessment

Google’s Project
Sunroof

US Geological
Survey (USGS)

©
OpenStreetMap
contributors
under the Open
Database License
NYS Office of
Information
Technology
Services GIS
Program Office

US Census
Bureau

NYS Office of
Information
Technology
Services GIS
Program Office
US Census
Bureau

contiguous land areas. Low slope reduces installation cost. South facing
land areas are preferred to maximize solar influx.
Communities face societal challenges in addressing their energy

needs via community projects (Catney et al., 2014). Considering urban
power distribution, low-income and minority population in the US may
have even fewer possibilities than other population groups to address
their energy needs proactively and garner political support or obtain
control over land (Eckerd et al., 2012). Establishing and supporting
community ownership may be a way to reduce inequalities (Forman,
2017). In this paper, we examine if all population groups have similar
access to community solar suitable areas. A comparison with rooftop
solar suitability is also examined.

3. Study area, data, and methods

The empirical analysis to investigate the distribution of SP is con-
ducted for Erie County, NY, which had in 2016 a population of
approximately 922,000. Buffalo is the primary city with a population of
approximately 259,000. This region is representative of many dein-
dustrialized metropolitan areas in the US, with distinct concentration of
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minority population and poor households in certain parts of the city
(Zou and Wang, 2019). We assume the natural sunlight exposure and
policy framework are similar across our study area (approximately 2701
km?). Data used are presented and described in Table 1. The data pro-
cessing flowchart is presented in Fig. 1 and will be described in the
following sections.

3.1. LiDAR data processing

Using the LiDAR data, we generate the Digital Terrain Model (DTM),
Digital Surface Model (DSM), and normalized Digital Surface Model
(nDSM) with three feet (0.91 m) spatial resolution. The DTM, which
measures the ground elevation, is generated by the average elevation of
all the ground points in each pixel and interpolated for pixels with no
ground points. The DSM, which measures the rooftops elevation, is
generated by the maximum height of all the points in each pixel. The
nDSM, which represents the height of the buildings, is generated by
subtracting DTM from DSM (Yin and Wang, 2019). The slope, aspect,
and hillshade of the roof surface are then generated from the DSM and
combined with nDSM-derived building height for rooftop SP estimation.
Shading at peak times in the spring, summer, and fall at 2 p.m. are
considered to represent the general shading condition of the roofs (Song
et al., 2018).

For community SP which usually involves larger solar panels, we
create a DTM with 16 ft (4.88 m) spatial resolution. This coarser reso-
lution DEM is then used to create land slope and land aspect, which serve
to estimate community SP.

3.2. Estimating residential rooftop SP

Residential Rooftop solar suitability is determined by the following
four factors (Gagnon et al., 2018; Paidipati et al., 2008). (1) Rooftop
aspect. South-facing roof planes receive the highest degree of solar
exposure and are thus preferable. (2) Rooftop slope. Slopes over 60°
incur high installation cost, while slopes under 10° have only a 0.7
module to roof area ratio leading to inefficient use of space (Gagnon
et al., 2018). (3) Shading. Only roof area that is not always shaded are
suitable for solar energy consumption (Paidipati et al., 2008). (4)
Contiguous area. We assume similar to Gagnon et al. (2018) that at least
10 m? is necessary for solar adoption. This represents approximately a 1
kw system. A minimum area ensures that fixed cost of installation is
spread over sufficient capacity (Barbose et al., 2019).

Highly suitable roof planes are (1) south-facing (aspect between 90°
and 270°), (2) medium slope (between 10° and 60°), (3) without
considerable shading (relative illumination > 50%), and (4) larger than
10 m2. To make sure only rooftops are included, we limit the analysis to
within the building footprints (2 m buffer is allowed to account for the
possible displacement between the footprint data and the LiDAR data)
and exclude pixels where nDSM is lower than 1.5 m (probably ground or
low vegetation) or higher than 30 m (non-residential buildings or LiDAR
data noise). All analyses are conducted only in residential parcels.

To represent rooftop SP, the total area of highly suitable residential
roof areas (Santos et al., 2014) are calculated in each census tract. The
quality of our estimation is evaluated by comparing the roof area
available for solar installation from G-PS with our estimated area for 265
randomly selected buildings in the G-PS covered counties.

3.3. Estimating community SP

Community SP is determined by four factors (Carrion et al., 2008;
Gomez et al., 2010; Sanchez-Lozano et al., 2014; Watson and Hudson,
2015). (1) Land use type. Tax parcels with non-competitive use (vacant
lands) and connected to the electricity grid reduce the cost of solar
installation and delivery (Gomez et al., 2010; Sanchez-Lozano et al.,
2014). To make sure only land is included, we further exclude water
areas by excluding parcels with land use type “underwater” or “other”



T. Schunder et al.

Remote Sensing Applications: Society and Environment 19 (2020) 100355

3.1 LiDAR Processing
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Fig. 1. Flowchart of data processing. The dotted line boxes (green) indicates input datasets, the dashed line boxes (dark blue) indicate intermediate datasets that are
used to determine solar suitability, the orange boxes indicate essential criteria that are used to determine SP, and the light yellow boxes (bold texts) indicate the final
output of the analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

(swamps, etc.) and masking out water body using the NHD and OSM
datasets. (2) Land slope. Under 5° slope is used to ensure easy installa-
tion (Carrion et al., 2008). (3) Land aspect. South-facing (aspect be-
tween 135° and 225°) receives high solar exposure (Watson and Hudson,
2015). (4) Land size. A typical solar farm with 1 MW capacity requires
approximately 4-5 acres of land (Ong et al., 2013) — while this is not a
linear relationship we assume that a minimum of 2500 m? can ensure
deployment of systems in the 50-250 kW range. Systems in this range
achieve economies of scale represented in substantive cost reductions
compared to smaller systems with larger systems achieving better
economies of scale (Barbose et al., 2019). Land patches that meet these
criteria are considered highly suitable.

To represent community SP, we summarize the area of highly suit-
able land by census tracts. The quality of our estimation is evaluated by

visually comparing the identified land area available for solar installa-
tion with high resolution images in Google Maps.

3.4. Uneven access to SP among socio-demographic groups

Based on the discussion in section 2, we use census-tract level data
related to seven socio-demographic dimensions relevant in solar adop-
tion: homeownership, housing unit vacancy, age (measured as median
age in each census tract), poverty status, per capita income, educational
attainment, and ethnicity. These variables determine not only who may
adopt solar but also which population groups may face barriers in using
rooftop solar and have to rely on alternative forms of solar delivery (e.g.,
community solar installation). Vacancy is added because high shares of
vacant buildings may indicate a lack of maintenance and disinvestment
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Fig. 2. Comparison of our estimated area suitable for solar installation with G-
PS data.

in a neighborhood (Hackworth, 2016). Additionally, we consider the
role of location in the distribution of SP by comparing SP of census tracts
in the central city with suburban and rural census tracts (derived from
urban area and municipality data). We did not consider factors like
personal beliefs because such data were not available at the household
or census tract level.

Within each dimension, the average SP (ASP) of a population group
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is calculated as the population (POP) weighted average of SP in each
census tract (Equation (1)) (Perlin et al., 1995), where the subscripts g,
ct, and S represent the observed population group, the census tract, and
the entire study area respectively.

5% SP.,-POP,,
ASP — ct 8!
&S POP, ¢

@

To assess the relative distribution of both rooftop SP and community
SP, the ASP in each dimension are compared juxtaposing an observed
group (g1) and a reference group (g2) (e.g., renting population vs.
owning population), using a distribution index (Equation (2)), which
has been commonly used in environmental justice assessments (Perlin
et al., 1995).

N ASP,,
Distribution Index = m x 100% 2)

Values around 100% indicate no difference, and values under 100%
indicate the comparison group has less SP — a disadvantage compared to
the reference group. A value of 20% could be interpreted as g1 having
only 20% SP of g2.

We divided the seven dimensions into the following groups: (1)
homeownership: renting vs. owning, (2) housing unit vacancy: vacant/
occupied, (3) age: younger vs. older (separated by median age of all
census tracts in Erie County), (4) poverty status: households in vs. not in
poverty, (5) income: lower vs. higher (separated by median per capita

TRy, Wi
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Fig. 3. Rooftop SP. (a) Aerial photo of houses (near 78°50'38"W, 42°57'1”N). (b) Highly suitable roof areas for rooftop solar adoption. (c) Rooftop SP aggregated to

census tract scale.
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Fig. 4. Community SP at census tract scale and highly suitable parcels for
community solar adoption.

income of all census tracts in Erie County), (6) educational attainment:
population without high school degree vs. bachelor or higher, and (7)
ethnicity: non-white vs. white population. Additional specific disad-
vantages in education and ethnicity were investigated by taking a
further look at African American population and the population with
high school or associate degrees.

3.5. Spatial distribution of uneven access to SP

To assess the spatial distribution of the unevenness, the results of
section 3.3 were further localized by identifying census tracts with lower
than average SP and higher than average shares of the potentially
disadvantaged population (Equation (3)). The disadvantage was sum-
med across dimensions to represent the prevalence. A multi-dimensional
disadvantage of 7 means that for all seven dimensions higher than
average shares of the potentially disadvantaged population are located
in a census tract with below than average SP.

s
disadvantage = { n POP,, ., POP, 3

0, Otherwise

4. Results and discussion
4.1. Residential rooftop and community SP

Because there are still areas where G-PS has no data, only 232 of the
validation samples are usable. The correlation between our estimation
and G-PS data is moderately good (r = 0.54, Fig. 2), which confirms that
our method is generally valid. We used LiDAR in 2008 and Microsoft
building footprints while G-PS uses the latest Google images; we
consider only residential rooftops for feasibility while G-PS estimates SP
for all rooftops they recognized; we consider 10 m? as the minimum area
for solar installation while G-PS considers all areas suitable for 4 panels
of 1.650m x 0.992m dimensions; We account for shading using three
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typical time points while G-PS used about 50 timepoints to estimate the
annual solar irradiance. To sum up, we have better configuration of
residential rooftops and roof shapes than G-PS-G-PS considers more
details of actual solar energy productivity, which explains the difference
between our results. In other words, our approach can be more benefi-
cial because we can cover more areas than G-PS, especially in rural
areas.

We selected a subset of the study area where houses are of different
orientations and rooftop shapes to show the result of residential rooftop
solar suitability (Fig. 3). Rooftops that are south-facing and with large
continuous areas are selected (Fig. 3b), which shows the effectiveness of
the method. Although there may still be trees inside the building foot-
prints, tree canopies would show abrupt changes in the nDSM which
results in high slopes, high shading, and small patches. Therefore, their
impact should be alleviated effectively.

Census tract level results (Fig. 3c) show that rooftop SP increases
from downtown (Buffalo) to suburbs to rural, which is consistent with
previous findings that urban areas have lower solar adoption rates
compared to rural or suburban areas (Crago and Chernyakhovskiy,
2017; Graziano and Gillingham, 2014).

The suitable area selected for community SP is of good quality upon
visual inspection. The census tract level community SP is shown in
Fig. 4. Community SP is overall higher than rooftop SP (Fig. 3c).
Although the urban area still shows generally lower SP than the rural
and suburban areas which is similar to rooftop SP, some parts of the
urban area with low rooftop SP may be able to benefit from community
solar adoption.

4.2. Unevenness of SP access

The results for the relative distribution of residential rooftop and
community SP in the context of socio-demographic dimensions indicate
uneven distribution of SP between observed and reference groups
(Fig. 5, Table 2). For example, in terms of overall area available for
rooftop solar and for community solar, respectively, the renting popu-
lation only have 67% and 36% access compared to homeowners.

Residential Roof SP access: Census tracts with high shares of renters
and high shares of vacant housing units have less area (67%, 78%)
compared to their corresponding reference groups. Young population
compared to older people lives in census tracts with smaller total area
(57%) available. Large degrees of disadvantage can be observed for poor
population (households in poverty (70%) and low income (54%)).
Compared to these dimensions, educational attainment has lower un-
evenness. While there is no strong difference between people with high
school or associate degrees and people with a bachelor degree or higher,
population without a high school degree has lower access to SP
compared to groups with higher educational attainment. Ethnicity
shows disadvantages for minority groups, with non-white population
having access to approximately 60% of the SP accessible to the white
population. This difference is especially pronounced for African Amer-
icans who have even lower access than the overall non-white popula-
tion. The role of urban morphology in the distribution of SP is
confirmed. Areas in the central city (51%) and rural (66%) areas have
less area available than suburban areas. These results qualify the lower
degree of SP access for low-income population, minorities, and va-
cancies as they tend to be concentrated in the central city (Weaver et al.,
2017).

Community SP access: The results for community solar area and the
number of suitable properties available mirror the results for rooftop
solar. Census tracts with high shares of renters and high shares of vacant
housing units have less area (36%, 72%) compared to their respective
reference groups available. Young population compared to older popu-
lation has access to lower SP (7%). Similarly, low-wealth population
(households in poverty: 48%, low income: 37%) has lower access.
Compared to these dimensions, educational attainment shows relatively
lower unevenness. Again, the population without a high school degree
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Home-ownership

House Vacancy

Age

Poverty Status

Per Capita Income

Education Level

Ethnicity

. JcentralCity: 28.4

Location

Renting: 41.9
Owning: 62.4

Vacant: 42.2
Occupied: 54.4

Younger than median: 32.5
Older than median: 57.0

Household in poverty: 39.7
Household not in poverty: 57.0

Lower than median: 32.3
Higher than median: 59.3

No high school degree: 43.0
High school or associate degree: 54.4
Bachelor degree or higher: 62.9

African American: 33.2
Non-white: 36.3
White: 60.2

Suburban: 55.4

Rural: 36.6
(a) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
Rooftop ASP (x 1000 m?2)
Renting: 95.4
Home-ownership Owning: 263.6
Vacant: 143.8
House Vacancy Occupied: 198.0
Younger than median: 22.3
Age Older than median: 320.7
Household in poverty: 102.0
Poverty Status Houshold not in poverty: 214.4
Lower than median: 99.0
Per Capita Income Higher than median: 267.0
Bachelor degree or higher: 141.3
Education Level High school or associate degree: 230.7
No high school degree: 208.3
African American: 18.0
Ethnicity Non-white: 39.4
White: 254.1
"] Central City: 8.9 Rural: 1078.1
Location Suburban: 213.4
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0

(b)

Community ASP (x 1000 m2)

Fig. 5. Uneven access to (a) Rooftop SP and (b) Community SP.

has lower access to SP, while population with a high school degree may
have slightly more SP (111%) available than population with a bachelor
degree or higher. Ethnicity shows disadvantages for minority groups,
with non-white population accessing approximately 16% of the SP
accessible to the white population. This difference is especially pro-
nounced for African Americans who have lower access than the overall
non-white population. Urban morphology impacts the distribution of
community SP. Rural areas have access to large areas suitable while
access in the central city is lowest.

Both rooftop SP and community SP analyses indicate overall that low
income and minority population have unequal access and opportunity to
benefit from solar technology. More severe unevenness is observed for
community solar than for rooftop solar. The majority of variable

dimensions assessed in regards to SP follow the patterns observed in
research related to solar adoption (Li et al., 2005; Rai and McAndrews,
2012; Sunter et al., 2019). Home-owning, wealthy, educated, and white
population have access to more SP than comparison groups. High va-
cancy neighborhoods (a sign of divestment) have lower degrees of SP.
However, the conclusion on age deviates from solar adoption studies.
While at the individual level associated with high solar adoption (Crago
and Chernyakhovskiy, 2017; Kwan, 2012), younger population at the
spatial aggregate level has lower access to SP than older people. The
observed unevenness in access to SP complements survey-based solar
adoption studies. Controlling for uneven access may enhance our un-
derstanding of spatial solar adoption patterns and inform spatial
policies.
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Table 2

Relative distribution of SP among socio-demographic groups and urbanization contexts.
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Dimensions

Observed Group (g1)

Reference Group (g2)

Area Available for Rooftop Solar

Area Available for Community Solar

Home-ownership
House Vacancy
Age

Poverty Status
Per Capita Income
Education Level

Ethnicity

Location

Renting

Vacant

Younger than median
Households in poverty
Lower than median
No high school degree
High school or associate degree
No high school degree
African American
Non-white

African American
Central City

Central City

Rural

Owning 67% 36%
Occupied 78% 73%
Older than median 57% 7%
Households not in poverty 70% 48%
Higher than median 54% 37%
Bachelor degree or higher 68% 68%
Bachelor degree or higher 87% 111%
High school or associate degree 79% 61%
White 55% 7%
White 60% 16%
Non-white 91% 46%
Suburban 51% 4%
Rural 78% 1%
Suburban 66% 505%

N s km [_] Central City: Buffalo
0 5 10 [777] Urban Area

l
0

[ [ I Waesmmm Multi-dimensional
1 2 3 4 5 6 7 Disadvantage

Fig. 6. Spatial distribution of uneven access to (a) rooftop and (b) community SP of population groups in Erie County, NY, across multiple data dimensions.

4.3. Spatial distribution of unevenness

Localized results of the Distribution Index for residential rooftop and
community solar area show the spatial distribution of multi-dimensional
disadvantage (Fig. 6). Disadvantages in access to SP appear to be highly
concentrated in the central city of Buffalo. Especially Buffalo’s east and
west, which is characterized by high shares of minority and low-income
population shows concentration. Furthermore, these neighborhoods
have high vacancy rates, which is an outcome of urban population
decline (Zou and Wang, 2019). These patterns persist for rooftop and
community SP, though some areas show differences. For example, in
south Buffalo, disadvantage exists for rooftop solar but not for com-
munity solar — above average area for community solar deployment is
available. This may be a result of the presence of large brownfields -
South Buffalo was the location of large heavy industry (steel) and
brownfields may provide potential space for solar deployment (NYS-
DEC, nd). In such areas, community solar may be an alternative solution.
Outside the central city, similar patterns for rooftop and community SP
persist. In suburban areas in Erie County, both rooftop and community
SP show localized and coinciding patterns of disadvantage — again in
selected locations, one technology may be more equitable than the other
- this may indicate a fractured solar landscape requiring localized ap-
proaches to solar adoption rather than a general suburban solar policy.

In rural areas, both rooftop and community SP show no signs of disad-
vantages and both are potential solution. Overall the results indicate
that population in the central city, especially minority households,
renters, and low income housheolds, have no easy access to solar tech-
nology and may require assistance in participating and benefitting from
renewable energy transition.

5. Conclusions

Solar energy is a renewable energy source with the potential to
reduce household energy cost. However, access to residential rooftop
and community SP is unevenly distributed. In general, low-income
population and non-white population exhibit low degrees of access to
SP - similar patterns exist for renters and population with low educa-
tional attainment. The degree of unevenness for these groups is higher
for community solar than for residential rooftop solar. While young age
is associated with technology adoption, younger population has lower
access to rooftop and community SP compared to older population. On
the whole, the spatial distribution of unevenness of community SP co-
incides with that of rooftop SP. Population with disadvantages in
accessing solar is concentrated in urban areas while suburban areas have
high rooftop and community SP, reinforcing the idea that urban patterns
of inequality can affect energy transition to solar. In selected areas, such
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as south Buffalo, community-led solar initiatives are an alternative —
here brownfields may provide the necessary space.

The proposed methodology to measure residential rooftop and
community SP is applicable across the US and other geographic context
if relevant data (LiDAR, land use data) are obtainable. It could be
improved in two aspects: (1) The use of fewer datasets — combining
multiple datasets not only limits the application area, but also in-
troduces more uncertainties due to the temporal difference and spatial
mismatch. Techniques to better accommodate these discrepancies are
worth exploring while advanced methods to accurately estimate the SP
using only LiDAR or imagery need to be developed. (2) The use of
optimized criteria — e.g. threshold of slope should be adjusted according
to the local condition. A sensitivity analysis is a next-step towards
optimizing the criteria.

The analysis of the uneven distribution of SP access among popula-
tion groups relies on public census data, which can be obtained for the
US, Canada, European Countries. The method for unevenness assess-
ment (e.g., spatial aggregation for any given unit) can be applied inde-
pendently from the SP assessment using any solar inventory. It would be
interesting to construct a spatial index that summarizes the findings of
our method into one number, which will facilitate easier decision
making and context adapted solar energy planning.

This paper shows that population data linked to building charac-
teristics improves our understanding of SP in a city. The transition
process to renewable energy, without understanding the unevenness in
access to technology, may not work out for communities that probably
need cheap and sustainable energy. Planning and policy intervention to
reduce unevenness may include subsidies for community-led commu-
nity solar initiatives or policy support in acquiring suitable land.
Neighborhoods affected by disadvantages related to rooftop solar and
community solar may require third-party projects or redistribution
policies to take part in order to benefit from the renewable energy
transition. Another venue may be the development of new technology
delivery methods to increase productivity of available spaces. Future
research in energy transition with a focus on solar technology adoption
needs to be aware of the unevenness in the distribution of SP. Erie
County and Buffalo are representative of many deindustrialized metro-
politan areas in the US, but additional place-specific studies are neces-
sary for implementation.
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