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Machine learning-guided channelrhodopsin
engineering enables minimally invasive
optogenetics

Claire N. Bedbrook ®@1, Kevin K. Yang?3, J. Elliott Robinson
Viviana Gradinaru®™ and Frances H. Arnold ®"?*

13, Elisha D. Mackey’,

We engineered light-gated channelrhodopsins (ChRs) whose current strength and light sensitivity enable minimally invasive
neuronal circuit interrogation. Current ChR tools applied to the mammalian brain require intracranial surgery for transgene
delivery and implantation of fiber-optic cables to produce light-dependent activation of a small volume of tissue. To facilitate
expansive optogenetics without the need for invasive implants, our engineering approach leverages the substantial literature
of ChR variants to train statistical models for the design of high-performance ChRs. With Gaussian process models trained on a
limited experimental set of 102 functionally characterized ChRs, we designed high-photocurrent ChRs with high light sensitiv-
ity. Three of these, ChRger1-3, enable optogenetic activation of the nervous system via systemic transgene delivery. ChRger2
enables light-induced neuronal excitation without fiber-optic implantation; that is, this opsin enables transcranial optogenetics.

algae. Transgenic expression of ChRs in the brain enables
light-dependent neuronal activation'. These channels are
widely applied as tools in neuroscience research’; however, limita-
tions of available ChRs prohibit a number of optogenetic applica-
tions. These channels have broad activation spectra in the visible
range and require high-intensity light for activation (~1 mW mm™).
As ChRsare naturally low-conductance channels, 10°-10° functional
ChRs need to be expressed in the plasma membrane of a neuron to
produce sufficient light-dependent depolarization and to induce
neuronal activation’. In the mouse brain, ChRs require ~1-15mW
light delivered ~100 pm from the target cell population to reliably
activate action potentials**. This confines light-dependent activa-
tion to a small volume of brain tissue (~1 mm?®)’. Enabling optoge-
netics for large brain volumes without the need to implant invasive
optical fibers for light delivery would be highly desirable.
Engineering ChRs to overcome limits in conductance and
light sensitivity and extend the reach of optogenetic experiments
requires overcoming three major challenges. First, rhodopsins are
trans-membrane proteins that are inherently difficult to engineer
because the sequence and structural determinants of membrane
protein expression and plasma membrane localization are highly
constrained and poorly understood®’. Second, because properties
of interest for neuroscience applications are assayed using low-
throughput techniques, such as patch-clamp electrophysiology,
engineering by directed evolution is not feasible'’. And third, in vivo
applications require retention and optimization of multiple proper-
ties; for example, localization in mammalian cells while simultane-
ously tuning kinetics, photocurrents and spectral properties®.
Diverse ChRs have been published, including variants discovered
from nature'""?, variants engineered through recombination®"’ and
mutagenesis'*"*, as well as variants resulting from rational design'®.
Studies of these coupled with structural information'” and molecular

( :hRs are light-gated ion channels found in photosynthetic

dynamic simulations'® have established some understanding of the
mechanics and sequence features important for specific ChR prop-
erties"'. Despite this, it is still not possible to predict functional
properties of uncharacterized ChR sequences.

Our approach has been to leverage the substantial literature of
ChRs to train statistical models that enable design of highly func-
tional ChRs. These models take as their input the sequence and
structural information for a given ChR variant and then predict
its functional properties. The models use training data to learn
how sequence and structural elements map to ChR function.
Once known, that mapping can be used to predict the behavior of
untested ChR variants.

Our trained models accurately predict the properties of untested
ChR sequences. We used these models to engineer 30 ‘designer’
ChR variants with specific combinations of desired properties, a
number of which have unprecedented photocurrent strength and
light sensitivity. We characterized these low-light-sensitive, high-
photocurrent ChRs for applications in the mammalian brain and
demonstrate their potential for minimally invasive activation of
populations of neurons in the brain enabled by systemic transgene
delivery with the engineered adeno-associated virus (AAV), rAAV-
PHP.eB (ref. **). This work demonstrates how a machine learning-
guided approach can enable engineering of proteins that have been
challenging to engineer.

Results

Functional characterization of ChR variants for machine learn-
ing. In previous work, we explored structure-guided recombina-
tion’*! of three highly functional ChR parents (CsChrimsonR
(CsChrimR)", C1C2 (ref. 7) and CheRiff (ref. *)) by designing two
ten-block recombination libraries with a theoretical size of ~120,000
(that is, 2Xx3!%) chimeric variants’. These recombination librar-
ies are a rich source of functionally diverse sequences’. Previously,
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we generated 102 ChR variants selected from these recombination
libraries®. Of these, 76 were previously characterized for photocur-
rent properties (with patch-clamp electrophysiology) and 26 we
characterized here. Together, these 102 ChR recombination variants
provide the primary dataset used for model training. We supple-
mented this dataset with data from other published sources, includ-
ing 19 ChR variants from nature, 14 single-mutant ChR variants
and 28 recombination variants from other libraries (Supplementary
Data 1). As the data produced by other laboratories were not col-
lected under the same experimental conditions as data collected in
our hands, they cannot be used for comparison for absolute ChR
properties (that is, photocurrent strength); however, these data do
provide useful binary information on whether a sequence variant is
functional or not. Thus, we used published data from other sources
when training binary classification models for ChR function.
Because our goal was to optimize photocurrent strength, wave-
length sensitivity and off-kinetics, we used these measured prop-
erties to train machine-learning models (Fig. 1a). Enhancing ChR
photocurrent strength would enable reliable neuronal activation
even under low-light conditions. Different off-rates can be useful
for specific applications: fast off-kinetics enable high-frequency
optical stimulation”, slow off-kinetics are correlated with increased
light sensitivity>'*'> and very slow off-kinetics can be used for con-
stant depolarization (step-function opsins'*). In addition to opsin
functional properties, it is also necessary to optimize or maintain
plasma membrane localization, a prerequisite for ChR function®.

Training Gaussian process (GP) classification and regression
models. Using the ChR sequence and structure as well as functional
data as inputs, we trained GP classification and regression models
(Fig. 1). GP models successfully predicted thermostability, substrate
binding affinity and kinetics for several soluble enzymes*, and ChR
membrane localization®. For a detailed description of the GP model
architecture used for protein engineering see refs. ***. Briefly, these
models infer predictive values for uncharacterized sequences from
training examples by assuming that similar inputs (ChR sequence
variants) will have similar outputs (photocurrent properties). To
quantify the relatedness of inputs (ChR sequence variants), we com-
pared both sequence and structure. ChR sequence information is
encoded in the amino acid sequence. For structural comparisons, we
convert the three-dimensional crystal-structural information into
a ‘contact map’ that is convenient for modeling. Two residues are
considered to be in contact and potentially important for structural
and functional integrity if they have any nonhydrogen atoms within
4.5A in the C1C2 crystal structure (3UG9.pdb)"”. We defined the
sequence and structural similarity between two variants by aligning
them and counting the number of positions and contacts at which
they are identical*.

We trained a binary classification model to predict whether a
ChR sequence will be functional using all 102 training sequences
from the recombination library (Supplementary Data 2) as well
as data from 61 variants published by others (Supplementary
Data 1). We then used this trained classification model to predict
whether uncharacterized ChR sequence variants were functional
(Fig. 1b). To test prediction accuracy, we performed 20-fold cross-
validation on the training dataset and achieved an area under the
receiver operator curve of 0.78, indicating good predictive power
(Supplementary Table 1).

Next, we trained three regression models, one for each of the
ChR photocurrent properties of interest: photocurrent strength,
wavelength sensitivity of photocurrents and off-kinetics (Fig. 1c).
Once trained, we used these models to predict photocurrent
properties of untested ChRs sequence variants. To test prediction
accuracy, we performed 20-fold cross-validation on the training
dataset and observed high correlation between predicted and mea-
sured properties for all models (Pearson correlation coefficient (R)
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between 0.77 and 0.9; Supplementary Tables 1-2). Models built
using contact maps from either the ChR2 crystal structure” or
C1Chrimson crystal structure® perform as well as models built with
a contact map from the C1C2 structure'’ (Supplementary Table 3
and Supplementary Fig. 1c,d), even though these maps share only
82% and 89% of their contacts with the C1C2 map, respectively
(Supplementary Fig. 1a,b).

Selection of designer ChRs using trained models. To select
‘designer’ ChRs (that is, ChRs predicted to have a useful combina-
tion of properties), we used a tiered approach (Fig. 1d). First, we
eliminated all ChR sequences predicted to not localize to the plasma
membrane or predicted to be nonfunctional. To do this, we used
classification models of ChR localization® and function to predict
the probability of localization and function for each ChR sequence
in the 120,000-variant recombination library. Not surprisingly, most
ChR variants were predicted to not localize and not function. To
focus on ChR variants predicted to localize and function, we set a
threshold for the product of the predicted probabilities of localiza-
tion and function (Fig. 1b); any ChR sequence above that threshold
would be considered for the next tier of the process. We selected a
conservative threshold of 0.4.

The training data made clear that the higher the mutation dis-
tance from one of the three parents, the less likely it was that a
sequence would be functional; however, we expect that more diverse
sequences would also have the more diverse functional properties.
To explore diverse sequences predicted to function, we selected 22
ChR variants that passed the 0.4 threshold and were multi-block-
swap sequences containing on average 70 mutations from the closest
parent. We synthesized these 22 sequences, expressed them in HEK
cells and measured their photocurrent properties with patch-clamp
electrophysiology. Of the tested sequences 59% were functional
(Fig. 1le), compared with 38% of the multi-block-swap sequences
randomly selected (that is, not selected by the model) and having
comparable average mutation level. This validates the classification
models ability to make useful predictions about uncharacterized
functional sequences, even for sequences that are very distant from
those previously tested. We updated the models by including data
from these 22 sequences for future rounds of predictions.

From the 120,000-variant recombination library, 1,161 chimeric
sequence variants passed the 0.4 predicted localization and func-
tion threshold (Fig. 1). For the second tier of the selection process,
we used the three regression models trained on all functional vari-
ants collected up to this point to predict the photocurrent strength,
wavelength sensitivity of photocurrents and off-kinetics for each
of these 1,161 ChR sequence variants (Supplementary Data 3). We
selected 28 designer ChRs predicted to be highly functional with
different combinations of properties, including those predicted to
have the highest photocurrent strength, most red-shifted or blue-
shifted activation wavelengths and off-kinetics from very fast to
very slow (Supplementary Figs. 2 and 3).

We synthesized genes encoding the 28 selected designer ChR
variants, expressed them in HEK cells and characterized them for
their photocurrent properties with patch-clamp electrophysiology
(Figs. 1 and 2). All 28 designer ChRs selected using the updated
classification model above the 0.4 threshold both localize and func-
tion. For each of the designer ChR variants, the measured photocur-
rent properties correlated well with the model predictions (R>0.9
for all models) (Fig. 1f and Supplementary Table 1), demonstrating
the power of this data-driven predictive method for engineering
designer ChRs. As a negative control, we selected two ChR variant
sequences from the recombination library that the model predicted
would be nonfunctional (ChR_29_10 and ChR_30_10). These
sequences resulted from a single-block swap from two of the most
highly functional ChR recombination variants tested. As predicted,
these sequences were nonfunctional (Fig. 2b), which shows that
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Fig. 1| Machine learning-guided optimization of ChRs. a, ChR properties used
models’ predicted probabilities of function and localization. A threshold for the

for training classification and regression models. b, The classification
product of the predicted probabilities (pp) of 0.4 to eliminate nonfunctional

ChRs is indicated. ¢, Regression model predictions versus measured photocurrent property on the training set data (20-fold cross-validation). Regression
models approximate the fitness landscape for each property of interest (insets show hypothetical fitness landscapes). d, Machine-learning pipeline to
identify 28 top ChR variants. e, Measurements of training set and model-predicted ChR photocurrent properties (n=3-8 cells per variant; Supplementary

Data 2). Each gray-colored point is a ChR variant. Training set data are shaded i

n blue. Mean number of mutations for each set is below the plots.

f, Regression model predictions versus measured photocurrent property for each of the 28 designer ChRs (that is, the test set).

ChR functionality can be attenuated by incorporating even minimal
diversity at certain positions.

Sequence and structural determinants of ChR functional prop-
erties. We used L1-regularized linear regression models to iden-
tify a limited set of residues and structural contacts that strongly
influence ChR photocurrent strength, spectral properties and
off-kinetics (Supplementary Fig. 4a). We can assess the relative
importance of each of these sequence and structural features by
weighting their contributions using L2-regularized linear regres-
sion (Supplementary Data 4 and Supplementary Fig. 4). For each
functional property, we identified a set of important residues and
contacts and their respective weights. A specific residue or contact
at a given position is weighted as likely to lead to, for example, low

n78

(negative weight) or high (positive weight) photocurrents. A num-
ber of residues and contacts most important for tuning spectral
properties are proximal to the retinal-binding pocket, including the
blue-shifting contact between A206 and F269 and the blue-shifting
contact between F265 and 1267, which are conserved in the blue-
shifted parents C1C2 and CheRiff, while the red-shifting contact
between F201 and Y217 originates from the red-shifted CsChrimR
parent (Supplementary Fig. 4). The most heavily weighted contact
contributing to off-kinetics includes the reside D195 (that is, D156
according to ChR2 numbering) (Supplementary Fig. 4), a residue
that is part of the DC-gate'. Mutation of either the aspartic acid or
cysteine within the DC-gate has been shown to decrease off-kinetic
speed'*””. While the cysteine in the DC-gate is conserved in all three
ChR parents, the aspartic acid at position 195 is only conserved in
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Fig. 2 | The model-predicted ChRs exhibit a large range of functional properties often far exceeding the parents. a, Representative current traces
after 0.5 light exposure for select designer ChR variants with corresponding expression and localization in HEK cells. Vertical colored scale bar for
each ChR current trace represents 500 pA, and horizontal scale bar represents 250 ms. The variant color presented in a is constant throughout panels.
b, Measured peak and steady-state photocurrents with different wavelengths of light in HEK cells (n=4-8 cells, see Supplementary Data 2); 397 nm
light at .5mW mm=2, 481nm light at 2.3 mW mm=2, 546 nm light at 2.8 MW mm~2 and 640 nm light at 2.2 mW mm~2 ¢, Off-kinetics decay rate (z.4)
following a 1ms exposure to 481nm light at 2.3mW mm~2 (n=4-8 cells, see Supplementary Data 2). Parent ChRs are highlighted in light gray. Insets
show representative normalized current traces with Tms light exposure for select ChRs revealing distinct profiles: ChR_21_10 and ChR_3_10 turn off
rapidly, ChR_25_9 turns off more slowly and ChR_15_10 exhibits little decrease in photocurrent 0.5 after the light exposure. d, Wavelength sensitivity
of activation for select ChRs compared with parental ChRs (CheRiff, n=5 cells; CsChrimR, n=5 cells; C1C2, n=4 cells; 28_10, n=5 cells; 11_10, n=5
cells; 25_9, n=5 cells). e, Peak and steady-state photocurrent strengths with varying light irradiances compared with parental ChRs (CheRiff, n=6 cells;
CsChrimR, n=5 cells; C1C2, n=4 cells; 11_10, n=6 cells; 12_10, n="7 cells; 25_9, n=5 cells; 10_10, n=4 cells). Top variants ChR_9_4, ChR_25_9 and
ChR_11_10 are named ChRger1, ChRger2 and ChRger3 in subsequent figures. Plotted data are mean+s.e.m.

CheRiff and C1C2 but not in CsChrimR, which has a cysteine at A number of contacts proximal to retinal contribute strongly to
that position. D195 is also part of a contact with L192 that con-  photocurrent strength. For example, the most heavily weighted
tributes strongly to photocurrent strength (Supplementary Fig. 4).  contact includes A295 (from CsChrimR), which is adjacent to the
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conserved lysine residue that covalently links retinal (Supplementary
Fig. 4). This position is a serine in both C1C2 and CheRiff.

Machine-guided search identifies ChRs with a range of useful
functional properties. We assessed photocurrent amplitude, wave-
length sensitivity and off-kinetics of the designer ChRs and the three
parental ChRs (Fig. 2). In addition to the 28 regression model-pre-
dicted ChRs, we also assessed the two top-performing ChRs from
the classification models’ predictions (ChR_9_4 and ChR_25_9),
for a total of 30 model-predicted highly functional ChRs as well as
the two negative control ChRs (ChR_29_10, ChR_30_10). Of the 30
model-predicted ChRs, we found 12 variants with at least two times
higher blue-light-activated photocurrents than the top-performing
parent (CsChrimR) (Fig. 2b). Three variants exhibit at least 1.7
times higher green-light-activated photocurrents than CsChrimR.
Eight variants have larger red-light-activated photocurrents when
compared with the blue-light-activated parents (CheRiff and C1C2),
though none outperform CsChrimR. Both ChR variants predicted
to be nonfunctional by the models produce <30 pA currents.

Designer ChRs’ off-kinetics span three orders of magnitude
(r,y=10ms to >10s) (Fig. 2c). This range is quite remarkable
given that all designer ChRs are built from sequence blocks of
three parents that have similar off-kinetics (z,4=30-50ms).
We found that five designer ChRs have faster off-kinetics
than the fastest parent, while 16 have more than five times
slower off-kinetics. The two fastest variants, ChR_3_10 and
ChR_21_10, exhibit 7,4=13+0.9 ms and 12 + 0.4 ms, respectively
(mean=+s.e.m.). Four ChRs have particularly slow off-kinetics
with 74> 1s, including ChR_15_10, ChR_6_10 and ChR_13_10
(ry=4.3+0.1s, 8.0+0.55 and 17 +7s, respectively). Two ChRs
with very large photocurrents, ChR_25_9 and ChR_11_10, exhibit
T =220+ 10 ms and 330 + 30 ms, respectively.

Three designer ChRs exhibit interesting spectral properties
(Fig. 2d and Supplementary Fig. 5). ChR_28_10’s red-shifted spec-
trum matches that of CsChrimR, demonstrating that incorporat-
ing sequence elements from blue-shifted ChRs into CsChrimR can
still generate a red-shifted activation spectrum. ChR_11_10 has
a broad activation spectrum relative to the parental spectra, with
similar steady-state current strength from 400 to 546 nm light and
strong currents (700+100pA) when activated with 567 nm light.
ChR_25_9, on the other hand, exhibits a narrow activation spec-
trum relative to the parental spectra, with a peak at 481 nm light.

We assessed the light sensitivity of select designer ChRs.
Compared with CsChrimR, CheRiff and C1C2, the designer ChRs
have at least nine times larger currents at the lowest intensity of
light tested (10~ mW mm™2), larger currents at all intensities of light
tested and minimal decrease in photocurrent magnitude over the
range of intensities tested (107'-10'mW mm™), suggesting that
photocurrents were saturated at these intensities and would only
attenuate at much lower light intensities (Fig. 2e). These select
designer ChRs are expressed at levels similar to the CsChrimR par-
ent (the highest-expressing parent), indicating that the improved
photocurrent strength of these ChRs is not solely due to improved
expression (Supplementary Figs. 6 and 7).

We compared three of the top designer ChRs (ChR_9_4,
ChR_25_9 and ChR_11_10) with ChR2(H134R) (ref. ®*), an
enhanced photocurrent single mutant of ChR2 commonly used for
in vivo optogenetics, and CoChR (from Chloromonas oogama)",
reported to be one of the highest-conducting ChRs activated by
blue light'' (Supplementary Fig. 8). The selected designer ChRs
produce three to six times larger photocurrents than ChR2(H134R)
when exposed to high-intensity (2.2mWmm™) 481nm light
and 10-18 times larger photocurrents than ChR2(H134R) when
exposed to low-intensity (6.5X107?mWmm™) 481nm light
(Supplementary Fig. 8d-g). Although CoChR produced peak cur-
rents of similar magnitude to the designer ChRs, CoChR decays

1180

to a much lower steady-state level (Supplementary Fig. 8d,e), with
the designer ChRs producing two to three times larger steady-
state photocurrents than CoChR when exposed to high-intensity
light and three to four times larger steady-state photocurrents
than CoChR when exposed to low-intensity light (Supplementary
Fig. 8f,g and Supplementary Table 4). The increased low-light sen-
sitivity of these select designer ChRs is likely due in part to their
relatively slow off-kinetics, leading to the increased accumulation
of the open state under low-light conditions".

Validation of designer ChRs for neuroscience applications. For
further validation we selected three of the top high-conductance
ChRs, ChR_9_4, ChR_25 9 and ChR_11 10, and renamed them
ChRgerl, ChRger2 and ChRger3, respectively, for channelrho-
dopsin Gaussian process-engineered recombinant opsin (Fig. 3
and Supplementary Fig. 9). When expressed in cultured neurons,
the ChRgers display robust membrane localization and expression
throughout the neuron soma and neurites (Fig. 3b). The ChRgers
outperform both CoChR and ChR2(HI134R) in photocurrent
strength with low-intensity light in neuronal cultures (Fig. 3c). The
designer ChRgers require one to two orders of magnitude lower
light intensity than CoChR and ChR2(H134R) for neuronal activa-
tion (Fig. 3d and Supplementary Fig. 8h).

Next, we performed direct intracranial injections into the
mouse prefrontal cortex (PFC) of rAAV-PHPeB packaging
either ChRgerl-3 or ChR2(H134R) under the hSyn promoter
(Supplementary Table 5). After 3-5weeks of expression, we mea-
sured light sensitivity in ChR-expressing neurons in acute brain
slices. We observed greater light sensitivity for the ChRgers com-
pared with ChR2(H134R) (Fig. 3g,h). The ChRgers exhibit >200 pA
photocurrent at 10> mW mm™2, while at the equivalent irradiance
ChR2(H134R) exhibits undetectable photocurrents. The ChRgers
reach >1,000 pA photocurrents with ~10?mW mm™ light, a four-
fold improvement over ChR2(H134R)’s irradiance-matched pho-
tocurrents (Fig. 3g). Our characterization of ChR2(H134R)’s light
sensitivity and photocurrent strength is consistent with previous
results from other laboratories®*.

Designer ChRs and systemic AAVs enable minimally invasive
optogenetic excitation. We investigated whether these light-sensi-
tive, high-photocurrent ChRs could provide optogenetic activation
coupled with minimally invasive gene delivery. Previous reports of
noninvasive optogenetics relied on invasive intracranial virus deliv-
ery, which results in many copies of virus per cell and thus very
high expression levels of the injected construct”. The AAV capsid
rAAV-PHPeB (ref. ©°) produces broad transduction throughout the
central nervous system with a single minimally invasive intravenous
injection in the adult mouse™'. Use of rAAV-PHP.eB for optoge-
netic applications has been limited, however, by the low multiplic-
ity of infection with systemically delivered viral vectors, resulting in
insufficient opsin expression and light-evoked currents to control
neuronal firing with commonly used channels (for example, ChR2).

We hypothesized that the ChRgers could overcome this limita-
tion and allow large-volume optogenetic excitation following sys-
temic transgene delivery. We systemically delivered rAAV-PHP.
eB packaging ChRgerl-3, CoChR or ChR2(H134R) under the
hSyn promoter and observed broad expression throughout the
brain (Fig. 3i). Using cell-attached recordings in acute brain slices,
we measured the fraction of opsin-expressing cells with sufficient
opsin-mediated currents for light-induced firing (Fig. 3j). Only
4% of ChR2(H134R)-expressing neurons produced light-induced
firing, while 77% of CoChR-expressing neurons, 89% of ChRger1-
expressing neurons and 100% of ChRger2- or ChRger3-expressing
neurons produced light-induced activity. With systemic deliv-
ery, we observed superior light sensitivity of ChRgers compared
with CoChR in both photocurrent strength (Fig. 3k) and spike
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Fig. 3 | ChRger variants in cultured neurons and in acute brain slices outperform ChR2(H134R) and CoChR. a, ChRs were cloned into an AAV vector
with either the hSyn or CamKIlla promoter and packaged into rAAV-PHP.eB for expression in culture and in vivo. b, Cultured neurons expressing ChRgers
and ChR2(H134R) under the hSyn promoter (repeated independently six times per construct with similar results). ¢, Peak and steady-state photocurrent
with low-intensity (8 X 10-*mW mm~2) and moderate-intensity (0.8 mW mm~2) light in cultured neurons (ChR2, n=16 cells; CoChR, n=17 cells; ChRger1,
n=9 cells; ChRger2, n=24 cells; ChRger3, n=9 cells). d, Spike fidelity with varying-intensity light for 5 ms light-pulse width at 2 Hz stimulation (ChRger1,
n=6 cells; ChRger2, n=6 cells; ChRger3, n=6 cells; CoChR, n=7 cells; ChR2, n=7 cells). e, Spike fidelity with varying stimulation frequency with 2ms
light-pulse width in cultured neurons (ChRger1, n=9 cells; ChRger2, n=12 cells; ChRger3, n=7 cells; ChR2, n=38 cells). f, Representative voltage traces
of ChRgers, ChR2(H134R) and CoChR at 2 Hz with 5ms pulsed low-intensity blue-light stimulation (3x10-2mW mm~2) show robust neuronal firing for
ChRgers while ChR2(H134R) and CoChR exhibit only subthreshold light-induced depolarization. g, Photocurrent strength with varying light irradiances in
acute brain slice after direct injection of rAAV-PHP.eB-packaged hSyn-ChR constructs into the PFC (ChRger1, n=11 cells; ChRger2, n=11 cells; ChRger3,
n=11 cells; ChR2, n=9 cells) or after systemic delivery of CamKlla-ChRger2 (ChRger2, n=6 cells; 5x 10" VG per animal). h, Representative current
traces of ChRgers and ChR2(H134R) with a 300 ms light pulse at varying light irradiances in acute brain slice after direct injection. i, Systemic delivery

of rAAV-PHP.eB-packaged hSyn-ChRger2 or hSyn-ChR2(H134R) resulted in broad expression throughout the cortex (5x10™ VG per animal; repeated
independently five times per construct with similar results). j, The fraction of light-excitable neurons in the PFC after systemic delivery of hSyn-ChRs
measured by cell-attached recording in acute slice targeting only neurons expressing the eYFP marker (1x 10" VG per animal). k|, Peak (solid line)

and steady-state (dashed line) photocurrent strength (k) and spike fidelity (I) with varying light irradiances in acute brain slice after systemic delivery
(1x10" VG per animal) of hSyn-ChRger2 (n =13 cells) and hSyn-CoChR (n=14 cells) (recorded in PFC neurons). m, Spike fidelity with varying stimulation
frequency in acute brain slice after systemic delivery (1x10" VG per animal) (CoChR, n=15 cells; ChRger1, n=9 cells; ChRger2, n=5 cells; ChRger3, n=8
cells) with TmW mm~2 light intensity. n, Representative voltage traces with blue-light-driven (1TmW mm~2) spiking at the indicated frequencies. VG, viral
genomes. Plotted data are mean+s.e.m.

fidelity (Fig. 31). ChRger2-expressing neurons exhibit healthy mem- ~ Supplementary Table 6). These results demonstrate the need for
brane properties similar to CoChR- or ChR2(H134R)-expressing  light-sensitive and high-photocurrent opsins for applications where
neurons both in culture and in slice (Supplementary Fig. 10 and  systemic delivery is desired.
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Fig. 4 | Validation of ChRger2 for minimally invasive optogenetic behavioral modulation. a, Systemic delivery of rAAV-PHP.eB-packaged CAG-DIO
ChRger2-TS-eYFP or ChR2(H134R)-TS-eYFP (3x10™ VG per mouse) into Dat-Cre animals coupled with fiber-optic implantation above the VTA. b, Images
show fiber placement and opsin expression for ChR2(H134R) (top) and ChRger2 (bottom). ¢, Blue-light-induced intracranial self-stimulation (ten 5ms
laser pulses) with ChRger2 and ChR2(H134R) at varying light power and varying stimulation frequencies. ChRger2, n=4 animals; ChR2(H134R), n=4

animals. d, Minimally invasive, systemic delivery of rAAV-PHP.eB-packaged CaMKlla ChRger2-TS-eYFP or ChR2(H134R)-TS-eYFP (5x 10" VG per mouse)
into wild-type (WT) animals (left) coupled with surgically secured fiber-optic cannula guide to the surface of the skull above the right M2 that had been
thinned to create a level surface for the fiber-skull interface (right). e, Expression of ChR2(H134R) (left) and ChRger2 (right) in coronal slices throughout

the cortex, including higher-magnification insets of M2. f.g, Turning behavior during unilateral light stimulation of M2 at the indicated wavelengths with
ChRger2 and ChR2(H134R). ChRger2, n=5 animals; ChR2(H134R), n=5 animals. Plotted data are mean+s.e.m.

We systemically delivered rAAV-PHP.eB packaging ChRger1-3
under the CaMKIIa promoter. With systemic delivery of ChRger2,
we observed photocurrent strength similar to results observed
after direct injection into the PFC in acute brain slices (Fig. 3g).
When expressed in pyramidal neurons in the cortex, ChRger2 and
ChRger3 enabled robust optically induced firing at rates between
2 and 10 Hz, although spike fidelity was reduced at higher frequency
stimulation (Fig. 3m,n). ChRger2 performed best with higher fre-
quency stimulation while ChRger1 performed worst. CoChR has
better spike fidelity than the ChRgers at higher frequency stimula-
tion (20-40 Hz) (Fig. 3m).

We next evaluated the optogenetic efficiency of ChRger2 using
optogenetic intracranial self-stimulation of dopaminergic neurons
of the ventral tegmental area (VTA)*. We systemically delivered
rAAV-PHP.eB packaging a double-floxed inverted open reading
frame (DIO) containing either ChRger2 or ChR2(H134R) into
Dat-Cre mice (Fig. 4a,b and Supplementary Table 5). At 3 weeks
after systemic delivery and stereotaxic implantation of fiber-optic
cannulas above the VTA, we placed mice in an operant box and
conditioned them to trigger a burst of 447 nm laser stimulation
via nose poke. Animals expressing ChRger2 displayed robust

1182

optogenetic self-stimulation in a frequency-dependent and laser
power-dependent manner. Higher frequencies (up to 20 Hz) and
higher light power (up to 10mW) promoted greater maximum
operantresponserates (Fig. 4c). Conversely, laser stimulation failed
to reinforce operant responding in ChR2(H134R)-expressing ani-
mals (Fig. 4c); these results were consistent with results in acute
slice where the light-induced currents of ChR2(H134R) are too
weak at the low copy number produced by systemic delivery for
robust neuronal activation.

To determine whether ChRger2 would enable both minimally
invasive transgene delivery and minimally invasive optical excita-
tion, we assayed directional control of locomotion in freely mov-
ing animals by optogenetic stimulation of the right secondary
motor cortex (M2)*. In this assay, unilateral stimulation of M2
disrupts motor function in the contralateral lower extremities,
causing mice to turn away from the stimulation side. We systemi-
cally administered rAAV-PHP.eB packaging either ChRger2 or
ChR2(H134R) under a CaMKIIa promoter for transgene expres-
sion in excitatory pyramidal neurons in the cortex (Fig. 4d and
Supplementary Table 5). We observed broad expression throughout
the cortex for both ChRger2- and ChR2(H134R)-injected animals
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(Fig. 4e and Supplementary Fig. 11). We secured a fiber-optic can-
nula guide to the surface of the thinned skull above M2 without
puncturing the dura and therefore leaving the brain intact (Fig. 4e),
which we consider to be minimally invasive. Despite the presence
of the optically scattering calavarial bone, stimulation with 20 mW
447 nm light-induced left-turning behavior in animals expressing
ChRger2 but not in animals expressing ChR2(H134R) (Fig. 4f,g and
Supplementary Videos 1 and 2). Left-turning behavior terminated
on conclusion of optical stimulation (Supplementary Video 1).
Behavioral effects were seen at powers as low as 10mW. To ensure
that the turning behavior was not due to visual stimuli or heating
caused by the stimulation laser, we repeated treadmill experiments
using 671 nm light, which is outside the excitation spectrum of both
opsins. Furthermore, 20mW 671 nm light failed to induce turning
in both ChRger2 and ChR2(H124R). Overall, these experiments
demonstrate that ChRger2 is compatible with systemic gene deliv-
ery and can enable minimally invasive optogenetic excitation.

Discussion

We demonstrated a data-driven approach to engineering ChR prop-
erties that enables efficient discovery of highly functional ChR vari-
ants based on data from relatively few variants. In this approach we
approximate the ChR fitness landscape for a set of ~120,000 chime-
ric ChRs and use it to efficiently search sequence space and select
top-performing variants for a given property'®***. By first eliminat-
ing the vast majority of nonfunctional sequences, we can focus on
local peaks scattered throughout the landscape. Then, using regres-
sion models, we predict which sequences lie on the fitness peaks.

Machine learning provides a platform for simultaneous optimi-
zation of multiple ChR properties that follow engineering specifica-
tions. Application of this machine-learning pipeline (limited data
collection from diverse sequences, model training and validation,
and prediction and testing of new sequences) has great potential to
optimize other neuroscience tools; for example, anion-conducting
ChRs'?, calcium sensors, voltage sensors® and AAVs™.

We designed high-performance ChRs (ChRgerl-3) with
unprecedented light sensitivity and validated ChRger2’s applica-
tion for in vivo optogenetics. The high-photocurrent properties of
these ChRs overcome the limitation of low per-cell copy number
after systemic delivery. Systemically delivered ChRgers have great
potential for optogenetic activation of neuronal populations that
are difficult to access surgically (for example, DRG, nodose gan-
glia, sympathetic chain ganglia and cardiac ganglia) or are widely
distributed (for example, the enteric nervous system). Coupling
ChRgers with recently reported upconversion nanoparticles may
allow for noninvasive optogenetics in deep brain areas with sys-
temic transgene delivery and tissue-penetrating near-infrared light
for neuronal excitation®. ChRger2 enabled neuronal excitation with
high temporal precision without invasive intracranial surgery for
virus delivery or fiber-optic implantation for superficial brain areas,
extending what is currently possible for optogenetics experiments.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of code and data availability and
associated accession codes are available at https://doi.org/10.1038/
$41592-019-0583-8.
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Methods

Construct design and cloning. The design, construction and characterization of
the recombination library of chimeras are described in detail by Bedbrook et al.’.
The ten-block contiguous and ten-block noncontiguous recombination libraries
were designed and built using SCHEMA recombination’. Software packages for
calculating SCHEMA energies are openly available at cheme.che.caltech.edu/
groups/tha/Software. htm. Each chimeric ChR variant in these libraries is composed
of blocks of sequence from the parental ChR (CsChrimR (ref. '), C1C2 (ref. ”) and
CheRiff (ref. »%)), including chimeras with single-block swaps (chimeras consisting
of nine blocks of one parent and a single block from one of the other two parents)
and multi-block-swap chimera sequences.

Selected ChR variant genes were inserted into a constant vector backbone
(pFCK from Addgene plasmid no. 51693 (ref. **)) with a Golgi export trafficking
signal sequence (KSRITSEGEYIPLDQIDINV)® and fluorescent protein (mKate).
All ChR variants contain the SpyTag sequence following the N-terminal signal
peptide for the SpyTag/SpyCatcher labeling assays used to characterize ChR
membrane localization”*. The C1C2 parent for the recombination libraries is
mammalian codon-optimized. ChR variant sequences used in this study are
documented in Supplementary Data 2. All selected ChR genes were synthesized
and cloned in the pFCK mammalian expression vector by Twist Bioscience. For
visualization, sequence alignment between C1C2 and designer ChRs were created
using ClustalQ and visualized using ENDscript’” (Supplementary Fig. 3).

For characterization in neurons, selected ChR variants (ChRger1, ChRger2,
ChRger3, CoChR'' and hChR2(H134R)) were inserted into a pAAV-hSyn vector
backbone (Addgene plasmid no. 26973), a pAAV-CamKIIa vector backbone
(Addgene plasmid no. 51087) and a pAAV-CAG-DIO vector backbone (Addgene
plasmid no. 104052). In all backbones, each ChR was inserted with a trafficking
signal sequence’ and fluorescent protein (eYFP).

HEK293T cell and primary neuronal cultures. The culturing and characterization
of ChRs in HEK cells is described by Bedbrook et al.>*. Briefly, HEK cells were
cultured at 37°C and 5% CO, in D10 (DMEM supplemented with 10% (vol/

vol) fetal bovine serum, 1% sodium bicarbonate and 1% sodium pyruvate). HEK
cells were transfected with purified ChR variant DNA using FuGENE 6 reagent
according to the manufacturer’s (Promega) recommendations. Cells were given
48h to express the ChRs before photocurrent measurements. Primary hippocampal
neuronal cultures were prepped from C57BL/6N mouse embryos 16-18 d post-
fertilization (Charles River Laboratories) and cultured at 37 °C in the presence

of 5% CO, in Neurobasal media supplemented with glutamine and B27. Cells

were transduced 3-4d after plating with rAAV-PHP.eB packaging ChR2(H134R),
CoChR, ChRgerl, ChRger2 or ChRger3. Whole-cell recordings were performed
5-10d after transduction.

Patch-clamp electrophysiology. Whole-cell patch-clamp and cell-attached
recordings were performed in transfected HEK cells, transduced cultured
neurons and acute brain slices to measure light-activated inward currents

or neuronal firing. For electrophysiological recordings, cultured cells were
continuously perfused with extracellular solution at room temperature

(in mM: 140 NaCl, 5 KCl, 10 HEPES, 2 MgCl,, 2 CaCl,, 10 glucose; pH 7.35)
while mounted on the microscope stage. For slice recordings, 32 °C artificial
cerebrospinal fluid was continuously perfused over slices. Artificial cerebrospinal
fluid contained 127 mM NaCl, 2.5mM KCl, 25 mM NaHCO;, 1.25 mM NaH,PO,,
12mM D-glucose, 0.4 mM sodium ascorbate, 2mM CaCl, and 1 mM MgCl, and
was bubbled continuously with 95% oxygen/5% CO,. Firing and photocurrent
measurements were performed in the presence of 3 mM kynurenic acid and

100 pM picrotoxin to block optically evoked ionotropic glutamatergic and
GABAergic currents, respectively.

Patch pipettes were fabricated from borosilicate capillary glass tubing (1B150-4;
World Precision Instruments) using a model P-2000 laser puller (Sutter
Instruments) to resistances of 3-6 MQ. Pipettes were filled with K-gluconate
intracellular solution containing the following (in mM): 134 K-gluconate, 5 EGTA,
10 HEPES, 2 MgCl,, 0.5 CaCl,, 3 ATP and 0.2 GTP. Whole-cell patch-clamp and
cell-attached recordings were made using a Multiclamp 700B amplifier (Molecular
Devices), a Digidata 1440 digitizer (Molecular Devices) and a PC running
pClamp (version 10.4) software (Molecular Devices) to generate current injection
waveforms and to record voltage and current traces.

Photocurrents were recorded from cells in voltage clamp held at —60 mV.
Neuronal firing was measured in current-clamp mode with current injection
for a —60 mV holding potential. Access resistance (R,) and membrane resistance
(R,,) were monitored throughout recording, and cells were discarded if R, or R,,
changed more than 15%. During ChR variant functional screening in HEK cells,
photocurrents were only recorded from cells that passed our recording criteria:
R,,>200MQ and holding current >—100 pA. Our measured membrane properties
of ChR-expressing neurons were consistent with previous literature of opsin-
expressing cells'' and are also consistent with previous reports of properties of
cultured hippocampal neurons**’ and PFC neurons in slice**' (Supplementary
Fig. 10). For cell culture experiments, the experimenter was blinded to the identity
of the ChR being patched but not to the fluorescence level of the cells. For acute
slice recordings, the experimenter was not blinded to the identity of the ChR.
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Light delivery and imaging. Patch-clamp recordings were done with short light
pulses to measure photocurrents. Light-pulse duration, wavelength and power
were varied depending on the experiment (as described in the text). Light pulses
were generated using a Lumencor SPECTRAX light engine. The illumination/
output spectra for each color were measured (Supplementary Fig. 5). To evaluate
normalized green photocurrent, we measured photocurrent strength at three
wavelengths (peak + half width at half maximum): (red) 640 + 3 nm, (green)

546+ 16 nm and (cyan) 481 + 3 nm with a 0.5s light pulse. Light intensity was
matched for these measurements, with 481 nm light at 2.3 mW mm™2, 546 nm light
at 2.8 mW mm~ and 640 nm light at 2.2 mW mm™2 For full spectra measurements
depicted in Fig. 2d, we measured photocurrents at seven different wavelengths
(peak =+ half width half maximum): (red) 640 + 3 nm, (yellow) 567 + 13 nm, (green)
546+ 16 nm, (teal) 523 + 6 nm, (cyan) 481+ 3 nm light-emitting diode (LED),
(blue) 439 +8nm LED and (violet) 397 + 3 nm with a 0.5 light pulse for each
color. Light intensity is matched across wavelengths at 1.3 mW mm™.

Imaging of ChR variant expression in HEK cells was performed using an
Andor Neo 5.5 sCMOS camera and Micro-Manager Open Source Microscopy
Software (v1.4). Imaging of ChR expression in neuronal cultures and in
brain slices was performed using a Zeiss LSM 880 confocal microscope and
Zen software (v2.3).

Electrophysiology data analysis. Electrophysiology data were analyzed using
Clampfit 10.7 (Molecular Devices) and custom data-processing scripts written
using open-source packages in the Python programming language to perform
baseline adjustments, find the peak and steady-state inward currents, perform
monoexponential fits of photocurrent decay for off-kinetic properties and
quantify spike fidelity. Only neurons with an uncompensated series resistance
between 5 and 25 M€, R, > 90 M and holding current >—150pA (holding at
—60mV) were included in data analysis (Supplementary Fig. 10). The photocurrent
amplitude was not adjusted for expression level since both expression and
conductance contribute to the in vivo utility of the tool. However, comparisons of
expression with photocurrent strength for all ChR variants tested are included in
Supplementary Fig. 6 and 7.

On light exposure, ChRs open and reach a peak inward current and then
desensitize reaching a lower steady-state current. As metrics of photocurrent
strength, peak and steady-state photocurrent were used (Fig. 1a). As a metric for
the ChR wavelength sensitivity of activation spectrum (that is, spectral properties),
the normalized current strength induced by exposure to green light (546 nm)
was used (Fig. 1a), which easily differentiates blue-shifted ChRs (peak activation:
~450-480nm) and red-shifted ChRs (peak activation: ~520-650 nm). Two
parameters were used to characterize ChR off-kinetics: the time to reach 50% of
the light-activated current after a 0.5s light pulse and the photocurrent decay rate
(7.¢) after a 1 ms light exposure (Fig. 1a).

AAYV production and purification. Production of recombinant AAV-PHP.eB
packaging pAAV-hSyn-X-TS-eYFP-WPRE, pAAV-CAG-DIO[X-TS-eYFP]-WPRE
and pAAV-CaMKIIa-X-TS-eYFP-WPRE (X = ChR2(H134R), CoChR, ChRger]l,
ChRger2 and ChRger3) was done following the methods described by Deverman
et al.”” and Challis et al.*’. Briefly, triple transfection of HEK293T cells (ATCC)
was performed using polyethylenimine. Viral particles were harvested from

the media and cells. Virus was then purified over iodixanol (Optiprep, Sigma;
D1556) step gradients (15%, 25%, 40% and 60%). Viruses were concentrated and
formulated in PBS. Virus titers were determined by measuring the number of
DNase I-resistant viral genomes using quantitative PCR with linearized genome
plasmid as a standard.

Animals. All procedures were approved by the California Institute of Technology
Institutional Animal Care and Use Committee. Dat-Cre mice (006660) and
C57Bl/6] mice (000664) were purchased from the Jackson Laboratory.

Intravenous injections, stereotactic injections and cannula implantation.
Intravenous administration of rAAV vectors was performed by injecting the

virus into the retro-orbital sinus at viral titers indicated in the text. There were no
observed health issues with animals after systemic injection of virus at the titers
presented in the paper. Mice remained healthy >6 months after systemic delivery of
ChR2 and ChRgers. With slice electrophysiology, there was no observed indication
of poor cell health due to viral-mediated expression, which was quantified by
measuring the membrane resistance (R,,), leak current (holding at —-60mV) and
resting membrane potential (Supplementary Fig. 10). Local expression in the

PFC was achieved by direct stereotactic injection of 1 pl of purified AAV vectors

at 5X 10" viral genomes per ml targeting the following coordinates: anterior-
posterior (AP), —1.7; media-lateral (ML), +0.5; and dorsal-ventral (DV), —2.2.

For stimulation of the VTA, 300 pm outer diameter mono fiber-optic cannulae
(Doric Lenses, MFC_300/330-0.37_6mm_ZF1.25_FLT) were stereotaxically
implanted 200 pm above the VTA bilaterally targeted to the following coordinates:
AP, —3.44mm; ML, +0.48 mm; DV, 4.4 mm. For stimulation of the right M2,
3-mm-long, 400 pm mono fiber-optic cannulae (Doric Lenses, MFC_400/430-
0.48_3mm_ZF1.25_FLT) were surgically secured to the surface of the skull above
M2 (unilaterally) targeted to the following coordinates: AP, 1 mm; ML, 0.5 mm.


http://cheme.che.caltech.edu/groups/fha/Software.htm
http://cheme.che.caltech.edu/groups/fha/Software.htm
http://www.nature.com/naturemethods
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The skull was thinned ~40-50% with a standard drill to create a level surface

for the fiber-skull interface. Light was delivered from either a 447 nm or 671 nm
laser (Changchun New Industries Model with PSU-H-LED) via mono fiber-optic
patch cable(s) (Doric Lenses, MFP_400/430/1100-0.48_2m_FC-ZF1.25) coupled
to the fiber-optic cannula(e). Fiber-optic cannulae were secured to the skull with
Metabond (Parkel, SKU S396) and dental cement.

Analysis of behavioral experiments was performed using the open-source
MATLAB program OptiMouse™ to track mouse nose, body and tail position while
the mouse was running on the treadmill. Optogenetic intracranial self-stimulation
was performed using a mouse modular test chamber (Lafayette Instruments,
Model 80015NS) outfitted with an infrared nose port (Model 80116TM).

GP modeling. Both the GP regression and classification modeling methods
applied in this paper are based on work detailed in refs. “**. For modeling, all
sequences were aligned using multiple sequence comparison by log-expectation
(MUSCLE) (https://www.ebi.ac.uk/Tools/msa/muscle/). For modeling, aligned
sequences were truncated to match the length of the C1C2 sequence, eliminating
N- and C-terminal fragments with poor alignment quality due to high sequence
diversity (Supplementary Data 1 and 2). Structural encodings (that is, the contact
map) use the C1C2 crystal structure (3UG9.pdb) and assume that ChR chimeras
share the contact architecture observed in the C1C2 crystal structure. Models
built using structural encodings built from the ChR2 structure (6EID.pdb) and
the C1Chrimson structure (5ZIH.pdb) performed as well as models using the
C1C2 structure (Supplementary Fig. 1¢,d). The models are robust to differences in
contact maps because they use both sequence and structural information, which is
somewhat redundant.

For a given ChR, the contact map is simply a list of contacting amino acids
with their positions. For example, a contact between alanine at position 134
and methionine at position 1 of the amino acid sequence would be encoded
by ((A134’), (‘M1’)). Both sequence and structural information were one-hot
encoded. Regression models for ChR properties were trained to predict the
logarithm of the measured properties. All training data were normalized to have
mean of zero and standard deviation of 1.

GP regression and classification models require kernel functions that measure
the similarity between protein sequences. Learning involves optimizing the form
of the kernel and its hyperparameters (Supplementary Table 2). The Matérn kernel
was found to be optimal for all ChR properties (Supplementary Table 1).

For classification model training, all 102 functionally characterized ChR
variants from our recombination libraries (Supplementary Data 2) were used as
well as data from 61 sequence variants published by others (Supplementary
Data 1). The model was then updated with data collected from the 22 additional
ChR recombination variants with high sequence diversity (~70 mutations from
the closest parent) and predicted to be functional (Fig. 1d). For training the
regression models, all 102 functionally characterized training sequences
(Supplementary Data 2) were initially used and then the models were updated
with data collected from the 22 additional ChR variants (Fig. 1d).

GP regression. In regression, the goal is to infer the value of an unknown function
f(x) at a novel point x; given observations y at inputs X. Assuming that the
observations are subject to independent and identically distributed Gaussian noise
with variance 62, the posterior distribution of f; = f (x:) for GP regression is
Gaussian with mean

f=K(K+a0) "y (1)
and variance
Vi :k(Xi,Xi) 71(?([(4’{73,1)711(1 (2)

where I is the identity matrix. K is the symmetric, square covariance matrix for
the training set: Kj; = k(x;,x;) for x,and x; in the training set. k; is the vector

of covariances between the novel input and each input in the training set, and
ky; = k(x;,%;). The hyperparameters in the kernel functions and the noise
hyperparameter 6, were determined by maximizing the log marginal likelihood:

1 - 1 n
log p(y|X) = 7EyT(K + ail) 1y - Elog‘K + o‘fll} - ElogZﬂ (3)

where 7 is the dimensionality of the inputs. Regression was implemented using
open-source packages in the SciPy ecosystem*'~*.

GP classification. In binary classification, instead of continuous outputs y, the
outputs are class labels y, € {+1, —1}, and the goal is to use the training data to
make probabilistic predictions E(Xi) = p(yt = +1|Xt). ‘We use Laplace’s method to
approximate the posterior distribution. Hyperparameters in the kernels are found
by maximizing the marginal likelihood. Classification was implemented using
open-source packages in the SciPy ecosystem*-*. The binary classification

model was trained to predict whether a ChR sequence is or is not functional.

A ChR sequence was considered to be functional if its photocurrents were >100 pA

on light exposure, a threshold set as an approximate lower bound for current
necessary for neuronal activation.

GP kernels for modeling proteins. GP regression and classification models require
kernel functions that measure the similarity between protein sequences. A protein
sequence s of length L is defined by the amino acid present at each location. This
can be encoded as a binary feature vector x,, that indicates the presence or absence
of each amino acid at each position resulting in a vector of length 20L (for 20
possible amino acids). Likewise, the protein’s structure can be represented as a
residue-residue contact map. The contact map can be encoded as a binary feature
vector X that indicates the presence or absence of each possible contacting pair.
Both the sequence and structure feature vectors were used by concatenating them
to form a sequence-structure feature vector.

Three types of kernel functions k(s;s;) were considered: polynomial kernels,
squared exponential kernels and Matérn kernels. These different forms represent
possible functions for the protein’s fitness landscape. The polynomial kernel with
degree d is defined as:

k(s,s') = (o‘é + O'f,xTx’>d (4)

where s is a protein sequence and x its corresponding encoding and o, and o,
are hyperparameters. We considered polynomial kernels with d=3. The squared
exponential kernel is defined as:

k(s,s') = olexp <7 w> (5)

where [ and g, are also hyperparameters and | - |, is the L2 norm. Finally, the
Matérn kernel with v = 3 is defined as:

y5lx—x||
+

2 2
> 5lx—x|)? 5l —x'[l;
+ L

ks o) = ] 3 - I

(6)

where [ is once again a hyperparameter.

L1 regression feature identification and weighting. L1 regression was used to
identify residues and contacts in the ChR structure most important for each
ChR functional property of interest. First, residues and contacts that covary
were identified using the concatenated sequence and structure binary feature
vector for each of the training set ChR variants. Each set of covarying residues
and contacts was combined into a single feature. L1 linear regression was used
to select the features that contribute most to each ChR functional property

of interest. The level of regularization was chosen by maximizing the log
marginal likelihood of the GP regression model trained on the features selected
at that level of regularization. We then performed Bayesian ridge regression
on the selected features using the default settings in scikit-learn”’. Residues
and contacts with the largest absolute Bayesian ridge linear regression weights
were plotted onto the C1C2 structure (Supplementary Fig. 4). For feature
identification and weighting, models were trained on both the training set and
also the test set of 28 ChR sequences predicted to have useful combinations of
diverse properties.

Statistical analysis. Plotting and statistical analysis were done in Python 2.7 and
3.6 and GraphPad Prism 7.01. For statistical comparisons, we first performed a
D’Agostino and Pearson normality test. If the P value of a D’Agostino and Pearson
normality test was <0.05, the nonparametric Kruskal-Wallis test with Dunn’s
multiple comparisons post hoc test was used. If the data passed the normality test,
a one-way analysis of variance was used.

Accession codes. GenBank: ChRgerl, MN340983; ChRger2, MN340984;
ChRger3, MN340985.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The authors declare that data supporting the findings of this study are available
within the paper and its Supplementary information files. Source data for
classification model training are provided in Supplementary Data 1 and 2. Source
data for regression model training are provided in Supplementary Data 2. DNA
constructs for the ChRger variants are deposited for distribution at Addgene
(http://www.addgene.org, plasmid numbers 127237-44).

Code availability
Code used to train classification and regression models can be found at https://
github.com/fhalab/channels.
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Randomization  Mice were randomly assigned to groups before injection and fiber placement.
Blinding For all experiments in HEK cells authors were blind to the identity of the ChR being tested as all ChRs were given code names and the

sequence identity of each ChR was only checked after data analysis. No blinding was performed for behavioral experiments because no
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performed using BlokHen® (Aves Labs) as the blocking reagent, and HRP-labeled goat anti-chicken antibodies (Aves Labs, Cat.

#H-1004) as the detection reagent. Immunohistochemistry used tetramethyl rhodamine-labeled anti-chicken IgY.
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Laboratory animals Dat-Cre C57BI/6) mice (006660) and wild-type C57BI/6J mice (000664) were purchased from Jackson Laboratory. Mice were
injected at ages between 2-4 months and behavior was performed in animals between 3-5 months. Both males and females
were used for experiments.

Wild animals The study did not involve wild animals

Field-collected samples The study did not involve field-collected samples

>
Q
—
C
=
(D
=
(D
wn
(D
Q
=
e
>
=
(D
©
O
=,
>
(@)
wn
c
=
Q
=
<




	Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics

	Results

	Functional characterization of ChR variants for machine learning. 
	Training Gaussian process (GP) classification and regression models. 
	Selection of designer ChRs using trained models. 
	Sequence and structural determinants of ChR functional properties. 
	Machine-guided search identifies ChRs with a range of useful functional properties. 
	Validation of designer ChRs for neuroscience applications. 
	Designer ChRs and systemic AAVs enable minimally invasive optogenetic excitation. 

	Discussion

	Online content

	Acknowledgements

	Fig. 1 Machine learning-guided optimization of ChRs.
	Fig. 2 The model-predicted ChRs exhibit a large range of functional properties often far exceeding the parents.
	Fig. 3 ChRger variants in cultured neurons and in acute brain slices outperform ChR2(H134R) and CoChR.
	Fig. 4 Validation of ChRger2 for minimally invasive optogenetic behavioral modulation.




