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ChRs are light-gated ion channels found in photosynthetic 
algae. Transgenic expression of ChRs in the brain enables 
light-dependent neuronal activation1. These channels are 

widely applied as tools in neuroscience research2; however, limita-
tions of available ChRs prohibit a number of optogenetic applica-
tions. These channels have broad activation spectra in the visible 
range and require high-intensity light for activation (~1 mW mm−2). 
As ChRs are naturally low-conductance channels, 105–106 functional 
ChRs need to be expressed in the plasma membrane of a neuron to 
produce sufficient light-dependent depolarization and to induce 
neuronal activation3. In the mouse brain, ChRs require ~1–15 mW 
light delivered ~100 μm from the target cell population to reliably 
activate action potentials4–6. This confines light-dependent activa-
tion to a small volume of brain tissue (~1 mm3)7. Enabling optoge-
netics for large brain volumes without the need to implant invasive 
optical fibers for light delivery would be highly desirable.

Engineering ChRs to overcome limits in conductance and 
light sensitivity and extend the reach of optogenetic experiments 
requires overcoming three major challenges. First, rhodopsins are 
trans-membrane proteins that are inherently difficult to engineer 
because the sequence and structural determinants of membrane 
protein expression and plasma membrane localization are highly 
constrained and poorly understood8,9. Second, because properties 
of interest for neuroscience applications are assayed using low-
throughput techniques, such as patch-clamp electrophysiology, 
engineering by directed evolution is not feasible10. And third, in vivo 
applications require retention and optimization of multiple proper-
ties; for example, localization in mammalian cells while simultane-
ously tuning kinetics, photocurrents and spectral properties6.

Diverse ChRs have been published, including variants discovered 
from nature11,12, variants engineered through recombination9,13 and 
mutagenesis14,15, as well as variants resulting from rational design16. 
Studies of these coupled with structural information17 and molecular  

dynamic simulations18 have established some understanding of the 
mechanics and sequence features important for specific ChR prop-
erties1,16. Despite this, it is still not possible to predict functional 
properties of uncharacterized ChR sequences.

Our approach has been to leverage the substantial literature of 
ChRs to train statistical models that enable design of highly func-
tional ChRs. These models take as their input the sequence and 
structural information for a given ChR variant and then predict 
its functional properties. The models use training data to learn 
how sequence and structural elements map to ChR function. 
Once known, that mapping can be used to predict the behavior of 
untested ChR variants.

Our trained models accurately predict the properties of untested 
ChR sequences. We used these models to engineer 30 ‘designer’ 
ChR variants with specific combinations of desired properties, a 
number of which have unprecedented photocurrent strength and 
light sensitivity. We characterized these low-light-sensitive, high-
photocurrent ChRs for applications in the mammalian brain and 
demonstrate their potential for minimally invasive activation of 
populations of neurons in the brain enabled by systemic transgene 
delivery with the engineered adeno-associated virus (AAV), rAAV-
PHP.eB (ref. 19). This work demonstrates how a machine learning-
guided approach can enable engineering of proteins that have been 
challenging to engineer.

Results
Functional characterization of ChR variants for machine learn-
ing. In previous work, we explored structure-guided recombina-
tion20,21 of three highly functional ChR parents (CsChrimsonR 
(CsChrimR)11, C1C2 (ref. 17) and CheRiff (ref. 22)) by designing two 
ten-block recombination libraries with a theoretical size of ~120,000 
(that is, 2 × 310) chimeric variants9. These recombination librar-
ies are a rich source of functionally diverse sequences9. Previously, 
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we generated 102 ChR variants selected from these recombination 
libraries8,9. Of these, 76 were previously characterized for photocur-
rent properties (with patch-clamp electrophysiology) and 26 we 
characterized here. Together, these 102 ChR recombination variants 
provide the primary dataset used for model training. We supple-
mented this dataset with data from other published sources, includ-
ing 19 ChR variants from nature, 14 single-mutant ChR variants 
and 28 recombination variants from other libraries (Supplementary 
Data 1). As the data produced by other laboratories were not col-
lected under the same experimental conditions as data collected in 
our hands, they cannot be used for comparison for absolute ChR 
properties (that is, photocurrent strength); however, these data do 
provide useful binary information on whether a sequence variant is 
functional or not. Thus, we used published data from other sources 
when training binary classification models for ChR function.

Because our goal was to optimize photocurrent strength, wave-
length sensitivity and off-kinetics, we used these measured prop-
erties to train machine-learning models (Fig. 1a). Enhancing ChR 
photocurrent strength would enable reliable neuronal activation 
even under low-light conditions. Different off-rates can be useful 
for specific applications: fast off-kinetics enable high-frequency 
optical stimulation23, slow off-kinetics are correlated with increased 
light sensitivity3,14,15 and very slow off-kinetics can be used for con-
stant depolarization (step-function opsins14). In addition to opsin 
functional properties, it is also necessary to optimize or maintain 
plasma membrane localization, a prerequisite for ChR function8.

Training Gaussian process (GP) classification and regression 
models. Using the ChR sequence and structure as well as functional 
data as inputs, we trained GP classification and regression models 
(Fig. 1). GP models successfully predicted thermostability, substrate 
binding affinity and kinetics for several soluble enzymes24, and ChR 
membrane localization8. For a detailed description of the GP model 
architecture used for protein engineering see refs. 8,24. Briefly, these 
models infer predictive values for uncharacterized sequences from 
training examples by assuming that similar inputs (ChR sequence 
variants) will have similar outputs (photocurrent properties). To 
quantify the relatedness of inputs (ChR sequence variants), we com-
pared both sequence and structure. ChR sequence information is 
encoded in the amino acid sequence. For structural comparisons, we 
convert the three-dimensional crystal-structural information into 
a ‘contact map’ that is convenient for modeling. Two residues are 
considered to be in contact and potentially important for structural 
and functional integrity if they have any nonhydrogen atoms within 
4.5 Å in the C1C2 crystal structure (3UG9.pdb)17. We defined the 
sequence and structural similarity between two variants by aligning 
them and counting the number of positions and contacts at which 
they are identical24.

We trained a binary classification model to predict whether a 
ChR sequence will be functional using all 102 training sequences 
from the recombination library (Supplementary Data 2) as well 
as data from 61 variants published by others (Supplementary 
Data 1). We then used this trained classification model to predict 
whether uncharacterized ChR sequence variants were functional 
(Fig. 1b). To test prediction accuracy, we performed 20-fold cross-
validation on the training dataset and achieved an area under the 
receiver operator curve of 0.78, indicating good predictive power 
(Supplementary Table 1).

Next, we trained three regression models, one for each of the 
ChR photocurrent properties of interest: photocurrent strength, 
wavelength sensitivity of photocurrents and off-kinetics (Fig. 1c).  
Once trained, we used these models to predict photocurrent 
properties of untested ChRs sequence variants. To test prediction 
accuracy, we performed 20-fold cross-validation on the training 
dataset and observed high correlation between predicted and mea-
sured properties for all models (Pearson correlation coefficient (R) 

between 0.77 and 0.9; Supplementary Tables 1–2). Models built 
using contact maps from either the ChR2 crystal structure25 or 
C1Chrimson crystal structure26 perform as well as models built with 
a contact map from the C1C2 structure17 (Supplementary Table 3 
and Supplementary Fig. 1c,d), even though these maps share only 
82% and 89% of their contacts with the C1C2 map, respectively 
(Supplementary Fig. 1a,b).

Selection of designer ChRs using trained models. To select 
‘designer’ ChRs (that is, ChRs predicted to have a useful combina-
tion of properties), we used a tiered approach (Fig. 1d). First, we 
eliminated all ChR sequences predicted to not localize to the plasma 
membrane or predicted to be nonfunctional. To do this, we used 
classification models of ChR localization8 and function to predict 
the probability of localization and function for each ChR sequence 
in the 120,000-variant recombination library. Not surprisingly, most 
ChR variants were predicted to not localize and not function. To 
focus on ChR variants predicted to localize and function, we set a 
threshold for the product of the predicted probabilities of localiza-
tion and function (Fig. 1b); any ChR sequence above that threshold 
would be considered for the next tier of the process. We selected a 
conservative threshold of 0.4.

The training data made clear that the higher the mutation dis-
tance from one of the three parents, the less likely it was that a 
sequence would be functional; however, we expect that more diverse 
sequences would also have the more diverse functional properties. 
To explore diverse sequences predicted to function, we selected 22 
ChR variants that passed the 0.4 threshold and were multi-block-
swap sequences containing on average 70 mutations from the closest 
parent. We synthesized these 22 sequences, expressed them in HEK 
cells and measured their photocurrent properties with patch-clamp 
electrophysiology. Of the tested sequences 59% were functional 
(Fig. 1e), compared with 38% of the multi-block-swap sequences 
randomly selected (that is, not selected by the model) and having 
comparable average mutation level. This validates the classification 
model’s ability to make useful predictions about uncharacterized 
functional sequences, even for sequences that are very distant from 
those previously tested. We updated the models by including data 
from these 22 sequences for future rounds of predictions.

From the 120,000-variant recombination library, 1,161 chimeric 
sequence variants passed the 0.4 predicted localization and func-
tion threshold (Fig. 1). For the second tier of the selection process, 
we used the three regression models trained on all functional vari-
ants collected up to this point to predict the photocurrent strength, 
wavelength sensitivity of photocurrents and off-kinetics for each 
of these 1,161 ChR sequence variants (Supplementary Data 3). We 
selected 28 designer ChRs predicted to be highly functional with 
different combinations of properties, including those predicted to 
have the highest photocurrent strength, most red-shifted or blue-
shifted activation wavelengths and off-kinetics from very fast to 
very slow (Supplementary Figs. 2 and 3).

We synthesized genes encoding the 28 selected designer ChR 
variants, expressed them in HEK cells and characterized them for 
their photocurrent properties with patch-clamp electrophysiology 
(Figs. 1 and 2). All 28 designer ChRs selected using the updated 
classification model above the 0.4 threshold both localize and func-
tion. For each of the designer ChR variants, the measured photocur-
rent properties correlated well with the model predictions (R > 0.9 
for all models) (Fig. 1f and Supplementary Table 1), demonstrating 
the power of this data-driven predictive method for engineering 
designer ChRs. As a negative control, we selected two ChR variant 
sequences from the recombination library that the model predicted 
would be nonfunctional (ChR_29_10 and ChR_30_10). These 
sequences resulted from a single-block swap from two of the most 
highly functional ChR recombination variants tested. As predicted, 
these sequences were nonfunctional (Fig. 2b), which shows that 
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ChR functionality can be attenuated by incorporating even minimal 
diversity at certain positions.

Sequence and structural determinants of ChR functional prop-
erties. We used L1-regularized linear regression models to iden-
tify a limited set of residues and structural contacts that strongly 
influence ChR photocurrent strength, spectral properties and 
off-kinetics (Supplementary Fig. 4a). We can assess the relative 
importance of each of these sequence and structural features by 
weighting their contributions using L2-regularized linear regres-
sion (Supplementary Data 4 and Supplementary Fig. 4). For each 
functional property, we identified a set of important residues and 
contacts and their respective weights. A specific residue or contact 
at a given position is weighted as likely to lead to, for example, low 

(negative weight) or high (positive weight) photocurrents. A num-
ber of residues and contacts most important for tuning spectral 
properties are proximal to the retinal-binding pocket, including the 
blue-shifting contact between A206 and F269 and the blue-shifting 
contact between F265 and I267, which are conserved in the blue-
shifted parents C1C2 and CheRiff, while the red-shifting contact 
between F201 and Y217 originates from the red-shifted CsChrimR 
parent (Supplementary Fig. 4). The most heavily weighted contact 
contributing to off-kinetics includes the reside D195 (that is, D156 
according to ChR2 numbering) (Supplementary Fig. 4), a residue 
that is part of the DC-gate1. Mutation of either the aspartic acid or 
cysteine within the DC-gate has been shown to decrease off-kinetic 
speed14,27. While the cysteine in the DC-gate is conserved in all three 
ChR parents, the aspartic acid at position 195 is only conserved in 
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Fig. 1 | Machine learning-guided optimization of ChRs. a, ChR properties used for training classification and regression models. b, The classification 
models’ predicted probabilities of function and localization. A threshold for the product of the predicted probabilities (pp) of 0.4 to eliminate nonfunctional 
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models approximate the fitness landscape for each property of interest (insets show hypothetical fitness landscapes). d, Machine-learning pipeline to 
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CheRiff and C1C2 but not in CsChrimR, which has a cysteine at 
that position. D195 is also part of a contact with L192 that con-
tributes strongly to photocurrent strength (Supplementary Fig. 4).  

A number of contacts proximal to retinal contribute strongly to 
photocurrent strength. For example, the most heavily weighted 
contact includes A295 (from CsChrimR), which is adjacent to the  
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conserved lysine residue that covalently links retinal (Supplementary 
Fig. 4). This position is a serine in both C1C2 and CheRiff.

Machine-guided search identifies ChRs with a range of useful 
functional properties. We assessed photocurrent amplitude, wave-
length sensitivity and off-kinetics of the designer ChRs and the three 
parental ChRs (Fig. 2). In addition to the 28 regression model-pre-
dicted ChRs, we also assessed the two top-performing ChRs from 
the classification models’ predictions (ChR_9_4 and ChR_25_9), 
for a total of 30 model-predicted highly functional ChRs as well as 
the two negative control ChRs (ChR_29_10, ChR_30_10). Of the 30 
model-predicted ChRs, we found 12 variants with at least two times 
higher blue-light-activated photocurrents than the top-performing 
parent (CsChrimR) (Fig. 2b). Three variants exhibit at least 1.7 
times higher green-light-activated photocurrents than CsChrimR. 
Eight variants have larger red-light-activated photocurrents when 
compared with the blue-light-activated parents (CheRiff and C1C2), 
though none outperform CsChrimR. Both ChR variants predicted 
to be nonfunctional by the models produce <30 pA currents.

Designer ChRs’ off-kinetics span three orders of magnitude 
(τoff = 10 ms to >10 s) (Fig. 2c). This range is quite remarkable 
given that all designer ChRs are built from sequence blocks of 
three parents that have similar off-kinetics (τoff = 30–50 ms). 
We found that five designer ChRs have faster off-kinetics 
than the fastest parent, while 16 have more than five times 
slower off-kinetics. The two fastest variants, ChR_3_10 and 
ChR_21_10, exhibit τoff = 13 ± 0.9 ms and 12 ± 0.4 ms, respectively 
(mean ± s.e.m.). Four ChRs have particularly slow off-kinetics 
with τoff > 1 s, including ChR_15_10, ChR_6_10 and ChR_13_10 
(τoff = 4.3 ± 0.1 s, 8.0 ± 0.5 s and 17 ± 7 s, respectively). Two ChRs 
with very large photocurrents, ChR_25_9 and ChR_11_10, exhibit 
τoff = 220 ± 10 ms and 330 ± 30 ms, respectively.

Three designer ChRs exhibit interesting spectral properties 
(Fig. 2d and Supplementary Fig. 5). ChR_28_10’s red-shifted spec-
trum matches that of CsChrimR, demonstrating that incorporat-
ing sequence elements from blue-shifted ChRs into CsChrimR can 
still generate a red-shifted activation spectrum. ChR_11_10 has 
a broad activation spectrum relative to the parental spectra, with 
similar steady-state current strength from 400 to 546 nm light and 
strong currents (700 ± 100 pA) when activated with 567 nm light. 
ChR_25_9, on the other hand, exhibits a narrow activation spec-
trum relative to the parental spectra, with a peak at 481 nm light.

We assessed the light sensitivity of select designer ChRs. 
Compared with CsChrimR, CheRiff and C1C2, the designer ChRs 
have at least nine times larger currents at the lowest intensity of 
light tested (10−1 mW mm−2), larger currents at all intensities of light 
tested and minimal decrease in photocurrent magnitude over the 
range of intensities tested (10−1–101 mW mm−2), suggesting that 
photocurrents were saturated at these intensities and would only 
attenuate at much lower light intensities (Fig. 2e). These select 
designer ChRs are expressed at levels similar to the CsChrimR par-
ent (the highest-expressing parent), indicating that the improved 
photocurrent strength of these ChRs is not solely due to improved 
expression (Supplementary Figs. 6 and 7).

We compared three of the top designer ChRs (ChR_9_4, 
ChR_25_9 and ChR_11_10) with ChR2(H134R) (ref. 6,28), an 
enhanced photocurrent single mutant of ChR2 commonly used for 
in  vivo optogenetics, and CoChR (from Chloromonas oogama)11, 
reported to be one of the highest-conducting ChRs activated by 
blue light11 (Supplementary Fig. 8). The selected designer ChRs 
produce three to six times larger photocurrents than ChR2(H134R) 
when exposed to high-intensity (2.2 mW mm−2) 481 nm light 
and 10–18 times larger photocurrents than ChR2(H134R) when 
exposed to low-intensity (6.5 × 10−2 mW mm−2) 481 nm light 
(Supplementary Fig. 8d–g). Although CoChR produced peak cur-
rents of similar magnitude to the designer ChRs, CoChR decays 

to a much lower steady-state level (Supplementary Fig. 8d,e), with 
the designer ChRs producing two to three times larger steady-
state photocurrents than CoChR when exposed to high-intensity 
light and three to four times larger steady-state photocurrents 
than CoChR when exposed to low-intensity light (Supplementary  
Fig. 8f,g and Supplementary Table 4). The increased low-light sen-
sitivity of these select designer ChRs is likely due in part to their 
relatively slow off-kinetics, leading to the increased accumulation 
of the open state under low-light conditions14.

Validation of designer ChRs for neuroscience applications. For 
further validation we selected three of the top high-conductance 
ChRs, ChR_9_4, ChR_25_9 and ChR_11_10, and renamed them 
ChRger1, ChRger2 and ChRger3, respectively, for channelrho-
dopsin Gaussian process-engineered recombinant opsin (Fig. 3 
and Supplementary Fig. 9). When expressed in cultured neurons, 
the ChRgers display robust membrane localization and expression 
throughout the neuron soma and neurites (Fig. 3b). The ChRgers 
outperform both CoChR and ChR2(H134R) in photocurrent 
strength with low-intensity light in neuronal cultures (Fig. 3c). The 
designer ChRgers require one to two orders of magnitude lower 
light intensity than CoChR and ChR2(H134R) for neuronal activa-
tion (Fig. 3d and Supplementary Fig. 8h).

Next, we performed direct intracranial injections into the 
mouse prefrontal cortex (PFC) of rAAV-PHP.eB packaging 
either ChRger1–3 or ChR2(H134R) under the hSyn promoter 
(Supplementary Table 5). After 3–5 weeks of expression, we mea-
sured light sensitivity in ChR-expressing neurons in acute brain 
slices. We observed greater light sensitivity for the ChRgers com-
pared with ChR2(H134R) (Fig. 3g,h). The ChRgers exhibit >200 pA 
photocurrent at 10−3 mW mm−2, while at the equivalent irradiance 
ChR2(H134R) exhibits undetectable photocurrents. The ChRgers 
reach >1,000 pA photocurrents with ~10−2 mW mm−2 light, a four-
fold improvement over ChR2(H134R)’s irradiance-matched pho-
tocurrents (Fig. 3g). Our characterization of ChR2(H134R)’s light 
sensitivity and photocurrent strength is consistent with previous 
results from other laboratories6,22.

Designer ChRs and systemic AAVs enable minimally invasive 
optogenetic excitation. We investigated whether these light-sensi-
tive, high-photocurrent ChRs could provide optogenetic activation 
coupled with minimally invasive gene delivery. Previous reports of 
noninvasive optogenetics relied on invasive intracranial virus deliv-
ery, which results in many copies of virus per cell and thus very 
high expression levels of the injected construct29. The AAV capsid 
rAAV-PHP.eB (ref. 19) produces broad transduction throughout the 
central nervous system with a single minimally invasive intravenous 
injection in the adult mouse30,31. Use of rAAV-PHP.eB for optoge-
netic applications has been limited, however, by the low multiplic-
ity of infection with systemically delivered viral vectors, resulting in 
insufficient opsin expression and light-evoked currents to control 
neuronal firing with commonly used channels (for example, ChR2).

We hypothesized that the ChRgers could overcome this limita-
tion and allow large-volume optogenetic excitation following sys-
temic transgene delivery. We systemically delivered rAAV-PHP.
eB packaging ChRger1–3, CoChR or ChR2(H134R) under the 
hSyn promoter and observed broad expression throughout the 
brain (Fig. 3i). Using cell-attached recordings in acute brain slices, 
we measured the fraction of opsin-expressing cells with sufficient 
opsin-mediated currents for light-induced firing (Fig. 3j). Only 
4% of ChR2(H134R)-expressing neurons produced light-induced 
firing, while 77% of CoChR-expressing neurons, 89% of ChRger1-
expressing neurons and 100% of ChRger2- or ChRger3-expressing 
neurons produced light-induced activity. With systemic deliv-
ery, we observed superior light sensitivity of ChRgers compared 
with CoChR in both photocurrent strength (Fig. 3k) and spike  
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fidelity (Fig. 3l). ChRger2-expressing neurons exhibit healthy mem-
brane properties similar to CoChR- or ChR2(H134R)-expressing 
neurons both in culture and in slice (Supplementary Fig. 10 and 

Supplementary Table 6). These results demonstrate the need for 
light-sensitive and high-photocurrent opsins for applications where 
systemic delivery is desired.
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genomes. Plotted data are mean ± s.e.m.
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We systemically delivered rAAV-PHP.eB packaging ChRger1–3 
under the CaMKIIa promoter. With systemic delivery of ChRger2, 
we observed photocurrent strength similar to results observed 
after direct injection into the PFC in acute brain slices (Fig. 3g). 
When expressed in pyramidal neurons in the cortex, ChRger2 and 
ChRger3 enabled robust optically induced firing at rates between  
2 and 10 Hz, although spike fidelity was reduced at higher frequency 
stimulation (Fig. 3m,n). ChRger2 performed best with higher fre-
quency stimulation while ChRger1 performed worst. CoChR has 
better spike fidelity than the ChRgers at higher frequency stimula-
tion (20–40 Hz) (Fig. 3m).

We next evaluated the optogenetic efficiency of ChRger2 using 
optogenetic intracranial self-stimulation of dopaminergic neurons 
of the ventral tegmental area (VTA)32. We systemically delivered 
rAAV-PHP.eB packaging a double-floxed inverted open reading 
frame (DIO) containing either ChRger2 or ChR2(H134R) into 
Dat-Cre mice (Fig. 4a,b and Supplementary Table 5). At 3 weeks 
after systemic delivery and stereotaxic implantation of fiber-optic 
cannulas above the VTA, we placed mice in an operant box and 
conditioned them to trigger a burst of 447 nm laser stimulation 
via nose poke. Animals expressing ChRger2 displayed robust  

optogenetic self-stimulation in a frequency-dependent and laser 
power-dependent manner. Higher frequencies (up to 20 Hz) and 
higher light power (up to 10 mW) promoted greater maximum 
operant response rates (Fig. 4c). Conversely, laser stimulation failed 
to reinforce operant responding in ChR2(H134R)-expressing ani-
mals (Fig. 4c); these results were consistent with results in acute 
slice where the light-induced currents of ChR2(H134R) are too 
weak at the low copy number produced by systemic delivery for 
robust neuronal activation.

To determine whether ChRger2 would enable both minimally 
invasive transgene delivery and minimally invasive optical excita-
tion, we assayed directional control of locomotion in freely mov-
ing animals by optogenetic stimulation of the right secondary 
motor cortex (M2)33. In this assay, unilateral stimulation of M2 
disrupts motor function in the contralateral lower extremities, 
causing mice to turn away from the stimulation side. We systemi-
cally administered rAAV-PHP.eB packaging either ChRger2 or 
ChR2(H134R) under a CaMKIIa promoter for transgene expres-
sion in excitatory pyramidal neurons in the cortex (Fig. 4d and 
Supplementary Table 5). We observed broad expression throughout 
the cortex for both ChRger2- and ChR2(H134R)-injected animals 
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(Fig. 4e and Supplementary Fig. 11). We secured a fiber-optic can-
nula guide to the surface of the thinned skull above M2 without 
puncturing the dura and therefore leaving the brain intact (Fig. 4e), 
which we consider to be minimally invasive. Despite the presence 
of the optically scattering calavarial bone, stimulation with 20 mW 
447 nm light-induced left-turning behavior in animals expressing 
ChRger2 but not in animals expressing ChR2(H134R) (Fig. 4f,g and 
Supplementary Videos 1 and 2). Left-turning behavior terminated 
on conclusion of optical stimulation (Supplementary Video 1). 
Behavioral effects were seen at powers as low as 10 mW. To ensure 
that the turning behavior was not due to visual stimuli or heating 
caused by the stimulation laser, we repeated treadmill experiments 
using 671 nm light, which is outside the excitation spectrum of both 
opsins. Furthermore, 20 mW 671 nm light failed to induce turning 
in both ChRger2 and ChR2(H124R). Overall, these experiments 
demonstrate that ChRger2 is compatible with systemic gene deliv-
ery and can enable minimally invasive optogenetic excitation.

Discussion
We demonstrated a data-driven approach to engineering ChR prop-
erties that enables efficient discovery of highly functional ChR vari-
ants based on data from relatively few variants. In this approach we 
approximate the ChR fitness landscape for a set of ~120,000 chime-
ric ChRs and use it to efficiently search sequence space and select 
top-performing variants for a given property10,24,34. By first eliminat-
ing the vast majority of nonfunctional sequences, we can focus on 
local peaks scattered throughout the landscape. Then, using regres-
sion models, we predict which sequences lie on the fitness peaks.

Machine learning provides a platform for simultaneous optimi-
zation of multiple ChR properties that follow engineering specifica-
tions. Application of this machine-learning pipeline (limited data 
collection from diverse sequences, model training and validation, 
and prediction and testing of new sequences) has great potential to 
optimize other neuroscience tools; for example, anion-conducting 
ChRs12, calcium sensors, voltage sensors35 and AAVs30.

We designed high-performance ChRs (ChRger1–3) with 
unprecedented light sensitivity and validated ChRger2’s applica-
tion for in vivo optogenetics. The high-photocurrent properties of 
these ChRs overcome the limitation of low per-cell copy number 
after systemic delivery. Systemically delivered ChRgers have great 
potential for optogenetic activation of neuronal populations that 
are difficult to access surgically (for example, DRG, nodose gan-
glia, sympathetic chain ganglia and cardiac ganglia) or are widely 
distributed (for example, the enteric nervous system). Coupling 
ChRgers with recently reported upconversion nanoparticles may 
allow for noninvasive optogenetics in deep brain areas with sys-
temic transgene delivery and tissue-penetrating near-infrared light 
for neuronal excitation29. ChRger2 enabled neuronal excitation with 
high temporal precision without invasive intracranial surgery for 
virus delivery or fiber-optic implantation for superficial brain areas, 
extending what is currently possible for optogenetics experiments.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
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Methods
Construct design and cloning. The design, construction and characterization of 
the recombination library of chimeras are described in detail by Bedbrook et al.9. 
The ten-block contiguous and ten-block noncontiguous recombination libraries 
were designed and built using SCHEMA recombination9. Software packages for 
calculating SCHEMA energies are openly available at cheme.che.caltech.edu/
groups/fha/Software.htm. Each chimeric ChR variant in these libraries is composed 
of blocks of sequence from the parental ChR (CsChrimR (ref. 11), C1C2 (ref. 17) and 
CheRiff (ref. 22)), including chimeras with single-block swaps (chimeras consisting 
of nine blocks of one parent and a single block from one of the other two parents) 
and multi-block-swap chimera sequences.

Selected ChR variant genes were inserted into a constant vector backbone 
(pFCK from Addgene plasmid no. 51693 (ref. 22)) with a Golgi export trafficking 
signal sequence (KSRITSEGEYIPLDQIDINV)5 and fluorescent protein (mKate). 
All ChR variants contain the SpyTag sequence following the N-terminal signal 
peptide for the SpyTag/SpyCatcher labeling assays used to characterize ChR 
membrane localization9,36. The C1C2 parent for the recombination libraries is 
mammalian codon-optimized. ChR variant sequences used in this study are 
documented in Supplementary Data 2. All selected ChR genes were synthesized 
and cloned in the pFCK mammalian expression vector by Twist Bioscience. For 
visualization, sequence alignment between C1C2 and designer ChRs were created 
using ClustalΩ and visualized using ENDscript37 (Supplementary Fig. 3).

For characterization in neurons, selected ChR variants (ChRger1, ChRger2, 
ChRger3, CoChR11 and hChR2(H134R)) were inserted into a pAAV-hSyn vector 
backbone (Addgene plasmid no. 26973), a pAAV-CamKIIa vector backbone 
(Addgene plasmid no. 51087) and a pAAV-CAG-DIO vector backbone (Addgene 
plasmid no. 104052). In all backbones, each ChR was inserted with a trafficking 
signal sequence5 and fluorescent protein (eYFP).

HEK293T cell and primary neuronal cultures. The culturing and characterization 
of ChRs in HEK cells is described by Bedbrook et al.9,36. Briefly, HEK cells were 
cultured at 37 °C and 5% CO2 in D10 (DMEM supplemented with 10% (vol/
vol) fetal bovine serum, 1% sodium bicarbonate and 1% sodium pyruvate). HEK 
cells were transfected with purified ChR variant DNA using FuGENE 6 reagent 
according to the manufacturer’s (Promega) recommendations. Cells were given 
48 h to express the ChRs before photocurrent measurements. Primary hippocampal 
neuronal cultures were prepped from C57BL/6N mouse embryos 16–18 d post-
fertilization (Charles River Laboratories) and cultured at 37 °C in the presence 
of 5% CO2 in Neurobasal media supplemented with glutamine and B27. Cells 
were transduced 3–4 d after plating with rAAV-PHP.eB packaging ChR2(H134R), 
CoChR, ChRger1, ChRger2 or ChRger3. Whole-cell recordings were performed 
5–10 d after transduction.

Patch-clamp electrophysiology. Whole-cell patch-clamp and cell-attached 
recordings were performed in transfected HEK cells, transduced cultured 
neurons and acute brain slices to measure light-activated inward currents 
or neuronal firing. For electrophysiological recordings, cultured cells were 
continuously perfused with extracellular solution at room temperature  
(in mM: 140 NaCl, 5 KCl, 10 HEPES, 2 MgCl2, 2 CaCl2, 10 glucose; pH 7.35) 
while mounted on the microscope stage. For slice recordings, 32 °C artificial 
cerebrospinal fluid was continuously perfused over slices. Artificial cerebrospinal 
fluid contained 127 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 
12 mM D-glucose, 0.4 mM sodium ascorbate, 2 mM CaCl2 and 1 mM MgCl2 and 
was bubbled continuously with 95% oxygen/5% CO2. Firing and photocurrent 
measurements were performed in the presence of 3 mM kynurenic acid and 
100 μM picrotoxin to block optically evoked ionotropic glutamatergic and 
GABAergic currents, respectively.

Patch pipettes were fabricated from borosilicate capillary glass tubing (1B150-4;  
World Precision Instruments) using a model P-2000 laser puller (Sutter 
Instruments) to resistances of 3–6 MΩ. Pipettes were filled with K-gluconate 
intracellular solution containing the following (in mM): 134 K-gluconate, 5 EGTA, 
10 HEPES, 2 MgCl2, 0.5 CaCl2, 3 ATP and 0.2 GTP. Whole-cell patch-clamp and 
cell-attached recordings were made using a Multiclamp 700B amplifier (Molecular 
Devices), a Digidata 1440 digitizer (Molecular Devices) and a PC running 
pClamp (version 10.4) software (Molecular Devices) to generate current injection 
waveforms and to record voltage and current traces.

Photocurrents were recorded from cells in voltage clamp held at −60 mV. 
Neuronal firing was measured in current-clamp mode with current injection 
for a −60 mV holding potential. Access resistance (Ra) and membrane resistance 
(Rm) were monitored throughout recording, and cells were discarded if Ra or Rm 
changed more than 15%. During ChR variant functional screening in HEK cells, 
photocurrents were only recorded from cells that passed our recording criteria: 
Rm > 200 MΩ and holding current >−100 pA. Our measured membrane properties 
of ChR-expressing neurons were consistent with previous literature of opsin-
expressing cells11 and are also consistent with previous reports of properties of 
cultured hippocampal neurons38,39 and PFC neurons in slice40,41 (Supplementary 
Fig. 10). For cell culture experiments, the experimenter was blinded to the identity 
of the ChR being patched but not to the fluorescence level of the cells. For acute 
slice recordings, the experimenter was not blinded to the identity of the ChR.

Light delivery and imaging. Patch-clamp recordings were done with short light 
pulses to measure photocurrents. Light-pulse duration, wavelength and power 
were varied depending on the experiment (as described in the text). Light pulses 
were generated using a Lumencor SPECTRAX light engine. The illumination/
output spectra for each color were measured (Supplementary Fig. 5). To evaluate 
normalized green photocurrent, we measured photocurrent strength at three 
wavelengths (peak ± half width at half maximum): (red) 640 ± 3 nm, (green) 
546 ± 16 nm and (cyan) 481 ± 3 nm with a 0.5 s light pulse. Light intensity was 
matched for these measurements, with 481 nm light at 2.3 mW mm−2, 546 nm light 
at 2.8 mW mm−2 and 640 nm light at 2.2 mW mm−2. For full spectra measurements 
depicted in Fig. 2d, we measured photocurrents at seven different wavelengths 
(peak ± half width half maximum): (red) 640 ± 3 nm, (yellow) 567 ± 13 nm, (green) 
546 ± 16 nm, (teal) 523 ± 6 nm, (cyan) 481 ± 3 nm light-emitting diode (LED), 
(blue) 439 ± 8 nm LED and (violet) 397 ± 3 nm with a 0.5 s light pulse for each 
color. Light intensity is matched across wavelengths at 1.3 mW mm−2.

Imaging of ChR variant expression in HEK cells was performed using an 
Andor Neo 5.5 sCMOS camera and Micro-Manager Open Source Microscopy 
Software (v1.4). Imaging of ChR expression in neuronal cultures and in  
brain slices was performed using a Zeiss LSM 880 confocal microscope and  
Zen software (v2.3).

Electrophysiology data analysis. Electrophysiology data were analyzed using 
Clampfit 10.7 (Molecular Devices) and custom data-processing scripts written 
using open-source packages in the Python programming language to perform 
baseline adjustments, find the peak and steady-state inward currents, perform 
monoexponential fits of photocurrent decay for off-kinetic properties and  
quantify spike fidelity. Only neurons with an uncompensated series resistance 
between 5 and 25 MΩ, Rm > 90 MΩ and holding current >−150 pA (holding at 
−60 mV) were included in data analysis (Supplementary Fig. 10). The photocurrent 
amplitude was not adjusted for expression level since both expression and 
conductance contribute to the in vivo utility of the tool. However, comparisons of 
expression with photocurrent strength for all ChR variants tested are included in 
Supplementary Fig. 6 and 7.

On light exposure, ChRs open and reach a peak inward current and then 
desensitize reaching a lower steady-state current. As metrics of photocurrent 
strength, peak and steady-state photocurrent were used (Fig. 1a). As a metric for 
the ChR wavelength sensitivity of activation spectrum (that is, spectral properties), 
the normalized current strength induced by exposure to green light (546 nm) 
was used (Fig. 1a), which easily differentiates blue-shifted ChRs (peak activation: 
~450–480 nm) and red-shifted ChRs (peak activation: ~520–650 nm). Two 
parameters were used to characterize ChR off-kinetics: the time to reach 50% of 
the light-activated current after a 0.5 s light pulse and the photocurrent decay rate 
(τoff) after a 1 ms light exposure (Fig. 1a).

AAV production and purification. Production of recombinant AAV-PHP.eB 
packaging pAAV-hSyn-X-TS-eYFP-WPRE, pAAV-CAG-DIO[X-TS-eYFP]-WPRE 
and pAAV-CaMKIIa-X-TS-eYFP-WPRE (X = ChR2(H134R), CoChR, ChRger1, 
ChRger2 and ChRger3) was done following the methods described by Deverman 
et al.42 and Challis et al.31. Briefly, triple transfection of HEK293T cells (ATCC)  
was performed using polyethylenimine. Viral particles were harvested from 
the media and cells. Virus was then purified over iodixanol (Optiprep, Sigma; 
D1556) step gradients (15%, 25%, 40% and 60%). Viruses were concentrated and 
formulated in PBS. Virus titers were determined by measuring the number of 
DNase I-resistant viral genomes using quantitative PCR with linearized genome 
plasmid as a standard.

Animals. All procedures were approved by the California Institute of Technology 
Institutional Animal Care and Use Committee. Dat-Cre mice (006660) and 
C57Bl/6J mice (000664) were purchased from the Jackson Laboratory.

Intravenous injections, stereotactic injections and cannula implantation. 
Intravenous administration of rAAV vectors was performed by injecting the 
virus into the retro-orbital sinus at viral titers indicated in the text. There were no 
observed health issues with animals after systemic injection of virus at the titers 
presented in the paper. Mice remained healthy >6 months after systemic delivery of 
ChR2 and ChRgers. With slice electrophysiology, there was no observed indication 
of poor cell health due to viral-mediated expression, which was quantified by 
measuring the membrane resistance (Rm), leak current (holding at −60 mV) and 
resting membrane potential (Supplementary Fig. 10). Local expression in the 
PFC was achieved by direct stereotactic injection of 1 μl of purified AAV vectors 
at 5 × 1012 viral genomes per ml targeting the following coordinates: anterior-
posterior (AP), −1.7; media-lateral (ML), ±0.5; and dorsal-ventral (DV), −2.2. 
For stimulation of the VTA, 300 μm outer diameter mono fiber-optic cannulae 
(Doric Lenses, MFC_300/330-0.37_6mm_ZF1.25_FLT) were stereotaxically 
implanted 200 μm above the VTA bilaterally targeted to the following coordinates: 
AP, −3.44 mm; ML, ±0.48 mm; DV, 4.4 mm. For stimulation of the right M2, 
3-mm-long, 400 μm mono fiber-optic cannulae (Doric Lenses, MFC_400/430-
0.48_3mm_ZF1.25_FLT) were surgically secured to the surface of the skull above 
M2 (unilaterally) targeted to the following coordinates: AP, 1 mm; ML, 0.5 mm. 
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The skull was thinned ~40–50% with a standard drill to create a level surface 
for the fiber–skull interface. Light was delivered from either a 447 nm or 671 nm 
laser (Changchun New Industries Model with PSU-H-LED) via mono fiber-optic 
patch cable(s) (Doric Lenses, MFP_400/430/1100-0.48_2m_FC-ZF1.25) coupled 
to the fiber-optic cannula(e). Fiber-optic cannulae were secured to the skull with 
Metabond (Parkel, SKU S396) and dental cement.

Analysis of behavioral experiments was performed using the open-source 
MATLAB program OptiMouse43 to track mouse nose, body and tail position while 
the mouse was running on the treadmill. Optogenetic intracranial self-stimulation 
was performed using a mouse modular test chamber (Lafayette Instruments, 
Model 80015NS) outfitted with an infrared nose port (Model 80116TM).

GP modeling. Both the GP regression and classification modeling methods 
applied in this paper are based on work detailed in refs. 8,24. For modeling, all 
sequences were aligned using multiple sequence comparison by log-expectation 
(MUSCLE) (https://www.ebi.ac.uk/Tools/msa/muscle/). For modeling, aligned 
sequences were truncated to match the length of the C1C2 sequence, eliminating 
N- and C-terminal fragments with poor alignment quality due to high sequence 
diversity (Supplementary Data 1 and 2). Structural encodings (that is, the contact 
map) use the C1C2 crystal structure (3UG9.pdb) and assume that ChR chimeras 
share the contact architecture observed in the C1C2 crystal structure. Models 
built using structural encodings built from the ChR2 structure (6EID.pdb) and 
the C1Chrimson structure (5ZIH.pdb) performed as well as models using the 
C1C2 structure (Supplementary Fig. 1c,d). The models are robust to differences in 
contact maps because they use both sequence and structural information, which is 
somewhat redundant.

For a given ChR, the contact map is simply a list of contacting amino acids 
with their positions. For example, a contact between alanine at position 134 
and methionine at position 1 of the amino acid sequence would be encoded 
by ((‘A134’), (‘M1’)). Both sequence and structural information were one-hot 
encoded. Regression models for ChR properties were trained to predict the 
logarithm of the measured properties. All training data were normalized to have 
mean of zero and standard deviation of 1.

GP regression and classification models require kernel functions that measure 
the similarity between protein sequences. Learning involves optimizing the form 
of the kernel and its hyperparameters (Supplementary Table 2). The Matérn kernel 
was found to be optimal for all ChR properties (Supplementary Table 1).

For classification model training, all 102 functionally characterized ChR 
variants from our recombination libraries (Supplementary Data 2) were used as 
well as data from 61 sequence variants published by others (Supplementary  
Data 1). The model was then updated with data collected from the 22 additional 
ChR recombination variants with high sequence diversity (~70 mutations from  
the closest parent) and predicted to be functional (Fig. 1d). For training the 
regression models, all 102 functionally characterized training sequences 
(Supplementary Data 2) were initially used and then the models were updated  
with data collected from the 22 additional ChR variants (Fig. 1d).

GP regression. In regression, the goal is to infer the value of an unknown function 
f(x) at a novel point xz

I
 given observations y at inputs X. Assuming that the 

observations are subject to independent and identically distributed Gaussian noise 
with variance σ2n

I
, the posterior distribution of f z ¼ f xz

� �

I
 for GP regression is 

Gaussian with mean

�fz ¼ kTz K þ σ2nI
� ��1

y ð1Þ

and variance

vz ¼ k xz; xz
� �

� kT* K þ σ2nI
� ��1

kz ð2Þ

where I is the identity matrix. K is the symmetric, square covariance matrix for 
the training set: Kij ¼ k xi; xj

� �

I
 for xi and xj in the training set. kz

I
 is the vector 

of covariances between the novel input and each input in the training set, and 
kzi ¼ k xz; xi

� �

I
. The hyperparameters in the kernel functions and the noise 

hyperparameter σn
I

 were determined by maximizing the log marginal likelihood:

log p yjXð Þ ¼ � 1
2
yT K þ σ2nI
� ��1

y � 1
2
log K þ σ2nI

�� ��� n
2
log 2π ð3Þ

where n is the dimensionality of the inputs. Regression was implemented using 
open-source packages in the SciPy ecosystem44–46.

GP classification. In binary classification, instead of continuous outputs y, the 
outputs are class labels yi 2 þ1;�1f g

I
, and the goal is to use the training data to 

make probabilistic predictions π xz
� �

¼ p yz ¼ þ1jxz
� �

I
. We use Laplace’s method to 

approximate the posterior distribution. Hyperparameters in the kernels are found 
by maximizing the marginal likelihood. Classification was implemented using 
open-source packages in the SciPy ecosystem44–46. The binary classification  
model was trained to predict whether a ChR sequence is or is not functional.  
A ChR sequence was considered to be functional if its photocurrents were >100 pA 

on light exposure, a threshold set as an approximate lower bound for current 
necessary for neuronal activation.

GP kernels for modeling proteins. GP regression and classification models require 
kernel functions that measure the similarity between protein sequences. A protein 
sequence s of length L is defined by the amino acid present at each location. This 
can be encoded as a binary feature vector xse that indicates the presence or absence 
of each amino acid at each position resulting in a vector of length 20L (for 20 
possible amino acids). Likewise, the protein’s structure can be represented as a 
residue–residue contact map. The contact map can be encoded as a binary feature 
vector xst

I
 that indicates the presence or absence of each possible contacting pair. 

Both the sequence and structure feature vectors were used by concatenating them 
to form a sequence–structure feature vector.

Three types of kernel functions k(si,sj) were considered: polynomial kernels, 
squared exponential kernels and Matérn kernels. These different forms represent 
possible functions for the protein’s fitness landscape. The polynomial kernel with 
degree d is defined as:

k s; s0ð Þ ¼ σ20 þ σ2px
Tx0

� �d
ð4Þ

where s is a protein sequence and x its corresponding encoding and σ0
I

 and σp
I

 
are hyperparameters. We considered polynomial kernels with d = 3. The squared 
exponential kernel is defined as:

k s; s0ð Þ ¼ σ2pexp � x � x0k k22
l

� �
ð5Þ

where l and σp are also hyperparameters and j  j2
I

 is the L2 norm. Finally, the 
Matérn kernel with v ¼ 5

2
I

 is defined as:

k s; s0ð Þ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 x � x0k k22

q

l
þ 5 x � x0k k22

3l2

0
@

1
Aexp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

l

0
@

1
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where l is once again a hyperparameter.

L1 regression feature identification and weighting. L1 regression was used to 
identify residues and contacts in the ChR structure most important for each 
ChR functional property of interest. First, residues and contacts that covary 
were identified using the concatenated sequence and structure binary feature 
vector for each of the training set ChR variants. Each set of covarying residues 
and contacts was combined into a single feature. L1 linear regression was used 
to select the features that contribute most to each ChR functional property 
of interest. The level of regularization was chosen by maximizing the log 
marginal likelihood of the GP regression model trained on the features selected 
at that level of regularization. We then performed Bayesian ridge regression 
on the selected features using the default settings in scikit-learn47. Residues 
and contacts with the largest absolute Bayesian ridge linear regression weights 
were plotted onto the C1C2 structure (Supplementary Fig. 4). For feature 
identification and weighting, models were trained on both the training set and 
also the test set of 28 ChR sequences predicted to have useful combinations of 
diverse properties.

Statistical analysis. Plotting and statistical analysis were done in Python 2.7 and 
3.6 and GraphPad Prism 7.01. For statistical comparisons, we first performed a 
D’Agostino and Pearson normality test. If the P value of a D’Agostino and Pearson 
normality test was <0.05, the nonparametric Kruskal–Wallis test with Dunn’s 
multiple comparisons post hoc test was used. If the data passed the normality test, 
a one-way analysis of variance was used.

Accession codes. GenBank: ChRger1, MN340983; ChRger2, MN340984;  
ChRger3, MN340985.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are available 
within the paper and its Supplementary information files. Source data for 
classification model training are provided in Supplementary Data 1 and 2. Source 
data for regression model training are provided in Supplementary Data 2. DNA 
constructs for the ChRger variants are deposited for distribution at Addgene 
(http://www.addgene.org, plasmid numbers 127237-44).

Code availability
Code used to train classification and regression models can be found at https://
github.com/fhalab/channels.
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