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ABSTRACT: This Letter describes the use of deep learning methods on Hirshfeld surface
representations of crystal structure, as an automated means of predicting lattice parameters
in cubic inorganic perovskites. While Hirshfeld Surface Analysis is a well-established tool in
organic crystallography, we also introduce modified computational protocols for Hirshfeld
Surface Analysis tailored specifically to account for nuanced but important differences
dealing with inorganic crystals. We demonstrate how two-dimensional Hirshfeld surface
fingerprints can serve as a rich “database” of information encoding the complexity of
relationships between chemical bonding and bond geometry characteristics of perovskites.
Our results are compared with other studies on lattice parameter prediction involving both
experimental and computationally derived data, and it is shown that our approach is an
improvement over other reported methods. The paper concludes by discussing how this
work opens new avenues for data-driven high throughput computational predictions of

structure—property relationships involving complex crystal chemistries.

he measurement and prediction of lattice parameters for

perovskite structures has long been and continues to be a
topic of study for many years. This arises from the fact that the
lattice parameter serves as a probe into the complex geometric
and bonding characteristics that govern the stability and
properties of such compounds. The studies have mainly
involved the statistical/machine learning-based analysis of
experimental data, augmented by additional descriptor data
such as atomic radii, Pauling electronegativities, and valence or
oxidation states.' " From a machine learning perspective, these
studies utilized traditional algorithms such as Support Vector
Regression (SVR), Artificial Neural Network (ANN), and
General Regression Neural Network (GRNN). These have
achieved high accuracy for experimentally realized cubic
perovskites but are rarely tested against the wide chemical
space that Density Functional Theory (DFT) can access. DFT
is routinely used to predict many properties of materials,
including lattice parameter, though the computationally
cheapest and most popular functionals, the local-density
approximation (LDA) and the generalized gradient approx-
imation of Perdew—Burke—Ernzerhof (PBE) tend to under-
and overestimate the lattice constant, respectively.’

More recently, methods such as the Crystal Graph
Convolutional Neural Network (CGCNN) have been used
to represent crystal structures for machine learning of various
properties."” The CGCNN method uses a graph network
composed of atomic nodes containing elemental information
and connections between nodes containing bond distances. A
custom convolution function is used between connected nodes
to incorporate environmental data on each node. The pool of
neighbor-convoluted nodes is then summed and normalized to
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create a 1D feature vector used to predict the property of
interest for the crystal.

In this paper, we introduce an approach to predict lattice
parameters in perovskite structures that is founded on a
representation of crystal structure in terms of 3-dimensional
(3D) Hirshfeld surfaces that encode both chemical bonding
and molecular geometry information."" The concept of
Hirshfeld surfaces is used extensively in the analysis of organic
molecular crystals,'' ™' where it provides a computationally
efficient way to analyze molecular packing, close contact
points, molecule shape, and intermolecular interactions.
Hirshfeld surfaces arise from the question of how to assemble
molecules and fabricate flexible or rigid building blocks into
multicomponent systems. In this study, we are expanding that
concept to inorganic crystals, as it provides a viable framework
as a representation that is sensitive to the crystal structure,
stoichiometry (e.g., similar crystal structures may have different
chemistries), defects, and lattice distortions associated with
local site chemistry and occupancy.

For this study, we made some modifications to the
traditional representations of the Hirshfeld surface used for
molecular crystals. In smaller crystal systems, such as rocksalt, a
traditional Hirshfeld surface will capture information about all
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PuCuO3

Figure 1. (a) Structure of PuCuQ; using a lattice parameter of 3.52582 A and the calculated Hirshfeld surfaces of the five atoms in the primitive
unit cell shown in red. Lattice parameters used in calculation were randomly selected in the range 3.5—5.5 A, the range most oxide cubic
perovskites lie within. Gray atoms are Pu. Orange are Cu. Red are O. (b) Mapping of d; onto the five Hirshfeld surfaces from (a) that compose the
primitive unit cell of the structure. The inset shows the arrangement of the atoms under the surfaces. Dark blue to dark red spans 0.8425—1.5890 A.
(c) Mapping of d, onto the five Hirshfeld surfaces from (a) that compose the primitive unit cell of the structure. The inset shows the arrangement
of the atoms under the surfaces. Dark blue to dark red spans 0.8684—1.8699 A. (d) Fingerprint plot of the combined five unique Hirshfeld surfaces
of PuCuOj;, made by binning the (d;, d.) pairs, shown in (b) and (c), over all points on the surfaces. The fingerprint plot made by these atomic
surfaces looks different from one made using one traditional Hirshfeld surface for the entire primitive cell. The differences and shared features are

discussed more in the Supporting Information.

atoms. For larger systems, such as distorted or double
perovskites, some atomic sites will be located deep inside a
traditional Hirshfeld surface. Shifts of such deep sites
contribute only very minimally to the shape of the Hirshfeld
surface. Thus, those sites are poorly characterized within the
fingerprint plot of the Hirshfeld surface. To address this issue,
we chose to use a fingerprint made from the combined set of
Hirshfeld surfaces for each unique atomic site within the
crystal structure. This also removes the ambiguity of unit cell
(or pro-molecule, in Hirshfeld surface terms) selection while
allowing equal attention to all atoms within the crystal
structure. Future work will elaborate upon the benefits this
provides in larger and less symmetric crystal structures. The
supplementary section compares traditional Hirshfeld surfaces
and their fingerprint plots to this modified approach. The
decision to use atomic Hirshfeld surfaces was inspired by the
long history of Atom In Molecule (AIM) research utilizing
Hirshfeld surfaces,'°™"? and our fingerprint acts as a Hirshfeld
AIM characterization of the crystal system that is computa-
tionally simple through use of the neutral charge densities.
The Hirshfeld surface gives the shape of a molecule within
an environment. It is calculated by taking, for all points in
space, the sum of the spherically averaged electron densities for
each atom within the molecule as well as each atom within a
reasonable cutoff distance. The Hirshfeld surface is then
defined as the points where 50% of the electron density comes
from atoms within the molecule. Hirshfeld surfaces are thus a
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function of the molecule’s structure, atomic composition, and
environment. In addition to the Hirshfeld surface itself, we can
encode other geometric properties on the surfaces. In
particular, each point on the surface can be mapped with a
set of values based on the neighboring environment. The
contact distances d, and d, are the distances from the Hirshfeld
surface to the nearest atoms outside and inside the surface,
respectively. The distribution of d; and d, in the fingerprint plot
of a Hirshfeld surface characterizes the shape and environment
of the molecule. It is desirable to have information on the
shape and environment on each atom within the crystal
structure when predicting the lattice parameter, or many other
properties of inorganics. The lattice parameter of a crystal is a
complex function of the chemistry and crystal structure.
Directional bonding and orbital hybridization can cause the
same atom to behave very differently in different local
environments. Atomic properties and bonding interactions
between neighbor atoms make every atom and every atom’s
environment critical to the determination of the lattice
parameter. For this reason, as noted above, we have chosen
to use an alternate fingerprint plot consisting of the summed
(dy, d.) pairs from all atomic Hirshfeld surfaces within the
crystal structure, as shown in Figure 1.

In this study, we show how Hirshfeld surfaces provide a
simple but powerful method of “fingerprinting” an inorganic
crystal for machine learning techniques. The 3D Hirshfeld
surface can be converted into a rotationally invariant two-
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Figure 2. Feed-forward propagation of our proposed neural network has feature extraction layers (F) and fully connected layers (G) that uses a 2D
fingerprint plot of size N X M as an input. The feature extraction layers (F) use a combination of convolution, ReLU, and pooling layers to produce

low-dimensional feature maps that shows distinct regions in the image. The final p set of feature maps A = {A,, A,,

.. ,Ap}, A, € RMM \when

flattened produces a 1D feature vector a € RNMP that serves as input for the fully connected layers (G). The output of the network y € R (in

red) is a scalar quantity that represents the lattice parameter.

dimensional (2D) “fingerprint” by measuring (d;, d.) at each
point on the surface and binning these pairs into a 2D
histogram. These fingerprints have the same format as single-
channel 2D images (a 2D tensor representing a regular grid of
magnitude values, such as a grayscale image or a height map)
and are well suited as input to neural network image processing
techniques such as Convolutional Neural Networks.”*'

In this paper, we use our fingerprint plot made from atomic
Hirshfeld surfaces to predict the DFT lattice constants for
ABO; cubic perovskites, to demonstrate the capability of the
method for general machine learning of crystal properties. For
comparison, we have also used the Crystal Graph Convolu-
tional Neural Network (CGCNN) technique.'’ We use the set
of ABO; cubic perovskite structures and their relaxed lattice
constants from the Open Quantum Materials Database
OQMD?> to demonstrate that a neural net trained on the
atomic Hirshfeld surface fingerprint plots achieves an accuracy
on par or better than the CGCNN technique.

To generate our data set, the 5321 ABO; cubic perovskites
from OQMD were initially selected. These include all elements
up to Z = 94 except for the noble gases, the halogens, H, C, N,
O, P, S, Se, and Po. The data set was then trimmed down to
5250 structures by removing cases fitting either of two criteria.
First, if the relaxed lattice parameter was greater than 5 A or
more than 2% larger than the (generous) unrelaxed lattice
parameter used by OQMD, they were removed as these are
likely to be unstable structures. Second, if the relaxed lattice
parameter was equal to the unrelaxed lattice parameter, they
were removed as these may be unnoticed failed calculations.
The Hirshfeld surface of each atom in every structure was then
calculated using the Tonto software package, an open-source
tool for Hirshfeld surface and other analysis.”> For both
Hirshfeld surface calculation and CGCNN initialization, initial
lattice constants were assigned to each structure as a random
value in the range of 3.5—5.5 A, the range of most oxide cubic
perovskites. A second data set using the OQMD unrelaxed
lattice parameters (based on stoichiometry) is also included in
the Supporting Information, as well a demonstration of the
technique’s robustness against variation in initial lattice
parameter. To achieve smooth fingerprint plots, the atomic
Hirshfeld surfaces were interpolated using 10 points between
each vertex, and then the fingerprint plot for each structure was
created by binning the (d, d.) pairs of all interpolated surfaces
in the structure into S0 X SO bin histograms (bin size = 0.04
A) ranging 0.76—2.8 A for both d; and d,. Additional example
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structures and Hirshfeld surfaces are shown in the Supporting
Information.

The machine learning model used in this work is a CNN-
based regression model that takes a conventional ConvNet™*
and replaces the last softmax layer with a dense layer of a single
output variable. The feature-extraction layers (F) contains
Convolution + ReLU. See Figure 2. The exact architecture is
listed in the Supporting Information.

Convolution Neural Networks (CNN) work on an input
variable that is a tensor having a grid-like structure. The
underlying assumption is that the complex geometrical features
of a tensor are an ensemble of smaller and simpler patterns. In
contrast to any other type of layer, CNN uses small filters that
extract local features and progressively reduce the size of the
input variable with each layer. The number of layers in CNN
increases with an increase in the size of the input tensor.
However, the number of parameters increases linearly with an
increase in the number of layers, since the previous layer can
have the same number of parameters as the next layer. Thus,
CNN exhibits both low space and computational time
complexity for larger input sizes.

Consider the input image X of size N X M and the
parameter set of R as €. Each convolution + ReLU and pooling
layer produces feature maps of reduced dimension as
compared to its input. The output feature map of a layer
serves as the input for the next layer. Consider the input to the

ith layer as A, € RV as input to the convolution layer F,

with w, € RP*" as one of the filter. The pixel value of feature

map A, € RVAYPM B o 4y produced by the

convolution layer is given as
A,’+1[m1 n] = (Ai X E)[m; n]
=2 > wlj, klAm — j, n — k]
ik

A, goes through the Rectified Linear Unit (ReLU) function
as A;,; = max(0, A;,;). Thus, the convolution layer works by
identifying features of size p} X p} as produced by the filter w; is
activated only where there is a positive output. Finally, a max-
pooling layer of size g X g reduces the dimension of the
feature map A, to size N;,; X M,,,, where
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Table 1. 7> Value, Mean Absolute Error (MAE), and Mean Squared Error (MSE) for Test Set Prediction Using Existing
Literature Approaches Compared to Our Atomic Hirshfeld Surfaces Fingerprint Plot with a Convolutional Neural Network,
Which Shows Higher Accuracy

data set data type method 7 MAE MSE
OQMD - random a“ computational CGCNN'? 0.948341 0.0402052 0.00401756
Kuzmanovski et al.® experimental counter-propagation artificial neural network (CPANN)® 0.931182 0.0853067 0.01230575
OQMD - random a“ computational fingerprint + CNN 0.974527 0.0333193 0.0019810S
Kuzmanovski et al.® experimental fingerprint + CNN 0.993874 0.0220539 0.00109539

“The “OQMD - random a” data set refers to the data set constructed from cubic oxide perovskites calculated in OQMD,** with their initial lattice
parameters randomized in the 3.5—5.5 A range, as described in the main text.
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Figure 3. Test set residuals for the prediction of cubic perovskite DFT lattice parameters from structures with randomized lattice parameters using
(top) the CGCNN technique10 or (bottom) the atomic Hirshfeld surfaces fingerprint plot with a convolutional neural network. The fingerprint
plot method shows better performance with no large outliers. The dashed lines show a linear regression of the residuals.

N, — Pli 41 M, - Pé +1 and Figure 3, the Hirshfeld surfaces fingerprint plus CNN
Nyy=—"7F— My=——7F" achieves higher accuracy than the CGCNN method, indicating
49 5 that Hirshfeld surface shape changes are sufficiently

information-rich to provide accurate property predictions
across wide chemical spaces.

Clearly, the high level of statistical fit reflects the richness of
information that is embedded in the 2-dimensional Hirshfeld
surface fingerprints. As noted earlier, it encodes both chemical
bonding and molecular geometry information. This genre of
data representation simultaneously captures the synergistic
effects of chemical formulas, bonding, electronic structure,

1 ¥ w1 N 5 intermolecular packing, the nature of the structural building

L= N z ()? - )f) = N Z ()i — Ry(X)) units, and their network connections, all of which influence

i i lattice parameter. The CNN is specifically selecting features in
The model parameters are trained via back-propagation using the 2D HS which are in fact the 2D statistical distributions in d,
the Adam optimizer® as vs d.. So our analysis is suggesting that certain (d, d.)
distributions hold the key to predicting the lattice parameter.

Apart from the dimensionality reduction, the max-pooling also
produces an output map that is invariant to small trans-
formation within the pool window. The output neuron y € R
of the model is a scalar quantity representing the lattice
parameter. Considering the estimated output of the model as ¥
and the target value as y, the regression loss function can be
written as

A . 1 il ) (d, d.) distributions represent information on bond contacts,
9=m1nL=m1n—Z(y,—R9(X)) dh it i ¢ ble that it d
3 9 N &~ Vi and hence it is not unreasonable that it serves as a goo

' surrogate indicator of lattice parameters. In a follow up

The model is trained on an environment with Intel i7-7920HQ publication, we shall provide a more detailed documentation of

CPU, 32 GB RAM with a Nvidia Quadro M2200 video card the correlations and trends between (d, d,) distributions
using the open source library Keras with Tensorflow v1.8.0 associated with the different lattice parameter variations.

backend.* To test the method against experimental data, small data

Our convolutional neural net and the CGCNN were trained sets, and non-oxides as well, the data set of Kuzmanovski et al.®

and tested using the same train/test split. As shown in Table 1 was also used. To create easier training for the small data set,
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surfaces fingerprint plus Convolutional Neural Network approach. 7 of the prediction to true values is 0.9939 for the HES+CNN and 0.9312 for
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Figure S. Plot collecting the results of the Hirshfeld surfaces fingerprint plot + CNN on (a) the OQMD (with randomized lattice parameter input),
(b) Kuzmanovski,” and (c) Sidey® (discussed in the Supporting Information) data sets.

the initial lattice parameter for all structures was set to 4.5 A
during Hirshfeld surface generation. As shown in Table 1 and
Figure 4, the Hirshfeld surfaces fingerprint method produces
far more accurate predictions than Kuzmanovski’s method
built on ionic radii, oxidation state, and electronegativity, again
reinforcing our earlier comments on the richness of
information embedded in Hirschfeld surface representation
of crystal structures. The prediction vs observed values for the
previously discussed data sets, including test and training sets,
as well as another discussed in the Supporting Information, are
shown in Figure 5, demonstrating excellent performance on
multiple data sets.
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In this paper we have demonstrated that Hirshfeld surface
fingerprints provide a powerful representation of perovskite
crystal chemistry that is well suited for the application of deep
learning methods to predict lattice parameters. Since Hirshfeld
surfaces contain not only all of the geometric information of a
compound but also chemistry and bonding information, they
can serve as a rich information landscape on which machine
learning tools can be applied.”” The results described in this
paper lay the foundation for exploiting this genre of data motif
to predict other properties and can be readily generalized to
exploring an entire genre of complex inorganic solids, which
will be described in forthcoming publications.
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