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Fig. 1. Our carpentry compiler converts high-level geometric designs made by users to low-level fabrication instructions that can be directly followed to
manufacture parts. The compiler performs multi-objective optimization on the low-level instructions to generate Pareto-optimal candidates.

Traditional manufacturing workflows strongly decouple design and fab-
rication phases. As a result, fabrication-related objectives such as manu-
facturing time and precision are difficult to optimize in the design space,
and vice versa. This paper presents HL-HELM, a high-level, domain-specific
language for expressing abstract, parametric fabrication plans; it also intro-
duces LL-HELM, a low-level language for expressing concrete fabrication
plans that take into account the physical constraints of available manufac-
turing processes. We present a new compiler that supports the real-time,
unoptimized translation of high-level, geometric fabrication operations into
concrete, tool-specific fabrication instructions; this gives users immediate
feedback on the physical feasibility of plans as they design them. HELM
offers novel optimizations to improve accuracy and reduce fabrication time
as well as material costs. Finally, optimized low-level plans can be inter-
preted as step-by-step instructions for users to actually fabricate a physical
product. We provide a variety of example fabrication plans in the carpentry
domain that are designed using our high-level language, show how the
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compiler translates and optimizes these plans to generate concrete low-level
instructions, and present the final physical products fabricated in wood.
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1 INTRODUCTION

Next-generation manufacturing techniques are revolutionizing the
on-demand fabrication of complex custom products. This has spurred
important research advances to enable fabrication-oriented design
optimization. In many applications, however, fabrication is design-
dependent, defined by a sequence of operations on multiple pro-
cesses, where the order of operations and choice of hardware can
only be optimized for a specific design. This scenario raises unex-
plored challenges since product design and fabrication instructions
must be coupled, even as they are separately optimized.

The key insight of this work is that both designs and fabrication
plans are programs. One of the most influential developments in
computer architecture was the introduction of instruction set archi-
tectures (ISAs) [Patterson and Sequin 1981] which define abstract
models of computers and serve as an interface between their soft-
ware and hardware. This abstraction layer enabled the independent
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development of both hardware and software. Our work examines
whether similar hardware and software decoupling can be achieved
for manufacturing.

This work addresses the above question in the context of carpen-
try design and manufacturing for several reasons. First is application
scope. Carpentered items comprise the structures we live in and the
furniture they contain, and they are commonly personalized to fit
spaces and functions. Second, carpentry provides an appropriate
level of complexity for initiating research in this area. It combines
multiple processes and assembly constraints within the confines
of a bounded problem. Finally, recent advances in mobile robotics
allow automated carpentry to occur outside factory floors, making
the end-to-end design and fabrication of personalized carpentry not
only possible but an exciting and open area of research [Lipton et al.
2018].

In this work, we introduce Hardware Extensible Languages for
Manufacturing (HELM), a system that allows us to represent carpen-
try designs and fabrication instructions. We take inspiration from
traditional compilers to propose two layers of abstraction, one high-
level and process-agnostic (HL-HELM) and the other low-level and
process-specific (LL-HELM). HL-HELM is a design language related
to traditional parametric feature-based CAD languages but focused
on subtractive operations that can be mapped to physical wood-
working processes. LL-HELM is a fabrication language. Programs
in LL-HELM can be directly followed to manufacture a part, where
each operation in a program is drawn from an extensible set of fab-
rication instructions. We also propose a new compiler that verifies
HL-HELM code and optimizes fabrication instructions (LL-HELM
code). Because the target language, LL-HELM, is process-specific,
we design an architecture that is extensible to new hardware.

In addition to the abstraction and compilation system, a key tech-
nical contribution of our paper is a novel optimization algorithm for
manufacturing enabled by our proposed pipeline. Cut planning di-
rectly affects the precision of manufactured parts, material wastage,
and production time. Optimizing multi-process cuts is challenging
because it involves a long sequence of interdependent steps with
multiple conflicting objectives, and if not done properly, it can cause
significant labor overhead. By representing the fabrication process
as a program, we can draw on ideas from compiler optimization
to find an efficient sequence of operations that meet user specifica-
tions. We adapt search-based superoptimization techniques based
on e-graphs [Joshi et al. 2002; Tate et al. 2009].! E-graphs compactly
represent (exponentially) large equivalence classes of terms, support
extensibility via simple syntactic rewrites, and enable cooperation of
various solvers through a common representation. However, apply-
ing e-graphs in the context of fabrication requires addressing several
technical challenges: fabrication operations are generally not lin-
ear,? some operations do not map to standard algebraic operations,
some equivalences are difficult to express as syntactic rewrites, and
objectives are multiple and conflicting. Our work overcomes these
challenges by developing new geometric solvers that communicate

A clarifying example for the use of e-graphs is arithmetic expression simplifica-
tion [Panchekha et al. 2015]. Equivalences like commutativity and associativity are
encoded as rewrite rules; a search engine then explores the space of all possible rewrites
in order to minimize the expression’s cost.

?Here “linear” is meant in the type-theoretic sense [Wadler 1990].
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with e-graphs, and by extending e-graph extraction to produce a set
of Pareto-optimal candidate fabrication plans.

We illustrate the advantages of our pipeline by demonstrating the
expressiveness of our design tool and show how our compiler can
automatically verify manufacturability. We demonstrate how the
resulting fabrication instructions can be optimized to meet different
user-specified objectives, such as accuracy, fabrication time, and
material cost.

2 RELATED WORK

Fabrication-Oriented Design. Design for fabrication is gaining at-
tention in the computer graphics community [Bickel et al. 2018].
Many newly proposed systems guide designers in searching the
space of possible designs to both meet user specifications and en-
sure manufacturability. For example, several works optimize for
design appearance [Dong et al. 2010; Lan et al. 2013], deformation
behavior [Bickel et al. 2010; Ma et al. 2017], spinnability [Bacher
et al. 2017], or buoyancy [Wang and Whiting 2016] while ensuring
fabricability with an additive process. Other works focus on specific
processes, such as interlocking quadrilateral elements [Skouras et al.
2015], plush toys [Mori and Igarashi 2007], LEGO [Luo et al. 2015], or
zippables [Schiiller et al. 2018]. These works all assume that a point
in the design space completely determines the fabrication method.
In contrast, our approach decouples fabrication from the design
specification. In our approach, a design is created and optimized in
HL-HELM, while the fabrication process is expressed and optimized
in LL-HELM. We developed a new compiler that converts designs to
fabrication instructions and verifies that a design is manufacturable
with the available processes. It optimizes instructions for multiple
objectives like precision, time, and material cost and can thus gener-
ate different fabrication plans depending on which objective is being
optimized for. Thus, in our system, a single design can generate
multiple diverse fabrication plans that can be optimized to meet
differing requirements of the manufacturing facility.

Computer-Aided Manufacturing (CAM). Decades of CAM research
focused on developing optimal fabrication plans for single specific
fabrication processes, such as 5-axis milling [Zhao et al. 2018], sheet-
metal stretching [Konakovi¢ et al. 2016], and 3D printing [Alexa
et al. 2017; Dai et al. 2018]. An important effort to create a multi-
process representation was STEP-NC [NC 2019], which abstracts
away from machine-specific G-code operations to make tool-type-
specific machining operations. These operations are interpretable
or compilable on different hardware, allowing for inter-machine op-
erations and closed-loop control at the tool-path level [Brecher et al.
2006; Xu and Newman 2006]. Extensions to the STEP-NC frame-
work have permitted its expansion from multi-axis milling to other
metal-working processes, such as Electrical Discharge Machining
(EDM) [Sokolov et al. 2006], sheet metal forming [Xie and Xu 2006],
and 3D printing [Um et al. 2017]. However, manual operations are
still needed to convert a CAD file to a STEP-NC fabrication plan.
More importantly, this task requires expert knowledge to select the
fabrication process and verify that geometry is properly mapped
to tooling operations. In contrast, our system is designed on top of
process-level abstractions; thus, it is compatible with many different
processes. Its optimization framework chooses the process for each
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Fig. 2. Design process: First, users import a library of materials and tools so that the compiler can map design features to fabrication operations. Second, they

create a design in an intuitive interface. Third, at each step of the design process, our verifier checks the manufacturability of the design; for example, in (c),
the maximal radius of curvature is too big for the part to be fabricable using any of the available processes in the library. Fourth, the compiler generates a

set of fabrication plans with different trade-offs. The instructions generated without optimization are shown in orange, and the outputs of our system (i.e.,

optimized instructions) are shown in green.

part automatically, with no human intervention. There are a few
industrial CAM tools [DDX 2019; Solutions 2019; Celi APS 2019]
that can be used for carpentry. To the best of our knowledge, none
of these tools can do cut planning on multiple machines, and none
of them uses similar language abstractions.

Programming Languages for Geometric Modeling and Fabrication.
Geometric modeling has a long-standing history of using domain-
specific languages (DSLs) to describe a sequence of operations that
construct geometry. These include early constructive solid geome-
try (CSG) approaches [Laidlaw et al. 1986], modern CAD scripting
languages [FeatureScript 2019], and many procedural modeling sys-
tems [Miller et al. 2006; Prusinkiewicz et al. 1996; Schwarz and
Miiller 2015]. These languages represent design as a process and
can be used for optimization as well as inverse design [Du et al.
2016; Nandi et al. 2018]. DSLs have also been used for describing
fabrication for a single process, such as multi-material 3D print-
ing [Vidimce et al. 2013] and knitting [McCann et al. 2016]. Our
work draws on these ideas to define DSLs for both design and multi-
process fabrication. The languages are developed to allow a compiler
to efficiently validate a design and optimize the fabrication process.

Optimizing Compilers. Traditional programming language com-
pilers typically have optimizations for minimizing execution time,
memory, and power consumption using techniques like constant
folding, loop unrolling, common sub-expression elimination, and
dead store elimination [Aho et al. 1986] that are applied sequen-
tially. With emerging architectures, developers can often identify
architecture-specific-local peephole optimizations on top of tradi-
tional compiler optimizations. Other approaches [Bansal and Aiken
2006; Massalin 1987; Phothilimthana et al. 2016] use search algo-
rithms to find optimal programs. E-graphs [Nelson 1980] offer a
scalable approach for finding optimized programs that rely on equiv-
alences between programs. Joshi et al’s Denali [2002] for optimizing
assembly programs and Tate et al’s Equality Saturation [2009] for op-
timizing complex Java programs with loops and exceptions are two
examples of optimizers that use e-graphs. This paper demonstrates
a new application of e-graphs, i.e., optimizing a set of carpentry
instructions. We developed algorithms to populate and modify the

e-graph that rely on geometry when syntactic rewrites are not suffi-
ciently expressive. Further, we developed new methods for e-graph
extraction for multi-objective optimization.

Design and Fabrication for Carpentry. Our work is also related to
computational design approaches for carpentry and furniture. Fu
et al. [2015] suggest using an interlocking structure and Song et
al. [2017] extend these ideas to designs that can be reconfigured.
Umetani et al. [2012] propose an interactive exploration tool for
furniture design, where structural stability is evaluated at interac-
tive rates. Lau et al. [2011] address the problem of converting a
manually designed 3D model into parts and connectors, while Li
et al. [2015] target the foldability problem. These works propose
fabrication-oriented design optimization, but they assume that a
design uniquely determines a fabrication process. Our work builds
upon those ideas, defining languages where both design and fabrica-
tion can be optimized. In terms of fabrication optimization, packing
problems are well studied for material saving. More recently, Koo et
al. [2017] investigated this problem and proposed a guided tool for
furniture design. The novelty in our optimizer is that it considers the
full fabrication processes, which involves not only material usage
but also type and order of operations. This is enabled by treating
fabrication as a program and defining a multi-objective optimization
solution on top of a data structure (e-graphs) that can represent all
equivalent programs.

3 OVERVIEW

We now consider the typical process of designing and fabricating
a simple wooden part. First, designers consider available materials
and fabrication processes and use this information to guide the first
draft of their design. The design, typically modeled in a parametric
CAD system, is then used to iteratively explore possible variations.
The designer uses feedback provided by the CAD tool as well as
potential simulation plug-ins to iterate on the design. Once satisfied
with the resulting configuration, a specific way to fabricate the part
must be identified. For example, the fabricator chooses the stock
to use for each part, the cutting tools to maximize precision, the
order of cuts to minimize the number of setups, or when and how
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Fig. 3. System pipeline. The input to our system is a HL-HELM program designed by a user in our IDE. The verifier first checks if the design is manufacturable.
The compiler converts the verified HL-HELM program to a LL-HELM program. Then the various optimizers populate an e-graph by finding various equivalent
optimal programs. Finally, the extractor performs a multi-objective optimization to find the most optimal programs from the e-graph.

to stack parts to minimize the number of cuts. In a workshop, the
designer and fabricator may be the same person; in a corporate
setting, they may be different teams in different companies or in
different countries.

The above description of the typical pipeline has two important
yet conflicting takeaways in the design space and the fabrication
space. First, decoupling design and fabrication could advance com-
putational tools that assist each process. On the other hand, it is
essential to take fabrication into account during design since it
defines the space of what can be physically realized. Mapping free-
form designs to a fabrication plan will likely lead to approximations
that affect performance or impose unjustifiably high fabrication
costs.

3.1 Design Philosophy

Our proposed architecture accounts for both seemingly conflict-
ing ideas noted above. We aim to ensure that design is driven by
available fabrication options. On the other hand, we seek to provide
abstractions, similar to ISAs, that decouple design and fabrication.
This lets us propose advanced algorithms to optimize designs that
are fabrication independent and to optimize fabrication that is hard-
ware dependent. We now discuss how we take these considerations
into account in our proposed system, and conclude with a list of
features we incorporate into the proposed pipeline. The remainder
of the paper details how we implement these features.

Fabrication-Oriented Design. HL-HELM is inspired by feature-
based CAD languages, which define a sequence of geometric opera-
tions that construct the shape bottom-up. We leverage this modeling
technique because it defines geometry as programs and has been
proven effective. The key difference is that we define fabrication-
aware features. Because carpentry is a subtractive process, we define
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features that perform subtractive operations on stock instead of per-
forming standard CSG operations. This ensures that the resulting
programs can be effectively verified and compiled to LL-HELM
while preserving the process-independent constructive geometry
modeling paradigm that designers are accustomed to using.

Fabrication-Independent Design Optimization. While it is impor-
tant to ensure that design is driven by manufacturing realities, we
also seek abstractions that allow design optimization without the
need to compute low-level fabrication details. Two methods can be
used to search the design space: interactive exploration and auto-
matic optimization.

For interactive exploration, it is important to efficiently verify that
a program in HL-HELM is feasible. One option would be to define a
dense language, which ensures that all programs in the language are
valid, i.e., map to a valid fabrication plan. However, languages con-
strained to be dense are typically less expressive and intuitive. We
prioritize the latter attributes and develop a verifier that can validate
a HL-HELM program in real-time. Additionally, we implement an
IDE (Integrated Development Environment) for HL-HELM inspired
by modern CAD systems that lets users intuitively explore the de-
sign space while ensuring the validity of every design. Using this
IDE, user interactions with a 3D model are automatically mapped
to HL-HELM code, and constraints on valid programs are translated
to constraints on user interactions, guiding users in defining valid
programs.

In addition to the interactive exploration of the feasible design
space provided by the verifier/IDE, our design system uses parametriza-
tion as a basis for automated optimization. As in standard CAD tools,
our feature-based system is parametric from construction, defining
a search space for physically-based optimization, as is done in the
previous work [Schulz et al. 2017].
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n:= Int | Float ptzi= nn pts== nnn catalog_id::= UID string
geom::.: Point pty facer= uid
| Line pty pty
| Circle ptz n edge:= uid
| Spline pto*
| ...

constraint::= Parallel geom geom
| Concentric geom geom

query::= Query_Face_By_Closest_Point nn n
| Query_Vertex_By_Closest_Point
!

sketch::= Make_Sketch query geom™ constraint™

design_op::= Make_Stock nn n
|  Make_Cut id sketch
|  Make_Hole id sketch

setup_op::= Setup_Chopsaw angle angle offset

Setup_Drill diameter

ref_pt:= edge offset edge offset

fab_op::= Lumber catalog_id

Sheet catalog_id

Stack id id

Unstack id

Chopsaw id face edge
Bandsaw id face ref_pt*
Figsaw id face ref_pt*
Drill id face ref pt*

|
hlhelm:= (Assign id* design_op)*;

llhelm:= (setup_op | Assign id* fab_op)* Return id*

Fig. 4. Syntax of HL-HLEM (left) and LL-HELM (right).

Hardware-Dependent Fabrication Optimization. The system’s back-
end must define a complete list of instructions that can be directly
used for fabrication. Therefore, it must define CAM operations for
specific types of tools, each with pre-defined capabilities and re-
quirements on the workpieces they can accommodate. It is essential
to provide an extensible architecture because it would be impossi-
ble to define a language that explicitly represents all existing (and
emerging) fabrication processes. Extensibility is achieved by estab-
lishing a list of verifier rules for each LL-HELM operation and a
surjective mapping from HL-HELM to LL-HELM operations. This
lets us establish clear guidelines for incorporating new processes
into the language.

Finally, our system must automatically generate fabrication plans
for a given design. We therefore design a compiler that can generate
LL-HELM code from HL-HELM. The compiler has an optimizer that
can handle multiple and conflicting costs, for example, fabrication
time, material cost, and accuracy.

In summary, we propose an architecture with the following prop-
erties:

HL-HELM represents subtractive feature-based modeling.
HL-HELM validity is supported by a verifier and IDE.
HL-HELM is parametric.

LL-HELM and the verifier reference the available hardware.
The full stack is easily extensible to new hardware.

The compiler performs multi-objective optimization.

3.2 Design Processes

We complete our overview by describing the system from its users’
point of view. Before starting their design, users should import

libraries of materials and tools so the compiler has feasible instruc-
tions for mapping the designs to specific hardware (Figure 2(a)).
Users then create designs with an intuitive interface that adheres
to the same process as standard parametric feature-based CAD sys-
tems; in fact, our tool is built as a plug-in for FreeCAD [2019]. The
key difference is that the allowed features map to subtractive op-
erations that correspond to carpentry operations: get stock, make
poly-cuts, and make holes (Figure 2(b) and supplemental video).
The manufacturability of the designs is checked by the verifier, and
users are notified if any features are invalid. As in standard CAD
tools, parametric modeling lets users iterate on their designs while
satisfying constraints (Figure 2(c)). Once designs are finalized, an
optimizing compiler generates a set of LL-HELM programs with
different trade-offs from which users can choose (Figure 2(d)).

4 LANGUAGE AND COMPILER

This section describes the design language, compiler, and fabrication
instruction language that were designed based on the considerations
and requirements discussed in Section 3. We highlight key language
features and include details in the supplemental material.

High-level HELM. Figure 4 (left) shows the grammar for HL-
HELM programs. These programs consist of a sequence of assign-
ments that bind design_ops to identifiers. design_ops are high-level
fabrication operations which depend on a set of parameters. The pro-
posed language is inspired by standard feature-based CAD scripting
languages [FeatureScript 2019], where features map to fabrication
operations (e.g., get stock and make cut) as opposed to purely geo-
metric operations (e.g., extrude and loft). As in CAD languages, 2D
sketches are used to specify the path of operations and are defined by
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a set of 2D parametric primitives and constraints. Computationally,
a HL-HELM program can be evaluated with an interpreter that runs
each assignment in sequence. To run an assignment, the interpreter
evaluates the operation to a B-rep (Boundary Representation) us-
ing a geometric kernel (OpenCASCADE [SAS 2019]) in the context
of bindings resulting from previous assignments, referenced using
identifiers.

We also draw ideas from CAD referencing schemes [Baba-Ali
et al. 2009; Bidarra et al. 2005], using queries to reference part of
the geometry (e.g., an edge or face) on top of which operations can
be defined. This approach allows consistent referencing of parts of
the model that, coupled with a direct specification of constraints,
allow models to be consistently regenerated after parameter updates.
As in modern parametric modeling systems, it lets us define and
constrain the ways a model can vary, defining a parameter space
that can be used for design optimization [Schulz et al. 2017]. Note
that programmers do not need to manually write out complex query
parameters since an IDE automatically creates queries when users
select a part—i.e., click on a part with the mouse.

Low-level HELM. Figure 4 (right) shows the syntax of LL-HELM. A
LL-HELM program is a sequence of either setup_ops or assignments
that bind fab_ops to identifiers. fab_ops are fabrication operations
that explicitly reference available hardware and material. These
operations include taking a piece of lumber from a material cata-
log, performing cuts with different tools, and stacking, i.e., placing
parts together to allow operations to be applied simultaneously to
improve fabrication efficiency. Some fabrication operations require
a setup that configures the tool to perform the task, e.g., setting
the angles of a chopsaw. A LL-HELM program is concluded by a
Return statement which returns the resulting parts obtained from
fabrication operations.

Unlike HL-HELM, LL-HELM lacks the concept of queries because
it is intentionally non-parametric: the compiler finds the optimal
fabrication plan for concrete design, as specified by an instance of
the parameters. References must be defined to allow the accurate
positioning of parts with respect to the cut blade. In LL-HELM,
reference points for the cut operation are defined by the intersection
of two lines, where each line is specified by an offset from an edge
on the part.

Process Characterization. To generate LL-HELM code, the com-
piler must understand the capabilities and constraints on each fab-
rication process, e.g., the maximum depth of a stock that can be set
up on a chopsaw. It must also be able to measure the performance
of each process in order to optimize fabrication time and accuracy.
As part of our architecture, HELM retains for each process the set of
constraints and performance measurements in the form of process
characterization. The process characterization enables the compiler
to measure feasibility, fabrication time, and accuracy for a given
fab_op in LL-HELM. For example, it uses process characterization to
determine that the accuracy of a chopsaw is higher than a bandsaw.
The entire process characterization is included in the supplemental
material.

Compiler. The compiler from HL-HELM to LL-HELM maps ab-
stract, high-level fabrication operations to concrete, process-specific
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operations. The first step of this process is to ensure that a valid map-
ping exists since it is possible to generate HL-HELM programs that
do not correspond to feasible instructions. We defined languages
so that every assignment in HL-HELM can be mapped to one or
more sequences of assignments and setups in LL-HELM. For exam-
ple, Make_Cut maps to Setup_Chopsaw followed by Chopsaw, and
also to Bandsaw, while Make_Hole maps to Setup_Drill followed by
Drill. Our verifier sequentially attempts to map each assignment of
a HL-HELM program to the possible LL-HELM programs it can be
mapped to. It is essentially a simulator to evaluate context using 1)
the same geometry kernel used in the front-end, and 2) the process
characterization to measure feasibility. If this process can be exe-
cuted to completion, the HL-HELM program is valid. This can be
done interactively and used to provide design feedback in the IDE.
If the available hardware changes, this process can automatically
verify feasibility and map HL-HELM code to the newly available
resources.

Once we have a valid LL-HELM program, the compiler consid-
ers different ways it can be re-written to optimize the fabrication
process. This multi-stage process is discussed in Section 5.

Extensibility. The surjective mapping from HL-HELM to LL-HELM
along with the process characterization allows this architecture to
be easily extensible to new fabrication processes. Adding a new
process involves three steps: 1) adding a new LL-HELM operation
and (possibly) setup for the new process, 2) defining the process
characterization, 3) defining a mapping from HL-HELM to this pro-
cess. The third step can be done either by assigning a mapping from
an existing design operation or defining a new one. We demonstrate
this using the following two examples. Consider adding a tablesaw
process. This requires defining the operation and its corresponding
setup in LL-HELM as follows:

Tablesaw id face edge, Setup_Tablesaw angle offset,

adding the process characterization for this tool to define the va-
lidity constraints and cost functions, and extending the Make_Cut
operation in HL-HELM to also map to the tablesaw process. Con-
sider another example where a drill press with an arbitrary hole
depth is added to the language: DrillPress id face ref _pt depth. In
this case, the change in HL-HELM involves adding a new operation
to allow partial holes: Make_Partial_Hole id sketch n, where n is the
depth.

5 FABRICATION OPTIMIZATION

This section details how our compiler optimizes low-level fabrica-
tion plans to provide diverse Pareto-optimal candidates trading off
between material cost, fabrication time, and precision.

5.1 E-graphs Background

E-graphs propagate equality information through a common graph
representation that stores multiple equivalent versions of the origi-
nal program. E-graphs are composed of equivalence classes (e-classes)
each of which contains a set of equivalent nodes (e-nodes) that repre-
sent some operation applied to argument e-classes. This is encoded
as edges from e-nodes to e-classes. An advantage of e-graph-based
optimizers over sequential rewrite engines is that they avoid the



phase ordering problem. Phase ordering occurs when optimizations
are applied destructively in sequential order, thereby causing the
quality of the resulting code to depend on the order of application
of the optimizations [Bansal and Aiken 2006; Whitfield and Soffa
1990, 1997]. E-graph-based optimizers avoid this problem by retain-
ing previous versions of expressions even after transformations are
applied. These semantically equivalent expressions are stored in
the same e-class. An e-graph is populated by repeatedly applying
optimizations. Finally, a cost function is used to extract optimized
expressions from each e-class, which are then composed to return
the best program from the e-graph.

Using e-graphs in fabrication requires addressing three technical
challenges. First, e-graphs were originally developed for automated
theorem proving in structural logics [Nelson 1980], where there are
no linearity constraints on variable reuses. However, our e-graph
engine needs to account for linearity in fabrication. For example,
after a piece of lumber L is cut into two pieces, the fabrication plan
should no longer refer to L since it no longer exists. Second, the
fabrication domain requires new conditional rewrites, for example,
encoding conditions under which cuts can be stacked. Third, since
fabrication includes many different and often conflicting objectives,
our system needs to generate several candidates (i.e., Pareto-front
candidates) based on user-defined multi-objective cost functions,
rather than extracting a single solution from the e-graph bottom-up.

In HELM, we focus on stock and union e-nodes. Stock e-nodes
represent a series of subtractive operations all applied on a single
piece of stock, capturing both part layout and per-cut fabrication
process selection. Union e-nodes point to a set of child e-classes,
each of which contains stock e-nodes or (recursively) more union
e-nodes. Each union e-node thus represents all the fabrication plans
that can be built by selecting representatives from its children. This
partitioning into stock and union e-nodes enables encoding plans
that reuse scrap, or “offcuts”. Each e-node in the root e-class repre-
sents a set of fully concrete fabrication plans, corresponding either
to a particular concrete set of layout and process choices (in the
case of a stock e-node) or all the recursive combinations of plans
from child e-classes (in the case of a union e-node). In our e-graph,
equivalence is defined as producing identical output, and so all pro-
grams that generate the same result will be represented in the same
e-class.

Before describing our method for populating an e-graph, we first
illustrate the e-graph for a simple design that outputs three 20"
long 2x4 parts, when two types of stock are available in the library:
one is 24" long and the other is 96’” long (Figure 7). A sequence of
cuts performed on a single stock is represented as a stock e-node,
e.g., cutting parts 1 and 2 on a 24"’ stock. Since the union of cutting
part 2 on a 24" stock and part 3 on a 24" stock is equivalent to
cutting these two parts on a 96” inch stock, these candidates are
represented in the same e-class. Even in this simple example, many
different programs can be extracted from the e-graph as shown in
the figure: all parts on a 96”” stock, each part on a 24”” stock, or one
part (part 1) on a 24"’ stock and the other two on a 96”” stock - and
within each of these layout strategies many different fabrication
process selections are possible.

Below we describe how we use geometric solvers to construct a set
of e-classes and e-nodes in the e-graph, supporting both linearity

Carpentry Compiler « 195:7

E>E>>

/\
[] O
7] ]

gan
Qo

=

N

[] B
] &

va
QO

Fig. 5. 2D shapes for birdhouse and their different orientations.

Fig. 6. Comparison between traditional packing result (left) for minimizing
bounding volume and our packing result (right) for maximizing the number
of shared edges.

constraints and conditional rewrites (Sec. 5.2) and detail a new
method of e-graph extraction which supports the multi-objective
optimization requirements for fabrication (Sec. 5.3).

5.2 E-Graph Construction

In general, defining a fabrication plan for making parts in a carpentry
project involves the following two major steps: 1) laying out parts
on stock lumber and 2) choosing appropriate cutting tools and the
order to apply them. Constructing an e-graph that covers many of
the possible manufacturing plans is challenging because there are
many different ways to assign material, order cuts, and combine
multiple tools, each of which results in a combinatorial explosion.
Combining all of them makes the space of programs even larger. To
make the space of programs tractable, we define several pruning
strategies that eliminate programs that correspond to unrealistic
scenarios and keep only those that are feasible in practical carpentry.

Packing Pieces onto Stock. At the first stage of our optimization
pipeline, the parts designed by users are assigned to stock lumbers,
where orientation and degree-of-freedom are also decided. We pro-
vide a common library of stock lumber that can be readily purchased
at home improvement stores; the library can easily be extended with
other customized stock. Our system takes as input the bounding
boxes of the parts and compares their dimensions with the sizes
of the available stock to evaluate the feasibility of an assignment.
In our prototype implementation, we use a library that consists of
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commonly used materials, and our packing algorithm generates
candidates for all stock lumber pieces on which the parts fit. Since
many cuts are straight and most parts are polygons, it is possible to
minimize the number of cuts by aligning multiple parts so that a
single cut can be applied to more than one part (example shown in
Figure 6). As a result, unlike conventional packing problems which
primarily minimize the bounding volume [Burke et al. 2006; Hopper
and Turton 2001], ours also minimizes the number of cuts.

Unfortunately, packing problems have been shown to be NP-hard,
and it is infeasible to explore the space of all possible packing strate-
gies due to combinatorial explosion. In our work, we observe that
parts designed in carpentry are usually not arbitrary so we target
the packing problem by proposing a simple-yet-efficient algorithm
in the cases of 1-DOF (1D packing) and 2-DOFs (2D packing).

Given a set of shapes, e.g., the shapes for the birdhouse shown
in Figure 5, the goal is to pack them on to a sheet for cutting to
maximize the number of aligned edges. To start packing, the algo-
rithm randomly picks an oriented shape and places it on the initial
rectangular sheet. This changes the shape of the remaining sheet,
as shown in Figure 6. To pack the next shape in the remaining sheet,
the algorithm picks two edges of the sheet, two edges of the shape,
and solves a linear set of constraints to check if the pairs of edges can
be aligned. If they cannot be aligned, it continues to pick a different
pair of edges from the sheet and the shape. If there is no solution
for any pair of edges, the algorithm randomly picks one edge from
the sheet and the shape and aligns them to minimize its volume,
as is done in standard cutting and packing algorithms [Burke et al.
2006; Hopper and Turton 2001]. Our packing algorithm takes into
account the dimension of the “kerf”, i.e., the parts are separated
from each other by the width of the saw blade.

This process is repeated for all the shapes in the design to obtain
a candidate packing on a stock, and further, our packing algorithm
is repeated for all stock pieces in the library. Our method organizes
all of the packed results as stock e-nodes, and constructs e-graphs
simultaneously. Since our tool generates many packing strategies
for every design, we use a heuristic to prune some of the results.
Packing solutions with more aligned edges are better since they
require fewer cuts. Hence, we sort all solutions by the number of
aligned edges and keep the top n results.

Defining Cuts on Stock. Once we have arranged a set of parts on
a piece of stock, we must select the fabrication process for each
cut and the order of cuts. Moreover, process-specific setups and
references need to be identified under tool constraints and work-
piece constraints. For instance, the process characterization of our
chopsaw specifies that the maximum thickness of a workpiece is
4"’ These constraints must be considered when selecting tools for
each operation. A cut may not be mappable to a fabrication instruc-
tion due to violation of constraints. On the other hand, some cuts
can be mapped to multiple feasible processes. Further, a cut can be
either across the whole workpiece or only to a certain position. We
call the latter partial cuts. Our system automatically takes all these
cases into account to generate a large family of equivalent fabrica-
tion plans, which essentially creates more e-nodes for the e-classes
that pointed to from stock e-nodes, and populates the e-graphs. We
propose two heuristic pruning strategies.
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Cut 1, 2,3 on 96" stock Cut2,1,30n9" stock [ 1

\
Semantics Semantics ]
Cut 2,3 on 96" stock Cut 3, 2 on 96" stock "

Fig. 7. An example of an e-graph for a simple design that outputs three 20”
long two-by-four parts when the stock library has 96” and 24” stock lumber.

(1) Some measurements are easier to accurately take than oth-
ers. For example, in the imperial system, distances are more
precise and easier to measure if they are integer factors of
[177,1/2",1/16""] as those corresponding to the demarcations
of common measuring tapes, and angles when they are in-
teger factors of [45°,15°,1°]. If our system finds multiple
setups for the same process, it keeps only those that lead
to the best measurements and discards others; if any setup
involves one of the above measurements then all others are
discarded; otherwise, the ones with values closest to some
entry in the above lists are kept.

(2) Our compiler prefers complete cuts over partial cuts when
possible because partial cuts are difficult to perform (refer
to process characterizations in supplementary material), and
they tend to be imprecise. For any instruction, if both par-
tial and full cuts are possible, our compiler prunes away the
partial cut candidates, and keeps only the full cut candidates.
However, if no full-cut solutions can be found, the compiler
will use a partial cut solution.

5.3 E-Graph Extraction

Even with the pruning strategies described in the previous section,
the e-graph can have up to O(N X K) e-nodes, where N is the
number of e-classes and K is the number of sub-programs in each
e-class. The total number of programs that can be generated by
combinations of all these sub-programs grows exponentially (i.e.,
0(@2N*KY) 5o it is important to have efficient ways of exploring this
space for extraction.

Objectives. Our system produces a set of optimized fabrication
plans with respect to the following three objectives.

o Cost f.:Every assignment statement that uses stock, i.e., lum-
ber or sheet is assigned a cost depending on the type of the
stock (plywood, two-by-four, two-by-three, etc.).

Precision fp,: The process characterization of a tool provides
a precision value. For example, when making straight cuts,
a chopsaw is more precise than a bandsaw, which is more
precise than a jigsaw. We define f, to be the product of a
tool’s precision and the error introduced while making a cut.
A standard tape measure or ruler provides divisions of an
inch in increments of one-sixteenth. Therefore, in our imple-
mentation, a measurement has zero error if it is a multiple of
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Fig. 8. Vertex-collapsing algorithm to measure time. Each sub-program is a
dependency graph and can be represented by a directed graph. Assume two
non-adjacent vertices Az and By have the same setups, they can be stacked
and cut at the same time if there is no cycle after collapsing.

one-sixteenth (or better, a whole number). For other measure-
ments, the error is the absolute value of its difference with
the closet marking on the tape measure. Due to the modu-
lar design of our tool, it is also possible to plug in alternate
implementations for error.

o Time f;: Different fabrication processes require different man-
ufacturing time. For example, it is easier to perform a chopsaw
cut than a tracksaw cut in practice. Moreover, a program that
requires users to change the setup for every cut is worse than
a program that reorders and makes multiple cuts with the
same setups. Our time metric f; considers the minimization
of configuration switching on a single tool.

We detail the computation of all the metrics in the supplemen-
tal material. In summary, given a set of sub-programs constituting
a complete fabrication plan, our system needs to compute all ob-
jectives efficiently. f; is computed by summing up the costs of a
program’s stock input. f;, is defined as the average value of the
sum of all errors (the deviation from the lowest scale) scaled by
the precision weight of the tool being used. Both of these objec-
tives are modular, i.e., the best representative node for an e-class
can be computed directly from its children, and thus are straight-
forward to compute. However, to compute f; we must measure
the benefits of sharing setups across different operations within
a program. This requires analyzing and optimizing fully concrete
fabrication plans, since considering operations in isolation does
not capture the global sharing benefits of a particular ordering of
operations. Greedy algorithms are also insufficient for extracting
efficient schedules from our e-graph due to linearity: not every pair
of statements can be re-grouped. Thus to measure f; in HELM, we
perform another optimization step that schedules cuts efficiently
using a vertex-collapsing-based optimization.

Graph algorithm for measuring time. Time can be minimized in
two ways: (1) By setup elimination: when two instructions in a
program use the same setup, they can be reordered so that a single
setup can be used for both instructions, as long as linearity is not
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violated. (2) By stacking parts together: when two instructions use
the same setup and also use two separate pieces of lumber that do
not depend on each other, the pieces can be stacked together. We
developed a new graph algorithm to minimize manufacturing time
using the above techniques.

For a set of sub-programs, our algorithm builds a dependency
graph G by looking at the input arguments and returned values
of each statement. G is a directed graph and may have multiple
connected components, which correspond to different programs. G
corresponds to a valid program only if it has no cycles because a
cycle indicates a violation of linearity. If two nodes (a, b) have the
same setups, our algorithm collapses them and checks that no cycle is
introduced in the graph (Figure 8). Interestingly, there are two cases
that may arise after nodes are collapsed: if (a, b) are adjacent (i.e.,
there is a directed edge either from a to b or from b to a), collapsing
will result in setup elimination; if (a, b) are not adjacent, these two
statements can be performed at the same time (for example, stacking
them on a chopsaw or parallelizing cross multiple workers). Our
optimizer uses this graph algorithm to find a program that minimizes
time by minimizing the number of setups while respecting linearity.
This also reorders the sequence of instructions in a program to put
two instructions which partially share setups close to each other.

Multi-Objective Optimization. For many simplification tasks
[Panchekha et al. 2015], greedy approaches can be used to extract a
program from an e-graph where it is traversed bottom-up and the
best e-node from each e-class is chosen. This approach does not work
for optimizing manufacturing time since it is not an additive metric.
Previous work on e-graphs have used constraint solvers [Joshi et al.
2002] to extract programs non-greedily, but those approaches are
expensive when extracting multiple programs. Further, the three
objectives we defined for e-graph extraction may be conflicting. For
example, using more stock would allow simultaneous scheduling of
cuts that use the same setups but can increase the cost of lumber.
In our prototype, we address these problems by using a genetic
algorithm for multi-objective optimization.

In multi-objective optimization, genetic algorithms are one of
the most common approaches, having been successfully adopted
in many fields [Zhang and Xing 2017]. We use the NSGA-II [Deb
et al. 2002] method in our implementation. The NSGA-II algorithm
can improve the fitness of a set of candidate solutions to a Pareto
front bounded by a multi-objective function. It is an evolutionary
process that has selection, mutation, and crossover. The population
is classified into a hierarchy of subgroups by diversity metrics for
selection. Our system encodes each individual as a tree 7; which is a
subset of the e-graph. A full program can be recovered by traversing
7i from top to bottom. Since we adopt the tree representation, it is
difficult to directly use off-the-shelf methods of crossover and muta-
tion. To solve this problem, we define new mutation and crossover
operations based on equivalence relations encoded in the e-graph.

In mutation, our algorithm traverses all e-classes in 7; and mu-
tates their e-nodes if rng < py,, where rng is the random number
generator that uniformly produces a probability in [0, 1] and p,,
is the probability of mutation. Our algorithm can also mutate an
e-node to represent it by its argument e-classes. It therefore also
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randomly expands the e-classes recursively since the leaf nodes of
7i must only be sub-programs.

In a crossover, the algorithm first randomly selects a pair of indi-
viduals (73, 7;) where 7; and 7; have edges to the same e-classes. It
switches each pair of same e-classes by exchanging their e-nodes if
rng < pe where p. is the probability of crossover.

6 RESULTS AND DISCUSSION

In this section, we evaluate our system against the following criteria:
we discuss the expressiveness of HL-HELM, we evaluate the quality
of our compiler-generated fabrication instructions, we demonstrate
how our tool can be used for end-to-end optimizations, and we show
how designs can be physically realized by users following LL-HELM
fabrication plans. We developed our system in C++ and tested it on
a PC with Intel E5 2620 and 64GB RAM.

6.1 Expressiveness of HL-Helm

Figure 9 demonstrates HELM’s expressiveness by showing examples
of a wide range of valid designs made by three experienced wood-
workers (with more than three years of experience) using HL-HELM
who were trained to use our IDE. The three carpentry experts gener-
ated the models in Figure 9 by using an iterative process, with their
time split between conceptual exploration and design. These same
experts created the physical models shown in the teaser and filled
out a survey relating their experience with the tool and comparing
it to conventional CAD systems.

Based on feedback from the woodworkers, we conclude that while
it is easier to produce arbitrary models in standard CAD systems,
for carpentry items HELM was faster and more intuitive. This is
because HELM allows the designer to keep the fabrication process
in mind during the design process. We report comments from the
experts in the supplemental material.

6.2 Optimized Fabrication Instructions

We tested our optimizing compiler on all of the designs shown in Fig-
ure 9, apart from 9.E because it is too simple. Our results show that
the compiler successfully optimizes all the designs sketched by the
experts. To evaluate the quality of the optimized results, we asked
four woodworking experts to come up with fabrication instructions
by hand and then computed the cost of their designs. Comparative
results are shown in Figure 11, and additional results are reported in
the supplemental material, along with implementation details and
optimization parameters.

In eight out of the nine experiments, the system found solutions
that Pareto-dominate the expert fabrication plan. This result val-
idates that the proposed approach is not only a method that can
help users with little expertise to find efficient fabrication plans
but can also discover solutions that behave better than the ones
designed by experienced woodworkers. We believe this is due to the
high-dimensionality of the search space and the need to simultane-
ously consider multiple conflicting objectives, which makes manual
exploration challenging. The added benefit of our approach, which
is also shown in Figure 11, is that it returns not one but multiple
solutions with different trade-offs, allowing engineers to pick the
one that is more suitable for a specific application.
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There was one model in which our system did not find a solution
that Pareto-dominates the expert. It is interesting to note that the
expert solution also does not dominate the solutions of the system,
but instead indicates a different trade-off that was not found by
our method. This result indicates that while our method can find
good solutions that outperform or match the experts, there are no
guarantees that the solutions found are truly Pareto-optimal or
that the full Pareto-front is found. Cut planning is a combinatorial
problem and, while the use of e-graphs and our pruning strategy
make the problem tractable, it is possible that (1) optimal designs are
pruned and (2) the genetic algorithm does not discover the full front.
To further evaluate our method, we vary the amount of pruning
and plot graphs that show how the performance and computation
time varies. The comparative results, reported in the supplemental
material, show that time increases linearly, but the performance
quickly increases and then tapers off, which validates the pruning
method.

To further illustrate the different solutions and trade-offs, we show
fabrication plans in Figure 12. In the bookcase, example 9.C, the ex-
pert grouped similar cuts on individual pieces of stock and cut them
in order from left to right leading to high accuracy at the expense of
material cost and time. Solution (A) Pareto-dominates the expert. In
this example, HELM was able to significantly reduce the amount of
material by using an optimal packing strategy while slightly reduc-
ing fabrication time and maintaining the same accuracy. In solution
(B), HELM was able to significantly reduce fabrication time at the
expense of higher precision error and material cost.

For the flower pot, example 9.1, the differences between the op-
timized results generated by HELM compared to the expert boils
down to sheet packing. HELM made the same tool selection and
material choices as the expert. HELM, however, was able to reorder
and rearrange cuts to improve fabrication time and accuracy. On
the other hand, the expert optimized the utility of unused stock,
which was not accounted for in our cost functions.

6.3 Design Optimization

Figure 10 shows how the parametric nature of HL-HELM is useful for
design optimization driven by high-level, fabrication-independent
performance metrics. In this example, four design parameters affect
the geometry of the bookcase expressed in HL-HELM and the perfor-
mance metric we want to optimize is stability. The figure illustrates
different configurations that can be achieved with different parame-
ters and can be measured by the distance of the projection of the
center of mass to the convex hull of the contact points. This allows
us to optimize designs, which are independent of fabrication, while
ensuring the designs before optimization and after optimization are
manufacturable using carpentry processes.

6.4 Physical Realization from LL-Helm

To evaluate the practicality of our optimizing compiler and lan-
guages, we provided the three experts with the LL-HELM code for
three models (bookcase, birdhouse, and toy car) which are shown
in Figure 1.We created a user interface (UI) to link the names of
variables in LL-HELM programs with correct geometric details,
and enable users to interactively visualize them in 3D space. They
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Fig. 9. A gallery of carpentry designs modeled in our proposed system. The design time for each model is as follows. (A) Adirondack chair: 3:30 hr; (B) Drafting
table: 2:16 hr; (C) Book case: 1:00 hr; D) Bird house: 1:38 hr; E) Toy car: 0:45 hr; F) Dining room chair: 1:20 hr; (G) Bench: 2:02 hr; (H) Coffee table: 0:56 hr; (1)

Flower pot: 2:00 hr; (J) Z-table: 1:34 hr.

1

Fig. 10. Example of design optimization that is enabled by the parametric
nature of HL-HELM. The different shapes and corresponding design param-
eters and performance value (stability) are shown and the optimal one is
highlighted (right).

successfully manufactured all of these designs by following the
LL-HELM code step-by-step. We also have a video to show the
fabrication processes.

6.5 Limitations and Future Work

Developing programming languages techniques for carpentry is a
new direction and our work demonstrates the feasibility of this re-
search avenue. However, there are still some limitations that require
further investigation.

First, our prototype does not support shapes involving free-form
geometry. Even though these designs can be manufactured using

subtractive techniques, additive techniques are usually preferred.
Since we currently do not support additive methods, such designs
would require special treatment. Second, our compiler optimizations
are not complete because we do not capture all possible equivalences.
As a consequence, the compiler cannot perform optimizations that
involve inserting additional cuts, or other temporary operations
which may sometimes be useful. Third, our compiler first populates
the e-graph with valid programs and then prunes it using heuristics
to make the search more tractable. While efficient, this may not
always return the optimal fabrication plan. However, as our results
show, the instructions generated automatically by ours can already
match or improve upon plans manually developed by human ex-
perts. Fourth, our compiler currently uses a fixed-sized kerf for cuts
which may make the dimensions of cuts inaccurate. Further, our
work uses three simple metrics that were developed with the help of
expert carpenters to evaluate fabrication plans. While these metrics
can effectively demonstrate the capabilities of our multi-objective
optimization pipeline, it would be interesting to investigate richer
cost models, for example, to take into account stackability, correlated
errors, and grain-orientation into the precision metric. Finally, while
our compiler can optimize for precision, fabrication uncertainty can
still affect the outcome. Figure 1 (toy car) shows an example of fabri-
cation error due to which the shape of the car’s window is different
from the original design. Accounting for fabrication error during
design is a hard problem even for single-process manufacturing
because it depends on available processes. Typically this is handled
by having designers predetermine error tolerances which are later
verified. Decoupling design from fabrication can let us minimize
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Fig. 11. Results of the Pareto-fronts discovered by our system (red) as compared to fabrication instructions hand-written by experts (green). For each example,
we highlight a point in our discovered front that Pareto-dominates the expert fabrication plan. In addition to the 3D plots, we show 2D projections on the

three main axis for better visualization of the different trade-offs.

error, but it still does not let us take the error into account at the
design stage, for example, while performing finite element analysis.

7 CONCLUSION

This paper presents HELM, a system for making high-level, abstract

designs and automatically translating them to low-level, optimized

fabrication plans. Our key insight is that fabrication plans are pro-
grams. Based on this insight we developed new domain-specific lan-
guages for high-level (HL-HELM) designs and low-level (LL-HELM)
plans, applied and extended compiler techniques to support multi-
objective optimization, and demonstrated how these components

simultaneously enable fabrication-aware design and optimization
while shielding designers from fabrication details. Our compiler
from HL-HELM to LL-HELM automatically verifies manufactura-
bility and provides novel optimizations to improve precision, and
reduce material cost and manufacturing time. In order to efficiently
represent all programs obtained by various optimizations that corre-
spond to a particular fabrication plan, we leverage an e-graph data
structure from traditional programming languages and compilers.
We demonstrate how to extract Pareto-optimal programs from the
e-graph by performing multi-objective optimization.

Our approach opens many exciting avenues for future work. Our
HELM prototype provides a solid foundation for exploring interac-
tions between subtractive processes, e.g., carpentry or machining,
and additive processes, e.g., 3D printing or welding. Such interac-
tions will enable even more flexibility in generating and optimizing
low-level manufacturing plans and further empower designers to
take full advantage of the ever-increasing diversity of available fabri-
cation processes. It would also be interesting to exploit HL-HELM to
create designs with for-loops, which can be directly unrolled in a pre-
processing step, and investigate solutions for supporting recursions.
Combining subtractive and additive processes will also enable error
recovery when a user makes a mistake: for example, if a cut is made
too short, a low-level “program patch” could be generated automat-
ically using program synthesis techniques [Gulwani et al. 2017] to
build the botched part back up and enable resuming execution of the
original plan rather than starting over from scratch. Cross-process
fabrication plans could also be automatically scheduled for tighter
integration between available processes, e.g., using a robotic arm
to embed magnets in a part as it is 3D printed or using available
processes to construct jigs that make otherwise-infeasible opera-
tions possible. Looking further ahead, as more robotic fabrication
processes become available, exploring the potential to automatically
schedule and optimize human-robot interaction in the fabrication
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Fig. 12. The visualization results of our auto-generated LL-HELM programs and the fabrication plans hand-written by experts. Colors identify the process and
numbers the order of cuts. The costs are shown in the order: fc, fp, f in square brackets below each figure.

setting will become essential in providing quality, efficiency, and
safety in workshops of the future.

As manufacturing processes become increasingly sophisticated,
and demand for customization increases, designers, fabricators, and
even end-users will need more frameworks like HELM to support
an increasingly automated and flexible idea-to-product pipeline.
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