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Abstract - Present robots for investigating lower-limb motor
control and rehabilitation focus on gait training. An alternative
approach is to focus on restoring precursor abilities such as motor
adaptation and volitional movement, as is common in upper-limb
robotic therapy. Here we describe NOTTABIKE, a one degree-of-
freedom rehabilitation robot designed to probe and promote these
underlying capabilities. A recumbent exercise cycle platform is
powered with a servomotor and instrumented with angular
encoders, force-torque sensing pedals, and a wireless EMG system.
Virtual environments ranging from spring-mass-damper systems
to novel foot-to-crank mechanical laws present variants of leg-
reaching and pedaling tasks that challenge perception, cognition,
motion planning, and motor control systems. This paper
characterizes the dynamic performance and haptic rendering
accuracy of NOTTABIKE and presents an example motor
adaptation task to illustrate its use. Torque and velocity mode
controllers showed near unity magnitude ratio and phase loss less
than 60 degrees up to 10 Hz. Spring rendering demonstrated 1%
mean error in stiffness, and damper rendering performed
comparably at 2.5%. Virtual mass rendering was less accurate but
successful in varying perceived mass. NOTTABIKE will be used
to study lower-limb motor adaptation in intact and impaired
persons and to develop rehabilitation protocols that promote
volitional movement recovery.

Index Terms— biomechatronics, lower limb, neuromotor
control, rehabilitation robotics, robot control

I. INTRODUCTION

Most information about motor control and rehabilitation has
been derived from studies of upper limb reaching and
manipulation. Haptic robotics have played a key role in
establishing motor learning principles from experiment. The
ability to control the mechanical environment of the limb and
hand allows experimenters to present subjects with tasks they
have not encountered previously, and then observe the
processes of motor adaptation and learning. This approach has
led to a set of motor control insights and guiding principles for
rehabilitation intervention [1]. First, the brain can build internal
models of limb dynamics [2] and multiple such models coexist
or interfere in predictable ways. Second, amplifying error can
accelerate motor learning [3]-[5]. Third, dynamically
manipulating task success rate can optimize patient motivation
[6]-[9] leading to higher self-selected work volumes. Finally,
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task assistance should only be applied as needed [10]-[12], not
continuously. An implicit principle common to upper-limb
rehabilitation approaches is volitional control [13]: movements
— typically reaching — are initiated by the user; the tasks require
cognitive engagement to respond to visual and mechanical
stimuli; and completing the task requires a full chain of neural
control including perception, cognition, planning, initiation,
execution, and feedback. This circuit of afferent and efferent
neural activity is thought to be important for neural plasticity
[14], [15].

By contrast, approaches to lower limb rehabilitation have
focused almost exclusively on cyclic tasks, especially gait and
gait-like tasks. For instance, early training approaches on the
Hocoma Lokomat [16] exoskeleton played back pre-recorded
gait patterns to provide proprioceptive input similar to normal
gait [17]. Extensions to improve the volitional engagement of
these activities have included the Lokomat as well as a variety
of other machines, ranging from haptic foot plates to whole-
limb or single-joint exoskeletons (for excellent reviews, see
[18], [19]). These systems have been used to explore different
control  strategies including assist-as-needed control,
impedance control, adaptive control that responds to user
success, or electromyography-driven control [18]. These
strategies comport with best practices in motor rehabilitation,
but the overwhelming focus on using them within a walking
context leads to fundamental challenges to accessibility and
therefore scalability in final application. Such problems include
high device complexity (and therefore cost, space and dedicated
personnel), substantial time and effort in mounting the device
to the user or the user to the device, and in some cases a
substantial minimum functional level of the user prior to
therapy. There remains a need for solutions that are simple, easy
to use, and usable early in the recovery process, while still using
motor rehabilitation principles to evoke high volitional
engagement.

A recumbent pedal-based robot could meet this need, building
upon past [20] use of recumbent cycles and steppers. In clinical
use, powered cycle ergometers such as the MOTOmed [21] and
RT300 [22] are used to move subjects through cyclic motions,
though without explicitly requiring volitional muscle
activation. In research, pedaling backward has been shown to
require a change in timing for a subset of muscles [23], [24].
Studies of split-crank pedaling [25] have shown ipsilateral
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Figure 1 - NOTTABIKE is a one degree-of-freedom robot used to study human motor control and to deliver rehabilitation in the lower-limb.
Measurements of subject endpoint kinematics and kinetics are used by a computer controller to create virtual haptic environments.

motor coordination pattern is altered by the state of the
contralateral leg [26], [27] suggesting cross-couplings between
extensor and flexor muscle groups. Recent cycling research
suggests skillful cycling leads to longer lasting cortical
activation changes than constant speed pedaling [28]. And,
experiments on the NuStep [29] recumbent stepper have
demonstrated an excitatory effect of upper limb activity on
lower limb EMG during rhythmic tasks [30], [31]. In
hemiparetic subjects, pedaling studies have shown reduced
work generation on the affected side [32], [33] but retained
ability to increase force output against an increased work load
when demanded [34]. Other studies indicate that it is foot force
direction, rather than magnitude that is primarily affected after
stroke [35]. These studies and rehabilitation approaches are
frequently based on the idea that much of lower limb control is
managed by subcortical neural structures that are adapted to
cyclic motion [36]. But, rehabilitation that relies exclusively on
cyclic motions, without compelling volitional engagement, may
miss a critical step by failing to engage cortical structures that
need to recover or adapt [37].

Our goal is to combine the simplicity of a pedaling system with
motor rehabilitation principles gleaned from upper limb
reaching, emphasizing engagement of cortical structures
through volitional movements in the lower limb. As opposed to
an all-at-once approach of directly emulating gait, we propose
to use lower-limb reaching in different haptic environments to
develop motor competency through a series of subtasks related
to gait. The large forces inherent in lower limb movement
prevent the direct application of upper limb reaching robots to
studying motor control in the lower limb. To address this gap,
we built a powered, instrumented robotic exercise cycle
(NOTTABIKE) to present cognitively demanding reaching and
pedaling tasks in novel haptic mechanical environments in the
lower limb.

Haptic environments are important because they enable a
researcher to present specific mechanical conditions to a
moving limb. These environments may be designed to present

conditions that the motor system has never experienced before
(to study motor learning), or conditions that incentivize specific
aspects of motor control that need to be improved (for
rehabilitation). In the upper limb, environments such as viscous
curl [2], haptic tunnels [38], and error augmentation [39] have
been used to derive motor learning principles. NOTTABIKE
was created to facilitate the study of similar haptic
environments in the lower limb. A few haptic lower limb robots
have been implemented before [40]-[42], but none in the
context of pedaling-like movement.

NOTTABIKE Drivetrain Detail

-

Instrumented
Pedal

Figure 2 - Two-stage mechanical drivetrain of NOTTABIKE. The
drivetrain provides efficient power transfer between the user, who
interacts through the pedals, and the industrial servomotor.
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Figure 3 — Schematic representation of the system architecture. Measurements from encoders, force sensors, and EMG sensors are read
through a LabVIEW Virtual Instrument at 1000Hz and are streamed to a virtual environment loop running in (Python) Jupyter Notebook at
100Hz. The state of the robot is updated, and a command torque or velocity is calculated based on the currently selected haptic environment
from the Environment Library. Experiments may be designed and executed in the Protocol Script using tools from the Trial Management

Library. Outputs are then sent to the motor amplifier and a visualization program to provide performance feedback to the user.

This paper describes the design and performance of the
NOTTABIKE platform. The system is built on a recumbent
exercise cycle frame and has a single actuated degree-of-
freedom powered by an industrial servomotor. An array of
sensors record foot reaction forces and moments, crank and
pedal kinematics, and muscle electromyographic (EMQG)
activity, which are used to compute state and control the motor.
We evaluate the performance of the system using ramp-input,
step-input and frequency response tests, and demonstrate
human interaction with multiple haptic environments. We
conclude with a demonstration of using NOTTABIKE to probe
adaptation to haptic rendering of different spring stiffnesses. A
preliminary version of this work has been reported [43].

II. METHODS

The Neuromotor Optimization Testbed for Training in Atypical
Behavior-Inducing Kinetic Environments (NOTTABIKE;
Figure 1) is based on a recumbent exercise cycle platform, but
its purpose is not pedaling exercise. Rather, it is a one degree-
of-freedom haptic leg rehabilitation robot designed to render
customized virtual environments defining the foot-to crank
mechanical interaction. The recumbent posture is intended to
enable early intervention following neuromotor injury, before
ambulatory capacity is reestablished. The haptic environments
are intended to demand active motor exploration and volitional
engagement in non-cyclic tasks like targeted leg reaching, foot
force control or manipulation of a dynamic system, and to
provide proprioceptive afferent neural activity to encourage

neural plasticity. The goals are to explore motor control in
volitional leg movements, characterize deficits and capacity in
performance and motor learning in impaired and unimpaired
persons, and develop therapeutic exercises that promote
targeted improvement in these deficits.

The NOTTABIKE system is designed to render impedance-
and admittance-based haptic environments. Mechatronic
subsystems include a high-performance industrial servomotor,
a custom drivetrain, and kinetic and kinematic sensors. A
custom multi-threaded software framework enables setting up
and running rehabilitation exercises and human motor control
experiments. The following sections present the mechatronic
design, control architecture, and system performance
characterization in a series of electromechanical and human
interaction tests.

A. Mechatronic Design — Drivetrain and Communication

The frame of the robot is a retrofitted recumbent stationary
bicycle. The frame consists of square steel tube construction
with an adjustable padded seat and bilateral hand holds with
integral grip-actuated safety switches.

The power subsystem is based on a brushless DC servomotor
with integrated high-bandwidth velocity and torque mode
controllers (ClearPath CPM-MCVC-3441S-RLN, Teknic Inc.,
Victor, NY, USA). The motor can provide peak torque of 13
Nm at the spindle, and peak assistive power of 350 W. This
motor was chosen for its high torque density and low peak
velocity (840RPM). A 75 VDC, 350 W continuous power
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Figure 4 — (A) Torque command accuracy to a ramp function over a 30 second trial. (B) Average torque step response from a baseline torque
of 15 Nm to a target torque of 40 Nm. Rise time was determined to be 29 ms. (B inset) Pedal fixation arrangement for torque response testing.
Torque was controlled by the motor’s internal circuitry only, and measured with the pedal load cell. (C) Average frequency response function
to a torque chirp input baseline torque was 20Nm with 10Nm peak-to-peak magnitude. Notable features include magnitude of approximately

unity and phase lag less than 29 degrees up to 10 Hz.

supply was used (IPC-5, Teknic Inc., Victor, NY, USA) to
source power during assistive operation, and an S00W
regeneration clamp and power resistor dissipates power during
resistive operation (Applied Motion Products, Watsonville,
CA, USA).

The drivetrain transfers power between the motor and the crank.
It consists of a motor mount, a two-stage chain transmission,
and a bottom-bracket and crank assembly (Figure 2). This
design was selected over alternative approaches because high
drivetrain efficiency and backdrivability are required for
accurate impedance-based haptic renderings. The motor is
attached to the steel frame by a custom aluminum mounting
bracket which is pinch fit to the frame to allow freedom for
chain tensioning. A 10mm diameter steel driveshaft rests
between bearing blocks and connects to the motor through a
rotary shaft coupler. A two-stage chain-and-sprocket reduction
transfers power from the drive shaft to the pedal crank. The
overall gear ratio between the rotation of the motor and the
crank is 3128:320 or 9.775:1.

Communication to the integrated controller on the servomotor
is achieved through Pulse Width Modulation (PWM) of control
lines. A dedicated microcontroller (Atmega 2560, Atmel Corp.
San Jose, CA, USA) converts command packets received over
a serial communication port into 8 kHz PWM control signals.
The motor controller interprets these PWM signals as velocity
or torque commands. The motor’s integrated controller may be
placed into either velocity or torque mode via commands sent
over USB from the host computer.

The motor system has several safety features that protect the
user from encountering excessive torque or velocity. First,
software limits on torque and velocity are set on the motor’s
embedded controller (nominal settings for this application are
equivalent to 70 Nm and 30 RPM at the crank). Second, we
installed two safety switches, one under each hand, that must
both be depressed for the motor to receive power from the
power supply. If at any time one of these safety switches is
released, power to the motor is cut and the system enters a
passive damped state facilitated by the motor back-EMF.

B. Mechatronic Design — Sensors

The robot is instrumented with sensors to measure forces and
moments at the pedal interface, angular rotations of the crank
and pedals, and Electromyographic (EMG) activity of the user’s
leg muscles. These data are sampled by a 16-bit data acquisition
(DAQ) card (PCIE-6343, National Instruments, Austin, TX,
USA) and are used for High-Level control (see section C) and
logged for analysis through a desktop computer (Windows 10
operating system, Microsoft Corp., Redmond WA). Foot
endpoint forces, moments, and pedal angular positions are
measured by instrumented pedals (I-Crankset, Sensix, Poitiers,
France). Each pedal contains a six-component force-torque load
cell with internal amplification and signal conditioning.
Maximum simultaneous force measurement is 250 N in the Fx
(lateral) and Fy (anterior) directions and 2000 N in F,. (normal
to the pedal) — more than adequate for experimentation in
healthy subjects. Optical quadrature encoders on each pedal
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Figure 5 — (A) Velocity command accuracy to a ramp function over a 30 second trial. (B) Average velocity step-response from a baseline
velocity of 1.0 rad/s to a target velocity of 3.14 rad/s (30 RPM). Rise time was determined to be 36 ms. (C) Average frequency response
function to a velocity chirp input. Notable features include magnitude ratio within 1dB (12%) of unity and phase lag less than 59 degrees up

to 10Hz.

axis generate 20000 counts per revolution. Crank kinematics
are measured with a magnetic quadrature encoder ring fixed to
the left crank and a reader fixed to the frame, which generate
24000 counts per revolution. The amplified analog signals from
each pedal and quadrature channels are collected in a junction
box and output over a VHDCI cable into the DAC card. A
wireless EMG system (Trigno Avanti Research+, Delsys,
Natick, MA, USA) records up to 16 channels of EMG and
relays them onto analog lines for synchronized recording on the
DAC. EMG System relay delay is 42 ms.

C. Control and Software Architecture

The control system of the robot is implemented with a cascaded
architecture across multiple processors connected by
communication interfaces. A high-level control law rendering a
specified haptic environment runs on a desktop computer at
100Hz. From that virtually rendered haptic environment, a
torque or velocity is calculated and commanded to a low-level
processor integrated into the servomotor. The servomotor
controller then performs closed-loop control on the specified
variable using internal collocated sensors. This architecture
combines the benefits of the high-performance timing of a
microcontroller with the flexibility of programming a desktop
computer.

The software system is comprised of several modules. Data is
acquired from the DAQ card using a dedicated LabVIEW
virtual instrument (VI). These data are streamed to a Python
control software responsible for facilitating experiment
execution and haptic environment rendering. Finally, data are

streamed from the Python control software to a visualization
program and the low-level servomotor controller. (Figure 3).
The LabVIEW VI collects data at 1 kHz using a hardware clock
on the DAC. The three angle encoders (crank and both pedals),
forces, and EMG data are buffered into an array for
transmission at 100 Hz to the Python controller over an internal
UDP communications socket.

Data from LabVIEW are received by the virtual environment
loop and parsed to update the state of the robot. High-level
control laws are defined within the Environments library to
specify desired crank output parameters from present system
state. Two haptic rendering approaches are used under different
circumstances — impedance- and admittance-based rendering.
Impedance-based rendering measures robot kinematics and
controls motor torque, while admittance-based rendering does
the converse. Impedance-based environments excel at
rendering springs, while admittance based environments are
better at rendering masses [44]. In general, high-level control
laws take the form of any constraint between a measured and a
commanded variable. This generic architecture enables many
potential targeted and precise learning environments. (see
Discussion section).

After data are received and the system state is updated, the
motor command is calculated based on the currently enabled
virtual environment and is sent to the motor where collocated
control is performed using the motor’s integrated controller and
sensors. Collocated control is preferred over non-collocated
control for stability when there exists compliance between the
motor and the load. Additional state information may be sent to
the visualization loop to provide the subject with biofeedback.
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impedance- and admittance-based haptic damper renderings.
Visual feedback is provided by two-dimensional or three-
dimensional user interfaces built with Unity Engine (Unity
Technologies, San Francisco, CA, USA). Two-dimensional
visual feedback is displayed on a computer monitor directly in
front of the subject. 2D widgets convey information about
position, velocity, and other trial conditions using intuitive
displays such as a clock face or speedometer dial. Other
information may also be displayed, including dials to indicate
system parameters on subsequent trials, vectors to indicate
desired vs. actual force direction and magnitude, graphs of
muscle EMG envelope, and scores to increase motivation and
decrease subject slacking [45]-[47].

Experiments may be performed through a protocol scripting
interface in Python running within the Jupyter Notebook
environment. We developed a variety of tools for specifying,
tuning, and recording trials, which are contained within the
Trial Management library. The protocol script sends messages
to the virtual environment loop to change system behavior. An
example of such a script might enable recording, set a system
parameter to a particular value, wait for an end condition such
as time or accomplishment of a task goal, and then increment
the trial. This design enables complex and precise experimental
protocols to be specified and executed.

D. Evaluation — Machine Performance Testing

We conducted a series of tests to characterize device
performance, including quantifying torque and velocity
measurement accuracy, step-input response, and frequency

15 Nm(rad/s)!) (D) Regression between measured torque and crank velocity for both

response. Investigating the performance limits of the device
allowed us to benchmark its capabilities against other lower
limb robotic systems.

We fashioned a jig to lock the rotation of the crank during
testing. We made a cantilever beam of steel plate backed by a
wooden board and clamped it perpendicular to the robot frame
in line with the right pedal (Figure 4B inset). We placed the
right pedal in contact with the beam so it could measure the
force between the beam and the pedal face. The reaction force
supplied by the beam prevented the crank from rotating in the
backward direction.

We first evaluated the torque command accuracy of the robot.
We sent a ramp torque command from 0 Nm to 30 Nm over a
period of 30 seconds to the motor controller. We calculated
RMS error between commanded and measured torque (Figure
4A). It is important to note that the sensor feedback from the
pedal was not used to control torque: torque was controlled
independently by the motor’s integrated controller using
onboard collocated sensors, and performance was evaluated
using the torque measured separately through the instrumented
pedals. Thus, from the perspective of the high-level control law,
the motor may be treated as a torque source, and the response
may be viewed as an open-loop response. It was therefore
important to establish congruence between the torque command
and torque measurement.

We next evaluated torque step response. We applied a baseline
torque (15 Nm) to assure that the pedal face was firmly in
contact with the cantilever beam. We then applied a step
command (40 Nm) to the servomotor and measured the



resulting forces on the pedal. We recorded 10 trials and plotted
the average response (mean = SD) (Figure 4B). We evaluated
performance in each trial with rise time (time between when the
command was issued 50ms into the trial and 100% of final
value) and settling time (time to settle within 5% of the final
value) criteria.

We next evaluated torque frequency response. We created a
linear torque chirp signal with a peak-to-peak magnitude of 10
Nm and an offset of 20 Nm. The initial frequency was set to
0.05 Hz and the terminal frequency was 50 Hz, with a duration
0f 90 s.

Next, we calculated the frequency response function (FRF) for
torque control. We calculated magnitude ratio as the quotient of
the RMS torque output over the RMS torque command. For
each evaluated frequency in the chirp signal, we used a half-
second (500 sample) window centered at the time when the test
frequency was commanded. We also calculated phase using the
lag at maximum cross-correlation between output and input
signals within the same window. We performed this analysis on
each of the 10 trials, and we plotted the magnitude and phase as
a function of frequency (mean + SD) (Figure 4C).

To evaluate velocity command accuracy, we applied a speed
ramp command starting at 0 rad/s and ending at 3.14 rad/sec (30
RPM) after 30 seconds. We measured crank position from the
encoder and used the central difference method to estimate
crank velocity. We applied a 50 Hz bandwidth linear IIR filter
and calculated RMS error between the commanded and
measured velocities (Figure 5A). It is important to note that the
sensor feedback from the crank encoder was not used to control
velocity: velocity was controlled independently by the
servomotor’s integrated controller, and performance was
evaluated using the crank encoder.

We also evaluated the velocity step response between a baseline
velocity of 1.05 rad/s and a final velocity of 3.14 rad/s. We
averaged 10 trials and plotted the resulting velocity = SD
(Figure 5B). We evaluated response time and settling time
using 100% final value and 5% settling error criteria, as in the
torque step test.

Finally, we calculated the frequency response function (FRF)
for velocity control. We applied 10 linear chirps sequentially.
Each chirp signal had duration 90 seconds, starting frequency
0.05Hz, terminal frequency 50Hz, and amplitude 2.09 rad/s
with a baseline of 1.05rad/s. We calculated and plotted the
velocity FRF using the same approach described in the torque
section (Figure 5C).

E. Evaluation — Human Interaction Testing

We conducted a series of tests to quantitatively evaluate the
ability of the robot to render different impedance- and
admittance-based haptic environments during human machine
interaction. Since the robot is instrumented with both kinematic
and kinetic sensors, we can render a haptic environment with
one sensor and assess environment accuracy with the other. We
evaluated human interaction with an impedance-based spring,
an impedance-based damper, and an admittance-based damper,
with parameters that fall within a range useful for
neuromuscular investigation and therapeutic intervention. The
interaction testing setup was visually identical to that
demonstrated in Figure 1. Research was performed under the

oversight of the University of Wisconsin-Madison Health
Sciences IRB submission ID# 2016-1279-CP001. Informed
consent was received for all human subjects involved in testing.
These tests establish the suitability of NOTTABIKE for the
study of motor control and rehabilitation.

An impedance-based spring measures the crank angle 6 and
commands a motor torque T computed from a mathematical
representation of a torsional spring, T = k6. A single subject
interacted with three impedance-based spring environments
with stiffnesses of k = {10, 40, 70} Nm/rad for one minute
each. The subject was told to move freely back and forth within
each environment. We recorded the measured crank angle and
the torque calculated from the instrumented pedals for each
condition. We plotted the measured crank angle and measured
torque over time in Figure 6A for k = 40 Nm/rad to
demonstrate their correspondence visually. We also used least-
squares linear regression to estimate the apparent external
stiffness of the rendered virtual spring. (Figure 6B).

An impedance-based damper relates the measured crank
velocity w to commanded motor torque 7 through the
mathematical expression T = cw. The controller estimates
crank velocity using a backward difference method and a 50Hz
linear IIR filter. We evaluated and analyzed damping
coefficients ¢ = {5, 15, 25} Nm(rad/s)"! in the same fashion as
the impedance-based spring (Figures 6C and 6D).

An admittance-based damper relates torque applied externally
to the pedals to commanded servomotor velocity through the

equation w = 2 In this case, the controller estimates torque

Cc
from the instrumented pedals and commands angular velocity
w. We evaluated the admittance-based damper for ¢ = {5, 15,
25} Nm(rad/s)'. We used measured crank kinematics as
validation data. We estimated velocity with the central
difference method and applied a 50 Hz linear filter. We plotted
the regression between measured force and measured velocity
on the same plot as the impedance-based trial to facilitate direct
comparison (Figure 6D). Only the ¢ = 15 Nm(rad/s)"! trial was
plotted, for visual clarity. A summary of the results of human
testing is provided in Table 1.

III. RESULTS

For the torque ramp test, error between the commanded (open
loop) and measured torque was 1.33 Nm RMS. Error was
negligible at low torque, increasing to a modest overestimate at
higher torque values (roughly 6% at 45 N command). The
torque step rise time was 29 = 1 ms (mean + SD), and the
settling time was 125 + 50 ms. Torque frequency response did
not exhibit magnitude roll-off within the 50 Hz command
bandwidth (limited due to 100 Hz command update frequency).
A key result from the torque frequency analysis is that the
magnitude ratio is unity up to 10 Hz with only 29 degrees phase
lag.

For the velocity ramp test, error between commanded (open
loop) and measured signals was 0.051 rad/s RMS, with uniform
accuracy throughout the commanded range (0-30 rad/s). The
velocity step rise time was 36 £ 7 ms and settling time was 90
+ 35 ms. Magnitude ratio was within 1 dB of unity at all
frequencies below 10 Hz, with less than 59 degrees phase lag.
Results of the haptic rendering tests during human interaction
are displayed in Table 1. All three springs rendered within 1%



of the desired spring constant, with RMS torque error less than
2 Nm within the range tested (roughly -50 to +70 Nm).
Damping environments performed similarly on average when
rendered using impedance-control and admittance-control, with
larger torque variability using impedance-control. Impedance-
controlled dampers rendered within 6% of the desired damping
constant, with RMS torque error less than 3.4 Nm. Admittance-
controlled dampers performed within 2.5% of the desired
damping constant, with RMS velocity error less than 0.1 rad/s.

IV. DISCUSSION

A. Interpretation of Results and System Design

The results presented here confirm that the torque, velocity, and
haptic rendering performance of NOTTABIKE are suitable for
studying motor control and rehabilitation in the lower limb.
Haptic environments for human interaction testing are rendered
within a few percent of desired parameters, across a wide range
of stiffness and damping. Both the torque and velocity control
modes have near unity magnitude ratio and small phase loss up
to 10 Hz, exceeding the bandwidth of other lower limb
rehabilitation robots [48]. For context, humans’ ability to track
unpredictable stimuli deteriorates around 1-2 Hz [49], and the
control bandwidth of the human leg is roughly 2 Hz [2].

The phase loss is likely attributable to a time lag resulting from
drive train compliance. The source of the compliance is the
deflection of transmission mounting forks under tension and
backlash from residual slack in the drive train. The time lag can
most readily be seen in the torque and velocity step response
plots, in the time between when torque or velocity is
commanded and when the robot responds. This time is 16ms
and 18ms respectively. Thus, in this respect, the performance
of the robot is most limited by the drive train.

At first glance, there appears to be a discrepancy between the
torque step and chirp responses. While the step response shows
a gain slightly greater than unity, the chirp response shows
magnitude below 0 dB. This may be explained by two factors.
First, the chirp response and step response were conducted at
different torque amplitudes, and the slight nonlinearity in the
pedal measurements (see Figure 4a) could cause different
amplitude measurements. Second, the measurements are
experimental in nature, so slow drift in the strain gauges or
motor behavior (e.g. due to temperature) could cause the two
results to differ slightly.

From the torque frequency and step responses it appears the
robot resonates around 40 Hz. This may be an artifact of the
cantilever beam setup used to evaluate the frequency response.
The amplification of the velocity before the magnitude roll-off
observed in the velocity chirp response may be due to a
resonance of the pedal mass connected through the compliance
of the drivetrain. The authors do not believe this negatively
impacts machine performance or safety in any practical manner
as the peak amplification is 1dB or 12% amplification. None
of these features adversely affect the rendering capability of the
robot within the frequency range necessary for the study of
motor learning.

A limitation of our analysis is that the human’s effect on the
torque and velocity controllers was not directly analyzed in the
frequency domain. Humans contribute mass which will lower

system bandwidth, and human joint impedance can vary over
two orders of magnitude depending on level of muscular co-
contraction[50] and limb posture, making the experimental
determination of the human’s effect on a controller difficult to
determine. As such, the human’s effect on the controller likely
contributed to the tracking error in the human interaction
tests.Because the time domain and regression results fell within
our desired performance limits, this analysis was not
undertaken.

In addition to the stiffness and damping performance analyzed
above, the third component of rendering haptic environments is
inertia — the relationship between torque and angular
acceleration, as in the traditional mass-spring-damper system.
NOTTABIKE can render inertia, but assessing the performance
of inertia rendering proved difficult because the only available
estimate of angular acceleration is from double differentiation
of the crank angle signal. The resulting acceleration signal is
very noisy, so we did not use it to assess inertia rendering
quantitatively.  Qualitatively, subjects interacting with
simulated inertias report that they are “smooth” and “feel like
normal pedaling” when combined with light damping. Subjects
were able to perceive easily the difference among inertias of
I = {5,10, 40} kg-m2.

The design of the control system is unusual for a robotic system,
in that it includes a Windows desktop computer in the control
loop. The desktop computer cannot perform high-bandwidth
motor control, so it was also crucial to incorporate the
integrated servo controller. Thus, parameters updated relatively
slowly by the desktop computer’s virtual environment model
(100 Hz) produce motor commands (torque or velocity) that are
tightly controlled at much higher bandwidth by the servomotor
controller. This design decision had important benefits.
Programming on a desktop with a high-level language enables
rapid control law prototyping, easy data storage and
sophisticated data visualization for biofeedback — here, through
the Unity gaming engine. It also opens the possibility of
creating control paradigms that incorporate data from patient
history rather than just the current system state, for example by
using patient specific models and machine learning approaches.

B. Importance of the Approach

NOTTABIKE was built to enable different styles of lower-limb
rehabilitation, based on rehabilitating volitional control of the
leg in goal-directed movements rather than task-specific gait
training. The use of haptic environments provides a means to
create demanding motor tasks and incentivize them in a
controlled way, by tuning task difficulty and success rates for
optimal challenge and motivation [8]. Task incentives in the

Table 1: Assessing The Quality of Haptic Rendering

Haptic Target parameter Rendered Correlation RMSE
env parameter coefficient
I-spring k =10 Nm/rad 10.09 0.9945 0.92 Nm
k =40 Nm/rad 39.82 0.9987 1.60 Nm
k =70 Nm/rad 69.35 0.9990 1.96 Nm
I- c¢=5 Nm(rad/s)! 5.32 0.9866 1.22 Nm
damper | ¢ =15 Nm(rad/s)" 14.98 0.9811 1.80 Nm
¢ =25 Nm(rad/s)’! 23.83 0.9568 3.37Nm
A- c=5 Nm(rad/s)' 5.08 0.9970 0.100 rad/s
damper | ¢ =15 Nm(rad/s)" 15.32 0.9973 0.068 rad/s
¢ =25 Nm(rad/s)" 25.55 0.9950 0.079 rad/s




form of minimal encouragement toward volitional activity
[12] or as a firm requirement for task completion [51] have
been successful in the upper limb. These precedents suggest
that explicitly rewarding volitional control of a targeted motor
task may lead to increased motor learning and neuromotor
recovery.

. Haptic rendering may be combined with visual feedback to
create multimodal learning environments. The addition of
task-relevant visual feedback can increase motivation by
making the task demands more understandable and
intuitive[52]. NOTTABIKE uses a series of 2 and 3
dimensional widgets to provide real-time performance
information about task parameters to the subject(Figure 3).
Training effects arise when the human uses this information
to reduce error and learn new control strategies. Figure 7
demonstrates subjects using visual feedback to reach a target
angle against haptically rendered springs of different
stiffnesses.

NOTTABIKE uses a recumbent posture to separate the
targeted tasks of motor coordination from the confounding
demands of upright balance and weight support. The
recumbent posture could also enable robotic rehabilitation
earlier in the process of recovery from injuries such as stroke
compared to treadmill training or exoskeleton walking. The
approach is intended to redevelop motor coordination through
a progressive series of subtasks, rather than all at once. It is
envisioned as an early intervention to prepare the motor system
for later task-specific gait and balance training.

NOTTABIKE also embodies an inversion of the usual
paradigm for lower-limb rehabilitation robots. Exoskeletal
robots are often designed to control many kinematic degrees of
freedom, often with minimal measurement of interaction forces
with the user [53] . The underlying assumption in such cases is
that the movement itself is rehabilitative and the robot can drive
it with minimal response to the user [54]. In contrast, our view
of rehabilitation is that only user-generated actions (forces,
movements) are rehabilitative — and therefore that the primary
action of the robot should be to respond to the user, not to
initiate movement. Therefore sensing, not actuation, is the focus
of NOTTABIKE, and the exercises it prescribes use its one
degree of freedom to provide kinematic or kinetic responses to
many potential inputs. The one degree-of-freedom design
results in a mechanically simple device that can still create
complex virtual environments that require volitional
engagement and elicit motor learning.

This single degree of freedom does present the obvious
limitation that movement can only occur along a circular path;
therefore NOTTABIKE cannot create true multidimensional
haptic environments like viscous curl [2]. However, force-
driven control can still occur along dimensions that are
kinematically constrained. For instance, forward motion of the
crank can be controlled by the magnitude of lateral force
produced by the user. Environments may be arbitrarily precise
to target specific changes. For example, left dorsiflexor
modulation can be targeted by controlling crank velocity in
proportion to EMG activation of the left tibialis anterior muscle
at specific ranges of crank angle. Or, bilateral abductor control
can be targeted by controlling crank angle in proportion to
symmetric abductor force measured at the pedals.
Environments such as these may enable the exploration of

Crank Angle (rad)

Spring Adaptation Demonstration

— N
— k=102%
—k =40
k=701
Adapted Stiffness
Angle Feedback Widget

Current

0.00 1.00
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Figure 7— Demonstration of motor adaptation to springs of different
stiffnesses on NOTTABIKE in a single subject under visual feedback
of performance with a clock widget (inset). 50 reaching trials were
performed: 80% with the medium stiffness k = 40 Nm/rad and 10%
catch trials to each of k = {10, 70} Nm/rad. Subject attempted to
reach 45deg (.78rad) in the least time possible.

lower limb motor synergies, believed to be important in
pathological movement after stroke [55]. NOTTABIKE may
even render Virtual environments with nonphysical properties
that can only be realized through simulation, such as negative
mass that accelerates backward when it is pushed forward. The
novelty of such environments is critical for motor-learning
studies because of the importance of testing activities which do
not have a basis in the test subject’s past experience.

Another limitation of a single degree of freedom robot is that it
cannot elicit kinematic movement deviations as an indicator of
motor adaptation or motor learning. Thus, path errors and
spatial convergence cannot be observed. However, there
remains a great deal of information available about motor
performance in the force, position, velocity and time domains,
which may be used to quantify task performance. For example,
the overshoot and undershoot shown in Figure 7 provide strong
evidence of imperfect adaptation to the soft and stiff virtual
springs, respectively, due to training focused on the medium
stiffness spring. The amount of a movement completed within
the initial submovement is also a key indicator of motor
adaptation [46]. Thus, methods from psychophysics based on
time and movement extent can be adapted to elucidate findings
on motor control.

C. Future Directions

NOTTABIKE provides an effective platform to train and test a
variety of motor tasks that could be useful for basic science in
motor control as well as rehabilitation. Our first study will
investigate motor adaptation in the lower limb through a series
of reaching tasks in haptic spring, damper, and mass
environments with healthy subjects. This will allow us to
establish normative metrics for adaptation in the lower-limb,
and evaluate the extent to which principles established in the



upper-limb [1] generalize. We will also investigate the time
course of long-term motor learning in healthy subjects through
repeated testing experiments across multiple days and weeks.
We will further investigate the ability to train novel tasks that
require new motor patterns, using novel environments such as
half-reversed pedaling (reversing the sign of the torque
generated by one leg), and inverse-curl fields (setting crank
velocity in proportion to lateral force).

Following these and other motor experiments in health subjects,
we will compare the capacity for motor adaptation in a clinical
population of patients recovering from stroke. We anticipate
that these tests may lead to methods for quantifying deficit and
differentiating those individuals with a greater or lesser
capacity for improvement (responders vs. non-responders).We
will further investigate how training on NOTTABIKE can
improve motor function in a clinical population, using those
tasks most successful in provoking motor learning in
movements targeted to overcome common deficits due to
stroke.

V. CONCLUSION

NOTTABIKE can render both impedance- and admittance-
based haptic environments with accuracy and responsiveness
that are useful for the study of human coordination and the
delivery of rehabilitative therapy. Future work using this robot
will explore motor adaptation in the lower limb in intact
subjects and haptic environments with therapeutic value to a
clinical population. The ability to test goal-directed movements
in the lower limb will enable comparison of how motor learning
principles and techniques for the lower limb relate to those
established previously in the upper limb.
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