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Abstract - Present robots for investigating lower-limb motor 
control and rehabilitation focus on gait training. An alternative 
approach is to focus on restoring precursor abilities such as motor 
adaptation and volitional movement, as is common in upper-limb 
robotic therapy. Here we describe NOTTABIKE, a one degree-of-
freedom rehabilitation robot designed to probe and promote these 
underlying capabilities. A recumbent exercise cycle platform is 
powered with a servomotor and instrumented with angular 
encoders, force-torque sensing pedals, and a wireless EMG system. 
Virtual environments ranging from spring-mass-damper systems 
to novel foot-to-crank mechanical laws present variants of leg-
reaching and pedaling tasks that challenge perception, cognition, 
motion planning, and motor control systems. This paper 
characterizes the dynamic performance and haptic rendering 
accuracy of NOTTABIKE and presents an example motor 
adaptation task to illustrate its use. Torque and velocity mode 
controllers showed near unity magnitude ratio and phase loss less 
than 60 degrees up to 10 Hz. Spring rendering demonstrated 1% 
mean error in stiffness, and damper rendering performed 
comparably at 2.5%. Virtual mass rendering was less accurate but 
successful in varying perceived mass. NOTTABIKE will be used 
to study lower-limb motor adaptation in intact and impaired 
persons and to develop rehabilitation protocols that promote 
volitional movement recovery.  
 

Index Terms— biomechatronics, lower limb, neuromotor 
control, rehabilitation robotics, robot control 

I. INTRODUCTION  

ost information about motor control and rehabilitation has 
been derived from studies of upper limb reaching and 

manipulation. Haptic robotics have played a key role in 
establishing motor learning principles from experiment. The 
ability to control the mechanical environment of the limb and 
hand allows experimenters to present subjects with tasks they 
have not encountered previously, and then observe the 
processes of motor adaptation and learning. This approach has 
led to a set of motor control insights and guiding principles for 
rehabilitation intervention [1]. First, the brain can build internal 
models of limb dynamics [2] and multiple such models coexist 
or interfere in predictable ways. Second, amplifying error can 
accelerate motor learning [3]–[5]. Third, dynamically 
manipulating task success rate can optimize patient motivation 
[6]–[9] leading to higher self-selected work volumes. Finally, 
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task assistance should only be applied as needed [10]–[12], not 
continuously. An implicit principle common to upper-limb 
rehabilitation approaches is volitional control [13]: movements 
– typically reaching – are initiated by the user; the tasks require 
cognitive engagement to respond to visual and mechanical 
stimuli; and completing the task requires a full chain of neural 
control including perception, cognition, planning, initiation, 
execution, and feedback. This circuit of afferent and efferent 
neural activity is thought to be important for neural plasticity 
[14], [15].  
By contrast, approaches to lower limb rehabilitation have 
focused almost exclusively on cyclic tasks, especially gait and 
gait-like tasks. For instance, early training approaches on the 
Hocoma Lokomat [16] exoskeleton played back pre-recorded 
gait patterns to provide proprioceptive input similar to normal 
gait [17]. Extensions to improve the volitional engagement of 
these activities have included the Lokomat as well as a variety 
of other machines, ranging from haptic foot plates to whole-
limb or single-joint exoskeletons (for excellent reviews, see 
[18], [19]). These systems have been used to explore different 
control strategies including assist-as-needed control, 
impedance control, adaptive control that responds to user 
success, or electromyography-driven control [18]. These 
strategies comport with best practices in motor rehabilitation, 
but the overwhelming focus on using them within a walking 
context leads to fundamental challenges to accessibility and 
therefore scalability in final application. Such problems include 
high device complexity (and therefore cost, space and dedicated 
personnel), substantial time and effort in mounting the device 
to the user or the user to the device, and in some cases a 
substantial minimum functional level of the user prior to 
therapy. There remains a need for solutions that are simple, easy 
to use, and usable early in the recovery process, while still using 
motor rehabilitation principles to evoke high volitional 
engagement. 
A recumbent pedal-based robot could meet this need, building 
upon past [20] use of recumbent cycles and steppers. In clinical 
use, powered cycle ergometers such as the MOTOmed [21] and 
RT300 [22] are used to move subjects through cyclic motions, 
though without explicitly requiring volitional muscle 
activation. In research, pedaling backward has been shown to 
require a change in timing for a subset of  muscles [23], [24]. 
Studies of split-crank pedaling [25] have shown ipsilateral  
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motor coordination pattern is altered by the state of the 
contralateral leg [26], [27] suggesting cross-couplings between 
extensor and flexor muscle groups. Recent cycling research 
suggests skillful cycling leads to longer lasting cortical 
activation changes than constant speed pedaling [28]. And, 
experiments on the NuStep [29] recumbent stepper have 
demonstrated an excitatory effect of upper limb activity on 
lower limb EMG during rhythmic tasks [30], [31]. In 
hemiparetic subjects, pedaling studies have shown reduced 
work generation on the affected side [32], [33] but retained 
ability to increase force output against an increased work load 
when demanded [34]. Other studies indicate that it is foot force 
direction, rather than magnitude that is primarily affected after 
stroke [35]. These studies and rehabilitation approaches are 
frequently based on the idea that much of lower limb control is 
managed by subcortical neural structures that are adapted to 
cyclic motion [36]. But, rehabilitation that relies exclusively on 
cyclic motions, without compelling volitional engagement, may 
miss a critical step by failing to engage cortical structures that 
need to recover or adapt [37].  
Our goal is to combine the simplicity of a pedaling system with 
motor rehabilitation principles gleaned from upper limb 
reaching, emphasizing engagement of cortical structures 
through volitional movements in the lower limb. As opposed to 
an all-at-once approach of directly emulating gait, we propose 
to use lower-limb reaching in different haptic environments to 
develop motor competency through a series of subtasks related 
to gait. The large forces inherent in lower limb movement 
prevent the direct application of upper limb reaching robots to 
studying motor control in the lower limb. To address this gap, 
we built a powered, instrumented robotic exercise cycle 
(NOTTABIKE) to present cognitively demanding reaching and 
pedaling tasks in novel haptic mechanical environments in the 
lower limb. 
Haptic environments are important because they enable a 
researcher to present specific mechanical conditions to a 
moving limb. These environments may be designed to present 

conditions that the motor system has never experienced before 
(to study motor learning), or conditions that incentivize specific 
aspects of motor control that need to be improved (for 
rehabilitation). In the upper limb, environments such as viscous 
curl [2], haptic tunnels [38], and error augmentation [39] have 
been used to derive motor learning principles. NOTTABIKE 
was created to facilitate the study of similar haptic 
environments in the lower limb. A few haptic lower limb robots 
have been implemented before [40]–[42], but none in the 
context of pedaling-like movement. 

Figure 2 - Two-stage mechanical drivetrain of NOTTABIKE. The 
drivetrain provides efficient power transfer between the user, who 
interacts through the pedals, and the industrial servomotor. 

Figure 1 -  NOTTABIKE is a one degree-of-freedom robot used to study human motor control and to deliver rehabilitation in the lower-limb.  
Measurements of subject endpoint kinematics and kinetics are used by a computer controller to create virtual haptic environments. 
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This paper describes the design and performance of the 
NOTTABIKE platform. The system is built on a recumbent 
exercise cycle frame and has a single actuated degree-of-
freedom powered by an industrial servomotor. An array of 
sensors record foot reaction forces and moments, crank and 
pedal kinematics, and muscle electromyographic (EMG) 
activity, which are used to compute state and control the motor. 
We evaluate the performance of the system using ramp-input, 
step-input and frequency response tests, and demonstrate 
human interaction with multiple haptic environments. We 
conclude with a demonstration of using NOTTABIKE to probe 
adaptation to haptic rendering of different spring stiffnesses. A 
preliminary version of this work has been reported [43]. 

II. METHODS 
The Neuromotor Optimization Testbed for Training in Atypical 
Behavior-Inducing Kinetic Environments (NOTTABIKE; 
Figure 1) is based on a recumbent exercise cycle platform, but 
its purpose is not pedaling exercise. Rather, it is a one degree-
of-freedom haptic leg rehabilitation robot designed to render 
customized virtual environments defining the foot-to crank 
mechanical interaction. The recumbent posture is intended to 
enable early intervention following neuromotor injury, before 
ambulatory capacity is reestablished. The haptic environments 
are intended to demand active motor exploration and volitional 
engagement in non-cyclic tasks like targeted leg reaching, foot 
force control or manipulation of a dynamic system, and to 
provide proprioceptive afferent neural activity to encourage 

neural plasticity. The goals are to explore motor control in 
volitional leg movements, characterize deficits and capacity in 
performance and motor learning in impaired and unimpaired 
persons, and develop therapeutic exercises that promote 
targeted improvement in these deficits.  
The NOTTABIKE system is designed to render impedance- 
and admittance-based haptic environments. Mechatronic 
subsystems include a high-performance industrial servomotor, 
a custom drivetrain, and kinetic and kinematic sensors. A 
custom multi-threaded software framework enables setting up 
and running rehabilitation exercises and human motor control 
experiments. The following sections present the mechatronic 
design, control architecture, and system performance 
characterization in a series of electromechanical and human 
interaction tests.  

A. Mechatronic Design – Drivetrain and Communication 
The frame of the robot is a retrofitted recumbent stationary 
bicycle. The frame consists of square steel tube construction 
with an adjustable padded seat and bilateral hand holds with 
integral grip-actuated safety switches. 
The power subsystem is based on a brushless DC servomotor 
with integrated high-bandwidth velocity and torque mode 
controllers (ClearPath CPM-MCVC-3441S-RLN, Teknic Inc., 
Victor, NY, USA). The motor can provide peak torque of 13 
Nm at the spindle, and peak assistive power of 350 W. This 
motor was chosen for its high torque density and low peak 
velocity (840RPM). A 75 VDC, 350 W continuous power 

 

Figure 3 – Schematic representation of the system architecture. Measurements from encoders, force sensors, and EMG sensors are read 
through a LabVIEW Virtual Instrument at 1000Hz and are streamed to a virtual environment loop running in (Python) Jupyter Notebook at 
100Hz. The state of the robot is updated, and a command torque or velocity is calculated based on the currently selected haptic environment 
from the Environment Library. Experiments may be designed and executed in the Protocol Script using tools from the Trial Management 
Library. Outputs are then sent to the motor amplifier and a visualization program to provide performance feedback to the user.  
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supply was used (IPC-5, Teknic Inc., Victor, NY, USA) to 
source power during assistive operation, and an 800W 
regeneration clamp and power resistor dissipates power during 
resistive operation (Applied Motion Products, Watsonville, 
CA, USA).  
The drivetrain transfers power between the motor and the crank. 
It consists of a motor mount, a two-stage chain transmission, 
and a bottom-bracket and crank assembly (Figure 2). This 
design was selected over alternative approaches because high 
drivetrain efficiency and backdrivability are required for 
accurate impedance-based haptic renderings. The motor is 
attached to the steel frame by a custom aluminum mounting 
bracket which is pinch fit to the frame to allow freedom for 
chain tensioning. A 10mm diameter steel driveshaft rests 
between bearing blocks and connects to the motor through a 
rotary shaft coupler.  A two-stage chain-and-sprocket reduction 
transfers power from the drive shaft to the pedal crank. The 
overall gear ratio between the rotation of the motor and the 
crank is 3128:320 or 9.775:1.  
Communication to the integrated controller on the servomotor 
is achieved through Pulse Width Modulation (PWM) of control 
lines. A dedicated microcontroller (Atmega 2560, Atmel Corp.  
San Jose, CA, USA) converts command packets received over 
a serial communication port into 8 kHz PWM control signals. 
The motor controller interprets these PWM signals as velocity 
or torque commands. The motor’s integrated controller may be 
placed into either velocity or torque mode via commands sent 
over USB from the host computer.    

The motor system has several safety features that protect the 
user from encountering excessive torque or velocity. First, 
software limits on torque and velocity are set on the motor’s 
embedded controller (nominal settings for this application are 
equivalent to 70 Nm and 30 RPM at the crank). Second, we 
installed two safety switches, one under each hand, that must 
both be depressed for the motor to receive power from the 
power supply. If at any time one of these safety switches is 
released, power to the motor is cut and the system enters a 
passive damped state facilitated by the motor back-EMF.  
 

B. Mechatronic Design – Sensors 
The robot is instrumented with sensors to measure forces and 
moments at the pedal interface, angular rotations of the crank 
and pedals, and Electromyographic (EMG) activity of the user’s 
leg muscles. These data are sampled by a 16-bit data acquisition 
(DAQ) card (PCIE-6343, National Instruments, Austin, TX, 
USA) and are used for High-Level control (see section C) and 
logged for analysis through a desktop computer (Windows 10 
operating system, Microsoft Corp., Redmond WA). Foot 
endpoint forces, moments, and pedal angular positions are 
measured by instrumented pedals (I-Crankset, Sensix, Poitiers, 
France). Each pedal contains a six-component force-torque load 
cell with internal amplification and signal conditioning. 
Maximum simultaneous force measurement is 250 N in the Fx 
(lateral) and Fy (anterior) directions and 2000 N in Fz. (normal 
to the pedal) – more than adequate for experimentation in 
healthy subjects. Optical quadrature encoders on each pedal 

Figure 4 – (A) Torque command accuracy to a ramp function over a 30 second trial. (B) Average torque step response from a baseline torque 
of 15 Nm to a target torque of 40 Nm. Rise time was determined to be 29 ms. (B inset) Pedal fixation arrangement for torque response testing. 
Torque was controlled by the motor’s internal circuitry only, and measured with the pedal load cell. (C) Average frequency response function 
to a torque chirp input baseline torque was 20Nm with 10Nm peak-to-peak magnitude. Notable features include magnitude of approximately 
unity and phase lag less than 29 degrees up to 10 Hz. 
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axis generate 20000 counts per revolution. Crank kinematics 
are measured with a magnetic quadrature encoder ring fixed to 
the left crank and a reader fixed to the frame, which generate 
24000 counts per revolution. The amplified analog signals from 
each pedal and quadrature channels are collected in a junction 
box and output over a VHDCI cable into the DAC card. A 
wireless EMG system (Trigno Avanti Research+, Delsys, 
Natick, MA, USA) records up to 16 channels of EMG and 
relays them onto analog lines for synchronized recording on the 
DAC. EMG System relay delay is 42 ms.      
 

C. Control and Software Architecture 
The control system of the robot is implemented with a cascaded 
architecture across multiple processors connected by 
communication interfaces. A high-level control law rendering a 
specified haptic environment runs on a desktop computer at 
100Hz. From that virtually rendered haptic environment, a 
torque or velocity is calculated and commanded to a low-level 
processor integrated into the servomotor. The servomotor 
controller then performs closed-loop control on the specified 
variable using internal collocated sensors. This architecture 
combines the benefits of the high-performance timing of a 
microcontroller with the flexibility of programming a desktop 
computer.  
The software system is comprised of several modules. Data is 
acquired from the DAQ card using a dedicated LabVIEW 
virtual instrument (VI). These data are streamed to a Python 
control software responsible for facilitating experiment 
execution and haptic environment rendering. Finally, data are 

streamed from the Python control software to a visualization 
program and the low-level servomotor controller. (Figure 3).  
The LabVIEW VI collects data at 1 kHz using a hardware clock 
on the DAC. The three angle encoders (crank and both pedals), 
forces, and EMG data are buffered into an array for 
transmission at 100 Hz to the Python controller over an internal 
UDP communications socket.  
Data from LabVIEW are received by the virtual environment 
loop and parsed to update the state of the robot. High-level 
control laws are defined within the Environments library to 
specify desired crank output parameters from present system 
state. Two haptic rendering approaches are used under different 
circumstances – impedance- and admittance-based rendering. 
Impedance-based rendering measures robot kinematics and 
controls motor torque, while admittance-based rendering does 
the converse. Impedance-based environments excel at 
rendering springs, while admittance based environments are 
better at rendering masses [44]. In general, high-level control 
laws take the form of any constraint between a measured and a 
commanded variable. This generic architecture enables many 
potential targeted and precise learning environments. (see 
Discussion section). 
After data are received and the system state is updated, the 
motor command is calculated based on the currently enabled 
virtual environment and is sent to the motor where collocated 
control is performed using the motor’s integrated controller and 
sensors. Collocated control is preferred over non-collocated 
control for stability when there exists compliance between the 
motor and the load. Additional state information may be sent to 
the visualization loop to provide the subject with biofeedback.  

Figure 5 – (A) Velocity command accuracy to a ramp function over a 30 second trial. (B) Average velocity step-response from a baseline 
velocity of 1.0 rad/s to a target velocity of 3.14 rad/s (30 RPM). Rise time was determined to be 36 ms. (C) Average frequency response 
function to a velocity chirp input. Notable features include magnitude ratio within 1dB (12%) of unity and phase lag less than 59 degrees up 
to 10Hz. 
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Visual feedback is provided by two-dimensional or three- 
dimensional user interfaces built with Unity Engine (Unity 
Technologies, San Francisco, CA, USA). Two-dimensional 
visual feedback is displayed on a computer monitor directly in 
front of the subject.  2D widgets convey information about 
position, velocity, and other trial conditions using intuitive 
displays such as a clock face or speedometer dial. Other 
information may also be displayed, including dials to indicate 
system parameters on subsequent trials, vectors to indicate 
desired vs. actual force direction and magnitude, graphs of 
muscle EMG envelope, and scores to increase motivation and 
decrease subject slacking [45]–[47].  
  
Experiments may be performed through a protocol scripting 
interface in Python running within the Jupyter Notebook 
environment. We developed a variety of tools for specifying, 
tuning, and recording trials, which are contained within the 
Trial Management library. The protocol script sends messages 
to the virtual environment loop to change system behavior. An 
example of such a script might enable recording, set a system 
parameter to a particular value, wait for an end condition such 
as time or accomplishment of a task goal, and then increment 
the trial. This design enables complex and precise experimental 
protocols to be specified and executed. 

D. Evaluation – Machine Performance Testing 
We conducted a series of tests to characterize device 
performance, including quantifying torque and velocity 
measurement accuracy, step-input response, and frequency 

response. Investigating the performance limits of the device 
allowed us to benchmark its capabilities against other lower 
limb robotic systems. 
We fashioned a jig to lock the rotation of the crank during 
testing. We made a cantilever beam of steel plate backed by a 
wooden board and clamped it perpendicular to the robot frame 
in line with the right pedal (Figure 4B inset). We placed the 
right pedal in contact with the beam so it could measure the 
force between the beam and the pedal face. The reaction force 
supplied by the beam prevented the crank from rotating in the 
backward direction.   
We first evaluated the torque command accuracy of the robot. 
We sent a ramp torque command from 0 Nm to 30 Nm over a 
period of 30 seconds to the motor controller. We calculated 
RMS error between commanded and measured torque (Figure 
4A). It is important to note that the sensor feedback from the 
pedal was not used to control torque: torque was controlled 
independently by the motor’s integrated controller using 
onboard collocated sensors, and performance was evaluated 
using the torque measured separately through the instrumented 
pedals. Thus, from the perspective of the high-level control law, 
the motor may be treated as a torque source, and the response 
may be viewed as an open-loop response. It was therefore 
important to establish congruence between the torque command 
and torque measurement.  
We next evaluated torque step response. We applied a baseline 
torque (15 Nm) to assure that the pedal face was firmly in 
contact with the cantilever beam. We then applied a step 
command (40 Nm) to the servomotor and measured the 

Figure 6 – (A) Crank angle and torque over time during an impedance-based haptic rendering of a spring (𝑘𝑘 = 40 Nm/rad). (B) Regression 
between measured torque and measured crank angle for the spring of part A. (C) Crank velocity and crank torque vs. time during an 
impedance-based rendering of a damper (𝑐𝑐 = 15 Nm(rad/s)-1) (D) Regression between measured torque and crank velocity for both 
impedance- and admittance-based haptic damper renderings. 
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resulting forces on the pedal. We recorded 10 trials and plotted 
the average response (mean ± SD) (Figure 4B). We evaluated 
performance in each trial with rise time (time between when the 
command was issued 50ms into the trial and  100% of final 
value) and settling time (time to settle within 5% of the final 
value) criteria.  
We next evaluated torque frequency response. We created a 
linear torque chirp signal with a peak-to-peak magnitude of 10 
Nm and an offset of 20 Nm. The initial frequency was set to 
0.05 Hz and the terminal frequency was 50 Hz, with a duration 
of 90 s. 
Next, we calculated the frequency response function (FRF) for 
torque control. We calculated magnitude ratio as the quotient of 
the RMS torque output over the RMS torque command. For 
each evaluated frequency in the chirp signal, we used a half-
second (500 sample) window centered at the time when the test 
frequency was commanded. We also calculated phase using the 
lag at maximum cross-correlation between output and input 
signals within the same window. We performed this analysis on 
each of the 10 trials, and we plotted the magnitude and phase as 
a function of frequency (mean ± SD) (Figure 4C). 
To evaluate velocity command accuracy, we applied a speed 
ramp command starting at 0 rad/s and ending at 3.14 rad/sec (30 
RPM) after 30 seconds. We measured crank position from the 
encoder and used the central difference method to estimate 
crank velocity. We applied a 50 Hz bandwidth linear IIR filter 
and calculated RMS error between the commanded and 
measured velocities (Figure 5A). It is important to note that the 
sensor feedback from the crank encoder was not used to control 
velocity: velocity was controlled independently by the 
servomotor’s integrated controller, and performance was 
evaluated using the crank encoder.  
We also evaluated the velocity step response between a baseline 
velocity of 1.05 rad/s and a final velocity of 3.14 rad/s. We 
averaged 10 trials and plotted the resulting velocity ± SD 
(Figure 5B). We evaluated response time and settling time 
using 100% final value and 5% settling error criteria, as in the 
torque step test.  
Finally, we calculated the frequency response function (FRF) 
for velocity control. We applied 10 linear chirps sequentially. 
Each chirp signal had duration 90 seconds, starting frequency 
0.05Hz, terminal frequency 50Hz, and amplitude 2.09 rad/s 
with a baseline of 1.05rad/s. We calculated and plotted the 
velocity FRF using the same approach described in the torque 
section (Figure 5C).    
 

E. Evaluation – Human Interaction Testing 
We conducted a series of tests to quantitatively evaluate the 
ability of the robot to render different impedance- and 
admittance-based haptic environments during human machine 
interaction. Since the robot is instrumented with both kinematic 
and kinetic sensors, we can render a haptic environment with 
one sensor and assess environment accuracy with the other. We 
evaluated human interaction with an impedance-based spring, 
an impedance-based damper, and an admittance-based damper, 
with parameters that fall within a range useful for 
neuromuscular investigation and therapeutic intervention. The 
interaction testing setup was visually identical to that 
demonstrated in Figure 1. Research was performed under the 

oversight of the University of Wisconsin-Madison Health 
Sciences IRB submission ID# 2016-1279-CP001. Informed 
consent was received for all human subjects involved in testing. 
These tests establish the suitability of NOTTABIKE for the 
study of motor control and rehabilitation. 
An impedance-based spring measures the crank angle 𝜃𝜃 and 
commands a motor torque 𝜏𝜏 computed from a mathematical 
representation of a torsional spring, 𝜏𝜏 = 𝑘𝑘𝑘𝑘. A single subject 
interacted with three impedance-based spring environments 
with stiffnesses of 𝑘𝑘 = {10, 40, 70} Nm/rad for one minute 
each. The subject was told to move freely back and forth within 
each environment. We recorded the measured crank angle and 
the torque calculated from the instrumented pedals for each 
condition. We plotted the measured crank angle and measured 
torque over time in Figure 6A for 𝑘𝑘 = 40 Nm/rad to 
demonstrate their correspondence visually. We also used least-
squares linear regression to estimate the apparent external 
stiffness of the rendered virtual spring. (Figure 6B). 
An impedance-based damper relates the measured crank 
velocity 𝜔𝜔 to commanded motor torque 𝜏𝜏 through the 
mathematical expression 𝜏𝜏 = 𝑐𝑐𝑐𝑐. The controller estimates 
crank velocity using a backward difference method and a 50Hz 
linear IIR filter. We evaluated and analyzed damping 
coefficients 𝑐𝑐 = {5, 15, 25} Nm(rad/s)-1 in the same fashion as 
the impedance-based spring (Figures 6C and 6D).  
An admittance-based damper relates torque applied externally 
to the pedals to commanded servomotor velocity through the 
equation 𝜔𝜔 = 𝜏𝜏

𝑐𝑐
 . In this case, the controller estimates torque 

from the instrumented pedals and commands angular velocity 
𝜔𝜔. We evaluated the admittance-based damper for 𝑐𝑐 = {5, 15, 
25} Nm(rad/s)-1. We used measured crank kinematics as 
validation data. We estimated velocity with the central 
difference method and applied a 50 Hz linear filter. We plotted 
the regression between measured force and measured velocity 
on the same plot as the impedance-based trial to facilitate direct 
comparison (Figure 6D). Only the 𝑐𝑐 = 15 Nm(rad/s)-1 trial was 
plotted, for visual clarity. A summary of the results of human 
testing is provided in Table 1.  

III. RESULTS 
For the torque ramp test, error between the commanded (open 
loop) and measured torque was 1.33 Nm RMS. Error was 
negligible at low torque, increasing to a modest overestimate at 
higher torque values (roughly 6% at 45 N command). The 
torque step rise time was 29 ± 1 ms (mean ± SD), and the 
settling time was 125 ± 50 ms. Torque frequency response did 
not exhibit magnitude roll-off within the 50 Hz command 
bandwidth (limited due to 100 Hz command update frequency). 
A key result from the torque frequency analysis is that the 
magnitude ratio is unity up to 10 Hz with only 29 degrees phase 
lag. 
For the velocity ramp test, error between commanded (open 
loop) and measured signals was 0.051 rad/s RMS, with uniform 
accuracy throughout the commanded range (0-30 rad/s). The 
velocity step rise time was 36 ± 7 ms and settling time was 90 
± 35 ms. Magnitude ratio was within 1 dB of unity at all 
frequencies below 10 Hz, with less than 59 degrees phase lag. 
Results of the haptic rendering tests during human interaction 
are displayed in Table 1. All three springs rendered within 1% 
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of the desired spring constant, with RMS torque error less than 
2 Nm within the range tested (roughly -50 to +70 Nm). 
Damping environments performed similarly on average when 
rendered using impedance-control and admittance-control, with 
larger torque variability using impedance-control. Impedance-
controlled dampers rendered within 6% of the desired damping 
constant, with RMS torque error less than 3.4 Nm. Admittance-
controlled dampers performed within 2.5% of the desired 
damping constant, with RMS velocity error less than 0.1 rad/s.  

 

IV. DISCUSSION 

A. Interpretation of Results and System Design 
The results presented here confirm that the torque, velocity, and 
haptic rendering performance of NOTTABIKE are suitable for 
studying motor control and rehabilitation in the lower limb. 
Haptic environments for human interaction testing are rendered 
within a few percent of desired parameters, across a wide range 
of stiffness and damping. Both the torque and velocity control 
modes have near unity magnitude ratio and small phase loss up 
to 10 Hz, exceeding the bandwidth of other lower limb 
rehabilitation robots [48]. For context, humans’ ability to track 
unpredictable stimuli deteriorates around 1-2 Hz [49], and the 
control bandwidth of the human leg is roughly 2 Hz [2]. 
The phase loss is likely attributable to a time lag resulting from 
drive train compliance. The source of the compliance is the 
deflection of transmission mounting forks under tension and 
backlash from residual slack in the drive train. The time lag can 
most readily be seen in the torque and velocity step response 
plots, in the time between when torque or velocity is 
commanded and when the robot responds. This time is 16ms 
and 18ms respectively. Thus, in this respect, the performance 
of the robot is most limited by the drive train.  
At first glance, there appears to be a discrepancy between the 
torque step and chirp responses. While the step response shows 
a gain slightly greater than unity, the chirp response shows 
magnitude below 0 dB. This may be explained by two factors. 
First, the chirp response and step response were conducted at 
different torque amplitudes, and the slight nonlinearity in the 
pedal measurements (see Figure 4a) could cause different 
amplitude measurements. Second, the measurements are 
experimental in nature, so slow drift in the strain gauges or 
motor behavior (e.g. due to temperature) could cause the two 
results to differ slightly.  
From the torque frequency and step responses it appears the 
robot resonates around 40 Hz. This may be an artifact of the 
cantilever beam setup used to evaluate the frequency response. 
The amplification of the velocity before the magnitude roll-off 
observed in the velocity chirp response may be due to a 
resonance of the pedal mass connected through the compliance 
of the drivetrain. The authors do not believe this negatively 
impacts machine performance or safety in any practical manner 
as the peak amplification is 1dB or 12% amplification.  None 
of these features adversely affect the rendering capability of the 
robot within the frequency range necessary for the study of 
motor learning.  
A limitation of our analysis is that the human’s effect on the 
torque and velocity controllers was not directly analyzed in the 
frequency domain. Humans contribute mass which will lower 

system bandwidth, and human joint impedance can vary over 
two orders of magnitude depending on level of muscular co-
contraction[50] and limb posture, making the experimental 
determination of the human’s effect on a controller difficult to 
determine. As such, the human’s effect on the controller likely 
contributed to the tracking error in the human interaction 
tests.Because the time domain and regression results fell within 
our desired performance limits, this analysis was not 
undertaken.  
In addition to the stiffness and damping performance analyzed 
above, the third component of rendering haptic environments is 
inertia – the relationship between torque and angular 
acceleration, as in the traditional mass-spring-damper system. 
NOTTABIKE can render inertia, but assessing the performance 
of inertia rendering proved difficult because the only available 
estimate of angular acceleration is from double differentiation 
of the crank angle signal. The resulting acceleration signal is 
very noisy, so we did not use it to assess inertia rendering 
quantitatively. Qualitatively, subjects interacting with 
simulated inertias report that they are “smooth” and “feel like 
normal pedaling” when combined with light damping. Subjects 
were able to perceive easily the difference among inertias of 
𝐼𝐼 = {5, 10, 40} kg-m2.  
The design of the control system is unusual for a robotic system, 
in that it includes a Windows desktop computer in the control 
loop. The desktop computer cannot perform high-bandwidth 
motor control, so it was also crucial to incorporate the 
integrated servo controller. Thus, parameters updated relatively 
slowly by the desktop computer’s virtual environment model 
(100 Hz) produce motor commands (torque or velocity) that are 
tightly controlled at much higher bandwidth by the servomotor 
controller. This design decision had important benefits. 
Programming on a desktop with a high-level language enables 
rapid control law prototyping, easy data storage and 
sophisticated data visualization for biofeedback – here, through 
the Unity gaming engine. It also opens the possibility of 
creating control paradigms that incorporate data from patient 
history rather than just the current system state, for example by 
using patient specific models and machine learning approaches.  

B. Importance of the Approach 
NOTTABIKE was built to enable different styles of lower-limb 
rehabilitation, based on rehabilitating volitional control of the 
leg in goal-directed movements rather than task-specific gait 
training. The use of haptic environments provides a means to 
create demanding motor tasks and incentivize them in a 
controlled way, by tuning task difficulty and success rates for 
optimal challenge and motivation [8]. Task incentives in the 

Table 1: Assessing The Quality of Haptic Rendering   
Haptic 

env 
Target parameter Rendered 

parameter 
Correlation 
coefficient 

RMSE 

I-spring 𝑘𝑘 = 10 Nm/rad 
𝑘𝑘 = 40 Nm/rad 
𝑘𝑘 = 70 Nm/rad 

10.09 
39.82 
69.35 

0.9945 
0.9987 
0.9990 

0.92 Nm 
1.60 Nm 
1.96 Nm 

I-
damper 

𝑐𝑐 = 5   Nm(rad/s)-1 

𝑐𝑐 = 15 Nm(rad/s)-1 

𝑐𝑐 = 25 Nm(rad/s)-1 

5.32 
14.98 
23.83 

0.9866 
0.9811 
0.9568 

1.22 Nm 
1.80 Nm 
3.37 Nm 

A-
damper 

𝑐𝑐 = 5   Nm(rad/s)-1 

𝑐𝑐 = 15 Nm(rad/s)-1 

𝑐𝑐 = 25 Nm(rad/s)-1 

5.08 
15.32 
25.55 

0.9970 
0.9973 
0.9950 

0.100 rad/s 
0.068 rad/s 
0.079 rad/s 
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form of minimal encouragement toward volitional activity 
[12] or as a firm requirement for task completion [51] have 
been successful in the upper limb. These precedents suggest 
that explicitly rewarding volitional control of a targeted motor 
task may lead to increased motor learning and neuromotor 
recovery. 
.  Haptic rendering may be combined with visual feedback to 
create multimodal learning environments. The addition of 
task-relevant visual feedback can increase motivation by 
making the task demands more understandable and 
intuitive[52]. NOTTABIKE uses a series of 2 and 3 
dimensional widgets to provide real-time performance 
information about task parameters to the subject(Figure 3). 
Training effects arise when the human uses this information 
to reduce error and learn new control strategies. Figure 7 
demonstrates subjects using visual feedback to reach a target 
angle against haptically rendered springs of different 
stiffnesses. 
NOTTABIKE uses a recumbent posture to separate the 
targeted tasks of motor coordination from the confounding 
demands of upright balance and weight support. The 
recumbent posture could also enable robotic rehabilitation 
earlier in the process of recovery from injuries such as stroke 
compared to treadmill training or exoskeleton walking. The 
approach is intended to redevelop motor coordination through 
a progressive series of subtasks, rather than all at once. It is 
envisioned as an early intervention to prepare the motor system 
for later task-specific gait and balance training.  
NOTTABIKE also embodies an inversion of the usual 
paradigm for lower-limb rehabilitation robots. Exoskeletal 
robots are often designed to control many kinematic degrees of 
freedom, often with minimal measurement of interaction forces 
with the user [53] . The underlying assumption in such cases is 
that the movement itself is rehabilitative and the robot can drive 
it with minimal response to the user [54]. In contrast, our view 
of rehabilitation is that only user-generated actions (forces, 
movements) are rehabilitative – and therefore that the primary 
action of the robot should be to respond to the user, not to 
initiate movement. Therefore sensing, not actuation, is the focus 
of NOTTABIKE, and the exercises it prescribes use its one 
degree of freedom to provide kinematic or kinetic responses to 
many potential inputs. The one degree-of-freedom design 
results in a mechanically simple device that can still create 
complex virtual environments that require volitional 
engagement and elicit motor learning.  
This single degree of freedom does present the obvious 
limitation that movement can only occur along a circular path; 
therefore NOTTABIKE cannot create true multidimensional 
haptic environments like viscous curl [2]. However, force-
driven control can still occur along dimensions that are 
kinematically constrained. For instance, forward motion of the 
crank can be controlled by the magnitude of lateral force 
produced by the user. Environments may be arbitrarily precise 
to target specific changes. For example, left dorsiflexor 
modulation can be targeted by controlling crank velocity in 
proportion to EMG activation of the left tibialis anterior muscle 
at specific ranges of crank angle. Or, bilateral abductor control 
can be targeted by controlling crank angle in proportion to 
symmetric abductor force measured at the pedals. 
Environments such as these may enable the exploration of 

lower limb motor synergies, believed to be important in 
pathological movement after stroke [55]. NOTTABIKE may 
even render Virtual environments with nonphysical properties 
that can only be realized through simulation, such as negative 
mass that accelerates backward when it is pushed forward. The 
novelty of such environments is critical for motor-learning 
studies because of the importance of testing activities which do 
not have a basis in the test subject’s past experience.  
Another limitation of a single degree of freedom robot is that it 
cannot elicit kinematic movement deviations as an indicator of 
motor adaptation or motor learning. Thus, path errors and 
spatial convergence cannot be observed. However, there 
remains a great deal of information available about motor 
performance in the force, position, velocity and time domains, 
which may be used to quantify task performance. For example, 
the overshoot and undershoot shown in Figure 7 provide strong 
evidence of imperfect adaptation to the soft and stiff virtual 
springs, respectively, due to training focused on the medium 
stiffness spring. The amount of a movement completed within 
the initial submovement is also a key indicator of motor 
adaptation [46]. Thus, methods from psychophysics based on 
time and movement extent can be adapted to elucidate findings 
on motor control.  
 

C. Future Directions 
NOTTABIKE provides an effective platform to train and test a 
variety of motor tasks that could be useful for basic science in 
motor control as well as rehabilitation. Our first study will 
investigate motor adaptation in the lower limb through a series 
of reaching tasks in haptic spring, damper, and mass 
environments with healthy subjects. This will allow us to 
establish normative metrics for adaptation in the lower-limb, 
and evaluate the extent to which principles established in the 

Figure 7– Demonstration of motor adaptation to springs of different 
stiffnesses on NOTTABIKE in a single subject under visual feedback 
of performance with a clock widget (inset). 50 reaching trials were 
performed: 80% with the medium stiffness 𝑘𝑘 = 40 Nm/rad and 10% 
catch trials to each of 𝑘𝑘 = {10, 70} Nm/rad. Subject attempted to 
reach 45deg (.78rad) in the least time possible. 
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upper-limb [1] generalize. We will also investigate the time 
course of long-term motor learning in healthy subjects through 
repeated testing experiments across multiple days and weeks. 
We will further investigate the ability to train novel tasks that 
require new motor patterns, using novel environments such as 
half-reversed pedaling (reversing the sign of the torque 
generated by one leg), and inverse-curl fields (setting crank 
velocity in proportion to lateral force). 
Following these and other motor experiments in health subjects, 
we will compare the capacity for motor adaptation in a clinical 
population of patients recovering from stroke. We anticipate 
that these tests may lead to methods for quantifying deficit and 
differentiating those individuals with a greater or lesser 
capacity for improvement (responders vs. non-responders).We 
will further investigate how training on NOTTABIKE can 
improve motor function in a clinical population, using those 
tasks most successful in provoking motor learning in 
movements targeted to overcome common deficits due to 
stroke. 

V. CONCLUSION 
NOTTABIKE can render both impedance- and admittance-
based haptic environments with accuracy and responsiveness 
that are useful for the study of human coordination and the 
delivery of rehabilitative therapy. Future work using this robot 
will explore motor adaptation in the lower limb in intact 
subjects and haptic environments with therapeutic value to a 
clinical population. The ability to test goal-directed movements 
in the lower limb will enable comparison of how motor learning 
principles and techniques for the lower limb relate to those 
established previously in the upper limb.  
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