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Abstract—Community detection refers to recovering a (latent)
label on which the distribution of the observed graph depends.
Recent work has also investigated the impact of additionally
knowing the value of another variable at each vertex that is cor-
related with the vertex label (side information), while assuming
side information is independent of the graph edges conditioned
on the label. This work extends the scope of community detection
in two ways. First, we consider a side information that does not
form a Markov chain with the label and graph, and analyze
the detection threshold of semidefinite programming subject to
knowledge of this side information, which is a non-label latent
variable on which the graph edges also depend. In the second part
of the work, we consider aside from vertex labels a second latent
variable that is unknown both in realization and in distribution.
We then investigate the performance of the semidefinite pro-
gramming community detection as a function of the (unknown)
composition of the nuisance latent variable. In both cases, it is
shown that semidefinite programming can achieve exact recovery
down to the optimal (information theoretic) threshold.

1. INTRODUCTION

Community detection refers to grouping (clustering) vertices
of graph having similar affiliations. Community detection has
been investigated widely, see e.g. [1] and references therein.
Information-theoretic threshold of community detection has
been found for several random graph models, e.g., stochastic
block model, censored model, and exponential random graph
model.

In many applications, aside from the graph observation,
non-graphical side information about communities (clusters)
is also available [2]-[4]. The effect of side information
on the community detection threshold has been studied for
partially revealed labels, noisy labels, and more extensive side
information consisting of multiple features [2], [5], [6]. These
models have assumed that, conditioned on the graph labels
that we wish to recover, the graph and side information are
independent. In other words, these early works have assumed
that side information provides fresh information about the labels
over and above the graph, and does not repeat or overlap the
same information in the graph, concerning the desired labels.

In some applications, while the graph depends on both the
community label as well as another variable, the second variable
may be unknowable and its distribution may also be unknown.
In these cases, the second variable is essentially a nuisance
variable for the purposes of detecting labels from the graph,
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however, its unknown distribution may in fact have an effect
on the detection threshold.

In this paper, we consider a model where graph edges depend
on two latent random variables, and investigate the following
two problems:

o Recovering the label for each vertex, assuming the
second latent variable (side information) is revealed. For
this part of the proposed work, we relax the Markov
assumption mentioned earlier, so that the graph and side
information are no longer independent conditioned on the
side information.

o Recovering the first latent variable for each vertex, while
the second latent variable is unknown. In this case, we
investigate the threshold of detection as a function of the
composition of the nuisance latent variable.

This paper investigates the semidefinite programming (SDP)
detector, showing in the process that it can achieve exact
recovery down to the optimal threshold in each case.

The practical significance of the first component of this work
is to render more realistic the role of the side information as
compared with earlier work. In most practical scenarios of
interest, a side information variable may not be independent
of the graph subject to the vertex label, i.e., the information
available via the connective and individual attributes of the
vertices may overlap. This work addresses such practical
conditions. The value of the second component of this work
is in showing how the performance of community detection is
affected by the composition of parameters that are unknown
and are not subject to detection.

II. NOTATION AND GRAPHICAL MODEL

I is the identity matrix and J is the all-one matrix. 1 and
0 denote all-one and all-zero vectors, respectively. S > 0
indicates a positive semidefinite matrix and .S > 0 a matrix
with non-negative entries. ||S|| is the spectral norm and Ay (S)
is the second smallest eigenvalue (for a symmetric matrix).
(+,-) is the inner product and * is the element-wise product. We
abbreviate [n] £ {1,--- ,n}. Probabilities are denoted by P(-).
Random variables with Bernoulli and Binomial distributions
are indicated by Bern(p) and Bin(n,p) respectively, with n
trails and success probability p.

Let n denote the number of vertices in the graph. Each
vertex v in the graph is related to two binary independent
latent variables =, € {—1,+1} and y, € {—1,+1}. For each
vertex v, P{x, = +1} = p1s, P{z, = —1} = pos, P{y, =
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+1} = p1y, and P{y, = —1} = pyy. Also, for each vertex v, a

set of latent variables o, = {2, y, } is assigned independently.

Each pair of vertices (u,v) is independently connected to each
other with probability @), -, that is specified by a symmetric
4 x 4 matrix @) with entries in [0, 1]. Also, P is an 1 x 4 vector
with entries in [0, 1] such that ). P; = 1. The elements of
P determine the relative size of vertices with the same set of
latent variables. This model can be easily generalized to K
independent latent variables with various cardinalities.

Let z = [z, 22, - ,scn]T and y = [y1,92, -~ ,yn]T. If A
denote the symmetric adjacency matrix of the graph then for
i € [n] and i > j we have

Ti=25,Y =Yj

A Bern(gqy) if = =,y #y;
Y Bern(q,) if @ # ),y =y;
Bern(q) if =z # x5,y # yj
where Qoy = alogn’ . = blosn’ Q= Clogn’ q= dlogn, and

a>b>c>d>0. Then @ that is a symmetric 4 X 4 matrix
is written as

Q — dz  Qzy q Qy
Ay q dzy dQz
q qy Gz  Qaxy

III. DETECTION BY SEMIDEFINITE PROGRAMMING

Let W £ yy” and B £ W % A, where y is an n x 1 vector
consists of second latent variables and A is the adjacency matrix
of the graph. This paper considers two different scenarios.

A. One Unknown Binary Latent Variable

In the first scenario, given an observation of the graph and
vector y, we exactly recover x that consists of the first latent
variable for each vertex in the graph. Here, the vector y is
considered as a side information to help estimator to recover
the desired latent variables. In this model, it is assumed that
the desired latent variables in  satisfy the constraint 71 = 0
which implies the existence of two equal sized communities in
the graph. The log-likelihood function of the graph is written
as

T T
logP (Alz,y) = gleBx + %xTAx +c,

where 77 = log (Z—f) and 75 = log (f—f}), as n — oo and ¢
is a constant. Then the maximum likelihood estimator can be
stated as

I =arg max TyzT Bz + ToxT Ax
subject to  z; € {£1}, i€ [n] ey

271 =0,

that is a non-convex optimization problem. Let Z = x2”. The
maximum likelihood estimator (1) can be restated as

Z =argmax (Z, T\ B + T>A)
z

T

subject to Z = zx )
(Z,J) =0.

Relaxing the rank-one constraint, we obtain the following
semidefinite programming relaxation of (2):

Z =argmax (Z, T\ B + Ty A)
z
subject to Z =0 3)
i = 1, 1€ [n]
(Z,J) =0.

Let Z* = 2*2*T corresponding to the true labels for desired
latent variable and define 2, £ {z2T : z € {£1}",271 = 0}.
For convenience, define

m 2 B (Va— o)’ + 2 (V- Vi)
P2 (Ja—e) 4 P (VB V)

Theorem 1. For one unknown binary latent variable model
with side information, if

° 11 > 1 Ply <0.5

e 2>1 p1y > 0.5

2
)

(1>

72

when
when

then as n — o0, for semidefinite programming estimator Zsp p,
minz*ezn IP’(ZSDP = Z*) Z 1-— 0(1)

The following Theorem establishes the optimality of semidef-
inite programming procedure.

Theorem 2. For one unknown binary latent variable model
with side information, if

e <1 Ply <0.5

e My <1 p1y > 0.5
then for any sequence of estimators Zn, IP’(Zn =7Z*)—=0as
n — oo.

when
when

B. Two Unknown Binary Latent Variables

In the second scenario, given an observation of the graph,
the aim is to exactly recover x while both vectors = and y
are unknown variables. In this model, it is assumed that the
desired latent variables in - satisfy the constraint 271 = 0
which implies the existence of two equal sized communities
in the graph. Also, it is assumed that the estimator does not
know anything about the second latent variables in ¢ and the
prior distribution of y is uniform over {y : y € {£1}"}. The
log-likelihood function of A given x and y is obtained as

log P (Alz,y) :%yT (A * :U:UT) Y+ %xTAas

T
+ gy Ay te,
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where T = log( ) Ty = log( ) and T5 =
n — oo and c is a constant. Then,

logP (A]z) o log Z F(Aley)

log (%), as

y
o~ IOg Z e%yT(A*xxT)y—Q—%mTAx—&-yTAy
y
T+ T3
=g C ATt ZZAM
JrlOgZ TS A*wa)y+yTAy7—mTAmfzi Ej Aij.

Applying the log-sum-exp approximation, the maximum likeli-
hood estimator is

& =argmax x! Ax
x

subject to  x; € {1}, i€ [n] “)
271 = 0,
that is a non-convex optimization problem. Let Z = xz”. Then
(4) can be restated as
% =arg max (7, A)
x
subject to  Z = zat (5)
Zy =1, 1€ [n]
(Z,J) =0.

Relaxing the rank-one constraint, we obtain the following
semidefinite programming relaxation of (5):

& =arg max (Z, A)
subject to Z > 0
Zn = 17
<Z7 J> =

(6)
i € [n]

Let Z* = z*2*T corresponding to the true labels for desired

latent variables and define 2, £ {zaT : z € {£1}",271 =

0}. For convenience, define
1 2
) (\/aply + bp2y — \/Cply + dp?y) )

1 2
= 3 (\/apzy +bpry — \/cpay + dply)

Theorem 3. For two unknown binary latent variable model, if

A
n3 =

min {3, n4} > 1

then as n — o0, for semidefinite programming estimator Zsp p,
minz*ezn P(ZSDP = Z*) 2 1-— 0(1).

The following Theorem establishes the optimality of semidef-
inite programming procedure.

Theorem 4. For two unknown binary latent variable model, if
min {7737 774} <1

then for any sequence of estimators Zy, P(Z, = Z*) — 0 as
n — oo.

IV. PROOF OF THEOREM 1

The following lemma shows the sufficient conditions for the
optimality of semidefinite programming (3).
Lemma 1. Suppose there exist D* = diag(d}) > 0 and \* €
R, such that S* £ D* + \*J — T4 B — T A satisfies S* = 0,
A2(S*) > 0, and S*z* = 0. Then Zspp = Z* is the unique
solution to (3).

Proof. Let D = diag(d;), A € R, and S > 0 denote the
Lagrangian multipliers of (3). For any Z that satisfies the
constraints in (3), we have

Ty (B, Z) + Ty(A, Z) <L(Z S*,D* \*) = (D*,1)

W5 NI+ T\B + T, 2%

YT(B, 2% + To(A, 27,

where (a) holds because (S*, Z) > 0, (b) holds because Z;; =
1foralli € [n]and S* = D*+A*J—T1 B—T5 A, and (c) holds
because S*z* = 0 and z*T1 = 0. Therefore, Z* = z T is

an optimal solution of (3). Now, assume Z is another optimal
solution. Then,

(S*,Z) :<D* +MJ —T\B—TA, Z)

where (a) holds because (T1 B+T2A, Z*) = (11 B+ 13 A, Z),
Zj = Zy = 1 forall i € [n], and (J,Z*) = (J, Z) = 0.
Since Z = 0 and S* = 0 while its second smallest eigenvalue
A2(8*) is positive (since S*&* = 0), Z must be a multiple
of Z*. Also, since Z;; = Z}; = 1 for all i € [n], we have
7 =27 O

We now show that S* = D* + \*J — T1 B — T A satisfies
other conditions in Lemma 1 with probability 1 — o(1). Let

d = T1 Z BUI 1‘ -+ T2 Z A”I;I: (7)

Then D*z* = T Bx* + To Ax™* and based on the definition
of S* in Lemma 1, S* satisfies the condition S*z* = 0. It
remains to show that S* > 0 and A\2(S*) > 0 with probability
1 —o(1). In other words, we need to show that

P{ inf  v7S* > o} >1-o(1),
vla*,|jv]|=1

where v is an n x 1 vector. Then for any v such that v
and |jv]| =1,
vTS*v =o' D*v + N0 Jv — Ty (B-E[B])v
— Ty’ (A—E[A])v — T E[B]v
— Ty E[A]v
>mind} + \v'Jv - Ty |B - E[B]|
—~ Ty ||[A - E[A]| - Tw E [B]v
— Ty E[A]v

T.’.E* =0

1357

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 31,2020 at 20:51:37 UTC from IEEE Xplore. Restrictions apply.



It can be shown that

— Ty E [B]v - Ty E[A]v
1

1
=—7 [Tic1 + Toco) v! Wo — 1 [Tycs + Toca] 07 (Z + W)v

1
-1 [Tici + Toco]l v Jv + (Th 4 T3) Ty

where ¢; = (a —b+c—d) loin, co = (a—l—b—O—c—i—d)loinn’
cs=(a—b—c+d) %" and ¢y = (a+b—c—d) 8"

n

Lemma 2. For any ¢ > 0, there exists ¢’,c” > 0 such that
for any n > 1, ||A —E[A]|| < ¢'V1ogn and |B — E[B]|| <
cv/logn with probability at least 1 —n~°.

Proof. The proof is similar to the proofs [7, Thoerem 9] and
[8, Thoerem 5]. O

Lemma 3. With probability at least 1 — n_%, vITWo <
Viegn + (piy —pzy)QUTJU + 2|p1y — p2ylv/nlogn and
vI(Z x W)v < /logn.

Proof. Since — |v;| < v;y; < |v;], by applying the Chernoff
bound we have

P (vafIE[va] > \/logn) <n77.

Since E [v7y] = (p1y — p2y) v"1 and [v71] < [Jv]l2]1]]2 =
v/n, with probability converging to one,

2
(v"y)” <logn + (p1y — pay)” v" I

+ 20”1 p1y — pay|\/logn

<logn + (p1y — pgy)2 T Jv + 2|p1y — paylv/nlogn.

Similarly, it can be shown that with high probability
vT(Z * W)v < y/logn by noticing that E [}, z;y;0;] = 0
and — |1}1‘ < T;YiU; < |Uz‘ O
Lemma 4. Let § = 101(_’1%3 Zn
pl-m+o(l) _ pl-mato(h).

. Then P (min; df >40) > 1 —

Proof. The proof is achieved by applying the Chernoff bound
and taking the union bound. O

Notice that p1,, < 0.5 implies ; < 12 and pq,, > 0.5 implies

n > n2. When p,, < 0.5, if 7; > 1 then min; d} > lo{;ign
with probability converging to one. Also, when py, > 0.5, if

72 > 1 then min; d} > 101;{%; ’g’,n with high probability.

Let \* > i [Tic1 + Toca] (p1y — pgy)Z. Therefore, applying
Lemmas 2, 3, and 4, we get that when p;, < 0.5, if 9 > 1
and when p1, > 0.5, if 772 > 1, then

VTS > logn
log logn
>0,

- (Tlcl + TQC//) logn + (Tl + TQ) wa

and Theorem 1 follows.

V. PROOF OF THEOREM 2

Since z* has a uniform distribution over {x € {+1}" :
2T1 = 0}, maximum likelihood estimator minimizes the
error probability among all estimators. Then we need to
find when the maximum likelihood estimator fails. Let
e(i, H) = >jer Aij(Tiyiy; + To). Also, let Fy and Fj
denote the events that min;cc: (e(i,Cy) —e(i,C3)) < —2
and min;ec; (e(i,C3) — e(i,C)) < —2, respectively, where
Ci={v:zy,=1Lven}and C; ={v:z, =-1,v € [n]}.
Then P (ML fails) > P (Fy N Fy). Thus it suffices to show
that with high probability P (F;) — 1 and P (F) — 1. Here,
we just prove that P (F;) — 1, while P (Fy) — 1 is proved
similarly. By symmetry, we can condition on C} being the

first 5 vertices. Let T' denote the set of first log’é m vertices
of C. Then
min (e(i, C7) — e(i,C3)) < min (e(i, C7) — e(i, C3))
ieCy ieT

PP, .
< min (e(i, Y \ T) — e(i, C3)) + maxe(i, T)

Let Fy and F, denote the events max;ere(i,T) < 6 — 2,
min;er (e(i, Cy \ T) — e(,C3)) < —0, respectively. To show
that P(Fy) — 1, we need to show that P(F;) — 1 and

For ¢« € T, e(z,T) = (Tl + TQ)Xl + (T1 —
T5) X5, where X7 ~ Binom(|T|,alogn/n) and X5 ~
Binom(|T'|, blogn/n). Applying the Chernoff bound for bino-
mial distributions, we get

6—2
P(X;>———
<I_WE+BJ

2—6
< logn é 1 2(T1+7T2) < n72+0(1)
- 2(T1 + Tg)ea 2 - ’

P <X2 > 5—2)
2Ty — Tz
2—6
o logn (0 \NTEEL sk
- 2|T1 —T2|6b 2 -
Since 77 —T> < 0 and T + T5 > 0, we get that
P(e(s,T) >0 — 2)
<SP((T) 4 To) X1 + Ty — To| Xy > 6 — 2) < n 2o,

Using the union bound yields P (E;) > 1—n~"'*°(), Therefore
P (E;) — 1 with high probability.

Lemma 5. [2, Lemma 15] Let X1, Xo,..., X,, be a se-
quence of i.i.d. random variables and m = n + o(n). Then
for any u € R and v € R, ]P’(ZzllXi <pu-v) >

2

mingeg e IV M(t) (1 - ‘Z—g), where M (t) is the moment
generating function of Y = Y " X, and Y is a random

eVP(y) o ; 2
By et] with variance o,

Lemma 6. Let E! denote the event that e(i,Ci \ T) —
e(i,C3) < —0, where e(i, H) = Y ien Aij(Tyy; + To).
Then P (EY) > n~mto() 4 p=n2to(l),

variable distributed according to
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Proof. The proof is achieved by applying Lemma 5 and the
Chernoff bound. O

Applying Lemma 6 yields
P(Es)=1-[01-P(E)

€T
> 1 [1—porto) o) .

n1—7]2+o(1)7n1—7/1 +o(1)

>1—e"

Notice that pi, < 0.5 implies 71 < 12 and p1,, > 0.5 implies
n1 > 12. When p1,, < 0.5, if 1 < 1 then P (E) — 1 and the
first part of Theorem 2 follows. When py, > 0.5, if 72 < 1
then P (E;) — 1 and the second part of Theorem 2 follows.

V1. PROOF OF THEOREM 3

The following lemma states the sufficient conditions for the
optimality of semidefinite programming (6).

Lemma 7. Suppose there exist D* = diag(d}) > 0 and \* €
R, such that S* £ D* +\*J — A satisfies S* = 0, A2(S*) >0,
and S*x = 0. Then Zgpp = Z* is the unique solution to (6).

Proof. The proof is similar to the proof of Lemma 1. O

It suffices to show that S* = D* + \*J — A satisfies other
conditions in Lemma 7 with probability 1 — o(1). Let

n
* kK
d; = E Aijxial.
=1

Then D*x* = Ax* and based on the definition of S* in
Lemma 7, S* satisfies the condition S*z* = 0. It remains to
show that S* > 0 and A\2(S*) > 0 with probability at least
1—0(1), ie.,

]P’{ inf v S*0 > 0} >1-o0(1),
vlz*,||v]|[=1

where v is an n x 1 vector. Then for any v such that v72* = 0
and ||v]| =1,

v S* v =0T D*v + N0 Jv — vl (A - E[A]) v — v E[A]v
>mind; + v Jv — ||A - E[A]|| — v E[4]v.
It can be shown that
1
—TE[A)]v =~ i [clvTWv — 0T Jv — 30T (Z % W)v]

+ qzy,

where ¢c; = (a —b+c—d) lofi", co = (a+b+c+d) e,

n
and c3 = (a — b — c+d) &2

Lemma 8. Let § = lolog w

»logn
nl—na+o(1) _ pl—ni+o(l)

. Then P (min; df >46) > 1 —

Proof. The proof is achieved by applying the Chernoff bound
and taking the union bound. O

) . log n
If min{ns,n4} > 1 then min,; d} > logoig -

converging to one. Let A\* > i [cl (p1y — pr)2 + CQi|. Apply-

with probability

ing Lemmas 2, 3, and 8, we get that when min{ns,ns} > 1,
then

1
>_ 08N —d/logn + gy > 0,

oISy >
loglogn

and Theorem 3 follows.

VII. PROOF OF THEOREM 4

The proof is similar to the proof of Theorem 2. Here, we need
to find when the maximum likelihood estimator fails. The events
Fi, F5, By, E5, and F) are the same as we have defined them
in the proof of Theorem 2. Also, the definitions for C, C5, and
T remain valid for this part. Then P (ML fails) > P (F} N Fy).
Here we just prove that P (Fy) — 1, while P (Fy) — 1 is
proved similarly.

By symmetry, we can condition on C] being the first 4
vertices. Then,

min (e(i, ) = e(i,C5)) < mip (e(i, ) — e(i.C5)
< mi o - .
= 1;%17111 (6(2,01 \T) 6(2702)) +I}1€E)i2(€(Z,T)7
where e(i, H) & > jenm Aij-
For i € T, e(i,T) = X1 + X2, where X; ~

Binom(|T'|, alogn/n) and X5 ~ Binom(|T|,blogn/n). Ap-
plying the Chernoff bound for binomial distributions,

14
(g )= () e
ea

0 logn (6 1-3 —2to(1)

Then P (e(i, T) > § — 2) < n~2+°(1), Using the union bound,
P(E;) > 1 — n~'T°(1), Therefore P(F;,) — 1 with high
probability.

Lemma 9. Let E) denote the event that e(i,C; \ T) —
e(i,C3) < —0, where e(i, H) = > jen Aij. Then P (E3) >
s to(1) 4 —nato(d).

Proof. The proof is achieved by applying Lemma 5 and the
Chernoff bound. O

Applying Lemma 9 yields
P(Es) =1- [P (E)
ieT
_ _ ||
>1-— {1 —pmte(l) _ 774+0(1)]

nl—n3+o(1) _,1—ng+o(1)

>1—e"

Therefore, if min{ns,n4} < 1 then P (E3) — 1 and Theorem 4
follows.
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