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 20 

Abstract 21 

 22 

Human populations in many countries have undergone a phase of demographic 23 
transition, characterized by a major reduction in fertility at a time of increased resource 24 
availability. A key stylized fact is that the reduction in fertility is preceded by a reduction 25 
in mortality and a consequent increase in population density. Various theories have 26 
been proposed to account for the demographic transition process, including 27 
maladaptation, increased parental investment in fewer offspring, and cultural evolution. 28 
None of these approaches, including formal cultural evolutionary models of the 29 
demographic transitions, have addressed a possible direct causal relationship between 30 
a reduction in mortality and the subsequent decline in fertility. We provide mathematical 31 
models in which low mortality favors the cultural selection of low fertility traits. This 32 
occurs because reduced mortality slows turnover in the model, which allows the cultural 33 
transmission advantage of low fertility traits to out-race their reproductive disadvantage. 34 
For mortality to be a crucial determinant of outcome, a cultural transmission bias is 35 
required where slow reproducers exert higher social influence. Computer simulations of 36 
our models that allow for exogenous variation in the death rate can reproduce the 37 
central features of the demographic transition process, including substantial reductions 38 
in fertility within only 1-3 generations. A model assuming continuous evolution of 39 
reproduction rates through imitation errors predicts fertility to fall below replacement 40 
levels, if death rates are sufficiently low. This can potentially explain the very low 41 
preferred family sizes in Western Europe. 42 

 43 

  44 
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1. Introduction 45 

In the 19th century, some human populations displayed a demographic transition from 46 

relatively high fertility and high mortality towards a greatly reduced fertility and lower 47 

mortality [1-4]. This first occurred in more developed parts of the world, such as Europe, 48 

the United States, Japan, Australia, and New Zealand, and coincided with an overall 49 

increase in resource availability (judged by economic considerations). In Western 50 

European countries, fertility declined below replacement levels since the 1970s and 51 

1980s [5,6], and this also applies to preferred family sizes. In German speaking 52 

countries the average reported ideal family size has fallen below replacement levels—53 

about 1.7 children [6]. Furthermore, fertility reduction tends to be more pronounced in 54 

population segments that are economically advantaged than in poorer segments [1]. 55 

This is in contrast to trends observed before these demographic transitions, when 56 

wealth was associated with higher fertility [1,7].  57 

 58 

A number of theories have been put forward to account for demographic 59 

transitions towards reduced fertility [1,8]. According to one line of argument, the 60 

transition to reduced fertility may be because of a mismatch between the modern 61 

environment and the ancestral one in which humans evolved. Behaviors that were 62 

advantageous in the ancestral environment could have become dysfunctional under 63 

modern socio-economic conditions, leading to a reduced reproductive output [1]. A 64 

second theory holds that the current environment favors the production of few offspring 65 

with large parental investment rather than the generation of more offspring with lesser 66 
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parental investment per child.  A third theory is based upon cultural rather than genetic 67 

evolution [9,10]. Behavior that leads to reduced fertility in certain influential individuals is 68 

copied by others, resulting in a spread of this trait.  69 

 70 

A well-developed mathematical theory of the dynamics of cultural transmission 71 

[9,11-17] has been applied to the analysis of demographic transitions and the evolution 72 

of small family sizes [18-20]. This research has analyzed the spread of cultural traits 73 

that affect fertility, survival, or both, and the effects of these traits on the demographic 74 

structure of the population. In [19,20], the transition to reduced fertilities has been 75 

explained by cultural niche construction. According to this theory, the first trait to spread 76 

is one of valuing education, which provides an environment that promotes the spread of 77 

a second, fertility-reducing trait. If the trait of valuing education is further associated with 78 

reduced mortality of individuals, the model predicts that the decline in fertility is 79 

preceded by a reduction in the population death rate, as observed in demographic data. 80 

In [18] it was shown that horizontal and oblique transmission can accelerate the spread 81 

of the cultural trait, compared to vertical transmission alone. This paper provides a 82 

broad analysis and creates a model of cultural transmission of a trait that can affect 83 

fertility and/or mortality of individuals. Applications to demographic transitions are 84 

described in two contexts: (i) Neolitic demographic transition, where a fertility- 85 

increasing trait spreads through the population, is investigated with respect to different 86 

transmission modes, and (ii) 19-20 century demographic transition in Europe is modeled 87 

by using a trait that simultaneously decreases fertility and increases survival of 88 
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individuals. A trait is considered where a reduction in fertility is strongly coupled to an 89 

increase of survival of individuals.  90 

 91 

A key stylized fact about demographic transitions is that the reduction in fertility 92 

tends to be preceded by a reduction in the death rate of individuals, and by a 93 

consequent temporary population growth phase [4,21,22], presumably a consequence 94 

of improved socioeconomic circumstances. This is surprising in the light of evolutionary 95 

biology [1,23], because evolution tends to maximize reproductive output, which can 96 

generally be increased when resources are more plentiful. Mathematical models of 97 

cultural evolutionary processes have so far not directly addressed the reason for the 98 

observation that fertility reduction is preceded by mortality reduction. Previously 99 

published work linked mortality reduction to other cultural traits, such as education or 100 

fertility itself. Here, we add to the existing literature by considering mathematical models 101 

of cultural transmission where the population death rate is subject to independent 102 

external influences that vary exogenously over time, due to sanitary, medical and 103 

technological advances.  We investigate how such externally-driven changes in 104 

mortality affect the contagion of a fertility-reducing trait. We find that the death rate of 105 

individuals is a key parameter for determining whether the cultural spread of a fertility-106 

reducing trait is successful. While the fertility-reducing trait fails to spread at high 107 

population death rates, it successfully spreads once the population death rate has fallen 108 

below a threshold. For this impact of the population death rate to be observed, the 109 

model further requires a cultural transmission bias towards slow reproducers, which can 110 

come about by a higher social influence of slowly reproducing individuals. The critical 111 
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effect of the population death rate on outcome occurs because reduced death rates 112 

slow the rate at which early reproducers outrun delayed reproducers in the models, 113 

allowing cultural transmission of low fertility traits to outweigh the fitness advantage of 114 

fast reproduction. Computer simulations of the demographic transition process show 115 

that the empirical stylized characteristics of this process can be captured by our models 116 

on realistic time scales. The models further predict that with reduced population death 117 

rates, cultural evolutionary processes can result in the eventual decline of fertility below 118 

replacement levels. This is relevant for recent trends in Western European and other 119 

countries [5,6].     120 

 121 

 122 

2. Concepts and modeling approaches:  a roadmap 123 

Cultural transmission dynamics can be complex, and several different mathematical 124 

modeling assumptions can be made that can potentially impact results. While simpler 125 

models are more tractable analytically, including some more realistic assumptions 126 

requires more complicated modeling approaches. Therefore, the paper is structured as 127 

follows (Figure 1).  128 

(A) We start with the simplest modeling approach that takes into account two distinct 129 

populations: fast versus slow reproducers. Moreover, it will be assumed that all 130 

individuals mix perfectly with each other, and that logistic growth occurs that is limited 131 

by a carrying capacity. This is expressed in terms of ordinary differential equations, and 132 
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basic insights will be described about the conditions required for slow reproducers to be 133 

prevalent.  134 

(B) The same kind of dynamics (fast versus slow reproducers) will be re-considered in 135 

biologically more complex settings. These include: (i) A spatially explicit model, because 136 

the perfect mixing assumption is unrealistic and individuals are more likely to 137 

communicate with members of their local community rather than with anyone in the 138 

global population. Including spatial restriction has been shown to have significant effects 139 

not only in ecological and evolutionary models, but also in models of cultural evolution 140 

[24,25]. (ii) An age-structured model where instead of fast and slow reproduction rates, 141 

we consider early and late reproducers, because the timing of reproduction can be an 142 

important determinant of fertility. (iii) Instead of a fixed carrying capacity, we assume 143 

that more room for increased population growth is continuously generated, thus giving 144 

rise to an ever-increasing population size, which is more realistic. Using this model, we 145 

further show that a demographic transition from higher to lower fertility can occur within 146 

realistic time frames. An important conclusion from this section is that central results 147 

remain robust irrespective of the modeling approach, thus increasing the confidence in 148 

biological / sociological relevance. 149 

 (C) The longer-term evolution of fertility will be examined. This requires a different 150 

approach where the reproduction rate is allowed to continuously evolve, rather than 151 

assuming fast versus slow reproducers. The most straightforward way to model this is in 152 

terms of an agent-based model, and we will build on the spatial model considered in Bii.    153 

  154 
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 155 

 156 

3. Results 157 

3A. Fast versus slow reproducers in well-mixed populations 158 

We start the exploration of the evolutionary dynamics of a culturally transmitted, fertility-159 

reducing trait by formulating a minimally parameterized model that includes (a) a fertility 160 

reducing trait and (b) cultural transmission.  We assume that two traits exist in the 161 

population. The fast reproduction trait is a default state, and a slow reproductive trait 162 

can spread culturally via horizontal or vertical transmission. We will denote the 163 

population of the individuals with the fast reproductive trait as xf and the population of 164 

the individuals with the slow reproductive trait as xs. The dynamics can be described by 165 

a deterministic, non-spatial, asexual model expressed by ODEs: 166 

      (1) 167 

Here, each type reproduces with its own linear reproduction rate, with rf>rs,  168 

and the competition between the two traits is expressed by term W, which for example 169 

can take the logistic form,  170 

 171 

where K denotes the carrying capacity. Both types die with equal rates, d. We assume 172 

that there is a probability of switching from one type to the other, which is proportional to 173 

the abundance of the individuals of the opposite type. The total rate at which fast 174 

		 

!x f = rf x fW −dx f −βx f xs /K ,
!xs = rsxsW −dxs +βx f xs /K .

		
W =1−

x f + xs
K

,
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reproducing individuals switch to slow reproduction is given by  and the total 175 

rate at which slow reproducers switch to fast reproduction is given by .  If we 176 

assume that βf>βs, and denote β= βf - βs, we have the term  with the negative 177 

sign in the equation for xf and the same term with the positive sign in the equation for xs. 178 

These terms are equivalent in form to infection terms, see equation (1). The main 179 

postulates used here are that (a) of the two types of individuals, one grows faster than 180 

the other (rf>rs) and (b) there are more individuals switching from fast reproduction to 181 

slow reproduction than the other way around (β>0). The latter modeling choice is 182 

motivated by the assumption that slow reproducers tend to channel the resources 183 

available to them into accumulation of wealth and/or social status, and thus they may 184 

appear as more attractive models for imitation [19].  185 

 186 

System (1) has four steady states:  187 

0. The trivial solution, xf = xs=0 is unstable as long as rs>d and rf>d. We will assume that 188 

both populations can persist on their own, and the above inequalities hold.  189 

1. Fast reproducers win (that is, the fast reproduction trait spreads through the whole 190 

population):  This solution is stable if  191 

 192 

2. Slow reproducers win:  This solution is stable if  193 

		
β f x f

xs
K
,

	
βs xs

x f
K

	
βx f

xs
K

		x f = K(1−d /rf ), xs =0.

		
d >d1 ≡

rf
1+(rf − rs )/β

.

		x f =0, xs = K(1−d /rs ).
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 Note that d2<d1. 194 

3. Coexistence solution, where both traits occur in the population195 

 196 

This solution is positive and stable as long as  197 

d2<d<d1. 198 

 199 

To summarize these results, we note that the death rate of the individuals, d, controls 200 

the outcome of the competition dynamics of the two traits. For high death rates, the fast 201 

reproduction trait spreads through the population, and for low death rates, the slow 202 

reproduction trait is able to invade and take over. Modifications of the basic model (1) 203 

are considered in Section 1.1 of the Supplement, where we study different assumptions 204 

on the dynamics of switching type; it is shown that the central results are unchanged. 205 

We note that to observe these results in the current setting, the models need to include 206 

the assumption of density dependence in the population growth process. They are not 207 

observed in models assuming straightforward exponential population growth. Section 208 

3Biii below explores models of unbounded population growth in which the results 209 

reported here remain robust.  210 

 211 

 Before we proceed, it is instructive to interpret the model from the prospective of 212 

virus dynamics, by viewing x(1) and x(2) and susceptible and infected individuals 213 

respectively. The three nontrivial equilibria are characterized by (1) susceptibles only, 214 

(2) infecteds  only, and (3) coexistence of both. In order for infection to be able to 215 

		
d <d2 ≡

rs
1+(rf − rs )/β

.

		
x f =

K
β
(d −d2), xs =

K
β
(d1 −d).
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spread, the basic reproductive ratio, R0, has to be larger than 1. In the context of this 216 

system, we have  217 

Decreasing d clearly increases R0 . 218 

 219 

3B. Introducing more realism into the model 220 

Because the model explored in the last section contains a number of simplifying 221 

assumptions that are known to be inconsistent with reality, it is important to determine 222 

whether the results hold robust in more realistic settings. It turns out that central results 223 

do remain robust in spatial models, models with age structure, and in models assuming 224 

that populations periodically increase their carrying capacity. This is described as 225 

follows.   226 

(i) Spatial Dynamics:  227 

We consider a stochastic agent-based model (ABM) that describes population dynamics 228 

on a 2D grid of size n x n. We will refer to this model as ABM1; compared to the simple 229 

ODE model, the present description includes spatial and stochastic effects. As before, 230 

the fast reproduction trait is assumed a default state of the agents, and a slow 231 

reproductive trait spreads culturally via horizontal or vertical transmission. During each 232 

time step (representing a generation), the grid is randomly sampled 2M times, where M 233 

is the total number of individuals currently present. When an individual is picked, it 234 

attempts to undergo either a birth-death update (including vertical cultural transmission), 235 

or a horizontal cultural transmission update. The two types of update are chosen with 236 

		
R0 =

β(1−d /rf )
d(1− rs /rf )

.
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equal probabilities, such that on average there are M attempts of both types of update 237 

during each time step. 238 

 239 

If the birth-death update is chosen, the individual can undergo at most one event, 240 

as follows. It attempts reproduction with a probability Rf or Rs, depending on whether 241 

this is a fast or slow reproducer (here Rf> Rs), or dies with a probability D (both 242 

populations are assumed to have the same death rate). For a reproductive event, a spot 243 

is chosen randomly from the eight nearest neighbors. If that target spot is empty, the 244 

offspring is placed there, otherwise, the reproduction event is aborted.  We assume that 245 

the reproductive strategy of the offspring is the same as that of the parent (that is, the 246 

slow reproductive trait is passed on via vertical cultural transmission). These birth-death 247 

processes on the grid are characterized by density dependence, and hence the model 248 

accounts for competition between slow and fast reproducers. The description above 249 

corresponds to infant mortality rising with increased density (crowdedness), because 250 

offspring disappear if they do not fall on an empty spot in the grid. Section Biii below 251 

explores how such processes can apply to growing human populations. 252 

 253 

A cultural update is attempted with probability PC, by gathering the information on 254 

the reproductive strategy of the individuals’ neighbors, similar to voter models [15,26]. 255 

The probability that an agent switches its reproductive strategy is proportional to the 256 

weighed fraction of the opposing strategy among neighbors, such that slow reproducers 257 

are more influential than fast reproducers.  When adding up the number of fast and slow 258 
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reproducers in the neighborhood, there is a probability Q<1 that a fast reproducer is 259 

taken into account, while all slow reproducers are always included, reflecting the 260 

preference of switching towards slower reproduction. 261 

 262 

 When the model is run with only the reproduction and death processes (no non-263 

vertical cultural transmission), then the only outcome is the persistence of the fast- 264 

reproducing trait and the competitive exclusion of the slower reproducing one. This is 265 

straightforward competition dynamics behavior. If, in contrast, the model is run with only 266 

horizontal cultural transmission (no reproduction and death, so that the population is 267 

constant), it essentially becomes a voter model, where “slow” and “fast” are different 268 

opinions held by individuals in the population. As has been described for such models 269 

[15,26], the only eventual outcome is that every individual in the population has the 270 

same opinion. Which of the two opinions wins depends on the bias, Q, and on initial 271 

frequencies of the opinions in the population. 272 

 273 

When we allow for both horizontal transmission and reproduction with vertical 274 

transmission, three outcomes are possible (Figure 2): (1)  The fast reproduction trait 275 

wins and excludes the slow reproduction trait. (2) The slow reproduction trait wins and 276 

excludes the fast reproduction trait; and (3) both traits coexist in a long term equilibrium. 277 

While this is a true equilibrium in corresponding ODEs (see above), the stochastic 278 

nature of the model means that the eventual outcome is always extinction. The 279 
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coexistence outcome, however, is characterized by a significantly longer time to 280 

extinction compared to the exclusion outcomes (compare Figure 2C to 2A &B).  281 

 282 

Which outcome is observed depends on the death rate of agents, D, see Figure 283 

3Ai. Each point on this graph depicts the time until one of the traits goes extinct, 284 

depending on the death probability, D. The outcomes are color-coded: purple depicts 285 

fast reproducers remaining, and green slow reproducers. At higher death rates, the fast 286 

reproducers persist and extinction of the slow reproduces occurs at relatively short time 287 

scales. At low death rates, the slow reproducers persist and the fast reproducers go 288 

extinct on a relatively short time scale. At intermediate death rates, the time to extinction 289 

of one of the populations rises sharply, and either population has a chance to go extinct 290 

first. This corresponds to the coexistence regime.  Therefore, lower death rates among 291 

individuals in the population create conditions in which the horizontal cultural spread of 292 

the slow reproduction trait is successful, resulting in an overall reduced level of fertility.  293 

 294 

An intuitive explanation is as follows. The death rate determines the rate at which 295 

the fast reproducers can outrun the slow reproducers. For large death rates, population 296 

density is low and the reproductive potential of individuals is highest. Therefore, fast 297 

reproducers can outcompete the slow ones at relatively fast rates, making it difficult for 298 

horizontal cultural transmission to reverse this trend. For lower death rates, densities 299 

increase, and this slows the rate at which fast reproducers can outrun slow ones. 300 

Hence, it becomes easier for horizontal cultural transmission to reverse this process. 301 
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 302 

 Parameters other than the death rate further modulate the outcome of the 303 

dynamics, see Figures 3Aii and iii. Cultural transmission of the low fertility trait is 304 

promoted by lower values of Q, i.e. by a reduced influence of fast reproducers on 305 

choosing the reproduction strategy during the cultural transmission procedure. 306 

Increasing the value of Q results in a lower population death rate that is required for 307 

cultural transmission to be successful (Figure 3Aii). The relative probability for a cultural 308 

transmission event to take place, PC, is also an important determinant of outcome. As 309 

expected, higher values of PC promote the cultural spread of the fertility-reducing trait. 310 

For lower values of PC, lower population death rates are needed for cultural 311 

transmission to be successful (Figure 3Aiii).  312 

 313 

(ii) Age structured models: early vs late reproducers 314 

Rather than considering fast versus slow reproducers, we now modify the agent-based 315 

model to consider agents who can reproduce either early or late in their lifetimes. This 316 

model will be referred to as ABM2. While these two concepts are related, a reduction in 317 

fertility due to a later age of first reproduction might be relevant to current times where 318 

segments of the population with higher degrees of education and more wealth tend to 319 

reproduce at later ages. 320 

 321 

In the agent-based model, we consider four age classes. Individuals are born into 322 

age-class 1, in which no reproduction is possible. During each time step, all individuals 323 
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age by one time unit. After A time units, an individual advances to the next age class. 324 

Reproduction can occur in age classes 2 and 3 for early reproducers, and only in age 325 

class 3 for late reproducers. In either case, reproduction occurs with a probability R. 326 

Age class 4 is a post-reproductive phase, during which the only event that can occur is 327 

death (the “grandmother effect” has been explored in Section 2.5 of the Supplement; it 328 

only influences the main findings in a quantitative way). Death can occur in all age 329 

classes, but with increasing probabilities for successive age classes, i.e. with 330 

probabilities D4>D3>D2>D1.  331 

 332 

This model has the same properties as ABM1, see Figure 3B. Some analytical 333 

insights for non-spatial, deterministic age-structured models are provided in 334 

Supplementary Materials, Section 2.  335 

 336 

(iii) Continuously increasing population growth, and the simulation of the transition 337 

process 338 

Our central result, that a reduction in death rate tends to select for the cultural spread of 339 

a fertility-reducing trait, relies on density-dependence in the population dynamics. It is 340 

not observed in models assuming unlimited exponential growth, where the rate of 341 

cultural transmission alone determines which population outgrows the other.  With 342 

exponential growth, a reduction in death rate does not slow down the rate at which 343 

faster reproducers, by having more offspring, gain advantage over slow reproducers, as 344 

was the case with density dependence.  345 
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 346 

  While human population sizes have followed long-term increasing trends, 347 

evidence for density-dependent effects and the relevance of local carrying capacities 348 

have been found in demographic data from pre-industrial European populations within 349 

individual settlements [27]. Continued population growth would then be brought about 350 

by an increase in the number of settlements or by regular increases in the carrying 351 

capacity, due to advances in society [27,28].  352 

 353 

 To capture the patterns reported in reference [27], we consider a growing 354 

population that is subdivided into neighborhoods or demes (settlements). In each deme, 355 

we impose a carrying capacity and describe the local dynamics by ODE model (1).  As 356 

initial conditions, a single deme is populated with a majority of fast reproducers and a 357 

minority of slow reproducers. At the end of each time unit, individuals in each deme 358 

have a chance to found a new, empty deme into which a fraction of the current local 359 

population moves. The probability of this occurring is proportional to how full the current 360 

deme is. This corresponds to an effective increase in population size due to new 361 

advances. In addition, the probability to found a new deme is inversely proportional to 362 

the number of existing demes. While the demes are not arranged spatially in this model, 363 

founding a new deme can be thought of as an increase in the density of the population, 364 

which gets more difficult the more demes already exist. Hence, the probability for 365 

members of an individual deme to found a new deme is given by , where N is 366 

the number of currently populated demes, xf and xs represent local population sizes of 367 

		 
α(x f + xs )
K(εN +1)
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fast and slow reproducers, K is the local carrying capacity, and α and ε are constants. 368 

When a new deme is founded, a fraction f of both fast and slow reproducers moves into 369 

the new deme. As more demes become populated, the same algorithm is applied to 370 

every deme after each time unit.  While in this model, the local dynamics are described 371 

by ODEs, it is still a spatial model due to the assumed patch organization, and this 372 

approach is consistent with the documented notion of local carrying capacities [27].  373 

 374 

In this model, we observe persistence of one trait and exclusion of the other, 375 

while the population continues to grow (Figure 4A, B). As before, the fast-reproducing 376 

trait persists for high overall death rates (Figure 4A), while the slow-reproducing trait 377 

persists for low overall death rates (Figure 4B).  378 

  379 

 We further used this model to simulate the demographic transition process 380 

(Figure 4C). The simulation was run as before, except that at a defined time point in the 381 

simulation, the death rate was continuously and gradually reduced over several time 382 

steps towards a lower, new level (Figure 4C, lower panel). This exogenous reduction is 383 

shown by the grey line and is assumed to correspond to an improvement in various 384 

socio-economic factors that reduce mortality, such as an improvement in disease 385 

treatment, sanitary conditions, technological innovations.  386 

 387 

In the upper panel, the fast-reproducing population is shown in purple, the slow-388 

reproducing population in green, and the total population size is shown by the red 389 
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dashed line. Initially, the overall population death rate is relatively high, and the fast- 390 

reproducing individuals enjoy a growth advantage. The average reproduction rate is 391 

shown by the black line (Figure 4C, lower panel) and is driven by the fast-reproducing 392 

population. The overall growth rate of the population is relatively slow at this stage 393 

because of the high death rate.  394 

 395 

When the death rate is reduced, the fertility-reducing cultural trait can spread 396 

successfully and eventually becomes dominant. As the death rate declines, a phase of 397 

faster population growth occurs, as observed in data on demographic transitions [22]. 398 

Following a time delay after the reduction in the death rate, the average reproduction 399 

rate also declines, which is again consistent with data on demographic transitions [22] 400 

(Figure 4C, lower panel, black line).  401 

 402 

The exact timing of events depends on model parameters. For the purpose of 403 

this simulation, we chose parameters such that it takes about 3 generations to reduce 404 

the average reproduction rate two-fold. This is an order of magnitude that is similar to 405 

events observed in human populations [1] and shows that the cultural transmission 406 

dynamics underlying our model can lead to sufficiently rapid changes in fertility. A faster 407 

rate of horizontal cultural transmission (higher value of β) can lead to more rapid 408 

changes in fertility following the decline in the death rate. 409 

 410 
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To show that these dynamics are not dependent on this particular model 411 

formulation, we performed similar simulations with an age-structured model where 412 

continued population growth was allowed through regular increases in the carrying 413 

capacity parameter (rather than increasing the number of demes). Similar results were 414 

observed and are presented in the Supplementary Materials (Section 2.4).    415 

 416 

 417 

3C. Long term cultural evolution: reproduction strategies as a continuous trait   418 

So far, we considered two distinct populations of slow and fast (early and late) 419 

reproducers. To study longer-term evolution, rather than considering two discrete 420 

reproductive strategies, it is more realistic to assume the probability of reproduction to 421 

be a continuous variable. Because this is most easily implemented in terms of an agent-422 

based model, we will build on the spatial agent-based model of section 3Bii. We again 423 

assume that an individual is chosen for a horizontal cultural transmission event with a 424 

probability scaled with PC. In this model, however, instead of adopting (or rejecting) the 425 

reproductive probability of the alternative type, the individual adopts the weighted 426 

average of the reproduction probabilities among all neighbors (including its own 427 

reproduction probability). As in the above models, we assume that slower reproducers 428 

are more influential and contribute more to horizontal cultural transmission than faster 429 

reproducers. Due to the continuous nature of the reproduction trait in the current model, 430 

this is now implemented during the averaging procedures across the neighborhood: we 431 
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weigh the reproduction probability by a factor Q<1 if the reproduction probability of a 432 

neighbor is faster than that of the individual under consideration.     433 

 434 

The outcome observed in this model is straightforward. As initial conditions, the 435 

individuals in the system are characterized by different reproduction probabilities. Over 436 

time, the reproduction probabilities converge to a spatially uniform value, the level of 437 

which depends on the initially assigned probabilities. This eventual uniformity derives 438 

from the assumption that an individual adopts the average reproduction probability of 439 

the neighborhood during a cultural transmission event. 440 

 441 

  Next, we introduce mutations of cultural traits that can occur during 442 

horizontal transmission. Instead of simply adopting the (weighted) average strategy of 443 

the neighborhood, with probability u individuals would modify this strategy by increasing 444 

or decreasing it (with equal probabilities) by a fraction G. We examined the evolution of 445 

the average reproduction probability, R, over time, by running computer simulations. 446 

Three types of outcomes were observed (Figure 5). 447 

(i) The average probability to reproduce, R, increases steadily towards the 448 

maximum possible value (R+D=1), shown by the purple, green, and red lines in Figure 449 

5. (Simulations were stopped when R+D=1).  450 

(ii) The average probability to reproduce declines steadily, eventually resulting in 451 

population extinction, shown by the dark blue, light blue, and pink lines in Figure 5. 452 
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Extinction occurs because the reproduction rate evolves to levels that are too low to 453 

maintain the population.  454 

(iii) The average probability to reproduce converges to an intermediate level, and 455 

fluctuates around this level, shown by the yellow and orange lines in Figure 5. This level 456 

is independent of the starting value of R (not shown). 457 

  458 

As before, the population death probability, D, is a crucial factor (Figure 5). 459 

Evolution to maximal reproduction probabilities, R, is seen for relatively large death 460 

rates. Evolution towards low values of R and hence population extinction is observed for 461 

relatively low death rates. This could be the cultural equivalent to “evolutionary suicide” 462 

or “Darwinian extinction” [29]. Evolution towards an intermediate reproduction 463 

probability is observed for intermediate death probabilities, D. A higher probability of 464 

cultural transmission, PC, and a lower weight of faster reproducers during the averaging 465 

process, Q, further promote evolution towards declining reproduction rates and 466 

population extinction (not shown). Section 3 of the Supplement further explains the 467 

existence of an equilibrium state and explores how the mean population reproduction 468 

rate depends on parameters. 469 

 470 

This model demonstrates that manipulating the death rate changes the long-term 471 

cultural evolution of reproductive strategies, and that three different outcomes are 472 

possible: the two extremes (maximum reproduction and decline of reproduction rate 473 

below replacement level), as well as an evolutionary stable intermediate average 474 
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reproduction probability. The latter has perhaps been most relevant for human societies, 475 

although the trajectories might be moving towards the decline below replacement levels, 476 

which is discussed further below. We note that these results were derived from a 477 

spatially explicit model. An equivalent non-spatial model is explored in the 478 

Supplementary Materials, section 3.1. In the non-spatial model, an evolutionary stable 479 

intermediate average reproduction probability is not observed, demonstrating that this 480 

outcome depends on the existence of spatially explicit interactions. Finally, the 481 

Supplementary Materials (Section 4) further demonstrate that conclusions described 482 

here remain robust in a model that assumes sexual reproduction.  483 

   484 

 485 

 486 

Discussion and Conclusion 487 

We have used a variety of modeling approaches to investigate the basic dynamics by 488 

which a fertility-reducing trait can spread via cultural transmission. In contrast to 489 

previous modeling approaches, we have allowed for the possibility of exogenous 490 

external influences on the population mortality rate. This exogenous parameter can be 491 

modulated as a consequence, for example, of technological development in the society. 492 

A central result was that lower population death rates select for the cultural spread of 493 

the low-fertility trait.  This happens because lowering the mortality increases density, 494 

which in turn reduces the rate at which the fast reproduction trait gains in abundance 495 

relative to the slow reproduction trait. This allows horizontal transmission to tip the 496 
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balance in favor of slow reproduction.  The advantage of the fast reproduction trait is 497 

greater when generational turnover is rapid owing to a high death rate.  When the death 498 

rate declines, there is more opportunity per generation for cultural transmission to 499 

operate in favor of the low reproduction trait. We note that the dependence of outcome 500 

on population mortality requires the assumption of a cultural transmission bias: 501 

individuals with lower reproduction rates need to carry more social weight, an 502 

assumption that has also been made in previous modeling work [19]. While it seems 503 

reasonable to assume that economically more successful individuals carry more weight 504 

in cultural transmission than individuals who are less successful [30,31], the details of 505 

this are not well understood [32,33] and require further investigation. 506 

 507 

 Competition among individuals in the form of density-dependent dynamics was a 508 

major driving force underlying the dynamics arising from the model. While in the simpler 509 

settings explored here, competition correlated with populations being close to carrying 510 

capacity, we showed how a deme model or an age-structured model with increasing 511 

carrying capacity can give rise to the same outcomes in populations that continuously 512 

grow. Hence, the results described throughout the paper hold for growing populations. 513 

We demonstrated that, depending on parameters, the model can reproduce crucial 514 

features of the “demographic transition model” [22].    515 

 516 

 Our study complements previous mathematical work that analyzed the cultural 517 

spread of small family sizes in relation to demographic transitions [18-20]. Our models 518 
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consider a simpler setting involving the basic spread dynamics of the fertility-reducing 519 

trait, somewhat similar to infection models. We show that lower death rates promote the 520 

cultural spread of the low fertility trait. This result offers a simple possible explanation for 521 

the key observation that a reduction in fertility tends to be preceded by a reduction in 522 

mortality. 523 

 524 

In addition, our model can help interpret demographic data demonstrating that 525 

fertility is density dependent [34]. Lowering the death rate in the model leads to an 526 

expansion in the slow reproduction trait, even in the context of increased resource 527 

availability and continuously growing populations. Data indicate that human fertility as 528 

well as family size preference are characterized by density dependence, even during 529 

the time frames when demographic transitions occurred. Our model results might offer 530 

an explanation for this observation [34].   531 

 532 

 Also consistent with stylized facts, our models implied that for low population death 533 

rates, the average reproduction rate of the population can decline to levels that do not 534 

sustain a stable population. In Western European countries, fertility has declined below 535 

replacement levels since the 1970s and 1980s [5,6]. Similar tendencies are observed in 536 

Japan, South Korea, Taiwan, Singapore, and Hong Kong [35]. In addition, recent 537 

surveys [6] have revealed that the mean ideal family size (MIFS) in German speaking 538 

countries has fallen below replacement levels, about 1.7 children, among younger 539 

people, indicating that this trend might continue in the future.  In Taiwan, among women 540 
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aged 18–24, the MIFS declined from 2.1 in 1993 to 1.8 in 2003, and in Hong Kong, 541 

among women aged 18–27, MIFS fell from 1.8 in 1991 to 1.5 in 2011 [36,37].  542 

 543 

 The models studied here contain a number of assumptions that we consider to be 544 

central to exploring the effect of the population death rate on the spread of a culturally 545 

transmitted, fertility-reducing trait. Further assumptions and processes could be built 546 

into the model, and a detailed exploration of this would be an interesting subject of 547 

future research. One such aspect is the grandmother effect [38,39], where individuals in 548 

later age classes (grandmothers) promote the survival of individuals in younger age 549 

classes. We present a basic exploration of this effect in the Supplement (Section 2.5) 550 

and found that this only modulates the parameter thresholds where behavioral changes 551 

of the models are observed, but does not qualitatively change outcomes. Another 552 

interesting aspect to include might be costs associated with early or late reproduction, 553 

which likely also does not lead to a qualitative change of our results. Several additional 554 

aspects could be quantified in such more complex models, but this would go beyond the 555 

focus of the current manuscript.  556 

  557 

  558 

 While some details of the model processes could be formulated in different ways 559 

(see Supplement Section 5), we have considered a range of models with different 560 

assumptions. In all models, the death rate of the population was identified as a crucial 561 

factor that determined whether the fertility-reducing trait could invade. This could have 562 

implications for understanding the forces that contribute to the occurrence of 563 

demographic transitions and that drive the decline of fertility below replacement levels in 564 
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developed countries. It would be interesting for future work to integrate these cultural 565 

evolution dynamics with other potential mechanisms that might contribute to the 566 

demographic transition process, such as the offspring quality/quantity tradeoff or other 567 

economic considerations that might result in human populations having an optimal, 568 

target number of offspring.                569 

 570 
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 584 

 Figure legends: 585 

 586 

Figure 1: Schematic representation of the structure of the papers and the types of 587 

models considered. See text for details.  588 

 589 

 590 

Figure 2. Time series showing the different outcomes according to ABM1. Individual 591 

realizations are shown. (A) Higher death rates: the fast-reproducing  trait persists and 592 

the slow-reproducing trait goes extinct on a short time scale. (B) Lower death rates: the 593 

slow-reproducing trait persists and the fast-reproducing trait goes extinct on a short time 594 

scale. (C) Intermediate death rates: both fast- and slow-reproducing traits persist for 595 

significantly longer time periods. Eventually one trait goes extinct due to the stochastic 596 

nature of the simulation. Parameters were chosen as follows. Rf=0.005; Rs=0.8Rf; 597 

PC=0.0008; Q=0.93. For (A), D=0.001. For (B), D=0.0001. For (C), D=0.00025. 598 

 599 

Figure 3. Time to competitive exclusion, as a function of the death rate.  (A) Model  600 

ABM1. Individual realizations of the computer simulation were run until one of the two 601 

populations (fast or slow reproducers) went extinct. This time was recorded with a green 602 

dot if the fast-reproducing trait went extinct, and with a purple dot if the slow-603 

reproducing trait went extinct, as a function of the population death rate, D. For low 604 
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death rates, there are only green dots, corresponding to the slow-reproducing trait 605 

persisting and the fast-reproducing trait going extinct relatively fast. For fast death rates, 606 

there are only purple dots, corresponding to the opposite outcome. For intermediate 607 

death rates, the time until one of the traits goes extinct becomes sharply longer, and 608 

either trait can go extinct first. This corresponds to long-term coexistence. For plot (i), 609 

parameters were chosen as follows: Rf=0.005; Rs=0.8Rf; PC=0.0008; Q=0.93. Plots (ii) 610 

and (iii) explore parameter dependence of the phenomenon. (ii) A higher value of 611 

Q=0.98 makes it harder for the slow-reproducing trait to invade, hence requiring lower 612 

population death rates. (iii) A lower rate of cultural transmission, PC=0.0004, makes it 613 

harder for the slow-reproducing trait to invade, hence again requiring lower population 614 

death rates. (B) Same, but according to ABM2 with age structure. Because each age 615 

class is characterized by its own death rate, we multiplied all those death rates by a 616 

variable factor F, and plotted the outcome against this parameter. The death rates for 617 

the age classes were: D1=0.00004; D2=0.00007; D3=0.00009; D4=0.0002. Other 618 

parameters are R=0.005; PC=0.0008; Q=0.93; A=10,000.  619 

 620 

 621 

Figure 4. Computer simulations of the deme model, described in the text. (A) The slow-622 

reproducing population (green) goes extinct and the fast-reproducing population 623 

(purple) continues to grow. Parameter values were chosen as follows: rf=0.08, rs=0.064, 624 

d=0.05, β=0.01, K=100, α=0.001, ε=0.001. (B) The fast-reproducing trait is going 625 

extinct, and the slow-reproducing trait takes over and continues to grow. The same 626 

parameter values were used, except d=0.005. (C) Simulation of the demographic 627 
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transition process. Again, fast- and slow-reproducing traits are shown in purple and 628 

green, respectively. The total population size is shown by the dashed red line. The 629 

simulation is started with a death rate d=0.006. In this regime, the fast-reproducing trait 630 

has an advantage and is dominant. The cultural spread of the low-fertility trait is not 631 

successful. At a defined time point, the death rate is reduced 1.8 fold every half 632 

generation until it has fallen to a value of d=0.001 (grey line). This creates conditions 633 

under which the cultural transmission of the fertility-reducing trait is successful, and the 634 

population characterized by a slow reproduction rate spreads. This leads to a decline in 635 

the average reproduction rate of the population (black line), which is delayed with 636 

respect to the reduction in the death rate. For the parameter regime considered, the 637 

average reproduction rate is halved within about 2-3 generations, which corresponds to 638 

about 50-100 years (a generation in the model is given by 1/r). The remaining 639 

parameters are given as follows. rf=0.008, rs=0.0016, β=0.2, K=100, α=0.005 ε=0.01. 640 

 641 

 642 

Figure 5. Outcomes of ABM3 with a continuous reproduction strategy and cultural 643 

evolution. The average reproduction probability across the whole population is plotted 644 

over time. Individual simulation results are shown. Simulations were run for different 645 

death rates, decreasing from D1 to D8. For relatively high death rates, the average 646 

reproduction probability increases steadily towards maximal levels. For relatively low 647 

death rates, the average reproduction probability decreases steadily until population 648 

extinction occurs (due to the limited reproduction). For intermediate death rates, the 649 

average reproduction probability comes to oscillate around a steady value, which does 650 
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not depend on initial conditions (not shown). Parameters were chosen as follows. Death 651 

rates are given by D1 = 0.002, D2 = 0.001, D3 = 4x10-4, D4 = 3.75x10-4, D5 = 3.6x10-4, 652 

D6 = 10-4, D7 = 5x10-5, D8 = 10-5. The reproduction probability of the individuals, R, was 653 

allowed to evolve, starting from R=0.05 for all individuals. PC=0.0003; Q=0.965. The 654 

chance to make a mistake during horizontal cultural transmission (“mutation”) u=0.1. In 655 

case of a mistake, the average reproduction rate was changed by G=2%.  656 

 657 

 658 
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1 In the absence of age structured dynamics

1.1 Alternative ODE models

In the model considered in Section 2.1 of the main text, the conversion process
is described by the term

βx(1)x(2)/K.

1



Alternatively, this term can be formulated as

β
x(1)x(2)

x(1) + x(2)
, (1)

where the conversion happens proportionally to the current fraction of the
individuals of the opposite type. In this case, we have a very similar solution
structure. The competitive exclusion solutions are the same as in the previous
model, the threshold d values are given by

d1 =
β

1− r2/r1
, d2 =

β

r1/r2 − 1
,

and the coexistence solution is given by

x(1) =
K

β

(
1− β

r1 − r2

)
(d− d2), x(2) =

K

β

(
1− β

r1 − r2

)
(d1 − d).

In a different modeling approach we assume that conversion happens at
the same rate for both strategies, but it is proportional to the weighted
fraction of the two strategies in the population. Assuming that strategy 1
is weighed with coefficient γ < 1, we obtain that the change in numbers for
strategy 1 is given by

β(1− γ)
x(1)x(2)

γx(1) + x(2)
. (2)

In this case, the competitive exclusion solutions are the same as in the pre-
vious model, the threshold d values are given by

d1 =
β(1− γ)

γ(1− r2/r1)
, d2 =

β(1− γ)

r1/r2 − 1
,

and the coexistence solution is given by a somewhat different expression,

x(1) =
K

β + d

(
β

r1 − r2
+

β + d

γr2 − r1

)(
β + d+

r1 − γr2
γ − 1

)
,

x(2) =
K

β + d

(
dγ

γ − 1
+
β(β + d− r1)

r2 − r1
− (β + d)2γ

γr2 − r1

)
.
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2 Age structured dynamics

2.1 Model formulation

We will model the competition dynamics of two types that differ by their
reproductive strategies. Assume the existence of N discrete age groups for
the two types, and denote the abundance of type s in age group i as x

(s)
i .

Reproduction behavior of type s is described by the vector a
(s)
i , with entries in

[0, 1] denoting relative rate of reproduction of this type in age i. Individuals
of the first type, s = 1, correspond to “fast reproducers”, and the second
type, s = 2, to the “slow reproducers” in the previous section. The latter
type generally has a tendency to reproduce later than individuals of type 1.
In the approach implemented here, type s is characterized by two integers,
i
(s)
start and i

(s)
end, denoting the first and last age groups where reproduction is

possible. We have

a
(s)
i > 0 if i

(s)
start ≤ i ≤ i

(s)
end, a

(s)
i = 0 otherwise,

where
i
(1)
start < i

(2)
start.

We can formulate a discrete time dynamical system for these populations as
follows:

x
(s)
1 (t+ 1) =

N∑
j=1

a
(s)
j x

(s)
j (t)W, (3)

x
(s)
i (t+ 1) = w

(s)
i−1x

(s)
i−1(t)

(
1− β(s)

i

∑N
k=i x

(3−s)
k (t)∑N

k=i(x
(3−s)
k (t) + x

(s)
k (t))

)

+ w
(3−s)
i−1 x

(3−s)
i−1 (t)β

(3−s)
i

∑N
k=i x

(s)
k (t)∑N

k=i(x
(3−s)
k (t) + x

(s)
k (t))

, 1 < i ≤ N, (4)

where the competition term W can be defined as

W = 1−
∑2

s=1

∑N
k=1 x

(s)
k

K
or (5)

W =

(
1 +

∑2
s=1

∑N
k=1 x

(s)
k

K

)−1
. (6)
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Equation (3) describes reproduction. Different age groups reproduce with

their own rate a
(s)
j , and the offspring enters age group 1. Equation (4) de-

scribes the population moving from age group to age group. Coefficients w
(s)
i−1

describe the probability for an individual of type s to survive until age i. The
probability of switching type is described by terms including coefficient β.
First we note that expression 3 − s for s ∈ {1, 2} simply returns the type
different from type s, because 3 − s gives 2 if s = 1 and it gives 1 if s = 2.
The probability to switch from type s to type 3 − s while transitioning to
age group i is given by

β
(s)
i

∑N
k=i x

(3−s)
k (t)∑N

k=i(x
(3−s)
k (t) + x

(s)
k (t))

,

and is proportional to the fraction of individuals of age i and older that
belong to class 3 − s. With this in mind, we can see that the first term on
the right of equation (4) multiplies the probability that an individual does
not switch to the other type, and the second term multiplies the probability
that switching from 3− s to s occurs. System (3-4) assumes no switching at
the first stage. To include switching at the first stage, we replace equation
(3) with

x
(s)
1 (t+ 1) =

N∑
j=1

a
(s)
j x

(s)
j (t)W

(
1− β(s)

1

∑N
k=1 x

(3−s)
k (t)∑N

k=1(x
(3−s)
k (t) + x

(s)
k (t))

)

+
N∑
j=1

a
(3−s)
j x

(3−s)
j (t)Wβ

(3−s)
1

∑N
k=1 x

(s)
k (t)∑N

k=1(x
(3−s)
k (t) + x

(s)
k (t))

. (7)

2.2 System behavior

System (7, 4) has two exclusion steady states (for s = 1 and s = 2), which
for competition model (6) are given by

x
(s)
i = K

i−1∏
k=1

w
(s)
k

r
∑N

m=1 a
(s)
m

∏m−1
k=1 w

(s)
k − 1∑N

m=1

∏m−1
k=1 w

(s)
k

, 1 ≤ i ≤ N, (8)

x
(3−s)
i = 0, 1 ≤ i ≤ N. (9)

In figure 1 the behavior of a system with N = 5 stages is shown. We assumed
that for fast reproducers, i

(1)
start = 2, and for slow reproducers, i(2) = 3,
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while i
(s)
end = 5 for both types. For simplicity we assumed that within the

reproductive stages, the values a
(s)
i were equal to a constant (independent

on type and stage). Further, we assumed that the rates w
(s)
i were s- and i-

independent, and transfer coefficients β
(s)
i were i-independent (but dependent

on s).

Figure 1: Age structured dynamics according to system (7, 4), numerical simulations.
Total populations of individuals of type 1 and type 2 are presented. The steady state

values are given on the left as functions of parameter (a) β(1) and (b) w
(s)
i = w for all

s ∈ {1, 2}, 1 ≤ i ≤ N , the survival probability. Solution types are denoted by a circled

number. The parameters are w = 0.9 in (a), β(1) = 0.17 in (b), and K = 50, β
(2)
i = 0.1.

The reproductive rate a
(s)
i = 1 when 2 ≤ i ≤ 5 for s = 1 and 3 ≤ i ≤ 5 for s = 2. Initially,

all populations x
(s)
i = 10.

In figure 1(a), by fixing all the parameters except for β(1), we observed
that three different solution types were stable. Solution 1 corresponds to
the fast reproducers excluding the slow reproducers and is stable for smaller
values transfer away from type 1, β(1). Solution 2 corresponds to the slow re-
producers excluding the fast reproducers, and corresponds to larger β(1). For
intermediate values of β(1) we observe stable coexistence of both types. Sam-

5



ple time series of the three solution types (corresponding to three different
values of β(1)) are presented on the right on the figure.

Alternatively, if we fix β(1) > β(2) and vary the survival probability, w,
the same three solution types are observed, 1(b). In particular, we note that
low survival rates (that is, high death rates) lead to the dominance of fast
reproducers, and high survival rate (low death rates) to the dominance of
slow reproducers.

2.3 A two-age system

The simplest nontrivial system that captures the phenomenon of interest is
system (7,4) with N = 2. Let us assume that w

(s)
i = w for both types (that

is, mortality is the same for both types). Further, let

i
(1)
start = 1, i

(1)
end = 2, i

(2)
start = 2, i

(1)
end = 2,

in other words, type 1 reproduces both in ages 1 and 2, and type 2 only repro-
duces in age 2. The trivial solution1 is unstable if wa

(2)
2 > 1 or wa

(1)
2 > 1−a(1)1 .

The following are some of the non-trivial long-term solutions (compare to the
equilibria of section 1):

1. Type 1 (fast reproducers) wins – a competitive exclusion steady state:

x
(1)
1 =

K[r(a
(1)
1 + wa

(1)
2 )− 1]

1 + w
, x

(1)
2 =

Kw[r(a
(1)
1 + wa

(1)
2 )− 1]

1 + w
, x

(2)
1 = x

(2)
2 = 0.

2. Type 2 (slow reproducers) wins – a competitive exclusion steady state:

x
(1)
1 = x

(1)
2 = 0, x

(2)
1 =

K[ra
(2)
2 w − 1]

1 + w
, x

(2)
2 =

Kw[ra
(2)
2 w − 1]

1 + w
.

3. A coexistence state.

4. Periodic solutions.

1For the analysis of the trivial solution one has to modify the original system by adding
a small constant in the denominators of all the equations, otherwise we have a singular-
ity which is meaningless, because the transfer terms multiplying β must be zero if the
population is zero.
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Stability of the two exclusion states can be investigated. For simplicity, let
us set all nonzero values of fecundity to a constant, a

(s)
i = a. Further, we

will assume that the coefficient of transfer is independent of the age, and is
only defined by the type: β

(s)
i = β(s) for i = 1, 2, s = 1, 2. Let us analyze

stability of solution 1 above (fast reproducers win). Stability of the discrete
system requires all the eigenvalues of the Jacobian to satisfy |λ| < 1. The
eigenvalues are given by

λ1,2 =
1±

√
1 + 4rw(1 + w)2

2r(1 + w)2
, (10)

λ3,4 =
β(1)(2 + w)±

√
w[w(2 + β(1) − 2β(2))2 + 4(1 + β(1) − β(2))(1− β(2))]

2(1 + w)
. (11)

The first two eigenvalues do not depend on the transfer rates and correspond
to the stability of the type 1 population in the absence of the other popula-
tion. We can show that |λ1,2| ≤ 1 for all 0 ≤ w ≤ 1 and r ≥ 1. In particular,
λ1 ≥ 0, we have λ1 = 1 when r = 1, w = 0, it decays with r and w for r ≤ 2,
and for a given r > 2, it has a maximum value (1− w)/2 when

r =
2

(w − 1)2(w + 1)
.

Further, λ2 ∈ (−1, 0] for all values w ∈ [0, 1] and r ≥ 1, since ∂λ2/∂r > 0,
and for r = 1, λ2 = 1−

√
1 + 4w(1 + w)2/(2(1 + w)2) ∈ [1/8(1−

√
17), 0].

The eigenvalues λ3,4 describe stability against an invasion of type 2 indi-
viduals. The solution can become unstable if λ3 > 1. This happens when

w > w1 ≡
(1− β(1))2

(β(2) − β(1))(2− β(2))
.

Clearly, if β(1) is large (close to 1), the type 1 solution is unstable (because
of frequent transfers to type 2). In fact, as long as

β(1) <
4− β(2) −

√
5(β(2))2 − 16β(2) + 12

2
,

the type 1 solution is stable for any values of w < 1, because w1 > 1. If
however the inequality above is revered (that is, the transfer rate is larger
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than a threshold for type 1), the solution becomes unstable for sufficiently
large values of w.

Intuitively, success of each of the types depends on their net fecundity
and their propensity to stay (and not transfer to the opposite type). Clearly,
the fecundity of type 1 is larger than that of type 2. But this can be offset by
a larger probability of transfer (if we assume that β(1) is larger than β(2) by a
sufficient margin). Small death rates (and therefore large values of w) work
against type 1 individuals and benefit type 2 individuals. If w is large, more
individuals survive to later stages, resulting in a larger influx of individuals
transferring from type 1 to type 2: they simply have a longer time to stay
alive and decide to switch. Thus, living longer increases success of type 2,
such that after a threshold of w, type 2 becomes stronger and drives type 1
extinct.

Investigating the stability of type 2 equilibrium, we discover that it is
unstable (in this simple 2-age model) for all values of w except for w = 1,
where it is neutral. Note that for systems with more age stages, this is not
the case, and we have a stable type 2 equilibrium (see the previous section).
For the 2-age system, for values w < 1, but close to 1, instead of equilibrium
1, we observe a stable cycle which contains only type 2 individuals.

2.4 Simulating demographic transition

In this section we present an example of an age structured model where a
behavior resembling demographic transition can be observed. We use the
following formulation:

x
(s)
1 (t+ 1) =

N∑
j=1

ajx
(s)
j (t), (12)

x
(s)
i (t+ 1) = Wi

(
wx

(s)
i−1(t)

(
1− β(s)

∑N
k=i x

(3−s)
k (t)∑N

k=i(x
(3−s)
k (t) + x

(s)
k (t))

)

+ wx
(3−s)
i−1 (t)β(3−s)

∑N
k=i x

(s)
k (t)∑N

k=i(x
(3−s)
k (t) + x

(s)
k (t))

)
, 1 < j ≤ N, (13)
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where we defined

Wi =


(

1 +
∑2

s=1

∑N
k=1 x

(s)
k

K

)−1
, i = 1,

1, i > 1.

(14)

In this description, the competition term, Wi, is interpreted as infant (or
early childhood) mortality, and therefore appears as a multiplier in front of
the right hand side of the equation for age group 1, modifying the probability
of survival until this stage.

Figure 2: Simulations of an age-structured, deterministic model. (a) Age stages with
early and later reproducers’ age-specific fecundity are specified. (b) Simulation results
for the total population sizes of early (blue) and late (yellow) reproducers, as functions
of time, in a simulation with step-wise increasing carrying capacity (KT = 1.15KT−1,
where T counts periods of 50 age-stages, which is 350 years). The survival probability w
is increased exogenously, in a step-like manner at time 1800 from w = 0.8 to w = 0.95,
marking the beginning of a change similar to demographic transition. (c) The mean life-
span of the population corresponding to the same simulation is shown as a function of
time. (d) The mean number of offspring per individual is shown as a function of time.
The rest of the parameters are: N = 13 age stages, a = 2, g = 0.5, β(1) = 0.4, β(2) = 0.37.

The probability to survive to the next stage is assumed stage- and type-
independent, w

(s)
i = w for s = 1, 2 and all i. Further, the rate of conversion is
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stage-independent (β
(s)
i = β(s) for all i) and parameter a

(s)
i related to fertility

is type-independent (a
(s)
i = ai for s = 1, 2).

Figure 2 presents numerical simulations of model (12-13). For these sim-
ulations, we considered 13 age-stages, which represent age groups 0 − 6, 7−
13, 14 − 20, etc. There are two types of individuals: early reproducers re-
produce in stages 3-8, and later reproducers only reproduce in stages 5-8.
Each stage is characterized by the mean age-specific fecundity, which decays
exponentially with age and is given by parameter a at stage 3, and by agk−3

at stage 3 < k ≤ 8, where 0 < g < 1, see panel (a) of figure 2.
In the simulation, we assumed that the carrying capacity, K, that defines

the maximum population size increases in a step-wise manner. This pro-
cess is an idealization meant to simulate human expansion. In a space-free
model it can correspond both to an increase in density and an outward ex-
pansion. In a spatial, agent-based model, a similar effect could be achieved
by refining the grid, making it more and more dense. The reason to sim-
ulate expansion by increasing K instead of using a model with exponential
(uninhibited, non-density dependent) growth is the notion of competition
for resources and crowdedness, which are assumed to be important factors
in human population dynamics. The population continues to grow through
expansion, innovation, and making more resources available, but at the same
time the effects of increasing density and frequent resource shortages are felt
through density-dependent factors in the equations. In the current model,
the density-dependent factors are presented as term W1 entering as infant
and childhood mortality factor.

In order to simulate an improvement in mortality, we assumed that the
survival probability, w, increases in a step-like manner at year 1800 in the
simulated system. Figure 2(b,c,d) shows numerical simulations of system
(12-13). Panel (b) plots the total population sizes of early (blue) and late
(yellow) reproducers as functions of time. Before the transition, the popu-
lation contains a majority of early reproducers; the mean lifespan is about
25 years (panel (c)) and the mean total fecundity is above 2.5 children per
individual (which in a sexually reproducing population would translate into
over 5 children per woman). After the transition, the population experiences
an increased growth followed by a slow-down (panel (b)). The population
now consists predominantly of slow reproducers, the mean life-span increases
to over 40 years, and the mean number of children drops to about 1 (equiva-
lent to 2 children per woman). The transition happens on a relatively short
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time-scale equivalent to under 5 generations.
While the time-scale of the transition, mean longevity and fecundity,

as well as growth rate of the population are defined by model parameters,
the above simulations demonstrate that an effect similar to demographic
transition can be observed in the model, and that parameters can be found
such that some of the observables are not far from their realistic ranges.

2.5 Including the “grandmother hypothesis”

To include the so called “grandmother effect”, we note that help of a grand-
parent can increase the chances of a child’s survival. To incorporate this
we will use system (3-4) as a basic model. For simplicity, we will keep the
description asexual. As an individual ages, it passes through stages, and the
probability to survive from age i − 1 to age i is given by wi−1 (here we for
simplicity assume no explicit dependence of mortality on type s). Note that
in many contexts,

w1 < w2.

Here we assume that the presence of the grandmother may increase the prob-
ability of survival during the earliest stage. Let us denote the probability to
have a grandmother by Pgrand. Then we can set the probability of survival
to age group 2 to be

w1 + SgrandPgrand(w2 − w1), (15)

where Sgrand is a tunable parameter that sets the strength of the “grand-
mother effect”. If this effect is nonexistent (SgrandPgrand = 0), then mortality
of age group 1 is simply w1. If PgrandSgrand = 1, then the probability to
survive the first age class is as high as that for the next age class (w2).

To calculate the probability to having a grandmother, we note that for
a given newborn, this depends on the age of its parent. Having a younger
parent increases the probability that the grandparent is alive. To incorporate
this effect, we must use a more detailed description compared to system (3-4),
and as the basic variable use

y
(s)
ij (t),

which is the number of individuals of type s of age i born to a parent of age
j, at time t. These are related to the old variables x

(s)
i (t) as

x
(s)
i =

iend∑
j=istart

y
(s)
ij (t),
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where we denoted

istart = min{i(1)start, i
(2)
start}, iend = max{i(1)end, i

(2)
end}.

The changes in each type are described by the following equations:

Figure 3: A schematic illustrating the grandmother effect. The two axes are
the age class and time. The label “1” represents the birth of an individual,
such that at time t + 1 the newborn enters age-class 1. The age of the
parent is j = 3 for this example. The black arrows pointing to “1” trace the
growing up of the parent. The label “2” marks the birth of the parent to
the grandparent of age k = 2. The black arrows pointing to the right and
upward from “2” represent the aging of the grandparent.

y
(s)
1j (t+ 1) = a

(s)
j x

(s)
j (t)W, (16)

y
(s)
ij (t+ 1) = wi−1,jy

(s)
i−1,j(t)

(
1− β(s)

∑N
k=i x

(3−s)
k (t)∑N

k=j(x
(3−s)
k (t) + x

(s)
k (t))

)

+ wi−1,jy
(3−s)
i−1,j (t)β

(3−s)
j

∑N
k=i x

(s)
k (t)∑N

k=i(x
(3−s)
k (t) + x

(s)
k (t))

, (17)

1 < i ≤ N, istart ≤ j ≤ iend, s = 1, 2.
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Let us set all the values wij = w2 for all i ≥ 2, and assume that the infor-
mation about the grandmother effect is included in the mortality rate of the
youngest age class, w1j. We have (as in formula (15)),

w1j = w1 + SgrandP
j
grand(w2 − w1),

and the probability of having a grandmother depends on the age of the
individual’s parent, j. To calculate this we use the diagram of figure 3. If
the parent’s age at time t is j and the parent was born to the grandparent
of age k (at time t − j − 1), then at time t + 1, the age of the grandparent
is given by k + j + 1. The probability that the grandparent survives to time
t + 1 is given by the product of probabilities to survive from age k to age
k + j + 1,

k+j∏
m=k

wm,

where we assume that wm = 0 for m ≥ N . The probability of having a
grandparent is then given by

P j,s
grand =

∑N
k=1 a

(s)
k xk(t− j − 1)

∏k+j
m=k wm∑N

k=1 a
(s)
k xk(t− j − 1)

,

which is the probability that at the moment of the parent’s birth the grand-
parent was young enough to survive to the birth of grandchild (time t + 1).
Note that this expression makes system (16-17) non-local, that is, the equa-
tions now depends on the variable’s value in the past (time t− j − 1).

In this version of the model, any grandparent that survives can contribute
to the increased survivability of the newborn (“strong grandmother effect”).
In a different version, we can assume that only grandparents that can no
longer reproduce themselves participate in the care for their grandchildren
(“weak grandmother effect”). In this case, we require that the age of the

grandparent at time t, k + j > i
(s)
end:

P j,s
grand =

∑N

k=i
(s)
end−j+1

a
(s)
k xk(t− j − 1)

∏k+j
m=k wm∑N

k=1 a
(s)
k xk(t− j − 1)

.

Figure 4 shows how model behavior changes as we include strong or weak
grandmother effect. In this example, there are N = 7 stages, and early
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reproducers (type 1) start reproducing in stage 2, while type 2 start at stage 3.
Individuals do not reproduce in stages 6 and 7. In the absence of grandmother
effect, for low values of w, type 1 individuals dominate (and exclude type 2);
for high values of w the situation is reversed, and for intermediate w we have
coexistence of both types. Adding the grandmother effect does not change
this picture qualitatively, but gives type 1 individuals a larger advantage, such
that the transition to the dominance of type 2 happens for higher values of
w.

Figure 4: Age structured dynamics according to system (16-17), numerical
simulations (similar to figure 1(b)), where the grandmother effect was in-
cluded. Total populations of individuals of type 1 and type 2 are presented.
Dashed lines correspond to no grandmother effect, dotted lines to the weak
grandmother effect, and solid lines to strong grandmother effect. The pa-
rameters are: N = 7 age stages, i

(1)
start = 2, i

(2)
start = 3, i

(1)
end = i

(2)
end = 5;w1 =

0.9w, β(1) = 0.2, β(2) = 0.1, K = 140, Sgrand = 1, a
(s)
i = 1 during reproductive

stages.
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3 Birth-death, imitation, and mutation dy-

namics

3.1 Model formulation and numerical results

Envisage the following process. In a 1D spatial system of a constant size,
N , each individual, i, is characterize by a reproduction rate, li. During each
time unit, N updates are performed, each consisting of two parts, a death-
birth (DB) update and a cultural transmission (CT) update. Each update
proceeds as follows:

• A DB update: An individual is chosen, randomly and fairly, to be
removed (say, this is the individual at location i1). Then it is replaced
by the progeny of one of its two neighbors: the individual at location
i1+1 reproduces with probability li1+1/(li1+1+li1−1), and the individual
at location i1 − 1 reproduces with probability li1−1/(li1+1 + li1−1). The
offspring inherits the reproduction rate of the parent.

• A CT update: this event happens with probability β, which sets the
relative time scale of the two types of updates. Pick an individual,
randomly and fairly, to perform an imitation update (say this is the
individual at location i2). This individual will change its reproduction
rate from l2 to

l̃ =

∑i2+1
j=i2−1 αi2,jlj∑i2+1
j=i2−1 αi2,j

,

where

αi,j =

{
1, lj ≤ li,
s, lj > li,

and 0 < s < 1 is a constant that indicates by how much the strategy
of fast reproducers is discounted. In other words, a weighted average
of all the strategies around the focal individual at i2 is formed, such
that the strategy of those who reproduce faster than the focal individ-
ual is discounted with coefficient s. The focal individual adopts the
resulting strategy with probability 1− u. With probability u, strategy
l̃ is increased or decreased (with equal likelihood) by an amount ∆l
(unless l < ∆l, in which case it can no longer decrease). This process
is equivalent to mutations, whereby the phenotype is modified with a
certain probability to give rise to variation.
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Figure 5: The dynamics of a 1D simulation with mutations. (a) The time-
series of the population mean reproduction rate, for 4 different values of ∆l.
(b) Numerically obtained histograms of the population’s reproduction rates,
taken at generation 50,000, for the same 4 values of ∆l. The rest of the
parameter are: N = 100, u = 0.04, β = 1, s = 0.9.

We would like to characterize the equilibrium of this system. First we
note that in the absence of mutations (u = 0), the state with li = l for all i is
a equilibrium for any value of l. As a result, the system will converge to one
of these neutral equilibria, depending, for example, on the initial condition.

The dynamics change drastically in the presence of mutations, u > 0.
Now, uniform states are no longer equilibrium states, and the equilibrium
reproduction rates will be distributed around some mean value, l̄, with the
variance that increases with u and ∆l. In figure 5(a) we present the time
series of the population mean reproduction rates, for 4 different values of ∆l,
the increment of the reproduction rate. We can see that the population settles
to a stochastic equilibrium, where the mean population mean reproduction
rate increases with ∆l, and convergence time decreases with ∆l. Figure 5(b)
shows numerically obtained histograms of reproduction rates of populations
at equilibrium, for the same four values of ∆l. We can see that the standard
deviation increases with ∆l. Similar trends are observed when we vary the
mutation rate, u (not shown). 2D simulations that show the same trends are
shown in figure 6.
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Figure 6: The dynamics of a 2D simulation with mutations. The population
mean reproduction rate is plotted as a function of time, for 3 simulations. The
blue line represents a base-line simulation with parameters u = 0.1,∆l/l =
0.02, the orange line a simulation with an increased mutation rate, u = 0.3,
and the green line a simulation with an increased ∆l/l = 0.04. The rest of the
parameters are as in Fig.3 of the main text, with the death rate 3.75× 10−4.

3.2 Analytical considerations

To find the mean equilibrium value of the reproduction rates, we use the
following argument. Suppose that the equilibrium distribution2 of the repro-
duction rates is given by {fk}, such that the probability for an individual to
have reproduction rate Lk is given by fk, with∑

k

fkLk = l̄.

Under a BD event, suppose an individual at position i1 with reproduction
rate L1 is picked for replacement, and suppose further than its two neighbors
have reproduction rates L2 and L3. Then the expected increment in the

2A similar argument for continuous distributions can be developed.
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reproduction rate of the focal individual is given by

−L1 + L2
L2

L2 + L3

+ L3
L3

L2 + L3

.

Averaging over all the possible reproduction rates, we obtain the expected
increment in reproduction rate from a DB update:

∆LDB =
∑
i

∑
j

∑
k

(
−li +

l2j
lj + lk

+
l2k

lj + lk

)
fifjfk. (18)

Similarly, we can calculate the expected increment in the reproduction rate
resulting from a cultural transmission event:

∆LCT =
∑
i

∑
j

∑
k

(
−li +

li + αijlj + αiklk
1 + αij + αik

)
fifjfk. (19)

The equation
∆LDB = −β∆LCT (20)

characterizes the equilibrium. Note that the right hand side of this equation
is positive, because the mean increment resulting from CT updates is nega-
tive, due to a diminished weight of high reproduction rates in the weighted
averages. The left hand side is also positive, because DB updates tend to
increase the reproduction rates due to competition among individuals.

Let us assume that the width of the distribution of the equilibrium re-
production rates is defined by the mutation rate (and the increment ∆l),
and keep it fixed, while varying the mean l̄. Note that in equation (19), the
expression in the parentheses can be rewritten as

αij(lj − li) + αik(lk − lj)
1 + αij + αik

.

For each location i, let us present Li = l̄ + εmi, where all mi are IID with
a zero mean and a variance that we denote by (σ/ε)2. We can see that
l̄ cancels from the above expression, and its statistics will only depend on
the distribution width. In other words, the mean decrement received by the
population reproduction rate as a result of a CT update is defined by the
difference between the focal reproduction rate and a weighted average of its
neighboring reproduction rates, and does not depend of the absolute value
of the rates.
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On the contrary, the DB increment defined by equation (18) depends
on the magnitude of l̄. Intuitively, neighbors compete for filling the empty
spot, and the amount of advantage experienced by a neighbor with a higher
reproduction rate is proportional to the relative, and not absolute, difference
in the rates. Therefore, the increment scales with the relative amount of
spread in reproduction rates, and is thus inversely proportional to l̄. Again,
for each location i, we present li = l̄ + εmi, where all mi are IID with a zero
mean and variance (σ/ε)2. Then, expanding the expression in parentheses in
(18) in terms of ε we obtain(

mj +mk

2
−mi

)
ε− ε

2

(mj −mk)2

mj +mk

∞∑
n=1

(
−(mj +mk)ε

2l̄

)n

.

The first term averages to zero, and the second term is given by

ε2

4l̄
(mj −mk)2,

which upon averaging yields
σ2

2l̄
,

a quantity inversely proportional to the mean reproduction rate of the pop-
ulation. We further see that it depends on the square of σ in the lowest
order.

From the above analysis it follows that the left hand side of equation (20)
is a decaying function of l̄ which tends to zero as l̄ →∞, and the right hand
side of equation (20) is l̄-independent. There will be a unique intersection of
the two curves as long as β is chosen to be sufficiently low. This intersection
defines the equilibrium value of the population mean reproductive rate.

We further note that the quantities ∆DB and −∆CT both grow with the
distribution width of the reproduction rates, but while −∆CT is linear in σ,
∆DB is quadratic in this quantity, and thus grows faster as we increase the
width of the distribution of l. Therefore, as u increases and the distribution
width increases, the left hand side of equation (20) grows faster than the
right hand side, resulting in an increase in the solution, l̄.

This is illustrated in an example where we assumed that the division
rates are distributed according to the following three-valued distribution with
mean l̄ and variance (∆l)2µ:
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Figure 7: Finding the equilibrium reproduction rate by solving equation (20),
illustrated with example (21-22). The left hand side of equation (20), ∆LDB,
is shown as blue lines and the right hand side, −β∆LCT , with yellow lines, as
functions of l̄. Solid, dashed, and dotted lines correspond to three different
values of ∆l: 0.05, 0.10, 0.15. The rest of the parameters are: s = 0.9, µ =
0.1, β = 1.

i→ 1 2 3
Li l̄ −∆l l̄ l̄ + ∆l
fi µ/2 1− µ µ/2

The expressions for ∆LDB and ∆LCD can be obtained explicitly,

∆LDB =
(∆l)2µ

2l̄

(∆l)2µ− 4l̄2

(∆l)2 − 4l̄2
, (21)

∆LCT =
∆lµ(1− s)

6(2 + s)(1 + 2s)
((6− µ)µs− 10s+ µ(3 + µ)− 8) . (22)

In figure 7, both sides of equation (20) are plotted as functions of l̄,
and their intersections are marked with vertical lines, for three values of ∆l,
which represent an increase in the distribution width. We can see that the
corresponding solutions l̄ become larger for larger distribution widths.

4 Sexual reproduction

Here we provide details of model ABM4, an agent based spatial model that
includes sexual reproduction.
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ABM4 is based on model ABM3, in that it assumes the probability of
reproduction to be a continuous trait, and also that for a cultural transmis-
sion updates, a given individual adopts the weighted average reproduction
probability of the neighborhood with the possibility of “mutations” as de-
fined in the main text for ABM3. Sexual reproduction is incorporated in the
following way. Two genders are distinguished, gender 1 and gender 2. Before
reproduction can occur, two individuals of opposing gender have to form an
exclusive connection, thus assuming monogamy. The following events can
occur if an individual is chosen for a reproductive update. If the individual
does not have a partner, a connection can be formed with a probability M
if an individual of the opposite gender without a partner is present among
the eight nearest neighbors. The partner is randomly chosen from the neigh-
borhood. If the individual does have a partner, reproduction happens with
a probability Rav, which represents the average reproduction probabilities of
the two parents. For simplicity, it is assumed that once formed, a partnership
cannot break, corresponding to life-long monogamy. The offspring resulting
from this partnership are assigned to one of the genders with a 0.5 proba-
bility. The reproduction probability of the offspring is given by the average
values of the two parents. The offspring is placed into a randomly chosen
empty spot among the eight nearest neighbors of the parent that was origi-
nally picked for reproduction. If no empty spots exist within the immediate
neighborhood, reproduction is not successful. Potential issues of mate pref-
erence for individuals with similar reproduction probabilities are not taken
into account. Death occurs with a probability D, according to the same rules
as described before.

5 Model extensions – future work

Some processes in the more complex versions of the models considered here
could also be formulated in slightly different ways. In ABM3 and ABM4,
cultural transmission involves the calculation of the weighted average repro-
duction rate among individuals within the immediate neighborhood. The
assumption was made that individuals with a faster reproduction rate than
the agent under consideration count less in this process, irrespective of the
magnitude of this difference. Alternatively, it could be assumed that the
reduced weight is proportional to the difference in reproduction rates, thus
taking into account the distance in social hierarchies. While it seems rea-
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sonable to assume that economically more successful individuals carry more
weight in cultural transmission than individuals who are less successful, the
details of this are not well understood. We note that results reported here
depend on the assumption that individuals with lower reproduction rates
carry more social weight, an assumption that has also been made in previous
modeling work [1]. Another example of uncertainties in model construction
is the formulation of the sexual reproduction model. We assumed monogamy,
but made some obvious simplifications, as explained in the Results section.
There are different assumptions that can be made in models that describe
sexual reproduction, but the most important feature in the current context
is that the reproduction rate of the offspring is not simply a copy of one of
the parents, but represents the average of the two parents. This provides an
additional mechanism of cultural change. Finally, only two types of commu-
nication networks have been considered in the agent based models here, the
one where individuals interact with everyone else in the population, and the
one where only interactions among nearest neighbors are allowed. A large va-
riety of more realistic, random communication networks can be constructed,
but we do not expect the results to differ from the ones obtained from the
two extreme cases of networks considered here.
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