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Abstract

Human populations in many countries have undergone a phase of demographic
transition, characterized by a major reduction in fertility at a time of increased resource
availability. A key stylized fact is that the reduction in fertility is preceded by a reduction
in mortality and a consequent increase in population density. Various theories have
been proposed to account for the demographic transition process, including
maladaptation, increased parental investment in fewer offspring, and cultural evolution.
None of these approaches, including formal cultural evolutionary models of the
demographic transitions, have addressed a possible direct causal relationship between
a reduction in mortality and the subsequent decline in fertility. We provide mathematical
models in which low mortality favors the cultural selection of low fertility traits. This
occurs because reduced mortality slows turnover in the model, which allows the cultural
transmission advantage of low fertility traits to out-race their reproductive disadvantage.
For mortality to be a crucial determinant of outcome, a cultural transmission bias is
required where slow reproducers exert higher social influence. Computer simulations of
our models that allow for exogenous variation in the death rate can reproduce the
central features of the demographic transition process, including substantial reductions
in fertility within only 1-3 generations. A model assuming continuous evolution of
reproduction rates through imitation errors predicts fertility to fall below replacement
levels, if death rates are sufficiently low. This can potentially explain the very low
preferred family sizes in Western Europe.
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1. Introduction

In the 19" century, some human populations displayed a demographic transition from
relatively high fertility and high mortality towards a greatly reduced fertility and lower
mortality [1-4]. This first occurred in more developed parts of the world, such as Europe,
the United States, Japan, Australia, and New Zealand, and coincided with an overall
increase in resource availability (judged by economic considerations). In Western
European countries, fertility declined below replacement levels since the 1970s and
1980s [5,6], and this also applies to preferred family sizes. In German speaking
countries the average reported ideal family size has fallen below replacement levels—
about 1.7 children [6]. Furthermore, fertility reduction tends to be more pronounced in
population segments that are economically advantaged than in poorer segments [1].
This is in contrast to trends observed before these demographic transitions, when

wealth was associated with higher fertility [1,7].

A number of theories have been put forward to account for demographic
transitions towards reduced fertility [1,8]. According to one line of argument, the
transition to reduced fertility may be because of a mismatch between the modern
environment and the ancestral one in which humans evolved. Behaviors that were
advantageous in the ancestral environment could have become dysfunctional under
modern socio-economic conditions, leading to a reduced reproductive output [1]. A
second theory holds that the current environment favors the production of few offspring

with large parental investment rather than the generation of more offspring with lesser
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parental investment per child. A third theory is based upon cultural rather than genetic
evolution [9,10]. Behavior that leads to reduced fertility in certain influential individuals is

copied by others, resulting in a spread of this trait.

A well-developed mathematical theory of the dynamics of cultural transmission
[9,11-17] has been applied to the analysis of demographic transitions and the evolution
of small family sizes [18-20]. This research has analyzed the spread of cultural traits
that affect fertility, survival, or both, and the effects of these traits on the demographic
structure of the population. In [19,20], the transition to reduced fertilities has been
explained by cultural niche construction. According to this theory, the first trait to spread
is one of valuing education, which provides an environment that promotes the spread of
a second, fertility-reducing trait. If the trait of valuing education is further associated with
reduced mortality of individuals, the model predicts that the decline in fertility is
preceded by a reduction in the population death rate, as observed in demographic data.
In [18] it was shown that horizontal and oblique transmission can accelerate the spread
of the cultural trait, compared to vertical transmission alone. This paper provides a
broad analysis and creates a model of cultural transmission of a trait that can affect
fertility and/or mortality of individuals. Applications to demographic transitions are
described in two contexts: (i) Neolitic demographic transition, where a fertility-
increasing trait spreads through the population, is investigated with respect to different
transmission modes, and (ii) 19-20 century demographic transition in Europe is modeled

by using a trait that simultaneously decreases fertility and increases survival of
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individuals. A trait is considered where a reduction in fertility is strongly coupled to an

increase of survival of individuals.

A key stylized fact about demographic transitions is that the reduction in fertility
tends to be preceded by a reduction in the death rate of individuals, and by a
consequent temporary population growth phase [4,21,22], presumably a consequence
of improved socioeconomic circumstances. This is surprising in the light of evolutionary
biology [1,23], because evolution tends to maximize reproductive output, which can
generally be increased when resources are more plentiful. Mathematical models of
cultural evolutionary processes have so far not directly addressed the reason for the
observation that fertility reduction is preceded by mortality reduction. Previously
published work linked mortality reduction to other cultural traits, such as education or
fertility itself. Here, we add to the existing literature by considering mathematical models
of cultural transmission where the population death rate is subject to independent
external influences that vary exogenously over time, due to sanitary, medical and
technological advances. We investigate how such externally-driven changes in
mortality affect the contagion of a fertility-reducing trait. We find that the death rate of
individuals is a key parameter for determining whether the cultural spread of a fertility-
reducing trait is successful. While the fertility-reducing trait fails to spread at high
population death rates, it successfully spreads once the population death rate has fallen
below a threshold. For this impact of the population death rate to be observed, the
model further requires a cultural transmission bias towards slow reproducers, which can

come about by a higher social influence of slowly reproducing individuals. The critical
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effect of the population death rate on outcome occurs because reduced death rates
slow the rate at which early reproducers outrun delayed reproducers in the models,
allowing cultural transmission of low fertility traits to outweigh the fitness advantage of
fast reproduction. Computer simulations of the demographic transition process show
that the empirical stylized characteristics of this process can be captured by our models
on realistic time scales. The models further predict that with reduced population death
rates, cultural evolutionary processes can result in the eventual decline of fertility below
replacement levels. This is relevant for recent trends in Western European and other

countries [5,6].

2. Concepts and modeling approaches: a roadmap

Cultural transmission dynamics can be complex, and several different mathematical
modeling assumptions can be made that can potentially impact results. While simpler
models are more tractable analytically, including some more realistic assumptions
requires more complicated modeling approaches. Therefore, the paper is structured as

follows (Figure 1).

(A) We start with the simplest modeling approach that takes into account two distinct
populations: fast versus slow reproducers. Moreover, it will be assumed that all
individuals mix perfectly with each other, and that logistic growth occurs that is limited

by a carrying capacity. This is expressed in terms of ordinary differential equations, and
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basic insights will be described about the conditions required for slow reproducers to be

prevalent.

(B) The same kind of dynamics (fast versus slow reproducers) will be re-considered in
biologically more complex settings. These include: (i) A spatially explicit model, because
the perfect mixing assumption is unrealistic and individuals are more likely to
communicate with members of their local community rather than with anyone in the
global population. Including spatial restriction has been shown to have significant effects
not only in ecological and evolutionary models, but also in models of cultural evolution
[24,25]. (ii) An age-structured model where instead of fast and slow reproduction rates,
we consider early and late reproducers, because the timing of reproduction can be an
important determinant of fertility. (iii) Instead of a fixed carrying capacity, we assume
that more room for increased population growth is continuously generated, thus giving
rise to an ever-increasing population size, which is more realistic. Using this model, we
further show that a demographic transition from higher to lower fertility can occur within
realistic time frames. An important conclusion from this section is that central results
remain robust irrespective of the modeling approach, thus increasing the confidence in

biological / sociological relevance.

(C) The longer-term evolution of fertility will be examined. This requires a different
approach where the reproduction rate is allowed to continuously evolve, rather than
assuming fast versus slow reproducers. The most straightforward way to model this is in

terms of an agent-based model, and we will build on the spatial model considered in Bii.
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3. Results

3A. Fast versus slow reproducers in well-mixed populations

We start the exploration of the evolutionary dynamics of a culturally transmitted, fertility-
reducing trait by formulating a minimally parameterized model that includes (a) a fertility
reducing trait and (b) cultural transmission. We assume that two traits exist in the
population. The fast reproduction trait is a default state, and a slow reproductive trait
can spread culturally via horizontal or vertical transmission. We will denote the
population of the individuals with the fast reproductive trait as xs and the population of
the individuals with the slow reproductive trait as xs. The dynamics can be described by

a deterministic, non-spatial, asexual model expressed by ODEs:

Xf:rfxfW—dxf—ﬁxfo/K,

1
XS=erSW—de+,[)’xfo/K. )
Here, each type reproduces with its own linear reproduction rate, with re>rs,

and the competition between the two traits is expressed by term W, which for example

can take the logistic form,

X +X
w=1--~L_=
K

where K denotes the carrying capacity. Both types die with equal rates, d. We assume
that there is a probability of switching from one type to the other, which is proportional to

the abundance of the individuals of the opposite type. The total rate at which fast
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X
reproducing individuals switch to slow reproduction is given byﬂfxf?, and the total

X
rate at which slow reproducers switch to fast reproduction is given by ﬁsxS?f. If we

X
assume that B>Bs, and denote = B¢- Bs, we have the term ﬁxf?s with the negative

sign in the equation for x; and the same term with the positive sign in the equation for xs.
These terms are equivalent in form to infection terms, see equation (1). The main
postulates used here are that (a) of the two types of individuals, one grows faster than
the other (r>rs) and (b) there are more individuals switching from fast reproduction to
slow reproduction than the other way around (>0). The latter modeling choice is
motivated by the assumption that slow reproducers tend to channel the resources
available to them into accumulation of wealth and/or social status, and thus they may

appear as more attractive models for imitation [19].

System (1) has four steady states:
0. The trivial solution, xr = xs=0 is unstable as long as rs>d and ri>d. We will assume that
both populations can persist on their own, and the above inequalities hold.

1. Fast reproducers win (that is, the fast reproduction trait spreads through the whole

population): X, =K(1—d/rf), x_=0. This solution is stable if

r
d>d =—7F——.
1+(r,-r)/B

2. Slow reproducers win: x, =0, x =K(1-d/r). This solution is stable if
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d<d Note that d2<ds.

2T 1+(r,-r) /B
3. Coexistence solution, where both traits occur in the population

LS
B

K
x, =—(d-d,), xS:E(dl—d).

This solution is positive and stable as long as

dz<d<ds.

To summarize these results, we note that the death rate of the individuals, d, controls
the outcome of the competition dynamics of the two traits. For high death rates, the fast
reproduction trait spreads through the population, and for low death rates, the slow
reproduction trait is able to invade and take over. Modifications of the basic model (1)
are considered in Section 1.1 of the Supplement, where we study different assumptions
on the dynamics of switching type; it is shown that the central results are unchanged.
We note that to observe these results in the current setting, the models need to include
the assumption of density dependence in the population growth process. They are not
observed in models assuming straightforward exponential population growth. Section
3Biii below explores models of unbounded population growth in which the results

reported here remain robust.

Before we proceed, it is instructive to interpret the model from the prospective of
virus dynamics, by viewing x(" and x® and susceptible and infected individuals
respectively. The three nontrivial equilibria are characterized by (1) susceptibles only,

(2) infecteds only, and (3) coexistence of both. In order for infection to be able to
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spread, the basic reproductive ratio, Ro, has to be larger than 1. In the context of this

B-d/r,)

system, we have Rozid(1 15}
—-r /r
i

Decreasing d clearly increases Ro.

3B. Introducing more realism into the model

Because the model explored in the last section contains a number of simplifying
assumptions that are known to be inconsistent with reality, it is important to determine
whether the results hold robust in more realistic settings. It turns out that central results
do remain robust in spatial models, models with age structure, and in models assuming
that populations periodically increase their carrying capacity. This is described as

follows.

(i) Spatial Dynamics:

We consider a stochastic agent-based model (ABM) that describes population dynamics
on a 2D grid of size n x n. We will refer to this model as ABM1; compared to the simple
ODE model, the present description includes spatial and stochastic effects. As before,
the fast reproduction trait is assumed a default state of the agents, and a slow
reproductive trait spreads culturally via horizontal or vertical transmission. During each
time step (representing a generation), the grid is randomly sampled 2M times, where M
is the total number of individuals currently present. When an individual is picked, it
attempts to undergo either a birth-death update (including vertical cultural transmission),

or a horizontal cultural transmission update. The two types of update are chosen with

11
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equal probabilities, such that on average there are M attempts of both types of update

during each time step.

If the birth-death update is chosen, the individual can undergo at most one event,
as follows. It attempts reproduction with a probability Rr or Rs, depending on whether
this is a fast or slow reproducer (here Ri> Rs), or dies with a probability D (both
populations are assumed to have the same death rate). For a reproductive event, a spot
is chosen randomly from the eight nearest neighbors. If that target spot is empty, the
offspring is placed there, otherwise, the reproduction event is aborted. We assume that
the reproductive strategy of the offspring is the same as that of the parent (that is, the
slow reproductive trait is passed on via vertical cultural transmission). These birth-death
processes on the grid are characterized by density dependence, and hence the model
accounts for competition between slow and fast reproducers. The description above
corresponds to infant mortality rising with increased density (crowdedness), because
offspring disappear if they do not fall on an empty spot in the grid. Section Biii below

explores how such processes can apply to growing human populations.

A cultural update is attempted with probability Pc, by gathering the information on
the reproductive strategy of the individuals’ neighbors, similar to voter models [15,26].
The probability that an agent switches its reproductive strategy is proportional to the
weighed fraction of the opposing strategy among neighbors, such that slow reproducers

are more influential than fast reproducers. When adding up the number of fast and slow

12
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reproducers in the neighborhood, there is a probability Q<1 that a fast reproducer is
taken into account, while all slow reproducers are always included, reflecting the

preference of switching towards slower reproduction.

When the model is run with only the reproduction and death processes (no non-
vertical cultural transmission), then the only outcome is the persistence of the fast-
reproducing trait and the competitive exclusion of the slower reproducing one. This is
straightforward competition dynamics behavior. If, in contrast, the model is run with only
horizontal cultural transmission (no reproduction and death, so that the population is
constant), it essentially becomes a voter model, where “slow” and “fast” are different
opinions held by individuals in the population. As has been described for such models
[15,26], the only eventual outcome is that every individual in the population has the
same opinion. Which of the two opinions wins depends on the bias, Q, and on initial

frequencies of the opinions in the population.

When we allow for both horizontal transmission and reproduction with vertical
transmission, three outcomes are possible (Figure 2): (1) The fast reproduction trait
wins and excludes the slow reproduction trait. (2) The slow reproduction trait wins and
excludes the fast reproduction trait; and (3) both traits coexist in a long term equilibrium.
While this is a true equilibrium in corresponding ODEs (see above), the stochastic

nature of the model means that the eventual outcome is always extinction. The
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coexistence outcome, however, is characterized by a significantly longer time to

extinction compared to the exclusion outcomes (compare Figure 2C to 2A &B).

Which outcome is observed depends on the death rate of agents, D, see Figure
3Ai. Each point on this graph depicts the time until one of the traits goes extinct,
depending on the death probability, D. The outcomes are color-coded: purple depicts
fast reproducers remaining, and green slow reproducers. At higher death rates, the fast
reproducers persist and extinction of the slow reproduces occurs at relatively short time
scales. At low death rates, the slow reproducers persist and the fast reproducers go
extinct on a relatively short time scale. At intermediate death rates, the time to extinction
of one of the populations rises sharply, and either population has a chance to go extinct
first. This corresponds to the coexistence regime. Therefore, lower death rates among
individuals in the population create conditions in which the horizontal cultural spread of

the slow reproduction trait is successful, resulting in an overall reduced level of fertility.

An intuitive explanation is as follows. The death rate determines the rate at which
the fast reproducers can outrun the slow reproducers. For large death rates, population
density is low and the reproductive potential of individuals is highest. Therefore, fast
reproducers can outcompete the slow ones at relatively fast rates, making it difficult for
horizontal cultural transmission to reverse this trend. For lower death rates, densities
increase, and this slows the rate at which fast reproducers can outrun slow ones.

Hence, it becomes easier for horizontal cultural transmission to reverse this process.

14
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Parameters other than the death rate further modulate the outcome of the
dynamics, see Figures 3Aii and iii. Cultural transmission of the low fertility trait is
promoted by lower values of Q, i.e. by a reduced influence of fast reproducers on
choosing the reproduction strategy during the cultural transmission procedure.
Increasing the value of Q results in a lower population death rate that is required for
cultural transmission to be successful (Figure 3Aii). The relative probability for a cultural
transmission event to take place, Pc, is also an important determinant of outcome. As
expected, higher values of Pc promote the cultural spread of the fertility-reducing trait.
For lower values of Pc, lower population death rates are needed for cultural

transmission to be successful (Figure 3Aiii).

(ii) Age structured models: early vs late reproducers

Rather than considering fast versus slow reproducers, we now modify the agent-based
model to consider agents who can reproduce either early or late in their lifetimes. This
model will be referred to as ABM2. While these two concepts are related, a reduction in
fertility due to a later age of first reproduction might be relevant to current times where
segments of the population with higher degrees of education and more wealth tend to

reproduce at later ages.

In the agent-based model, we consider four age classes. Individuals are born into

age-class 1, in which no reproduction is possible. During each time step, all individuals

15



324 age by one time unit. After A time units, an individual advances to the next age class.
325  Reproduction can occur in age classes 2 and 3 for early reproducers, and only in age
326  class 3 for late reproducers. In either case, reproduction occurs with a probability R.
327 Age class 4 is a post-reproductive phase, during which the only event that can occur is
328 death (the “grandmother effect” has been explored in Section 2.5 of the Supplement; it
329  only influences the main findings in a quantitative way). Death can occur in all age

330 classes, but with increasing probabilities for successive age classes, i.e. with

331  probabilities D4>D3>D>>D1.

332

333 This model has the same properties as ABM1, see Figure 3B. Some analytical
334 insights for non-spatial, deterministic age-structured models are provided in

335  Supplementary Materials, Section 2.

336

337  (iii) Continuously increasing population growth, and the simulation of the transition

338 process

339  Our central result, that a reduction in death rate tends to select for the cultural spread of
340 a fertility-reducing trait, relies on density-dependence in the population dynamics. It is
341  not observed in models assuming unlimited exponential growth, where the rate of

342  cultural transmission alone determines which population outgrows the other. With

343  exponential growth, a reduction in death rate does not slow down the rate at which

344 faster reproducers, by having more offspring, gain advantage over slow reproducers, as

345 was the case with density dependence.
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While human population sizes have followed long-term increasing trends,
evidence for density-dependent effects and the relevance of local carrying capacities
have been found in demographic data from pre-industrial European populations within
individual settlements [27]. Continued population growth would then be brought about
by an increase in the number of settlements or by regular increases in the carrying

capacity, due to advances in society [27,28].

To capture the patterns reported in reference [27], we consider a growing
population that is subdivided into neighborhoods or demes (settlements). In each deme,
we impose a carrying capacity and describe the local dynamics by ODE model (1). As
initial conditions, a single deme is populated with a majority of fast reproducers and a
minority of slow reproducers. At the end of each time unit, individuals in each deme
have a chance to found a new, empty deme into which a fraction of the current local
population moves. The probability of this occurring is proportional to how full the current
deme is. This corresponds to an effective increase in population size due to new
advances. In addition, the probability to found a new deme is inversely proportional to
the number of existing demes. While the demes are not arranged spatially in this model,
founding a new deme can be thought of as an increase in the density of the population,
which gets more difficult the more demes already exist. Hence, the probability for

- ool .
members of an individual deme to found a new deme is given by m , where N is

the number of currently populated demes, xs and xs represent local population sizes of

17
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fast and slow reproducers, K is the local carrying capacity, and a and € are constants.
When a new deme is founded, a fraction f of both fast and slow reproducers moves into
the new deme. As more demes become populated, the same algorithm is applied to
every deme after each time unit. While in this model, the local dynamics are described
by ODEs, it is still a spatial model due to the assumed patch organization, and this

approach is consistent with the documented notion of local carrying capacities [27].

In this model, we observe persistence of one trait and exclusion of the other,
while the population continues to grow (Figure 4A, B). As before, the fast-reproducing
trait persists for high overall death rates (Figure 4A), while the slow-reproducing trait

persists for low overall death rates (Figure 4B).

We further used this model to simulate the demographic transition process
(Figure 4C). The simulation was run as before, except that at a defined time point in the
simulation, the death rate was continuously and gradually reduced over several time
steps towards a lower, new level (Figure 4C, lower panel). This exogenous reduction is
shown by the grey line and is assumed to correspond to an improvement in various
socio-economic factors that reduce mortality, such as an improvement in disease

treatment, sanitary conditions, technological innovations.

In the upper panel, the fast-reproducing population is shown in purple, the slow-

reproducing population in green, and the total population size is shown by the red
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dashed line. Initially, the overall population death rate is relatively high, and the fast-
reproducing individuals enjoy a growth advantage. The average reproduction rate is
shown by the black line (Figure 4C, lower panel) and is driven by the fast-reproducing
population. The overall growth rate of the population is relatively slow at this stage

because of the high death rate.

When the death rate is reduced, the fertility-reducing cultural trait can spread
successfully and eventually becomes dominant. As the death rate declines, a phase of
faster population growth occurs, as observed in data on demographic transitions [22].
Following a time delay after the reduction in the death rate, the average reproduction
rate also declines, which is again consistent with data on demographic transitions [22]

(Figure 4C, lower panel, black line).

The exact timing of events depends on model parameters. For the purpose of
this simulation, we chose parameters such that it takes about 3 generations to reduce
the average reproduction rate two-fold. This is an order of magnitude that is similar to
events observed in human populations [1] and shows that the cultural transmission
dynamics underlying our model can lead to sufficiently rapid changes in fertility. A faster
rate of horizontal cultural transmission (higher value of 3) can lead to more rapid

changes in fertility following the decline in the death rate.
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To show that these dynamics are not dependent on this particular model
formulation, we performed similar simulations with an age-structured model where
continued population growth was allowed through regular increases in the carrying
capacity parameter (rather than increasing the number of demes). Similar results were

observed and are presented in the Supplementary Materials (Section 2.4).

3C. Long term cultural evolution: reproduction strategies as a continuous trait

So far, we considered two distinct populations of slow and fast (early and late)
reproducers. To study longer-term evolution, rather than considering two discrete
reproductive strategies, it is more realistic to assume the probability of reproduction to
be a continuous variable. Because this is most easily implemented in terms of an agent-
based model, we will build on the spatial agent-based model of section 3Bii. We again
assume that an individual is chosen for a horizontal cultural transmission event with a
probability scaled with Pc. In this model, however, instead of adopting (or rejecting) the
reproductive probability of the alternative type, the individual adopts the weighted
average of the reproduction probabilities among all neighbors (including its own
reproduction probability). As in the above models, we assume that slower reproducers
are more influential and contribute more to horizontal cultural transmission than faster
reproducers. Due to the continuous nature of the reproduction trait in the current model,

this is now implemented during the averaging procedures across the neighborhood: we
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weigh the reproduction probability by a factor Q<1 if the reproduction probability of a

neighbor is faster than that of the individual under consideration.

The outcome observed in this model is straightforward. As initial conditions, the
individuals in the system are characterized by different reproduction probabilities. Over
time, the reproduction probabilities converge to a spatially uniform value, the level of
which depends on the initially assigned probabilities. This eventual uniformity derives
from the assumption that an individual adopts the average reproduction probability of

the neighborhood during a cultural transmission event.

Next, we introduce mutations of cultural traits that can occur during
horizontal transmission. Instead of simply adopting the (weighted) average strategy of
the neighborhood, with probability u individuals would modify this strategy by increasing
or decreasing it (with equal probabilities) by a fraction G. We examined the evolution of
the average reproduction probability, R, over time, by running computer simulations.

Three types of outcomes were observed (Figure 5).

(i) The average probability to reproduce, R, increases steadily towards the
maximum possible value (R+D=1), shown by the purple, green, and red lines in Figure

5. (Simulations were stopped when R+D=1).

(i) The average probability to reproduce declines steadily, eventually resulting in

population extinction, shown by the dark blue, light blue, and pink lines in Figure 5.
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Extinction occurs because the reproduction rate evolves to levels that are too low to

maintain the population.

(iif) The average probability to reproduce converges to an intermediate level, and
fluctuates around this level, shown by the yellow and orange lines in Figure 5. This level

is independent of the starting value of R (not shown).

As before, the population death probability, D, is a crucial factor (Figure 5).
Evolution to maximal reproduction probabilities, R, is seen for relatively large death
rates. Evolution towards low values of R and hence population extinction is observed for
relatively low death rates. This could be the cultural equivalent to “evolutionary suicide”
or “Darwinian extinction” [29]. Evolution towards an intermediate reproduction
probability is observed for intermediate death probabilities, D. A higher probability of
cultural transmission, Pc, and a lower weight of faster reproducers during the averaging
process, Q, further promote evolution towards declining reproduction rates and
population extinction (not shown). Section 3 of the Supplement further explains the
existence of an equilibrium state and explores how the mean population reproduction

rate depends on parameters.

This model demonstrates that manipulating the death rate changes the long-term
cultural evolution of reproductive strategies, and that three different outcomes are
possible: the two extremes (maximum reproduction and decline of reproduction rate

below replacement level), as well as an evolutionary stable intermediate average
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reproduction probability. The latter has perhaps been most relevant for human societies,
although the trajectories might be moving towards the decline below replacement levels,
which is discussed further below. We note that these results were derived from a
spatially explicit model. An equivalent non-spatial model is explored in the
Supplementary Materials, section 3.1. In the non-spatial model, an evolutionary stable
intermediate average reproduction probability is not observed, demonstrating that this
outcome depends on the existence of spatially explicit interactions. Finally, the
Supplementary Materials (Section 4) further demonstrate that conclusions described

here remain robust in a model that assumes sexual reproduction.

Discussion and Conclusion

We have used a variety of modeling approaches to investigate the basic dynamics by
which a fertility-reducing trait can spread via cultural transmission. In contrast to
previous modeling approaches, we have allowed for the possibility of exogenous
external influences on the population mortality rate. This exogenous parameter can be
modulated as a consequence, for example, of technological development in the society.
A central result was that lower population death rates select for the cultural spread of
the low-fertility trait. This happens because lowering the mortality increases density,
which in turn reduces the rate at which the fast reproduction trait gains in abundance

relative to the slow reproduction trait. This allows horizontal transmission to tip the
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balance in favor of slow reproduction. The advantage of the fast reproduction trait is
greater when generational turnover is rapid owing to a high death rate. When the death
rate declines, there is more opportunity per generation for cultural transmission to
operate in favor of the low reproduction trait. We note that the dependence of outcome
on population mortality requires the assumption of a cultural transmission bias:
individuals with lower reproduction rates need to carry more social weight, an
assumption that has also been made in previous modeling work [19]. While it seems
reasonable to assume that economically more successful individuals carry more weight
in cultural transmission than individuals who are less successful [30,31], the details of

this are not well understood [32,33] and require further investigation.

Competition among individuals in the form of density-dependent dynamics was a
major driving force underlying the dynamics arising from the model. While in the simpler
settings explored here, competition correlated with populations being close to carrying
capacity, we showed how a deme model or an age-structured model with increasing
carrying capacity can give rise to the same outcomes in populations that continuously
grow. Hence, the results described throughout the paper hold for growing populations.
We demonstrated that, depending on parameters, the model can reproduce crucial

features of the “demographic transition model” [22].

Our study complements previous mathematical work that analyzed the cultural

spread of small family sizes in relation to demographic transitions [18-20]. Our models

24



519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

consider a simpler setting involving the basic spread dynamics of the fertility-reducing
trait, somewhat similar to infection models. We show that lower death rates promote the
cultural spread of the low fertility trait. This result offers a simple possible explanation for
the key observation that a reduction in fertility tends to be preceded by a reduction in

mortality.

In addition, our model can help interpret demographic data demonstrating that
fertility is density dependent [34]. Lowering the death rate in the model leads to an
expansion in the slow reproduction trait, even in the context of increased resource
availability and continuously growing populations. Data indicate that human fertility as
well as family size preference are characterized by density dependence, even during
the time frames when demographic transitions occurred. Our model results might offer

an explanation for this observation [34].

Also consistent with stylized facts, our models implied that for low population death
rates, the average reproduction rate of the population can decline to levels that do not
sustain a stable population. In Western European countries, fertility has declined below
replacement levels since the 1970s and 1980s [5,6]. Similar tendencies are observed in
Japan, South Korea, Taiwan, Singapore, and Hong Kong [35]. In addition, recent
surveys [6] have revealed that the mean ideal family size (MIFS) in German speaking
countries has fallen below replacement levels, about 1.7 children, among younger

people, indicating that this trend might continue in the future. In Taiwan, among women
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aged 18-24, the MIFS declined from 2.1 in 1993 to 1.8 in 2003, and in Hong Kong,

among women aged 18-27, MIFS fell from 1.8 in 1991 to 1.5 in 2011 [36,37].

The models studied here contain a number of assumptions that we consider to be
central to exploring the effect of the population death rate on the spread of a culturally
transmitted, fertility-reducing trait. Further assumptions and processes could be built
into the model, and a detailed exploration of this would be an interesting subject of
future research. One such aspect is the grandmother effect [38,39], where individuals in
later age classes (grandmothers) promote the survival of individuals in younger age
classes. We present a basic exploration of this effect in the Supplement (Section 2.5)
and found that this only modulates the parameter thresholds where behavioral changes
of the models are observed, but does not qualitatively change outcomes. Another
interesting aspect to include might be costs associated with early or late reproduction,
which likely also does not lead to a qualitative change of our results. Several additional
aspects could be quantified in such more complex models, but this would go beyond the

focus of the current manuscript.

While some details of the model processes could be formulated in different ways
(see Supplement Section 5), we have considered a range of models with different
assumptions. In all models, the death rate of the population was identified as a crucial
factor that determined whether the fertility-reducing trait could invade. This could have
implications for understanding the forces that contribute to the occurrence of

demographic transitions and that drive the decline of fertility below replacement levels in
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developed countries. It would be interesting for future work to integrate these cultural
evolution dynamics with other potential mechanisms that might contribute to the
demographic transition process, such as the offspring quality/quantity tradeoff or other
economic considerations that might result in human populations having an optimal,

target number of offspring.
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Figure legends:

Figure 1: Schematic representation of the structure of the papers and the types of

models considered. See text for details.

Figure 2. Time series showing the different outcomes according to ABM1. Individual
realizations are shown. (A) Higher death rates: the fast-reproducing trait persists and
the slow-reproducing trait goes extinct on a short time scale. (B) Lower death rates: the
slow-reproducing trait persists and the fast-reproducing trait goes extinct on a short time
scale. (C) Intermediate death rates: both fast- and slow-reproducing traits persist for
significantly longer time periods. Eventually one trait goes extinct due to the stochastic
nature of the simulation. Parameters were chosen as follows. R=0.005; Rs=0.8R;

Pc=0.0008; Q=0.93. For (A), D=0.001. For (B), D=0.0001. For (C), D=0.00025.

Figure 3. Time to competitive exclusion, as a function of the death rate. (A) Model
ABM1. Individual realizations of the computer simulation were run until one of the two
populations (fast or slow reproducers) went extinct. This time was recorded with a green
dot if the fast-reproducing trait went extinct, and with a purple dot if the slow-

reproducing trait went extinct, as a function of the population death rate, D. For low
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death rates, there are only green dots, corresponding to the slow-reproducing trait
persisting and the fast-reproducing trait going extinct relatively fast. For fast death rates,
there are only purple dots, corresponding to the opposite outcome. For intermediate
death rates, the time until one of the traits goes extinct becomes sharply longer, and
either trait can go extinct first. This corresponds to long-term coexistence. For plot (i),
parameters were chosen as follows: R~=0.005; Rs=0.8Ry, Pc=0.0008; Q=0.93. Plots (ii)
and (iii) explore parameter dependence of the phenomenon. (ii) A higher value of
Q=0.98 makes it harder for the slow-reproducing trait to invade, hence requiring lower
population death rates. (iii) A lower rate of cultural transmission, Pc=0.0004, makes it
harder for the slow-reproducing trait to invade, hence again requiring lower population
death rates. (B) Same, but according to ABM2 with age structure. Because each age
class is characterized by its own death rate, we multiplied all those death rates by a
variable factor F, and plotted the outcome against this parameter. The death rates for
the age classes were: D1=0.00004; D>=0.00007; D3=0.00009; D4=0.0002. Other

parameters are R=0.005; Pc=0.0008; Q=0.93; A=10,000.

Figure 4. Computer simulations of the deme model, described in the text. (A) The slow-
reproducing population (green) goes extinct and the fast-reproducing population
(purple) continues to grow. Parameter values were chosen as follows: r=0.08, rs=0.064,
d=0.05, =0.01, K=100, a=0.001, €=0.001. (B) The fast-reproducing trait is going
extinct, and the slow-reproducing trait takes over and continues to grow. The same

parameter values were used, except d=0.005. (C) Simulation of the demographic
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transition process. Again, fast- and slow-reproducing traits are shown in purple and
green, respectively. The total population size is shown by the dashed red line. The
simulation is started with a death rate d=0.006. In this regime, the fast-reproducing trait
has an advantage and is dominant. The cultural spread of the low-fertility trait is not
successful. At a defined time point, the death rate is reduced 1.8 fold every half
generation until it has fallen to a value of d=0.001 (grey line). This creates conditions
under which the cultural transmission of the fertility-reducing trait is successful, and the
population characterized by a slow reproduction rate spreads. This leads to a decline in
the average reproduction rate of the population (black line), which is delayed with
respect to the reduction in the death rate. For the parameter regime considered, the
average reproduction rate is halved within about 2-3 generations, which corresponds to
about 50-100 years (a generation in the model is given by 1/r). The remaining

parameters are given as follows. r=0.008, rs=0.0016, f=0.2, K=100, a=0.005 £=0.01.

Figure 5. Outcomes of ABM3 with a continuous reproduction strategy and cultural
evolution. The average reproduction probability across the whole population is plotted
over time. Individual simulation results are shown. Simulations were run for different
death rates, decreasing from D1 to D8. For relatively high death rates, the average
reproduction probability increases steadily towards maximal levels. For relatively low
death rates, the average reproduction probability decreases steadily until population
extinction occurs (due to the limited reproduction). For intermediate death rates, the

average reproduction probability comes to oscillate around a steady value, which does
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not depend on initial conditions (not shown). Parameters were chosen as follows. Death
rates are given by D1 = 0.002, D2 = 0.001, D3 = 4x10*, D4 = 3.75x104, D5 = 3.6x10,
D6 = 10, D7 = 5x10%, D8 = 105. The reproduction probability of the individuals, R, was
allowed to evolve, starting from R=0.05 for all individuals. Pc=0.0003; Q=0.965. The
chance to make a mistake during horizontal cultural transmission (“mutation”) u=0.1. In

case of a mistake, the average reproduction rate was changed by G=2%.
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1 In the absence of age structured dynamics

1.1 Alternative ODE models

In the model considered in Section 2.1 of the main text, the conversion process
is described by the term
ﬂx(l)x(z)/K.



Alternatively, this term can be formulated as

EAIE)

ng(l) + x(2) ’

(1)
where the conversion happens proportionally to the current fraction of the
individuals of the opposite type. In this case, we have a very similar solution
structure. The competitive exclusion solutions are the same as in the previous
model, the threshold d values are given by

B s

:1—7"2/7"17 2—T1/T2_1,

dy

and the coexistence solution is given by

x<1>:5<1— b )(d—dz), x<2>:5<1— b )(dl—d).

ﬁ rLr—7re 5 ryr—7mT2

In a different modeling approach we assume that conversion happens at
the same rate for both strategies, but it is proportional to the weighted
fraction of the two strategies in the population. Assuming that strategy 1
is weighed with coefficient v < 1, we obtain that the change in numbers for
strategy 1 is given by

(1) (2
T v’x
Al - W)W- (2)

In this case, the competitive exclusion solutions are the same as in the pre-
vious model, the threshold d values are given by

Bl —7) & = B(1—7)

d — 5 — )
Pl =ryfr) T e — 1

and the coexistence solution is given by a somewhat different expression,

= K ( B ﬁ+d><5+d+ﬁ;19),

B‘i‘d 1T — T2 Yro —T1 ’y—l
@ _ K ( dy | BB+d—m) (5+d)27)
z = + — .

f+d\v—1 ro — 1T Yre — T



2 Age structured dynamics

2.1 Model formulation

We will model the competition dynamics of two types that differ by their
reproductive strategies. Assume the existence of N discrete age groups for
the two types, and denote the abundance of type s in age group ¢ as mgs).
Reproduction behavior of type s is described by the vector al(-s), with entries in
[0, 1] denoting relative rate of reproduction of this type in age 7. Individuals
of the first type, s = 1, correspond to “fast reproducers”, and the second
type, s = 2, to the “slow reproducers” in the previous section. The latter
type generally has a tendency to reproduce later than individuals of type 1.
In the approach implemented here, type s is characterized by two integers,
z‘ﬁi?m and igd, denoting the first and last age groups where reproduction is

possible. We have

ags) >0 if ¥ <i< z'SL)d, ags) = 0 otherwise,

start

where
+(1) +(2)
Zstart < Zstart

We can formulate a discrete time dynamical system for these populations as
follows:

(it +1) = a2 W, (3)

T ") )
(2 () + 27 (1)

+ (3 s) 3 s) (3—s) Zk:ix ( ) ’ 1 < ]\[7 4
W; 1 Ty ( )ﬁz legf:i(xl(g?)—s ( )+ZE(S)( )) <t ( )

where the competition term W can be defined as

(S)(t+ 1) = wz(S)quES)l( t) < 5(
Zk—z

2 N (s)
W o= 1— D5 %{kl e o (5)

2 N () ¢
W = <1+Zs:1 Z};(kzlxk ) ) (6)

3



Equation (3) describes reproduction. Different age groups reproduce with

(s)

their own rate a;”, and the offspring enters age group 1. Equation (4) de-

scribes the population moving from age group to age group. Coeflicients wgi)l

describe the probability for an individual of type s to survive until age 2. The
probability of switching type is described by terms including coefficient f3.
First we note that expression 3 — s for s € {1,2} simply returns the type
different from type s, because 3 — s gives 2 if s = 1 and it gives 1 if s = 2.
The probability to switch from type s to type 3 — s while transitioning to
age group ¢ is given by

S w8
S (2 < t) + ) (1)

and is proportional to the fraction of individuals of age 7 and older that
belong to class 3 —s. With this in mind, we can see that the first term on
the right of equation (4) multiplies the probability that an individual does
not switch to the other type, and the second term multiplies the probability
that switching from 3 — s to s occurs. System (3-4) assumes no switching at
the first stage. To include switching at the first stage, we replace equation
(3) with

N N ( s)
at(ls) t+1) = a§5)x§-5) L)W (1 — 518) N Zk T <t> )
) =2 " Sl (g () + 2 (1)
5)

DT 1<Z<§ £ féil%)) "

B

2.2 System behavior

System (7, 4) has two exclusion steady states (for s = 1 and s = 2), which
for competition model (6) are given by

(s) -1
x(s) — K w TZm 1 k 1 wk 7 1< < N, (8)
? k N -1, (s)
Zm i wk
237 = 0, 1<i<N. (9)

In figure 1 the behavior of a system with N = 5 stages is shown. We assumed

that for fast reproducers, zgt()m = 2, and for slow reproducers, i® = 3,

4



while igfl)d = 5 for both types. For simplicity we assumed that within the
(s)

)

were equal to a constant (independent
(s)

[

reproductive stages, the values a
on type and stage). Further, we assumed that the rates w;”’ were s- and i-

independent, and transfer coefficients Bi(s) were i-independent (but dependent
on s).

(a) [X o ‘ ' ! 100
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Figure 1: Age structured dynamics according to system (7, 4), numerical simulations.
Total populations of individuals of type 1 and type 2 are presented. The steady state

values are given on the left as functions of parameter (a) (V) and (b) wgs) = w for all
s € {1,2},1 < i < N, the survival probability. Solution types are denoted by a circled

number. The parameters are w = 0.9 in (a), 3 = 0.17 in (b), and K = 50,652) =0.1.
The reproductive rate ags) =1when2<i<5fors=1and 3 <i<5for s=2. Initially,
all populations ml(-s) = 10.

In figure 1(a), by fixing all the parameters except for 3, we observed
that three different solution types were stable. Solution 1 corresponds to
the fast reproducers excluding the slow reproducers and is stable for smaller
values transfer away from type 1, 3. Solution 2 corresponds to the slow re-
producers excluding the fast reproducers, and corresponds to larger (V). For
intermediate values of 3" we observe stable coexistence of both types. Sam-



ple time series of the three solution types (corresponding to three different
values of 3(1)) are presented on the right on the figure.

Alternatively, if we fix S > 5 and vary the survival probability, w,
the same three solution types are observed, 1(b). In particular, we note that
low survival rates (that is, high death rates) lead to the dominance of fast
reproducers, and high survival rate (low death rates) to the dominance of
slow reproducers.

2.3 A two-age system

The simplest nontrivial system that captures the phenomenon of interest is
system (7,4) with N = 2. Let us assume that w§5) = w for both types (that
is, mortality is the same for both types). Further, let

(1) 1

Zstart =

M o @

’ Zend - Ystart =

(1)
lend = 27

in other words, type 1 reproduces both in ages 1 and 2, and type 2 only repro-
duces in age 2. The trivial solution® is unstable if wag) > 1or wagl) > 1—@51).
The following are some of the non-trivial long-term solutions (compare to the

equilibria of section 1):

1. Type 1 (fast reproducers) wins — a competitive exclusion steady state:

1 1 1 1
W _ Klre” +way’) 1] o) _ Kulr(ai” twag)) —1) o) @) _
2 1

- — 2 =0,
1 1+ w ) 1+w 2
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2. Type 2 (slow reproducers) wins — a competitive exclusion steady state:

W _ 0 _ @ _ Kraw—1 o  Kuwrafw—1]
' =xy =0, 277 = . Ty = .
I+w 1+w

3. A coexistence state.

4. Periodic solutions.

IFor the analysis of the trivial solution one has to modify the original system by adding
a small constant in the denominators of all the equations, otherwise we have a singular-
ity which is meaningless, because the transfer terms multiplying 8 must be zero if the
population is zero.



Stability of the two exclusion states can be investigated. For simplicity, let
us set all nonzero values of fecundity to a constant, ags) = a. Further, we
will assume that the coefficient of transfer is independent of the age, and is
only defined by the type: b’i(s) = ) fori = 1,2, s = 1,2. Let us analyze
stability of solution 1 above (fast reproducers win). Stability of the discrete
system requires all the eigenvalues of the Jacobian to satisfy |A| < 1. The
eigenvalues are given by

N 14 /1 +4rw(l + w)?
b2 2r(1 + w)? ’

B2+ w) + v/wlw(2 + BO — 28@)2 4 4(1 + 0 — F2)(1 — fO)]

Asd = 2(1 + w)
The first two eigenvalues do not depend on the transfer rates and correspond
to the stability of the type 1 population in the absence of the other popula-
tion. We can show that |[A; 5| <1forall 0 <w <1andr > 1. In particular,
A1 > 0, we have \; =1 when r = 1, w = 0, it decays with r and w for r < 2,
and for a given r > 2, it has a maximum value (1 — w)/2 when

2
(w—=1)*(w+1)

T =

Further, Ay € (—1,0] for all values w € [0,1] and r > 1, since OAo/0r > 0,
and for r = 1, Ay = 1 — /1 + 4w (1 + w)2/(2(1 + w)?) € [1/8(1 — V/17),0].

The eigenvalues A3 4 describe stability against an invasion of type 2 indi-
viduals. The solution can become unstable if A3 > 1. This happens when

(1— g2
(B2 = BW)(2 - B2

Clearly, if 1) is large (close to 1), the type 1 solution is unstable (because
of frequent transfers to type 2). In fact, as long as

w>w =

4— B3 —/5(82)2 - 168 + 12

M <
& 2

the type 1 solution is stable for any values of w < 1, because w; > 1. If
however the inequality above is revered (that is, the transfer rate is larger

(10)

(1)



than a threshold for type 1), the solution becomes unstable for sufficiently
large values of w.

Intuitively, success of each of the types depends on their net fecundity
and their propensity to stay (and not transfer to the opposite type). Clearly,
the fecundity of type 1 is larger than that of type 2. But this can be offset by
a larger probability of transfer (if we assume that 3() is larger than 3 by a
sufficient margin). Small death rates (and therefore large values of w) work
against type 1 individuals and benefit type 2 individuals. If w is large, more
individuals survive to later stages, resulting in a larger influx of individuals
transferring from type 1 to type 2: they simply have a longer time to stay
alive and decide to switch. Thus, living longer increases success of type 2,
such that after a threshold of w, type 2 becomes stronger and drives type 1
extinct.

Investigating the stability of type 2 equilibrium, we discover that it is
unstable (in this simple 2-age model) for all values of w except for w = 1,
where it is neutral. Note that for systems with more age stages, this is not
the case, and we have a stable type 2 equilibrium (see the previous section).
For the 2-age system, for values w < 1, but close to 1, instead of equilibrium
1, we observe a stable cycle which contains only type 2 individuals.

2.4 Simulating demographic transition

In this section we present an example of an age structured model where a
behavior resembling demographic transition can be observed. We use the
following formulation:

N
t—i—l = a:vs ), 12
j

N (3—s)
azgs)t 1) =W, wg;gs_)lt 1— 8 Zk vy (1) )
o ( (>< Zk 1< <>+x;><t>>

wxz(»?;s)tﬁ(s’s) Zk if () ), 1<j<N,(13
' O S Py ) S




where we defined

-1
g:l Eszl 751(:) S
Wi - (” x =t (14)
1 i>1.

I

In this description, the competition term, W;, is interpreted as infant (or
early childhood) mortality, and therefore appears as a multiplier in front of
the right hand side of the equation for age group 1, modifying the probability
of survival until this stage.
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Figure 2: Simulations of an age-structured, deterministic model. (a) Age stages with
early and later reproducers’ age-specific fecundity are specified. (b) Simulation results
for the total population sizes of early (blue) and late (yellow) reproducers, as functions
of time, in a simulation with step-wise increasing carrying capacity (Kr = 1.15 Kr_q,
where T' counts periods of 50 age-stages, which is 350 years). The survival probability w
is increased exogenously, in a step-like manner at time 1800 from w = 0.8 to w = 0.95,
marking the beginning of a change similar to demographic transition. (c) The mean life-
span of the population corresponding to the same simulation is shown as a function of
time. (d) The mean number of offspring per individual is shown as a function of time.
The rest of the parameters are: N = 13 age stages, a = 2, g = 0.5, 1) = 0.4, 3 = 0.37.

The probability to survive to the next stage is assumed stage- and type-
independent, w'® = wfor s = 1,2 and all i. Further, the rate of conversion is

%

9



) — B for all i) and parameter az(»s) related to fertility

is type-independent (ags) = q; for s = 1,2).

Figure 2 presents numerical simulations of model (12-13). For these sim-
ulations, we considered 13 age-stages, which represent age groups 0 — 6,7 —
13,14 — 20, etc. There are two types of individuals: early reproducers re-
produce in stages 3-8, and later reproducers only reproduce in stages 5-8.
Each stage is characterized by the mean age-specific fecundity, which decays
exponentially with age and is given by parameter a at stage 3, and by ag®—®
at stage 3 < k < 8, where 0 < g < 1, see panel (a) of figure 2.

In the simulation, we assumed that the carrying capacity, K, that defines
the maximum population size increases in a step-wise manner. This pro-
cess is an idealization meant to simulate human expansion. In a space-free
model it can correspond both to an increase in density and an outward ex-
pansion. In a spatial, agent-based model, a similar effect could be achieved
by refining the grid, making it more and more dense. The reason to sim-
ulate expansion by increasing K instead of using a model with exponential
(uninhibited, non-density dependent) growth is the notion of competition
for resources and crowdedness, which are assumed to be important factors
in human population dynamics. The population continues to grow through
expansion, innovation, and making more resources available, but at the same
time the effects of increasing density and frequent resource shortages are felt
through density-dependent factors in the equations. In the current model,
the density-dependent factors are presented as term W; entering as infant
and childhood mortality factor.

In order to simulate an improvement in mortality, we assumed that the
survival probability, w, increases in a step-like manner at year 1800 in the
simulated system. Figure 2(b,c,d) shows numerical simulations of system
(12-13). Panel (b) plots the total population sizes of early (blue) and late
(yellow) reproducers as functions of time. Before the transition, the popu-
lation contains a majority of early reproducers; the mean lifespan is about
25 years (panel (c)) and the mean total fecundity is above 2.5 children per
individual (which in a sexually reproducing population would translate into
over 5 children per woman). After the transition, the population experiences
an increased growth followed by a slow-down (panel (b)). The population
now consists predominantly of slow reproducers, the mean life-span increases
to over 40 years, and the mean number of children drops to about 1 (equiva-
lent to 2 children per woman). The transition happens on a relatively short

stage-independent (3

(2
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time-scale equivalent to under 5 generations.

While the time-scale of the transition, mean longevity and fecundity,
as well as growth rate of the population are defined by model parameters,
the above simulations demonstrate that an effect similar to demographic
transition can be observed in the model, and that parameters can be found
such that some of the observables are not far from their realistic ranges.

2.5 Including the “grandmother hypothesis”

To include the so called “grandmother effect”, we note that help of a grand-
parent can increase the chances of a child’s survival. To incorporate this
we will use system (3-4) as a basic model. For simplicity, we will keep the
description asexual. As an individual ages, it passes through stages, and the
probability to survive from age i — 1 to age i is given by w;_; (here we for
simplicity assume no explicit dependence of mortality on type s). Note that
in many contexts,
w, < Wsy.

Here we assume that the presence of the grandmother may increase the prob-
ability of survival during the earliest stage. Let us denote the probability to
have a grandmother by Fj,q,q¢. Then we can set the probability of survival
to age group 2 to be

wy + Sgrandpgrand(wQ - 'lU1>, (15)

where Sgrang i a tunable parameter that sets the strength of the “grand-
mother effect”. If this effect is nonexistent (SyranaPyrana = 0), then mortality
of age group 1 is simply w;. If PyraniSgrana = 1, then the probability to
survive the first age class is as high as that for the next age class (ws).

To calculate the probability to having a grandmother, we note that for
a given newborn, this depends on the age of its parent. Having a younger
parent increases the probability that the grandparent is alive. To incorporate
this effect, we must use a more detailed description compared to system (3-4),
and as the basic variable use

(s)
Yij (t)v

which is the number of individuals of type s of age ¢ born to a parent of age
Jj, at time t. These are related to the old variables :UES) (t) as

tend

= >y,

J=lstart
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where we denoted

: i) (2) S (1) (2
Lstart = mln{zstart? Zsta,rt}7 lend = max{z Zend}'

end’

The changes in each type are described by the following equations:

Time step

t+1 f=

t

t

% 4 > 6 7 Age class

2
T j = parent age at birth
k = grandparent age at birth of parent

Figure 3: A schematic illustrating the grandmother effect. The two axes are
the age class and time. The label “1” represents the birth of an individual,
such that at time ¢t 4+ 1 the newborn enters age-class 1. The age of the
parent is 7 = 3 for this example. The black arrows pointing to “1” trace the
growing up of the parent. The label “2” marks the birth of the parent to
the grandparent of age k = 2. The black arrows pointing to the right and
upward from “2” represent the aging of the grandparent.
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Let us set all the values w;; = w; for all ¢ > 2, and assume that the infor-
mation about the grandmother effect is included in the mortality rate of the
youngest age class, wy;. We have (as in formula (15)),

— J
Wi; = W1 + Sgrandpgrand(wZ - w1)7

and the probability of having a grandmother depends on the age of the
individual’s parent, j. To calculate this we use the diagram of figure 3. If
the parent’s age at time t is j and the parent was born to the grandparent
of age k (at time t — j — 1), then at time ¢t + 1, the age of the grandparent
is given by k + j + 1. The probability that the grandparent survives to time
t + 1 is given by the product of probabilities to survive from age k to age
k+j+1,

Wy,
m=k
where we assume that w,, = 0 for m > N. The probability of having a
grandparent is then given by

N s . k+19
P DA N (e R O | WAEAET
rand ~ s }
’ S aa(t —j 1)

which is the probability that at the moment of the parent’s birth the grand-
parent was young enough to survive to the birth of grandchild (time ¢ + 1).
Note that this expression makes system (16-17) non-local, that is, the equa-
tions now depends on the variable’s value in the past (time t — j — 1).

In this version of the model, any grandparent that survives can contribute
to the increased survivability of the newborn (“strong grandmother effect”).
In a different version, we can assume that only grandparents that can no
longer reproduce themselves participate in the care for their grandchildren
(“weak grandmother effect”). In this case, we require that the age of the

grandparent at time ¢, k + j > i)

end"
N s . k+j
Js zkﬂ?f%ﬂay$dt_j_l)nggu%
rand — s . :
’ Yl agan(t—j— 1)

Figure 4 shows how model behavior changes as we include strong or weak
grandmother effect. In this example, there are N = 7 stages, and early

13



reproducers (type 1) start reproducing in stage 2, while type 2 start at stage 3.
Individuals do not reproduce in stages 6 and 7. In the absence of grandmother
effect, for low values of w, type 1 individuals dominate (and exclude type 2);
for high values of w the situation is reversed, and for intermediate w we have
coexistence of both types. Adding the grandmother effect does not change
this picture qualitatively, but gives type 1 individuals a larger advantage, such
that the transition to the dominance of type 2 happens for higher values of
w.

Type 2 /|
o 200 Strong grandmother yp 1
E effect Weak grandmother ]
c 150¢ effect ]
@)
s
@ 100}
S eleaag
S sl
8 No grandmother
effect
O’v 1
0.6 0.7

Figure 4: Age structured dynamics according to system (16-17), numerical
simulations (similar to figure 1(b)), where the grandmother effect was in-
cluded. Total populations of individuals of type 1 and type 2 are presented.
Dashed lines correspond to no grandmother effect, dotted lines to the weak
grandmother effect, and solid lines to strong grandmother effect. The pa-
rameters are: N = 7 age stages, z‘@i}m = 2,i§f()m = 3,@'212 = igl)d = dw; =

0.9w, B = 0.2, 3% = 0.1, K = 140, Sgrana = 1, al(»s) = 1 during reproductive
stages.
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3 Birth-death, imitation, and mutation dy-
namics

3.1 Model formulation and numerical results

Envisage the following process. In a 1D spatial system of a constant size,
N, each individual, 7, is characterize by a reproduction rate, [;. During each
time unit, N updates are performed, each consisting of two parts, a death-
birth (DB) update and a cultural transmission (CT) update. Each update
proceeds as follows:

e A DB update: An individual is chosen, randomly and fairly, to be
removed (say, this is the individual at location ;). Then it is replaced
by the progeny of one of its two neighbors: the individual at location
i1+ 1 reproduces with probability ;, +1/(l;,+1+(;,—1), and the individual
at location i; — 1 reproduces with probability I;, 1/(l;;+1 + li;—1). The
offspring inherits the reproduction rate of the parent.

e A CT update: this event happens with probability 3, which sets the
relative time scale of the two types of updates. Pick an individual,
randomly and fairly, to perform an imitation update (say this is the
individual at location i5). This individual will change its reproduction

rate from [y to
i2+1
Zj:ig—l Qiy il

i2+1 )
Zj:ig—l Ay 5

Qg = S, lj > [,

Z:

where

and 0 < s < 1 is a constant that indicates by how much the strategy
of fast reproducers is discounted. In other words, a weighted average
of all the strategies around the focal individual at i, is formed, such
that the strategy of those who reproduce faster than the focal individ-
ual is discounted with coefficient s. The focal individual adopts the
resulting strategy with probability 1 —u. With probability u, strategy
[ is increased or decreased (with equal likelihood) by an amount Al
(unless I < Al, in which case it can no longer decrease). This process
is equivalent to mutations, whereby the phenotype is modified with a
certain probability to give rise to variation.
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Figure 5: The dynamics of a 1D simulation with mutations. (a) The time-
series of the population mean reproduction rate, for 4 different values of Al.
(b) Numerically obtained histograms of the population’s reproduction rates,
taken at generation 50,000, for the same 4 values of Al. The rest of the
parameter are: N = 100, u =0.04, 5 =1, s = 0.9.

We would like to characterize the equilibrium of this system. First we
note that in the absence of mutations (u = 0), the state with [; = [ for all i is
a equilibrium for any value of [. As a result, the system will converge to one
of these neutral equilibria, depending, for example, on the initial condition.

The dynamics change drastically in the presence of mutations, u > 0.
Now, uniform states are no longer equilibrium states, and the equilibrium
reproduction rates will be distributed around some mean value, I, with the
variance that increases with u and Al. In figure 5(a) we present the time
series of the population mean reproduction rates, for 4 different values of Al,
the increment of the reproduction rate. We can see that the population settles
to a stochastic equilibrium, where the mean population mean reproduction
rate increases with Al, and convergence time decreases with Al. Figure 5(b)
shows numerically obtained histograms of reproduction rates of populations
at equilibrium, for the same four values of Al. We can see that the standard
deviation increases with Al. Similar trends are observed when we vary the
mutation rate, u (not shown). 2D simulations that show the same trends are
shown in figure 6.
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Figure 6: The dynamics of a 2D simulation with mutations. The population
mean reproduction rate is plotted as a function of time, for 3 simulations. The
blue line represents a base-line simulation with parameters u = 0.1, Al/l =
0.02, the orange line a simulation with an increased mutation rate, u = 0.3,
and the green line a simulation with an increased Al/l = 0.04. The rest of the
parameters are as in Fig.3 of the main text, with the death rate 3.75 x 10~%.

3.2 Analytical considerations

To find the mean equilibrium value of the reproduction rates, we use the
following argument. Suppose that the equilibrium distribution? of the repro-
duction rates is given by { fx}, such that the probability for an individual to
have reproduction rate Ly is given by fi, with

> fili=1.
k

Under a BD event, suppose an individual at position 7; with reproduction
rate Ly is picked for replacement, and suppose further than its two neighbors
have reproduction rates L, and L3. Then the expected increment in the

2A similar argument for continuous distributions can be developed.
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reproduction rate of the focal individual is given by

L L
L+ L L .
v b L3+ 3Tt Ls

Averaging over all the possible reproduction rates, we obtain the expected
increment in reproduction rate from a DB update:

Similarly, we can calculate the expected increment in the reproduction rate
resulting from a cultural transmission event:

li + Oél'jlj + Oéiklk
ALcr = ZZZ (_li T P ) fifi e (19)
7 7 k

The equation

ALpp = —BALcr (20)

characterizes the equilibrium. Note that the right hand side of this equation
is positive, because the mean increment resulting from CT updates is nega-
tive, due to a diminished weight of high reproduction rates in the weighted
averages. The left hand side is also positive, because DB updates tend to
increase the reproduction rates due to competition among individuals.

Let us assume that the width of the distribution of the equilibrium re-
production rates is defined by the mutation rate (and the increment Al),
and keep it fixed, while varying the mean [. Note that in equation (19), the
expression in the parentheses can be rewritten as

ay(l = 1) + aalle = 1)
1+ Q5 + Qg

For each location i, let us present L; = [ + em;, where all m; are IID with
a zero mean and a variance that we denote by (o/¢)?. We can see that
[ cancels from the above expression, and its statistics will only depend on
the distribution width. In other words, the mean decrement received by the
population reproduction rate as a result of a CT update is defined by the
difference between the focal reproduction rate and a weighted average of its
neighboring reproduction rates, and does not depend of the absolute value
of the rates.
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On the contrary, the DB increment defined by equation (18) depends
on the magnitude of [. Intuitively, neighbors compete for filling the empty
spot, and the amount of advantage experienced by a neighbor with a higher
reproduction rate is proportional to the relative, and not absolute, difference
in the rates. Therefore, the increment scales with the relative amount of
spread in reproduction rates, and is thus inversely proportional to . Again,
for each location 4, we present l; = [ + em,, where all m; are IID with a zero
mean and variance (o /€)?. Then, expanding the expression in parentheses in
(18) in terms of € we obtain

mi+my e (my —mi)® o~ (my +m)e\"
( 2 mZ)E 2 mj+my Z 20

n=1
The first term averages to zero, and the second term is given by

2
€ 2

4—[(77%' —my)7,

which upon averaging yields

0.2

20’
a quantity inversely proportional to the mean reproduction rate of the pop-
ulation. We further see that it depends on the square of o in the lowest
order.

From the above analysis it follows that the left hand side of equation (20)
is a decaying function of [ which tends to zero as [ — oo, and the right hand
side of equation (20) is I-independent. There will be a unique intersection of
the two curves as long as [ is chosen to be sufficiently low. This intersection
defines the equilibrium value of the population mean reproductive rate.

We further note that the quantities Apg and —Acr both grow with the
distribution width of the reproduction rates, but while —Agr is linear in o,
App is quadratic in this quantity, and thus grows faster as we increase the
width of the distribution of [. Therefore, as u increases and the distribution
width increases, the left hand side of equation (20) grows faster than the
right hand side, resulting in an increase in the solution, [.

This is illustrated in an example where we assumed that the division
rates are distributed according to the following three-valued distribution with
mean [ and variance (Al)?pu:
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Figure 7: Finding the equilibrium reproduction rate by solving equation (20),
illustrated with example (21-22). The left hand side of equation (20), ALpg,
is shown as blue lines and the right hand side, — A Lcr, with yellow lines, as
functions of [. Solid, dashed, and dotted lines correspond to three different
values of Al: 0.05,0.10,0.15. The rest of the parameters are: s = 0.9, u =
0.1,8=1.

17— 1 2 3
L; |1—Al ) [+ Al

fi | ow/2 [ 1—p| p/2
The expressions for ALpg and ALgp can be obtained explicitly,

(AD)’u (Al)?p — AP
ALpp = A - 21
bB 2l (A2 —42 (21)
Alp(l — s)

ALcr = 6@+ 5)(1 1 29) ((6 — pus —10s + p(3 4+ p) = 8). (22)

In figure 7, both sides of equation (20) are plotted as functions of I,
and their intersections are marked with vertical lines, for three values of Al,
which represent an increase in the distribution width. We can see that the
corresponding solutions | become larger for larger distribution widths.

4 Sexual reproduction

Here we provide details of model ABM4, an agent based spatial model that
includes sexual reproduction.
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ABM4 is based on model ABM3, in that it assumes the probability of
reproduction to be a continuous trait, and also that for a cultural transmis-
sion updates, a given individual adopts the weighted average reproduction
probability of the neighborhood with the possibility of “mutations” as de-
fined in the main text for ABM3. Sexual reproduction is incorporated in the
following way. Two genders are distinguished, gender 1 and gender 2. Before
reproduction can occur, two individuals of opposing gender have to form an
exclusive connection, thus assuming monogamy. The following events can
occur if an individual is chosen for a reproductive update. If the individual
does not have a partner, a connection can be formed with a probability M
if an individual of the opposite gender without a partner is present among
the eight nearest neighbors. The partner is randomly chosen from the neigh-
borhood. If the individual does have a partner, reproduction happens with
a probability R,,, which represents the average reproduction probabilities of
the two parents. For simplicity, it is assumed that once formed, a partnership
cannot break, corresponding to life-long monogamy. The offspring resulting
from this partnership are assigned to one of the genders with a 0.5 proba-
bility. The reproduction probability of the offspring is given by the average
values of the two parents. The offspring is placed into a randomly chosen
empty spot among the eight nearest neighbors of the parent that was origi-
nally picked for reproduction. If no empty spots exist within the immediate
neighborhood, reproduction is not successful. Potential issues of mate pref-
erence for individuals with similar reproduction probabilities are not taken
into account. Death occurs with a probability D, according to the same rules
as described before.

5 Model extensions — future work

Some processes in the more complex versions of the models considered here
could also be formulated in slightly different ways. In ABM3 and ABM4,
cultural transmission involves the calculation of the weighted average repro-
duction rate among individuals within the immediate neighborhood. The
assumption was made that individuals with a faster reproduction rate than
the agent under consideration count less in this process, irrespective of the
magnitude of this difference. Alternatively, it could be assumed that the
reduced weight is proportional to the difference in reproduction rates, thus
taking into account the distance in social hierarchies. While it seems rea-
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sonable to assume that economically more successful individuals carry more
weight in cultural transmission than individuals who are less successful, the
details of this are not well understood. We note that results reported here
depend on the assumption that individuals with lower reproduction rates
carry more social weight, an assumption that has also been made in previous
modeling work [1]. Another example of uncertainties in model construction
is the formulation of the sexual reproduction model. We assumed monogamy,
but made some obvious simplifications, as explained in the Results section.
There are different assumptions that can be made in models that describe
sexual reproduction, but the most important feature in the current context
is that the reproduction rate of the offspring is not simply a copy of one of
the parents, but represents the average of the two parents. This provides an
additional mechanism of cultural change. Finally, only two types of commu-
nication networks have been considered in the agent based models here, the
one where individuals interact with everyone else in the population, and the
one where only interactions among nearest neighbors are allowed. A large va-
riety of more realistic, random communication networks can be constructed,
but we do not expect the results to differ from the ones obtained from the
two extreme cases of networks considered here.
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