Efficient and Simple Algorithms for Fault-Tolerant Spanners

Michael Dinitz*
mdinitz@cs.jhu.edu
Johns Hopkins University
Baltimore, Maryland, USA

ABSTRACT

It was recently shown that a version of the greedy algorithm gives
a construction of fault-tolerant spanners that is size-optimal, at
least for vertex faults. However, the algorithm to construct this
spanner is not polynomial-time, and the best-known polynomial
time algorithm is significantly suboptimal. Designing a polynomial-
time algorithm to construct (near-)optimal fault-tolerant spanners
was given as an explicit open problem in the two most recent pa-
pers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka
Williams SODA 18] and [Bodwin, Patel PODC ’19]). We give a
surprisingly simple algorithm which runs in polynomial time and
constructs fault-tolerant spanners that are extremely close to op-
timal (off by only a linear factor in the stretch) by modifying the
greedy algorithm to run in polynomial time. To complement this
result, we also give simple distributed constructions in both the
LOCAL and CONGEST models.

CCS CONCEPTS

» Theory of computation — Sparsification and spanners; Dis-
tributed algorithms.

KEYWORDS
Spanners, Fault-Tolerance

ACM Reference Format:

Michael Dinitz and Caleb Robelle. 2020. Efficient and Simple Algorithms
for Fault-Tolerant Spanners. In ACM Symposium on Principles of Distributed
Computing (PODC °20), August 3—7, 2020, Virtual Event, Italy. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3382734.3405735

1 INTRODUCTION

Let G = (V, E) be a graph, possibly with edge lengths w : E — Rx.
A t-spanner of G, for t > 1,isasubgraph G’ = (V, E’) that preserves
all pairwise distances within factor ¢, i.e.,

der(u,0) < t-dg(u,0)

1
for all u,v € V (where dy denotes the shortest-path distance in a

graph H). The distance preservation factor t is called the stretch of
the spanner. Less formally, graph spanners are a form of sparsifiers

“Supported in part by NSF award CCF-1909111

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC °20, August 3—7, 2020, Virtual Event, Italy

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7582-5/20/08....$15.00
https://doi.org/10.1145/3382734.3405735

493

Caleb Robelle

carobell@umbc.edu
University of Maryland, Baltimore County
Baltimore, Maryland, USA

that approximately preserve distances (as opposed to other notions
of graph sparsification which approximately preserve cuts [6], the
spectrum [5, 26], or other graph properties). When considering
spanners through the lens of sparsification, perhaps the most im-
portant goal in the study of graph spanners is understanding the
tradeoff between the stretch and the sparsity. The main result in
this area, which is tight assuming the “Erdés girth conjecture” [16],
was given by Althofer et al.:

THEOREM 1.1 ([1]). For every positive integer k, every weighted
graph G = (V,E) has a (2k — 1)-spanner with at most O(nl*1/k)
edges.

This notion of graph spanners was first introduced by Peleg
and Schaffer [24] and Peleg and Ullman [25] in the context of dis-
tributed computing, and has been studied extensively for the last
three decades in the distributed computing community as well as
more broadly. Spanners are not only inherently interesting math-
ematical objects, but they also have an enormous number of ap-
plications. A small sampling includes uses in distance oracles [28],
property testing [7, 8], synchronizers [25], compact routing [27],
preprocessing for approximation algorithms [11, 14]), and many
others.

Many of these applications, particularly in distributed computing,
arise from modeling computer networks or distributed systems as
graphs. But one aspect of distributed systems that is not captured
by the above spanner definition is the possibility of failures. We
would like our spanner to be robust to failures, so that even if some
nodes fail we still have a spanner of what remains. More formally,
G’ is an f-(vertex-)fault-tolerant ¢-spanner of G if for every set
F C V with |F| < f the spanner condition holds for G \ F, i.e.,

donr(wv) < t-dg\p(u,0)

for all u,o € V' \ F.If F is instead an edge set then this gives a
definition of an f-edge-fault-tolerant t-spanner.

This notion of fault-tolerant spanners was first introduced by
Levcopoulos, Narasimhan, and Smid [17] in the context of geometric
spanners (the special case when the vertices are in Euclidean space
and the distance between two points is the Euclidean distance), and
has since been studied extensively in that setting [13, 17, 19, 22].
Note that in the geometric setting dg\r(4,v) = dg(u,v) for all
u,v € V' \ F, since faults do not change the underlying geometric
distances.

In general graphs, though, dg\ (1, v) may be extremely differ-
ent from dg(u,v), making this definition more difficult to work
with. The first results on fault-tolerant graph spanners were by
Chechik, Langberg, Peleg, and Roditty [12], who showed how to
modify the Thorup-Zwick spanner [28] to be f-fault-tolerant with
an additional cost of approximately k/: the number of edges in the
f-fault-tolerant (2k — 1)-spanner that they create is approximately

PODC ’20, August 3-7, 2020, Virtual Event, Italy

O(kf n'*1/k) (where O hides polylogarithmic factors). Since [12]
there has been a significant amount of work on improving the spar-
sity, particularly as a function of the number of faults f (since we
would like to protect against large numbers of faults but usually care
most about small stretch values). First, Dinitz and Krauthgamer [15]
improved the size to O(f2~1/kn1*1/k) by giving a black-box re-
duction to the traditional non-fault-tolerant setting. Then Bod-
win, Dinitz, Parter, and Vassilevska Williams [9] decreased this to
O(exp(k)fl_l/kn”l/k), which they also showed was optimal (for
vertex faults) as a function of f and n (i.e., the only non-optimal
dependence was the exp(k)). Unlike previous fault-tolerant spanner
constructions, this optimal construction was based off of a natural
greedy algorithm (the natural generalization of the greedy algo-
rithm of [1]). An improved analysis of the same greedy algorithm
was then given by Bodwin and Patel [10], who managed to show
the fully optimal bound of O(f1~1/kpl+1/k),

Unlike the previous fault-tolerant spanner construction of [15]
and the greedy non-fault-tolerant algorithm of [1], the greedy al-
gorithm of [9, 10] has a significant weakness: it takes exponential
time. Obtaining the same (or similar) size bound in polynomial time
was given as an important open question in both [9] and [10].

1.1 Our Results and Techniques

In this paper we design a surprisingly simple algorithm to construct
nearly-optimal fault-tolerant spanners in polynomial time, in both
unweighted and weighted graphs.

THEOREM 1.2. There is a polynomial time algorithm which, given
integersk > 1 and f > 1 and a (weighted) graph G = (V,E) with
|V| = n and |E| = m, constructs an f-fault-tolerant (2k — 1)-spanner

with at most O (kfl_l/knlﬂ/k) edges in time O(mk f2~1/kp1+1/k),

Note that while we are a factor of k away from complete opti-
mality (for vertex faults), this is truly optimal when the stretch is
constant and, for non-constant stretch values, is still significantly
sparser than the analysis of the exponential time algorithm by [9]
(which lost an exponential factor in k).

The main idea in our algorithm is to replace the exponential-time
subroutine used in the greedy algorithm of [9, 10] with an appro-
priate polynomial-time approximation algorithm. More specifically,
the main step of the exponential time greedy algorithm is to con-
sider whether a given candidate edge is “already spanned” by the
subgraph H that has already been built. This means determining
whether, for some candidate edge {u, v}, there is a fault set F with
|F| < f such that dgp\p(u,0) > (2k = 1) - dg\p(u, 0). If such a fault
set exists then the algorithm adds {u, v} to H, and otherwise does
not!. In both [9] and [10], the only method given to find such a set F
was to try all possible sets, giving running time that is exponential
in f and thus exponential in the size of the input.

Our main approach is to speed this up by designing a polynomial-
time algorithm to replace this exponential-time step. Unfortunately,
the corresponding problem (known as LENGTH-BOUNDED CUT) is
NP-hard [2], so we cannot hope to actually solve it efficiently. In-
stead, we design an approximation algorithm for LENGTH-BOUNDED

!Note that in the fault-free case this just means checking whether there is already a
path of stretch at most (2k — 1) between the endpoints, which is precisely the original
greedy algorithm of [1].

494

Michael Dinitz and Caleb Robelle

Cur and use it instead. We end up with a fairly weak approximation
(basically a k-approximation), and one which only holds in the un-
weighted case. But this turns out to be enough for the unweighted
case: it intuitively allows us to build (in polynomial time) an f-fault-
tolerant spanner with the size of a k f-fault-tolerant spanner, which
changes the size from O(f1=V/kp1*1/k) to O((kf)1~-1knl+1/ky =
O(kf1-1/kp1+1/ky However, this is only intuition. The graph we
end up creating is not necessarily even a subgraph of the k f-fault-
tolerant spanner that the true greedy algorithm would have built,
so we cannot simply argue that our algorithm returns something
with at most as many edges as the greedy k f-fault-tolerant greedy
spanner. Instead, we need to analyze the size of our spanner from
scratch. Fortunately, we can do this by simply following the proof
strategy of [10] with only some minor modifications.

A natural approach to the weighted case would be to try to
generalize this by creating an O(k)-approximation for LENGTH-
BounDED CuT in the weighted setting. Such an algorithm would
certainly suffice, but unfortunately we do not know how to design
any nontrivial approximation algorithm for LENGTH-BOUNDED CUT
in the presence of weights. While this might appear to rule out using
a similar technique, we show that special properties of the greedy
algorithm allow us to essentially reduce to the unweighted setting.
We use the weights to determine the order in which we consider
edges, but for the rest of the algorithm we simply “pretend” to be
in the unweighted setting. Since the size bound for the unweighted
case worked for any ordering, that same size bound will apply to
our spanner. And then we can use the fact that we considered edges
in order of nondecreasing weights to argue that the subgraph we
create is in fact an f-fault-tolerant (2k — 1)-spanner even though
we ignored the weights.

Distributed Settings. While the focus of this paper is on a centralized
polynomial-time algorithm since the existence of such an algorithm
was an explicit open question from [9] and [10], we complement
this result with some simple algorithms in the standard LOCAL
and CONGEST models of distributed computation.

In the LOCAL model, we can use standard network decomposi-
tions to find a clustering of the graph where the clusters have low
diameter, every edge is in at least one cluster, and the clustering
comes from O(log n) partitions. Since in the LOCAL model we are
allowed unbounded message sizes, this means that in O(log n) time
we can send the subgraph induced by each cluster to the cluster
center (an arbitrary node in the cluster), who can then locally run
the greedy algorithm on that cluster and then inform the nodes in
the cluster about the edges that have been chosen. This will take
only O(log n) communication rounds (since clusters have diame-
ter O(logn)) and will incur only an extra O(logn) factor in the
number of edges (since the clustering can be divided into O(log n)
partitions).

In the CONGEST model we cannot apply this approach (even
though we could find a similar clustering) because we are not able
to gather large induced subgraphs at the cluster centers (due to
the bound on message sizes). Instead, we show that the older fault-
tolerant spanner construction of [15] can be combined with the
standard (non-fault-tolerant) spanner algorithm in the CONGEST
model due to Baswana and Sen [4] to give a fault-tolerant span-
ner algorithm in CONGEST. This approach means that the size

Efficient and Simple Algorithms for Fault-Tolerant Spanners

increases to O(kf2~1/kn1*1/k Jog n) (so we are a factor of flogn
away from the bounds of the polynomial-time greedy algorithm),
but the number of rounds needed is quite small despite the limita-
tion on message sizes (O(f2(log f +loglog n) + k2 f log n) rounds).

2 NOTATION AND PRELIMINARIES

We will be discussing graphs G = (V, E) where n = |[V| and m = |E|.
Sometimes these graphs will also have a weight function w : E —
R >0. We will slightly abuse notation to let w(u, v) = w({u,v}) for
all {u, v} € E.For a (possibly weighted) graph G, we will let dg (u, v)
denote the length of the shortest (lowest-weight) path from u to v
(if no such path exists then this length is o0). For any C C V, we let
G|[C] denote the subgraph of G induced by C. For F C Vlet G\ F
be G[V \ F],and for F C Elet G\ F be (V,E\ F).

Definition 2.1. Let G = (V, E) be a (possibly weighted) graph. A
subgraph H of G is an f-vertex-fault-tolerant (f-VFT) t-spanner
of G if dg\p(u,0) < t - dg\p(w,0) for all F C V with |F| < f and
u,0 ¢ F. A subgraph H of G is an f-edge-fault-tolerant (f-EFT)
t-spanner of G if dg\p(u,0) < t - dg\p(u,0) for all F C E with

|F| < f.

Throughout this paper, for simplicity we will only discuss the
vertex fault-tolerant case since that is the more difficult one to
prove upper bounds for. The proofs for the edge fault-tolerant case
are essentially identical.

We first show an equivalent definition that will let us restrict
which pairs of vertices we care about.

LEmMMA 2.2. Let G = (V,E) be a graph with weight function w
and let H be a subgraph of G. Then H is an f-VFT t-spanner of G if
and only ifdg\p(u,0) < t-w(u,v) forall F CV with |F| < f and
u,0 € V\ F such that {u,v} € E and dg\r(u,v) = w(u,v)

Proor. The only if direction is immediately implied by Defini-
tion 2.1, since for any F C V with |F| < fand u,0 € V'\ F such that
{u,0} € E and dg\r(u,0) = w(u,0), we know from Definition 2.1
that dgnp(w,0) < t-dg\p(u,0) < t-w(u,0).

For the if direction, let F € V with |F| < f and u,0 € V' \ F. Let
P = (u=xp,x1,...,Xp =0) be the shortest path in G \ F between
uando. If p = 1 then P = (u,0), and thus dH\F(u, v) = w(u,0) =
dg\r(u,0).If p > 1, then we know that dg\ g (xi-1, xi) = w(xi-1, Xi)
foralli € {1,2,...,p}, and thus

t - w(xi-1,x;)

P
=1

»
di\r(u,0) < ZdH\F(XH,Xi) <
i=1

1

P
= tz w(xi-1,%i) =t - dg\p (1, 0).
i=1

Hence H is an f-VFT t-spanner of G. O

The original greedy algorithm for fault-tolerant spanners was
introduced and analyzed by [9], with an improved analysis by [10],
and is given in Algorithm 1. The part of this algorithm which takes
exponential time is the “if” condition, i.e., checking whether there
is a fault set which hits all stretch-(2k — 1) paths. For edge fault-
tolerance, the algorithm is the same except that F is an edge set.

495

PODC 20, August 3-7, 2020, Virtual Event, Italy

Algorithm 1 Greedy f-VFT (2k — 1)-Spanner Algorithm

function FT-GREEDY(G = (V, E, w), k, f)
H« (V,0,w)
for all {u,v} € E in nondecreasing weight order do
if there exists a set F of at most f vertices such that
dir(u,0) > (2k — 1)w(u,0) then
add {u,v} toH
end if
end for
return H

3 UNWEIGHTED GRAPHS

In this section we design a polynomial-time algorithm for the
special case of unweighted (or unit-weighted) graphs. We begin
by designing a simple approximation algorithm for the LENGTH-
BounDED CuT problem, and then show that this algorithm can be
plugged into the greedy algorithm with only a small loss.

3.1 Length-Bounded Cut

In order to design a polynomial-time variant of the greedy algo-
rithm, we want to replace the “if” condition by something that can
be computed in polynomial time. While there are many possibilities,
there are two obvious approaches: we could try to compute the
maximum ¢ such that there is a fault set of size f which hits all
t-hop paths, or we could try to compute the minimum f such that
there is a fault set of size f which hits all ¢-hop paths. It turns out
that this second approach is more fruitful.

Consider the following problem, known as the LENGTH-BOUNDED
Cur problem [2]. The input is an unweighted graph G = (V,E)
with |V| = nand |E| = m, vertices u,v € V (known as the terminals),
and a positive integer t. A length-t-cut is a subset F C V \ {u,v}
such that dg\p(u,0) > t. The goal is to find the length-t-cut of
minimum cardinality.

We are essentially going to design a t-approximation for this
problem. But since we do not need the full power of this approxima-
tion, in order to speed it up we will instead consider a gap decision
version of the problem. In the LBC(¢, @) problem, the input is the
same as in LENGTH-BOUNDED CuT but there is an additional input
parameter a. If there is a length-t-cut of size at most «, then we
must return YES. If there is no length-¢-cut of size at most at, then
we must return NO. For intermediate values we are allowed to
return either YES or NO.

Recall that breadth-first search (BFS) finds shortest paths in
unweighted graphs in O(m + n) time. So we can use BFS to check
whether there is a path with at most ¢ hops from u to v in O(m + n)
time. This gives the following natural algorithm (Algorithm 2),
which is essentially the standard “frequency” approximation of SET
CoVER (or HITTING SET).

THEOREM 3.1. Algorithm 2 correctly decides LBC(t,) and runs in
O((m+n)a) time.

ProoF. By the running time of BFS, we know that each iteration
of Algorithm 2 takes O(m + n) time, and thus the total time is
O((m+ n)a) as claimed.

PODC ’20, August 3-7, 2020, Virtual Event, Italy

Algorithm 2 Algorithm for LBC(¢,)

Fe10
fori=1toa+1do
Run BFS to find a path P of length at most ¢ from u to v in
G \ F if one exists.
if no such P exists then
return YES
else
Add all vertices of P \ {u,v} to F
end if
end for
return NO

Suppose that there is a length-t-cut F* of size at most «. Then
for every path P which our algorithm considers (and adds to F),
it must be the case that |P N F*| > 1 since F* must hit all paths
of length at most t. Since we remove each path we consider (by
adding it to F), this means that there will be no more such paths
after at most « iterations and thus the algorithm will return YES as
required.

Now suppose that every length-t-cut has size larger than at.
Since we add at most ¢ vertices to F in each iteration, at the begin-
ning of iteration « + 1 the set F has size at most at. Thus in every
iteration some path P of length at most ¢ exists, so the algorithm
will return NO. O

To handle edge fault-tolerance, we need to slightly change the
definition of LBC(t, @) to be about edge sets rather than vertex sets,
so in the algorithm F is an edge set and we add the edges of P rather
than the vertices. But other than that trivial change, the algorithm
and analysis are identical.

3.2 Modified Greedy

Let G = (V, E) be an undirected unweighted graph. We will modify
Algorithm 1 by using our new algorithm for LBC, Algorithm 2. For
an EFT spanner algorithm, we simply use the edge-based version
of Algorithm 2.

Algorithm 3 Modified Greedy VFT Spanner Algorithm

function FT-GREEDY(G = (V,E), k, f)
H« (V,0,w)
for all {u,v} € E in arbitrary order do
if Algorithm 2 returns YES when run on input graph H with
terminals ,0 and t = 2k — 1 and a = f then
Add {u,v} to H
end if
end for
return H

We first prove that this algorithm does indeed return a valid
solution, despite the use of an approximation algorithm to deter-
mine whether or not to add an edge (we prove this only for VFT
for simplicity, but the proof for EFT is analogous).

THEOREM 3.2. Algorithm 3 returns an f-VFT (2k — 1)-spanner.

496

Michael Dinitz and Caleb Robelle

ProOF. Let F C V be an arbitrary fault set with |F| < f and
{u,v} € E with u,0 ¢ F. By Lemma 2.2, we just need to show that
di\r(u,0) < 2k — 1 (since G is unweighted) in order to prove the
theorem. Clearly this is true if {u,0} € E(H).If {u,0} ¢ E(H), then
when the algorithm considered {u, v} it must have been the case
that Algorithm 2 returned NO. Theorem 3.1 then implies that every
length-(2k — 1)-cut on H (for u, v) has size larger than f. Thus F is
not alength-(2k—1)-cutin H for u,0,and so dyj\p (1, 0) < 2k-1. O

Now we want to bound the size of the returned spanner. To
do this, a natural approach would be to argue that the spanner it
returns is a subgraph of the greedy ((2k — 1) f)-VFT spanner, since
it seems like whenever our modified algorithm requires us to add an
edge it has found a cut certifying that the greedy ((2k — 1) f)-VFT
spanner would also have had to add that edge. Unfortunately, this
is not true since the modified algorithm might not add some edges
that the true greedy algorithm would have added, and thus later
on our algorithm might have to actually add some edges that the
true greedy algorithm would not have had to add.

The next natural approach would be to try to use the analysis
of [10] as a black box. Unfortunately we cannot do this either,
since the lemmas they use are specific to the true greedy algorithm
rather than our modification. However, it is straightforward to
modify their analysis so that it continues to hold for our modified
algorithm, with only an additional loss of a factor of k. We do this
here for completeness. As in [10], we start with the definition of a
blocking set, and then give two lemmas using this definition. And
also as in [9, 10], we only prove this for VFT, as the proof for EFT
is essentially identical.

Definition 3.3 ([10]). For any graph G = (V,E), we define B C
V X E to be a t-blocking set of G if for all (v,e) € B, we havev ¢ e
and for any cycle C in G with |C| < t, there exists (v, e) € B such
thatov,e € C.

LEMMA 3.4. Any graph H returned by Algorithm 3 with parameters
k, f has a (2k)-blocking set of size at most (2k — 1) f|E(H)]|.

It was shown in [10] that the graph H returned by the standard
VFT greedy algorithm with parameters k, f has a (2k)-blocking set
of size at most f|E(H)|.? So our modified algorithm satisfies the
same lemma up to a factor of O(k). The proof is almost identical
in our case; we essentially replace all instances of f in their proof
with (2k - 1)f.

ProoF OF LEMMA 3.4. Let e = {u, v} be some edge in E(H), and
let H’ be the subgraph maintained by the algorithm just before e is
added to E(H) (so H’ is a subset of the final H). Since e was added
by Algorithm 3, when it was considered Algorithm 2 must have
returned YES. Thus by Theorem 3.1 there is some set F, € V\ {u,v}
with |Fe| < f(2k — 1) such that dyn\Ff, (u,0) > 2k — 1.

Now we can define the blocking set: let B = {(x,e) : e €
E(H),x € Fe}.

Since |Fe| < f(2k — 1) for all e € E(H), we immediately get that
|B| < |E(H)|f(2k — 1) as claimed. So we now need to show that B

2In [10] the parameter “k” is used to denote the stretch, while for us the stretch is 2k—1,
and thus there are slight constant factor differences between the statements as written
in [10] and our interpretation of their statements. But our statements about [10] are
correct under this change of variables.

Efficient and Simple Algorithms for Fault-Tolerant Spanners

is a (2k)-blocking set. To see this, let C be any cycle with at most
2k vertices in H, and let e = {u, v} be the last edge of this cycle to
be added to H. Let H' be the subgraph of H built by the algorithm
just before e is added. Then C \ e is a u — v path in H’ of length at
most 2k — 1, and thus there is some x € C\ {u, v} that is in F. Thus
(x,e) € B. O

Now we know that the spanner returned by Algorithm 3 has a
small blocking set. The next lemma implies that any such graph
must have a dense but high-girth subgraph.

LEMMA 3.5. Let H be any graph on n nodes and m edges (with
f = o(n)) that has a (2k)-blocking set B of size at most (2k — 1) fm.
Then H has a subgraph on O(n/(kf)) nodes and Q(m/(kf)?) edges
that has girth greater than 2k.

Proor. Let H' denote the induced subgraph of H on a uniformly
random subset of exactly |n/(2(2k — 1)f)] nodes. Let B’ :== BN
(V(H’)xXE(H’)), and let H”” denote the graph obtained by removing
from H’ every edge contained in any pair in B’. The graph H”” will
be the one we analyze.

The easiest property to analyze is the number of nodes in H'':

there are precisely [n/(2(2k—1) f) | vertices in H"/, which is O(n/ (kf))

as claimed.

The next easiest property of H”” to prove is the girth. Let C be a
cycle in H with at most 2k nodes. C is either in H’ or it is not. If it
is not in H’ then some vertex in C is not in V(H’), and thus C is
not in H”. On the other hand, if C is in H’ then by the definition of
B there is some edge (x, e) € B so that e € C, and also (x,e) € B,
and thus C does not exist in H”.

To analyze |E(H"')|, we start with the following observations.

e Each {u,0} € E(H) remains in E(H’) if u,0 € V(H’). This
happens with probability

Ln/(2(2k-1)f)] Ln/(22k-1Df)] -1

n n-—1

—o(1))

1
> (1 S —
4((2k -

1)f)?
e Each (x,{u,v}) € B remains in B’ if u,0,x € V(H’). This
happens with probability
Ln/2(2k-1Df)] In/22k-Df)] -1
n n—1
1

< - -
T 8((2k-1)f)?

Now we can use these observations to compute the expected
size of E(H"'):

Ln/(2(2k -1)f)] -2

n—-2

BIE(H")|] = BEH)| - B[] = B{EH)] - E[1B]]
(ED)| 18]
SR Prrpre 1>f>2) BGTENE
(2k-1)fm

1)

Df)? 8((2k -1f)?

2 (1-o0(1))

(4((2k)
(4((2k 1)f)2) 8((2k—1)f)2

O P b ((kf)Z)

497

PODC 20, August 3-7, 2020, Virtual Event, Italy

Note that the bounds on |V (H"’)| and on the girth of H" are
deterministic. So there is some subgraph which has those bounds
and where the number of edges is at least the expectation, proving
the lemma. O

This lemma allows us to prove the size bound.

THEOREM 3.6. The subgraph H returned by Algorithm 3 has at
most O (kfl_l/kan/k) edges.

Proor. If f = Q(n) then the theorem is trivially true. Otherwise,
by Lemmas 3.4 and 3.5 we know that H has a subgraph S of girth
larger than 2k on O(n/(kf)) nodes and with |E(S)| = © (|ECH)])
edges. But it has long been known that any graph with n vertices
and girth larger than 2k must have at most O(n!*1/k) edges (this is
the key fact used in the original non-fault-tolerant greedy algorithm
analysis [1]). Hence |E(S)| < O((n/(kf))*/k). Therefore there
are constants c1, ¢z > 0 such that for large enough n,

1+1/k
@ (%) > |E(S)| = ez ('5:;1')
= [E(H)| <0 ((kf)l—l/kn1+1/k) _o

(kfl—l/kn1+1/k) O

THEOREM 3.7. The worst-case running time of Algorithm 3 is at
most O (mkfz_l/kn”l/k).

Proor. Algorithm 3 has |E| = m iterations, each of which con-
sists of one call to Algorithm 2 with a = f on graph H. So the run-
ning time of each iteration (by Theorem 3.1) is at most O((|E(H)| +
n)f). Theorem 3.6 implies that |E(H)| < O(kfl_l/kn“'l/k), and
thus the total running time is at most O(mk f2~1/kp1+1/k), O

Theorems 3.2, 3.6, and 3.7 together imply Theorem 1.2 in the
unweighted case.

4 WEIGHTED GRAPHS

We now show that we can use the algorithm we designed for the
unweighted setting even in the presence of weights. Our algorithm
is very simple: we order the edges in nondecreasing weight order,
but then run the unweighted algorithm on the edges in this order. We
give this algorithm more formally as Algorithm 4. Again, changing
to edge fault-tolerance is straightforward: we just use the edge
version of Algorithm 2. So we prove this only for vertex fault-
tolerance for simplicity.

Algorithm 4 Modified Greedy VFT Spanner Algorithm (Weighted)

function FT-GREEDY(G = (V, E, w), k, f)

H«— (V,0,w)

for all {u,v} € E in nondecreasing weight order do
if Algorithm 2 returns YES when run on input graph H (with
no weights) with terminals u,0 and t = 2k — 1 and « = f then

Add {u,v} to H

end if

end for

return H

PODC ’20, August 3-7, 2020, Virtual Event, Italy

THEOREM 4.1. Algorithm 4 returns an f-VFT (2k—1)-spanner with
at most O(k f1=1/kn1*1/ky edges in time at most O (mk f2-1/kp1*1/k)

Proor. The running time is directly from Theorem 3.7, since the
only additional step in the algorithm is sorting the edges by weight,
which takes only O(mlog m) additional time. The size also follows
directly from Theorem 3.6, since Algorithm 4 is just a particular
instantiation of Algorithm 3 where the ordering (which is unspeci-
fied in Algorithm 3) is determined by the weights. In other words,
Theorem 3.6 holds for an arbitrary order, so it certainly holds for
the weight ordering.

The more interesting part of this theorem is correctness: why
does this algorithm return an f-VFT (2k — 1)-spanner despite ignor-
ing weights? Let F C V be an arbitrary fault set with |F| < f and
{u,0} € Ewith u,0 ¢ F and dg\r(u,0) = w(u,0). By Lemma 2.2,
we just need to show that dg\ p(u,0) < (2k — 1)w(u,v) in order to
prove the theorem. Clearly this is true if {u, 0} € E(H). So suppose
that {u, v} ¢ E(H). Then when the algorithm considered {u, v} it
must have been the case that Algorithm 2 returned NO, and hence
by Theorem 3.1 every length-(2k — 1)-cut in H (unweighted) for
u, v has size larger than f and so F is not such a cut. Thus at the
time the algorithm was considering {u, v}, there was some path P
between u and v in H \ F with at most 2k — 1 edges. But since we
considered edges in order of nondecreasing weight, every edge in
P has weight at most w(u, v). Thus

dinr(u,0) < Z w(e) < Z w(u,v) = |Plw(u,0)
ecP eeP
< (2k — D)w(u,v),

as required.

5 DISTRIBUTED ALGORITHMS

In this section we give efficient randomized algorithms to compute
fault-tolerant spanners of weighted graphs in two standard dis-
tributed models: the LOCAL model and the CONGEST model [23].
Recall that in both models we assume communication happens in
synchronous rounds, and our goal is to minimize the number of
rounds needed. In the LOCAL model each node can send an arbi-
trary message on each incident edge in each round, while in the
CONGEST model these messages must have size at most O(log n)
bits (or O(1) words, so we can send a constant number of node
IDs and weights in each message). Note that both models allow
unlimited computation at each node, and hence the difficulty with
applying the greedy algorithm is not the exponential running time,
but its inherently sequential nature.

5.1 LOCAL

In the LOCAL model we will be able to implement the greedy
algorithm at only a small extra cost in the size of the spanner. Our
approach is simple: we use standard network decompositions to
decompose the graph into clusters, run the greedy algorithm in
each cluster, and then take the union of the spanner for each cluster.

The following theorem is a simple corollary of the construction
of “padded decompositions” given explicitly in previous work on
fault-tolerant spanners [15]. It also appears implicitly in various
forms in [3, 18, 20, 21] (among others). In what follows, the hop
diameter of a cluster refers to its unweighted diameter.

498

Michael Dinitz and Caleb Robelle

THEOREM 5.1. There is an algorithm in the LOCAL model which

runs in O(log n) rounds and constructs Py, Ps, . .., Py such that:

(1) Each P; is a partition of V, with each part of the partition
referred to as a cluster. Let C = Ulepi be the collection of all
clusters of all ¢ partitions.

(2) Each cluster has hop diameter at most O(logn) and contains
some special node known as the cluster center.

(3) £ = O(logn) (there are O(log n) partitions).

(4) With high probability (1 — 1/n€ for any constant c) for every
edge e € E there is a cluster C € C such thate C C.

With this tool, it is easy to describe our algorithm. First we use
Theorem 5.1 to construct the partitions. Then in each cluster C we
gather at the cluster center the entire subgraph G[C] induced by
that cluster. Each cluster center uses the greedy algorithm (Algo-
rithm 1) on G[C] to construct an f-VFT (2k — 1)-spanner Hc of
G[C], and then sends out the selected edges to the nodes in C. Let
H be the final subgraph created (the union of the edges of each Hc)

THEOREM 5.2. With high probability, H is an f-VFT (2k — 1)-
spanner of G with at most O (fl_l/kn“l/k log n) edges and the al-
gorithm terminates in O(log n) rounds.

Proor. The round complexity is obvious from the round com-

plexity and cluster hop diameter bounds in Theorem 5.1.
The total number of edges added is at most

4 t
DU TIEH < Y Y VR (He)

i=1 CeP; i=1 CeP;
L
=f1—1/kz Z |C|1+1/k
i=1 CeP;

14
< f1—1/k Z n1+1/k
i=1

-0 (fl—l/kn1+1/k log n) ,

where we used the size bound on the greedy algorithm from [10]
and the fact from Theorem 5.1 that each P; is a partition of V.

To show correctness, consider some {u,v} € E and F C V with
|F| < f and u,v ¢ F so that dg\r(u,0) = w(u,0). By Lemma 2.2,
we just need to prove that dpp\ (4, 0) < (2k — 1)w(w,0). Let C € C
be a cluster which contains both u and v, which we know exists
(with high probability) from Theorem 5.1. Let Fc = F N C. Then

di\r(u,v) < dye\Fe-(4,0)
< (2k-1) - dgcp\Fe(w,0) (definition of H¢)
< (2k-1)-w(u,0) ({u,v} € E(G[C] \ F¢))

Thus H is indeed an f-VFT (2k — 1)-spanner of G. O

5.2 CONGEST

We unfortunately cannot use the approach that we used in the
LOCAL model in the CONGEST model, since we cannot efficiently
gather the entire topology of a cluster at a single node. We will in-
stead use the fault-tolerant spanner of Dinitz and Krauthgamer [15],
rather than the greedy algorithm, and combine it with the non-
fault-tolerant spanner of [4] which can be efficiently constructed

Efficient and Simple Algorithms for Fault-Tolerant Spanners

in CONGEST. This approach means that, unlike in the centralized
setting or the LOCAL model, we will not be able to get size-optimal
fault-tolerant spanners.

The algorithm of [15] works as follows (in the traditional cen-
tralized model). Suppose that we have some algorithm A which
constructs a (2k — 1)-spanner with at most g(n) edges on any
graph with n nodes. The algorithm of [15] consists of O(f log n)
iterations, and in each iteration every node chooses to participate
independently with probability 1/f. For each i € O(f> logn), let
Vi be the vertices who participate and let G; be the subgraph of G
induced by them. We let H; be the (2k — 1)-spanner constructed by
A on G;. Then we return the union of all Hj.

The main theorem that [15] proved about this is the following.

THEOREM 5.3 ([15]). This algorithm returns an f-VFT (2k — 1)-
spanner of G with O (f3g((2n)/f) logn) edges with high probability.

Note that when g(n) = n1*1/k this results in an f-VFT (2k - 1)-
spanner with at most O(fz_l/kn1+1/k log n), which is precisely the
bound from [15].

Since the algorithm of [15] uses an arbitrary non-fault-tolerant
spanner algorithm A, by using a distributed spanner algorithm for
A we naturally end up with a distributed fault-tolerant spanner
algorithm. In particular, we will combine the algorithm of [15] with
the following algorithm due to Baswana and Sen [4].

THEOREM 5.4 ([4]). There is an algorithm that computes a (2k—1)-
spanner with at most O(kn'*1/k) edges of any weighted graph in
O(k?) rounds in the CONGEST model.

Combining Theorems 5.3 and 5.4 immediately gives an algorithm
in CONGEST that returns an f-VFT (2k —1)-spanner of size at most
O(kfz_l/kan/k) that runs in at most O(k?f3 log n) rounds (with
high probability). We can just run each iteration of the Dinitz-
Krauthgamer algorithm [15] in series, and in each iteration we
use the Baswana-Sen algorithm [4]. Since there are O(f>logn)
iterations, and Baswana-Sen takes O(k?) rounds, this gives a total
round complexity of O(k?f3 log n).

We can improve on this bound by taking advantage of the fact
that each iteration of Dinitz-Krauthgamer runs on a relatively small
graph (approximately n/f nodes), so we can run some of these
iterations in parallel.

THEOREM 5.5. There is an algorithm that computes an f-VFT
(2k — 1)-spanner of G with O (kfz_l/kn“'l/k log n) edges of any

weighted graph and which runs in O(f2(log f+loglog n)+k*f log n)
rounds in the CONGEST model (all with high probability).

Proor. In the first phase of the algorithm each vertex randomly
selects which of the O(f3 log n) iterations in which to participate by
choosing each iteration independently with probability 1/ f. So by a
Chernoff bound, with high probability every node picks O(f? log n)
iterations in which to participate. Then each vertex sends its chosen
iterations to all of its neighbors. Identifying these iterations take
O(f?logn - log(f3logn)) = O(f%logn - (log f + loglogn)) bits,
and thus O(f2(log f + loglog n)) rounds in CONGEST.

After this has completed we enter the second phase of the algo-
rithm, and now every node knows which iterations it is participat-
ing in and which iterations each of its neighbors is participating

499

PODC 20, August 3-7, 2020, Virtual Event, Italy

in. With high probability (by a simple Chernoft bound), for every
edge there are at most O(flogn) iterations in which both end-
points participate. Thus if we try to run all O(f log n) iterations
of Baswana-Sen (Theorem 5.4) in parallel, we have “congestion”
of O(flogn) on each edge (at each time step) since there could
be up to that many iterations in which a message is supposed
to be sent along that edge at that time. Thus we can simply use
O(f logn) time steps for each time step of Baswana-Sen and can
simulate all O(f3 logn) iterations of the Dinitz-Krauthgamer al-
gorithm (note that each Baswana-Sen message needs to have a
tag added to it with the iteration number, but since that takes at
most O(log(f3logn)) = O(log f +loglogn) < O(log n) bits it fits
within the required message size). Hence the total running time of
this second phase is at most O(k? f log n).

The size and correctness bounds are direct from Theorems 5.3
and 5.4, and the round complexity is from our analysis of the two
phases above. O

6 CONCLUSION AND FUTURE WORK

In this paper we designed an algorithm to compute nearly-optimal
fault-tolerant spanners in polynomial time, answering a question
posed by [9, 10]. We also gave an optimal construction in the LOCAL
model which runs in O(log n) rounds, and an efficient algorithm in
the CONGEST model that constructs fault-tolerant spanners which
have the same size as in [15] rather than the optimal size.

There are many interesting open questions remaining about
efficient algorithms for fault-tolerant spanners, as well as about
the extremal properties of these spanners. Most obviously, the
size we achieve is a factor of k away from the optimal size, due
to our use of an O(k)-approximation for LENGTH-BOUNDED CUT.
Can this be removed, either by giving a better approximation for
LENGTH-BOUNDED CUT or through some other construction? While
k is somewhat small since spanners tend to be most useful for
constant stretch (and never have stretch larger than O(log n)), it
would still be nice to get fully optimal size in polynomial time.
Similarly, our distributed constructions are extremely simple, and
there is no reason to think that we actually need Q(log n) rounds in
LOCAL or that we cannot get optimal size fault-tolerant spanners in
CONGEST. It would be interesting to design better distributed and
parallel algorithms for these objects, particularly since the greedy
algorithm (the only size-optimal algorithm we know) tends to be
difficult to parallelize.

From a structural point of view, we reiterate one of the main open
questions from [9] and [10]: understanding the optimal bounds for
edge-fault-tolerant spanners. The best upper bound we have is the
same O(fl’l/kn“l/k) that we have for the vertex case, while the

best lower bound is Q(f%(l_l/k)n“l/k) (from [9]). What is the
correct bound?

REFERENCES

[1] Ingo Althéfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares.
1993. On Sparse Spanners of Weighted Graphs. Discrete & Computational Geom-
etry 9 (1993), 81-100.

Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Kohler, Heiko Schilling,
and Martin Skutella. 2006. Length-Bounded Cuts and Flows. In Automata, Lan-
guages and Programming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and
Ingo Wegener (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 679-690.

[2]

PODC ’20, August 3-7, 2020, Virtual Event, Italy

[10]

[11

[12

[13]

Y. Bartal. 1996. Probabilistic approximation of metric spaces and its algorithmic
applications. In Proceedings of 37th Conference on Foundations of Computer Science.
184-193. https://doi.org/10.1109/SFCS.1996.548477

Surender Baswana and Sandeep Sen. 2007. A simple and linear time randomized
algorithm for computing sparse spanners in weighted graphs. Random Struct.
Algorithms 30, 4 (2007), 532-563.

Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. 2014. Twice-
Ramanujan Sparsifiers. SIAM Rev. 56, 2 (2014), 315-334. https://doi.org/10.
1137/130949117

Andras A. Benczir and David R. Karger. 2015. Randomized Approximation
Schemes for Cuts and Flows in Capacitated Graphs. SIAM J. Comput. 44, 2 (2015),
290-319.

Piotr Berman, Arnab Bhattacharyya, Elena Grigorescu, Sofya Raskhodnikova,
David P. Woodruff, and Grigory Yaroslavtsev. 2014. Steiner transitive-closure
spanners of low-dimensional posets. Combinatorica 34, 3 (2014), 255-277.
Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova,
and David P. Woodruff. 2009. Transitive-closure Spanners. In Proceedings of
the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA "09).
932-941.

Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams.
2018. Optimal Vertex Fault Tolerant Spanners (for fixed stretch). In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, Artur Czumaj (Ed.). STAM, 1884—
1900.

Greg Bodwin and Shyamal Patel. 2019. A Trivial Yet Optimal Solution to Vertex
Fault Tolerant Spanners. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing (PODC ’19). Association for Computing Machinery,
New York, NY, USA, 541-543. https://doi.org/10.1145/3293611.3331588
Glencora Borradaile, Philip Klein, and Claire Mathieu. 2009. An O(nlogn)
Approximation Scheme for Steiner Tree in Planar Graphs. ACM Trans. Algorithms
5, 3, Article 31 (July 2009), 31 pages. https://doi.org/10.1145/1541885.1541892
Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2010. Fault
Tolerant Spanners for General Graphs. SIAM J. Comput. 39, 7 (2010), 3403-3423.
Artur Czumaj and Hairong Zhao. 2004. Fault-tolerant geometric spanners. Dis-
crete & Computational Geometry 32, 2 (2004), 207-230.

500

[14

Michael Dinitz and Caleb Robelle

Michael Dinitz, Guy Kortsarz, and Zeev Nutov. 2017. Improved Approximation
Algorithm for Steiner K-Forest with Nearly Uniform Weights. ACM Trans. Al-
gorithms 13, 3, Article Article 40 (July 2017), 16 pages. https://doi.org/10.1145/
3077581

Michael Dinitz and Robert Krauthgamer. 2011. Fault-tolerant spanners: better
and simpler. In Proceedings of the 30th Annual ACM Symposium on Principles of
Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011. 169-178.
Paul Erdés. 1964. Extremal problems in graph theory. In IN “THEORY OF GRAPHS
AND ITS APPLICATIONS,” PROC. SYMPOS. SMOLENICE. Citeseer.

Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. 1998. Efficient algo-
rithms for constructing fault-tolerant geometric spanners. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing. ACM, 186-195.
Nathan Linial and Michael E. Saks. 1993. Low diameter graph decompositions.
Combinatorica 13, 4 (1993), 441-454. https://doi.org/10.1007/BF01303516
Tamas Lukovszki. 1999. New results on fault tolerant geometric spanners. Algo-
rithms and Data Structures (1999), 774-774.

Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015. Improved
Parallel Algorithms for Spanners and Hopsets. In Proceedings of the Symposium
on Parallelism in Algorithms and Architectures. ACM.

Gary L Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph decomposi-
tions using random shifts. In Proceedings of the ACM Symposium on Parallelism
in algorithms and architectures. ACM.

Giri Narasimhan and Michiel Smid. 2007. Geometric Spanner Networks. Cambridge
University Press. https://doi.org/10.1017/CB09780511546884

David Peleg. 2000. Distributed computing: a locality-sensitive approach. SIAM.
David Peleg and Alejandro A. Schiffer. 1989. Graph spanners. Journal of Graph
Theory 13, 1 (1989), 99-116.

David Peleg and Jeffrey D. Ullman. 1989. An Optimal Synchronizer for the
Hypercube. SIAM J. Comput. 18, 4 (1989), 740-747.

Daniel A. Spielman and Nikhil Srivastava. 2011. Graph Sparsification by Effective
Resistances. SIAM J. Comput. 40, 6 (2011), 1913-1926. https://doi.org/10.1137/
080734029

Mikkel Thorup and Uri Zwick. 2001. Compact routing schemes. In SPAA. 1-10.
Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. J. ACM 52, 1
(2005), 1-24.

	Abstract
	1 Introduction
	1.1 Our Results and Techniques

	2 Notation and Preliminaries
	3 Unweighted Graphs
	3.1 Length-Bounded Cut
	3.2 Modified Greedy

	4 Weighted Graphs
	5 Distributed Algorithms
	5.1 LOCAL
	5.2 CONGEST

	6 Conclusion and Future Work
	References

