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ABSTRACT

It was recently shown that a version of the greedy algorithm gives

a construction of fault-tolerant spanners that is size-optimal, at

least for vertex faults. However, the algorithm to construct this

spanner is not polynomial-time, and the best-known polynomial

time algorithm is signiicantly suboptimal. Designing a polynomial-

time algorithm to construct (near-)optimal fault-tolerant spanners

was given as an explicit open problem in the two most recent pa-

pers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka

Williams SODA ’18] and [Bodwin, Patel PODC ’19]). We give a

surprisingly simple algorithm which runs in polynomial time and

constructs fault-tolerant spanners that are extremely close to op-

timal (of by only a linear factor in the stretch) by modifying the

greedy algorithm to run in polynomial time. To complement this

result, we also give simple distributed constructions in both the

LOCAL and CONGEST models.
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1 INTRODUCTION

Let� = (� , �) be a graph, possibly with edge lengths� : � → R≥0.

A �-spanner of� , for � ≥ 1, is a subgraph� ′ = (� , � ′) that preserves

all pairwise distances within factor � , i.e.,

��′ (�, �) ≤ � · �� (�, �) (1)

for all �, � ∈ � (where �� denotes the shortest-path distance in a

graph � ). The distance preservation factor � is called the stretch of

the spanner. Less formally, graph spanners are a form of sparsiiers
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that approximately preserve distances (as opposed to other notions

of graph sparsiication which approximately preserve cuts [6], the

spectrum [5, 26], or other graph properties). When considering

spanners through the lens of sparsiication, perhaps the most im-

portant goal in the study of graph spanners is understanding the

tradeof between the stretch and the sparsity. The main result in

this area, which is tight assuming the łErdős girth conjecturež [16],

was given by Althöfer et al.:

Theorem 1.1 ([1]). For every positive integer � , every weighted

graph � = (� , �) has a (2� − 1)-spanner with at most � (�1+1/� )

edges.

This notion of graph spanners was irst introduced by Peleg

and Schäfer [24] and Peleg and Ullman [25] in the context of dis-

tributed computing, and has been studied extensively for the last

three decades in the distributed computing community as well as

more broadly. Spanners are not only inherently interesting math-

ematical objects, but they also have an enormous number of ap-

plications. A small sampling includes uses in distance oracles [28],

property testing [7, 8], synchronizers [25], compact routing [27],

preprocessing for approximation algorithms [11, 14]), and many

others.

Many of these applications, particularly in distributed computing,

arise from modeling computer networks or distributed systems as

graphs. But one aspect of distributed systems that is not captured

by the above spanner deinition is the possibility of failures. We

would like our spanner to be robust to failures, so that even if some

nodes fail we still have a spanner of what remains. More formally,

� ′ is an � -(vertex-)fault-tolerant �-spanner of � if for every set

� ⊆ � with |� | ≤ � the spanner condition holds for � \ � , i.e.,

��′\� (�, �) ≤ � · ��\� (�, �)

for all �, � ∈ � \ � . If � is instead an edge set then this gives a

deinition of an � -edge-fault-tolerant �-spanner.

This notion of fault-tolerant spanners was irst introduced by

Levcopoulos, Narasimhan, and Smid [17] in the context of geometric

spanners (the special case when the vertices are in Euclidean space

and the distance between two points is the Euclidean distance), and

has since been studied extensively in that setting [13, 17, 19, 22].

Note that in the geometric setting ��\� (�, �) = �� (�, �) for all

�, � ∈ � \ � , since faults do not change the underlying geometric

distances.

In general graphs, though, ��\� (�, �) may be extremely difer-

ent from �� (�, �), making this deinition more diicult to work

with. The irst results on fault-tolerant graph spanners were by

Chechik, Langberg, Peleg, and Roditty [12], who showed how to

modify the Thorup-Zwick spanner [28] to be � -fault-tolerant with

an additional cost of approximately � � : the number of edges in the

� -fault-tolerant (2� − 1)-spanner that they create is approximately
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�̃ (� � �1+1/� ) (where �̃ hides polylogarithmic factors). Since [12]

there has been a signiicant amount of work on improving the spar-

sity, particularly as a function of the number of faults � (since we

would like to protect against large numbers of faults but usually care

most about small stretch values). First, Dinitz and Krauthgamer [15]

improved the size to �̃ (� 2−1/��1+1/� ) by giving a black-box re-

duction to the traditional non-fault-tolerant setting. Then Bod-

win, Dinitz, Parter, and Vassilevska Williams [9] decreased this to

� (exp(�) � 1−1/��1+1/� ), which they also showed was optimal (for

vertex faults) as a function of � and � (i.e., the only non-optimal

dependence was the exp(�)). Unlike previous fault-tolerant spanner

constructions, this optimal construction was based of of a natural

greedy algorithm (the natural generalization of the greedy algo-

rithm of [1]). An improved analysis of the same greedy algorithm

was then given by Bodwin and Patel [10], who managed to show

the fully optimal bound of � (� 1−1/��1+1/� ).

Unlike the previous fault-tolerant spanner construction of [15]

and the greedy non-fault-tolerant algorithm of [1], the greedy al-

gorithm of [9, 10] has a signiicant weakness: it takes exponential

time. Obtaining the same (or similar) size bound in polynomial time

was given as an important open question in both [9] and [10].

1.1 Our Results and Techniques

In this paper we design a surprisingly simple algorithm to construct

nearly-optimal fault-tolerant spanners in polynomial time, in both

unweighted and weighted graphs.

Theorem 1.2. There is a polynomial time algorithm which, given

integers � ≥ 1 and � ≥ 1 and a (weighted) graph � = (� , �) with

|� | = � and |� | =�, constructs an � -fault-tolerant (2� − 1)-spanner

with at most �
(

� � 1−1/��1+1/�
)

edges in time � (��� 2−1/��1+1/� ).

Note that while we are a factor of � away from complete opti-

mality (for vertex faults), this is truly optimal when the stretch is

constant and, for non-constant stretch values, is still signiicantly

sparser than the analysis of the exponential time algorithm by [9]

(which lost an exponential factor in �).

The main idea in our algorithm is to replace the exponential-time

subroutine used in the greedy algorithm of [9, 10] with an appro-

priate polynomial-time approximation algorithm. More speciically,

the main step of the exponential time greedy algorithm is to con-

sider whether a given candidate edge is łalready spannedž by the

subgraph � that has already been built. This means determining

whether, for some candidate edge {�, �}, there is a fault set � with

|� | ≤ � such that ��\� (�, �) > (2� − 1) · ��\� (�, �). If such a fault

set exists then the algorithm adds {�, �} to � , and otherwise does

not1. In both [9] and [10], the only method given to ind such a set �

was to try all possible sets, giving running time that is exponential

in � and thus exponential in the size of the input.

Our main approach is to speed this up by designing a polynomial-

time algorithm to replace this exponential-time step. Unfortunately,

the corresponding problem (known as Length-Bounded Cut) is

NP-hard [2], so we cannot hope to actually solve it eiciently. In-

stead, we design an approximation algorithm for Length-Bounded

1Note that in the fault-free case this just means checking whether there is already a
path of stretch at most (2� − 1) between the endpoints, which is precisely the original
greedy algorithm of [1].

Cut and use it instead. We end up with a fairly weak approximation

(basically a �-approximation), and one which only holds in the un-

weighted case. But this turns out to be enough for the unweighted

case: it intuitively allows us to build (in polynomial time) an � -fault-

tolerant spanner with the size of a � � -fault-tolerant spanner, which

changes the size from � (� 1−1/��1+1/� ) to � ((� � )1−1/��1+1/� ) =

� (� � 1−1/��1+1/� ). However, this is only intuition. The graph we

end up creating is not necessarily even a subgraph of the � � -fault-

tolerant spanner that the true greedy algorithm would have built,

so we cannot simply argue that our algorithm returns something

with at most as many edges as the greedy � � -fault-tolerant greedy

spanner. Instead, we need to analyze the size of our spanner from

scratch. Fortunately, we can do this by simply following the proof

strategy of [10] with only some minor modiications.

A natural approach to the weighted case would be to try to

generalize this by creating an � (�)-approximation for Length-

Bounded Cut in the weighted setting. Such an algorithm would

certainly suice, but unfortunately we do not know how to design

any nontrivial approximation algorithm for Length-Bounded Cut

in the presence of weights.While this might appear to rule out using

a similar technique, we show that special properties of the greedy

algorithm allow us to essentially reduce to the unweighted setting.

We use the weights to determine the order in which we consider

edges, but for the rest of the algorithm we simply łpretendž to be

in the unweighted setting. Since the size bound for the unweighted

case worked for any ordering, that same size bound will apply to

our spanner. And then we can use the fact that we considered edges

in order of nondecreasing weights to argue that the subgraph we

create is in fact an � -fault-tolerant (2� − 1)-spanner even though

we ignored the weights.

Distributed Setings. While the focus of this paper is on a centralized

polynomial-time algorithm since the existence of such an algorithm

was an explicit open question from [9] and [10], we complement

this result with some simple algorithms in the standard LOCAL

and CONGEST models of distributed computation.

In the LOCAL model, we can use standard network decomposi-

tions to ind a clustering of the graph where the clusters have low

diameter, every edge is in at least one cluster, and the clustering

comes from � (log�) partitions. Since in the LOCAL model we are

allowed unbounded message sizes, this means that in� (log�) time

we can send the subgraph induced by each cluster to the cluster

center (an arbitrary node in the cluster), who can then locally run

the greedy algorithm on that cluster and then inform the nodes in

the cluster about the edges that have been chosen. This will take

only � (log�) communication rounds (since clusters have diame-

ter � (log�)) and will incur only an extra � (log�) factor in the

number of edges (since the clustering can be divided into � (log�)

partitions).

In the CONGEST model we cannot apply this approach (even

though we could ind a similar clustering) because we are not able

to gather large induced subgraphs at the cluster centers (due to

the bound on message sizes). Instead, we show that the older fault-

tolerant spanner construction of [15] can be combined with the

standard (non-fault-tolerant) spanner algorithm in the CONGEST

model due to Baswana and Sen [4] to give a fault-tolerant span-

ner algorithm in CONGEST. This approach means that the size
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increases to � (� � 2−1/��1+1/� log�) (so we are a factor of � log�

away from the bounds of the polynomial-time greedy algorithm),

but the number of rounds needed is quite small despite the limita-

tion on message sizes (� (� 2 (log � + log log�) + �2 � log�) rounds).

2 NOTATION AND PRELIMINARIES

We will be discussing graphs� = (� , �) where � = |� | and� = |� |.

Sometimes these graphs will also have a weight function� : � →

R≥0. We will slightly abuse notation to let� (�, �) = � ({�, �}) for

all {�, �} ∈ �. For a (possibly weighted) graph� , we will let�� (�, �)

denote the length of the shortest (lowest-weight) path from � to �

(if no such path exists then this length is∞). For any� ⊆ � , we let

� [�] denote the subgraph of � induced by � . For � ⊆ � let � \ �

be � [� \ � ], and for � ⊆ � let � \ � be (� , � \ � ).

Deinition 2.1. Let � = (� , �) be a (possibly weighted) graph. A

subgraph � of � is an � -vertex-fault-tolerant (� -VFT) �-spanner

of � if ��\� (�, �) ≤ � · ��\� (�, �) for all � ⊆ � with |� | ≤ � and

�, � ∉ � . A subgraph � of � is an � -edge-fault-tolerant (� -EFT)

�-spanner of � if ��\� (�, �) ≤ � · ��\� (�, �) for all � ⊆ � with

|� | ≤ � .

Throughout this paper, for simplicity we will only discuss the

vertex fault-tolerant case since that is the more diicult one to

prove upper bounds for. The proofs for the edge fault-tolerant case

are essentially identical.

We irst show an equivalent deinition that will let us restrict

which pairs of vertices we care about.

Lemma 2.2. Let � = (� , �) be a graph with weight function �

and let � be a subgraph of � . Then � is an � -VFT �-spanner of � if

and only if ��\� (�, �) ≤ � ·� (�, �) for all � ⊆ � with |� | ≤ � and

�, � ∈ � \ � such that {�, �} ∈ � and ��\� (�, �) = � (�, �)

Proof. The only if direction is immediately implied by Deini-

tion 2.1, since for any � ⊆ � with |� | ≤ � and �, � ∈ � \ � such that

{�, �} ∈ � and ��\� (�, �) = � (�, �), we know from Deinition 2.1

that ��\� (�, �) ≤ � · ��\� (�, �) ≤ � ·� (�, �).

For the if direction, let � ⊆ � with |� | ≤ � and �, � ∈ � \ � . Let

� = (� = �0, �1, . . . , �� = �) be the shortest path in � \ � between

� and � . If � = 1 then � = (�, �), and thus ��\� (�, �) = � (�, �) =

��\� (�, �). If � > 1, thenwe know that��\� (��−1, �� ) = � (��−1, �� )

for all � ∈ {1, 2, . . . , �}, and thus

��\� (�, �) ≤

�
∑

�=1

��\� (��−1, �� ) ≤

�
∑

�=1

� ·� (��−1, �� )

= �

�
∑

�=1

� (��−1, �� ) = � · ��\� (�, �) .

Hence � is an � -VFT �-spanner of � . □

The original greedy algorithm for fault-tolerant spanners was

introduced and analyzed by [9], with an improved analysis by [10],

and is given in Algorithm 1. The part of this algorithm which takes

exponential time is the łifž condition, i.e., checking whether there

is a fault set which hits all stretch-(2� − 1) paths. For edge fault-

tolerance, the algorithm is the same except that � is an edge set.

Algorithm 1 Greedy � -VFT (2� − 1)-Spanner Algorithm

function FT-GREEDY(� = (� , �,�), �, � )

� ← (� , ∅,�)

for all {�, �} ∈ � in nondecreasing weight order do

if there exists a set � of at most � vertices such that

��\� (�, �) > (2� − 1)� (�, �) then

add {�, �} to H

end if

end for

return H

3 UNWEIGHTED GRAPHS

In this section we design a polynomial-time algorithm for the

special case of unweighted (or unit-weighted) graphs. We begin

by designing a simple approximation algorithm for the Length-

Bounded Cut problem, and then show that this algorithm can be

plugged into the greedy algorithm with only a small loss.

3.1 Length-Bounded Cut

In order to design a polynomial-time variant of the greedy algo-

rithm, we want to replace the łifž condition by something that can

be computed in polynomial time. While there are many possibilities,

there are two obvious approaches: we could try to compute the

maximum � such that there is a fault set of size � which hits all

�-hop paths, or we could try to compute the minimum � such that

there is a fault set of size � which hits all �-hop paths. It turns out

that this second approach is more fruitful.

Consider the following problem, known as the Length-Bounded

Cut problem [2]. The input is an unweighted graph � = (� , �)

with |� | = � and |� | =�, vertices�, � ∈ � (known as the terminals),

and a positive integer � . A length-�-cut is a subset � ⊆ � \ {�, �}

such that ��\� (�, �) > � . The goal is to ind the length-�-cut of

minimum cardinality.

We are essentially going to design a �-approximation for this

problem. But since we do not need the full power of this approxima-

tion, in order to speed it up we will instead consider a gap decision

version of the problem. In the LBC(�, �) problem, the input is the

same as in Length-Bounded Cut but there is an additional input

parameter � . If there is a length-�-cut of size at most � , then we

must return YES. If there is no length-�-cut of size at most �� , then

we must return NO. For intermediate values we are allowed to

return either YES or NO.

Recall that breadth-irst search (BFS) inds shortest paths in

unweighted graphs in � (� + �) time. So we can use BFS to check

whether there is a path with at most � hops from � to � in� (� +�)

time. This gives the following natural algorithm (Algorithm 2),

which is essentially the standard łfrequencyž approximation of Set

Cover (or Hitting Set).

Theorem 3.1. Algorithm 2 correctly decides LBC(�, �) and runs in

� ((� + �)�) time.

Proof. By the running time of BFS, we know that each iteration

of Algorithm 2 takes � (� + �) time, and thus the total time is

� ((� + �)�) as claimed.
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Algorithm 2 Algorithm for LBC(�, �)

� ← ∅

for � = 1 to � + 1 do

Run BFS to ind a path � of length at most � from � to � in

� \ � if one exists.

if no such � exists then

return YES

else

Add all vertices of � \ {�, �} to �

end if

end for

return NO

Suppose that there is a length-�-cut � ∗ of size at most � . Then

for every path � which our algorithm considers (and adds to � ),

it must be the case that |� ∩ � ∗ | ≥ 1 since � ∗ must hit all paths

of length at most � . Since we remove each path we consider (by

adding it to � ), this means that there will be no more such paths

after at most � iterations and thus the algorithm will return YES as

required.

Now suppose that every length-�-cut has size larger than �� .

Since we add at most � vertices to � in each iteration, at the begin-

ning of iteration � + 1 the set � has size at most �� . Thus in every

iteration some path � of length at most � exists, so the algorithm

will return NO. □

To handle edge fault-tolerance, we need to slightly change the

deinition of LBC(�, �) to be about edge sets rather than vertex sets,

so in the algorithm � is an edge set and we add the edges of � rather

than the vertices. But other than that trivial change, the algorithm

and analysis are identical.

3.2 Modiied Greedy

Let� = (� , �) be an undirected unweighted graph. We will modify

Algorithm 1 by using our new algorithm for LBC, Algorithm 2. For

an EFT spanner algorithm, we simply use the edge-based version

of Algorithm 2.

Algorithm 3 Modiied Greedy VFT Spanner Algorithm

function FT-GREEDY(� = (� , �), �, � )

� ← (� , ∅,�)

for all {�, �} ∈ � in arbitrary order do

if Algorithm 2 returns YES when run on input graph � with

terminals �, � and � = 2� − 1 and � = � then

Add {�, �} to �

end if

end for

return H

We irst prove that this algorithm does indeed return a valid

solution, despite the use of an approximation algorithm to deter-

mine whether or not to add an edge (we prove this only for VFT

for simplicity, but the proof for EFT is analogous).

Theorem 3.2. Algorithm 3 returns an � -VFT (2� − 1)-spanner.

Proof. Let � ⊆ � be an arbitrary fault set with |� | ≤ � and

{�, �} ∈ � with �, � ∉ � . By Lemma 2.2, we just need to show that

��\� (�, �) ≤ 2� − 1 (since � is unweighted) in order to prove the

theorem. Clearly this is true if {�, �} ∈ � (� ). If {�, �} ∉ � (� ), then

when the algorithm considered {�, �} it must have been the case

that Algorithm 2 returned NO. Theorem 3.1 then implies that every

length-(2� − 1)-cut on � (for �, �) has size larger than � . Thus � is

not a length-(2�−1)-cut in� for�, � , and so��\� (�, �) ≤ 2�−1. □

Now we want to bound the size of the returned spanner. To

do this, a natural approach would be to argue that the spanner it

returns is a subgraph of the greedy ((2� − 1) � )-VFT spanner, since

it seems like whenever our modiied algorithm requires us to add an

edge it has found a cut certifying that the greedy ((2� − 1) � )-VFT

spanner would also have had to add that edge. Unfortunately, this

is not true since the modiied algorithm might not add some edges

that the true greedy algorithm would have added, and thus later

on our algorithm might have to actually add some edges that the

true greedy algorithm would not have had to add.

The next natural approach would be to try to use the analysis

of [10] as a black box. Unfortunately we cannot do this either,

since the lemmas they use are speciic to the true greedy algorithm

rather than our modiication. However, it is straightforward to

modify their analysis so that it continues to hold for our modiied

algorithm, with only an additional loss of a factor of � . We do this

here for completeness. As in [10], we start with the deinition of a

blocking set, and then give two lemmas using this deinition. And

also as in [9, 10], we only prove this for VFT, as the proof for EFT

is essentially identical.

Deinition 3.3 ([10]). For any graph � = (� , �), we deine � ⊆

� × � to be a �-blocking set of � if for all (�, �) ∈ �, we have � ∉ �

and for any cycle � in � with |� | ≤ � , there exists (�, �) ∈ � such

that �, � ∈ � .

Lemma 3.4. Any graph� returned by Algorithm 3with parameters

�, � has a (2�)-blocking set of size at most (2� − 1) � |� (� ) |.

It was shown in [10] that the graph � returned by the standard

VFT greedy algorithm with parameters �, � has a (2�)-blocking set

of size at most � |� (� ) |.2 So our modiied algorithm satisies the

same lemma up to a factor of � (�). The proof is almost identical

in our case; we essentially replace all instances of � in their proof

with (2� − 1) � .

Proof of Lemma 3.4. Let � = {�, �} be some edge in � (� ), and

let � ′ be the subgraph maintained by the algorithm just before � is

added to � (� ) (so � ′ is a subset of the inal � ). Since � was added

by Algorithm 3, when it was considered Algorithm 2 must have

returned YES. Thus by Theorem 3.1 there is some set �� ⊆ � \{�, �}

with |�� | ≤ � (2� − 1) such that �� ′\�� (�, �) > 2� − 1.

Now we can deine the blocking set: let � = {(�, �) : � ∈

� (� ), � ∈ �� }.

Since |�� | ≤ � (2� − 1) for all � ∈ � (� ), we immediately get that

|� | ≤ |� (� ) |� (2� − 1) as claimed. So we now need to show that �

2In [10] the parameter ł�ž is used to denote the stretch, while for us the stretch is 2�−1,
and thus there are slight constant factor diferences between the statements as written
in [10] and our interpretation of their statements. But our statements about [10] are
correct under this change of variables.
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is a (2�)-blocking set. To see this, let � be any cycle with at most

2� vertices in � , and let � = {�, �} be the last edge of this cycle to

be added to � . Let � ′ be the subgraph of � built by the algorithm

just before � is added. Then � \ � is a � − � path in � ′ of length at

most 2� − 1, and thus there is some � ∈ � \ {�, �} that is in �� . Thus

(�, �) ∈ �. □

Now we know that the spanner returned by Algorithm 3 has a

small blocking set. The next lemma implies that any such graph

must have a dense but high-girth subgraph.

Lemma 3.5. Let � be any graph on � nodes and � edges (with

� = � (�)) that has a (2�)-blocking set � of size at most (2� − 1) ��.

Then � has a subgraph on � (�/(� � )) nodes and Ω(�/(� � )2) edges

that has girth greater than 2� .

Proof. Let� ′ denote the induced subgraph of� on a uniformly

random subset of exactly ⌊�/(2(2� − 1) � )⌋ nodes. Let �′ := � ∩

(� (� ′)×� (� ′)), and let� ′′ denote the graph obtained by removing

from � ′ every edge contained in any pair in �′. The graph � ′′ will

be the one we analyze.

The easiest property to analyze is the number of nodes in � ′′:

there are precisely ⌊�/(2(2�−1) � )⌋ vertices in� ′′, which is� (�/(� � ))

as claimed.

The next easiest property of � ′′ to prove is the girth. Let � be a

cycle in � with at most 2� nodes. � is either in � ′ or it is not. If it

is not in � ′ then some vertex in � is not in � (� ′), and thus � is

not in � ′′. On the other hand, if� is in � ′ then by the deinition of

� there is some edge (�, �) ∈ � so that � ∈ � , and also (�, �) ∈ �′,

and thus � does not exist in � ′′.

To analyze |� (� ′′) |, we start with the following observations.

• Each {�, �} ∈ � (� ) remains in � (� ′) if �, � ∈ � (� ′). This

happens with probability

⌊�/(2(2� − 1) � )⌋

�
·
⌊�/(2(2� − 1) � )⌋ − 1

� − 1

≥ (1 − � (1))
1

4((2� − 1) � )2

• Each (�, {�, �}) ∈ � remains in �′ if �, �, � ∈ � (� ′). This

happens with probability

⌊�/(2(2� − 1) � )⌋

�
·
⌊�/(2(2� − 1) � )⌋ − 1

� − 1
·
⌊�/(2(2� − 1) � )⌋ − 2

� − 2

≤
1

8((2� − 1) � )3

Now we can use these observations to compute the expected

size of � (� ′′):

E[|� (� ′′) |] ≥ E[|� (� ′) | − |�′ |] = E[|� (� ′) |] − E[|�′ |]

≥ (1 − � (1))

(

|� (� ) |

4((2� − 1) � )2

)

−
|� |

8((2� − 1) � )3

≥ (1 − � (1))

(

�

4((2� − 1) � )2

)

−
(2� − 1) ��

8((2� − 1) � )3

≥ (1 − � (1))

(

�

4((2� − 1) � )2

)

−
�

8((2� − 1) � )2

= (1 − � (1))

(

�

8((2� − 1) � )2

)

= Ω

(

�

(� � )2

)

Note that the bounds on |� (� ′′) | and on the girth of � ′′ are

deterministic. So there is some subgraph which has those bounds

and where the number of edges is at least the expectation, proving

the lemma. □

This lemma allows us to prove the size bound.

Theorem 3.6. The subgraph � returned by Algorithm 3 has at

most �
(

� � 1−1/��1+1/�
)

edges.

Proof. If � = Ω(�) then the theorem is trivially true. Otherwise,

by Lemmas 3.4 and 3.5 we know that � has a subgraph � of girth

larger than 2� on � (�/(� � )) nodes and with |� (�) | ≥ Ω

(

|� (� ) |
(�� )2

)

edges. But it has long been known that any graph with � vertices

and girth larger than 2� must have at most� (�1+1/� ) edges (this is

the key fact used in the original non-fault-tolerant greedy algorithm

analysis [1]). Hence |� (�) | ≤ � ((�/(� � ))1+1/� ). Therefore there

are constants �1, �2 > 0 such that for large enough �,

�1

(

�

� �

)1+1/�

≥ |� (�) | ≥ �2

(

|� (� ) |

(� � )2

)

=⇒ |� (� ) | ≤ �
(

(� � )1−1/��1+1/�
)

= �
(

� � 1−1/��1+1/�
)

. □

Theorem 3.7. The worst-case running time of Algorithm 3 is at

most �
(

��� 2−1/��1+1/�
)

.

Proof. Algorithm 3 has |� | =� iterations, each of which con-

sists of one call to Algorithm 2 with � = � on graph � . So the run-

ning time of each iteration (by Theorem 3.1) is at most� (( |� (� ) | +

�) � ). Theorem 3.6 implies that |� (� ) | ≤ � (� � 1−1/��1+1/� ), and

thus the total running time is at most � (��� 2−1/��1+1/� ). □

Theorems 3.2, 3.6, and 3.7 together imply Theorem 1.2 in the

unweighted case.

4 WEIGHTED GRAPHS

We now show that we can use the algorithm we designed for the

unweighted setting even in the presence of weights. Our algorithm

is very simple: we order the edges in nondecreasing weight order,

but then run the unweighted algorithm on the edges in this order.We

give this algorithm more formally as Algorithm 4. Again, changing

to edge fault-tolerance is straightforward: we just use the edge

version of Algorithm 2. So we prove this only for vertex fault-

tolerance for simplicity.

Algorithm 4Modiied Greedy VFT Spanner Algorithm (Weighted)

function FT-GREEDY(� = (� , �,�), �, � )

� ← (� , ∅,�)

for all {�, �} ∈ � in nondecreasing weight order do

if Algorithm 2 returns YES when run on input graph � (with

no weights) with terminals �, � and � = 2� − 1 and � = � then

Add {�, �} to H

end if

end for

return H
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Theorem 4.1. Algorithm 4 returns an � -VFT (2�−1)-spanner with

atmost� (� � 1−1/��1+1/� ) edges in time atmost� (��� 2−1/��1+1/� ).

Proof. The running time is directly from Theorem 3.7, since the

only additional step in the algorithm is sorting the edges by weight,

which takes only � (� log�) additional time. The size also follows

directly from Theorem 3.6, since Algorithm 4 is just a particular

instantiation of Algorithm 3 where the ordering (which is unspeci-

ied in Algorithm 3) is determined by the weights. In other words,

Theorem 3.6 holds for an arbitrary order, so it certainly holds for

the weight ordering.

The more interesting part of this theorem is correctness: why

does this algorithm return an � -VFT (2� −1)-spanner despite ignor-

ing weights? Let � ⊆ � be an arbitrary fault set with |� | ≤ � and

{�, �} ∈ � with �, � ∉ � and ��\� (�, �) = � (�, �). By Lemma 2.2,

we just need to show that ��\� (�, �) ≤ (2� − 1)� (�, �) in order to

prove the theorem. Clearly this is true if {�, �} ∈ � (� ). So suppose

that {�, �} ∉ � (� ). Then when the algorithm considered {�, �} it

must have been the case that Algorithm 2 returned NO, and hence

by Theorem 3.1 every length-(2� − 1)-cut in � (unweighted) for

�, � has size larger than � and so � is not such a cut. Thus at the

time the algorithm was considering {�, �}, there was some path �

between � and � in � \ � with at most 2� − 1 edges. But since we

considered edges in order of nondecreasing weight, every edge in

� has weight at most� (�, �). Thus

��\� (�, �) ≤
∑

�∈�

� (�) ≤
∑

�∈�

� (�, �) = |� |� (�, �)

≤ (2� − 1)� (�, �),

as required. □

5 DISTRIBUTED ALGORITHMS

In this section we give eicient randomized algorithms to compute

fault-tolerant spanners of weighted graphs in two standard dis-

tributed models: the LOCAL model and the CONGEST model [23].

Recall that in both models we assume communication happens in

synchronous rounds, and our goal is to minimize the number of

rounds needed. In the LOCAL model each node can send an arbi-

trary message on each incident edge in each round, while in the

CONGEST model these messages must have size at most � (log�)

bits (or � (1) words, so we can send a constant number of node

IDs and weights in each message). Note that both models allow

unlimited computation at each node, and hence the diiculty with

applying the greedy algorithm is not the exponential running time,

but its inherently sequential nature.

5.1 LOCAL

In the LOCAL model we will be able to implement the greedy

algorithm at only a small extra cost in the size of the spanner. Our

approach is simple: we use standard network decompositions to

decompose the graph into clusters, run the greedy algorithm in

each cluster, and then take the union of the spanner for each cluster.

The following theorem is a simple corollary of the construction

of łpadded decompositionsž given explicitly in previous work on

fault-tolerant spanners [15]. It also appears implicitly in various

forms in [3, 18, 20, 21] (among others). In what follows, the hop

diameter of a cluster refers to its unweighted diameter.

Theorem 5.1. There is an algorithm in the LOCAL model which

runs in � (log�) rounds and constructs �1, �2, . . . , �ℓ such that:

(1) Each �� is a partition of � , with each part of the partition

referred to as a cluster. Let C = ∪ℓ�=1�� be the collection of all

clusters of all ℓ partitions.

(2) Each cluster has hop diameter at most � (log�) and contains

some special node known as the cluster center.

(3) ℓ = � (log�) (there are � (log�) partitions).

(4) With high probability (1 − 1/�� for any constant �) for every

edge � ∈ � there is a cluster � ∈ C such that � ⊆ � .

With this tool, it is easy to describe our algorithm. First we use

Theorem 5.1 to construct the partitions. Then in each cluster � we

gather at the cluster center the entire subgraph � [�] induced by

that cluster. Each cluster center uses the greedy algorithm (Algo-

rithm 1) on � [�] to construct an � -VFT (2� − 1)-spanner �� of

� [�], and then sends out the selected edges to the nodes in � . Let

� be the inal subgraph created (the union of the edges of each �� )

Theorem 5.2. With high probability, � is an � -VFT (2� − 1)-

spanner of � with at most �
(

� 1−1/��1+1/� log�
)

edges and the al-

gorithm terminates in � (log�) rounds.

Proof. The round complexity is obvious from the round com-

plexity and cluster hop diameter bounds in Theorem 5.1.

The total number of edges added is at most

ℓ
∑

�=1

∑

�∈��

|� (�� ) | ≤

ℓ
∑

�=1

∑

�∈��

� 1−1/� |� (�� ) |
1+1/�

= � 1−1/�
ℓ
∑

�=1

∑

�∈��

|� |1+1/�

≤ � 1−1/�
ℓ
∑

�=1

�1+1/�

= �
(

� 1−1/��1+1/� log�
)

,

where we used the size bound on the greedy algorithm from [10]

and the fact from Theorem 5.1 that each �� is a partition of � .

To show correctness, consider some {�, �} ∈ � and � ⊆ � with

|� | ≤ � and �, � ∉ � so that ��\� (�, �) = � (�, �). By Lemma 2.2,

we just need to prove that ��\� (�, �) ≤ (2� − 1)� (�, �). Let � ∈ C

be a cluster which contains both � and � , which we know exists

(with high probability) from Theorem 5.1. Let �� = � ∩� . Then

��\� (�, �) ≤ ���\�� (�, �)

≤ (2� − 1) · �� [� ]\�� (�, �) (deinition of �� )

≤ (2� − 1) ·� (�, �) ({�, �} ∈ � (� [�] \ �� ))

Thus � is indeed an � -VFT (2� − 1)-spanner of � . □

5.2 CONGEST

We unfortunately cannot use the approach that we used in the

LOCAL model in the CONGEST model, since we cannot eiciently

gather the entire topology of a cluster at a single node. We will in-

stead use the fault-tolerant spanner of Dinitz and Krauthgamer [15],

rather than the greedy algorithm, and combine it with the non-

fault-tolerant spanner of [4] which can be eiciently constructed
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in CONGEST. This approach means that, unlike in the centralized

setting or the LOCAL model, we will not be able to get size-optimal

fault-tolerant spanners.

The algorithm of [15] works as follows (in the traditional cen-

tralized model). Suppose that we have some algorithm A which

constructs a (2� − 1)-spanner with at most �(�) edges on any

graph with � nodes. The algorithm of [15] consists of � (� 3 log�)

iterations, and in each iteration every node chooses to participate

independently with probability 1/� . For each � ∈ � (� 3 log�), let

�� be the vertices who participate and let �� be the subgraph of �

induced by them. We let �� be the (2� − 1)-spanner constructed by

A on �� . Then we return the union of all �� .

The main theorem that [15] proved about this is the following.

Theorem 5.3 ([15]). This algorithm returns an � -VFT (2� − 1)-

spanner of� with�
(

� 3�((2�)/� ) log�
)

edges with high probability.

Note that when �(�) = �1+1/� , this results in an � -VFT (2� − 1)-

spanner with at most� (� 2−1/��1+1/� log�), which is precisely the

bound from [15].

Since the algorithm of [15] uses an arbitrary non-fault-tolerant

spanner algorithm A, by using a distributed spanner algorithm for

A we naturally end up with a distributed fault-tolerant spanner

algorithm. In particular, we will combine the algorithm of [15] with

the following algorithm due to Baswana and Sen [4].

Theorem 5.4 ([4]). There is an algorithm that computes a (2�−1)-

spanner with at most � (��1+1/� ) edges of any weighted graph in

� (�2) rounds in the CONGEST model.

Combining Theorems 5.3 and 5.4 immediately gives an algorithm

in CONGEST that returns an � -VFT (2�−1)-spanner of size at most

� (� � 2−1/��1+1/� ) that runs in at most � (�2 � 3 log�) rounds (with

high probability). We can just run each iteration of the Dinitz-

Krauthgamer algorithm [15] in series, and in each iteration we

use the Baswana-Sen algorithm [4]. Since there are � (� 3 log�)

iterations, and Baswana-Sen takes � (�2) rounds, this gives a total

round complexity of � (�2 � 3 log�).

We can improve on this bound by taking advantage of the fact

that each iteration of Dinitz-Krauthgamer runs on a relatively small

graph (approximately �/� nodes), so we can run some of these

iterations in parallel.

Theorem 5.5. There is an algorithm that computes an � -VFT

(2� − 1)-spanner of � with �
(

� � 2−1/��1+1/� log�
)

edges of any

weighted graph and which runs in� (� 2 (log � +log log�)+�2 � log�)

rounds in the CONGEST model (all with high probability).

Proof. In the irst phase of the algorithm each vertex randomly

selects which of the� (� 3 log�) iterations in which to participate by

choosing each iteration independently with probability 1/� . So by a

Chernof bound, with high probability every node picks� (� 2 log�)

iterations in which to participate. Then each vertex sends its chosen

iterations to all of its neighbors. Identifying these iterations take

� (� 2 log� · log(� 3 log�)) = � (� 2 log� · (log � + log log�)) bits,

and thus � (� 2 (log � + log log�)) rounds in CONGEST.

After this has completed we enter the second phase of the algo-

rithm, and now every node knows which iterations it is participat-

ing in and which iterations each of its neighbors is participating

in. With high probability (by a simple Chernof bound), for every

edge there are at most � (� log�) iterations in which both end-

points participate. Thus if we try to run all � (� 3 log�) iterations

of Baswana-Sen (Theorem 5.4) in parallel, we have łcongestionž

of � (� log�) on each edge (at each time step) since there could

be up to that many iterations in which a message is supposed

to be sent along that edge at that time. Thus we can simply use

� (� log�) time steps for each time step of Baswana-Sen and can

simulate all � (� 3 log�) iterations of the Dinitz-Krauthgamer al-

gorithm (note that each Baswana-Sen message needs to have a

tag added to it with the iteration number, but since that takes at

most � (log(� 3 log�)) = � (log � + log log�) ≤ � (log�) bits it its

within the required message size). Hence the total running time of

this second phase is at most � (�2 � log�).

The size and correctness bounds are direct from Theorems 5.3

and 5.4, and the round complexity is from our analysis of the two

phases above. □

6 CONCLUSION AND FUTURE WORK

In this paper we designed an algorithm to compute nearly-optimal

fault-tolerant spanners in polynomial time, answering a question

posed by [9, 10].We also gave an optimal construction in the LOCAL

model which runs in� (log�) rounds, and an eicient algorithm in

the CONGEST model that constructs fault-tolerant spanners which

have the same size as in [15] rather than the optimal size.

There are many interesting open questions remaining about

eicient algorithms for fault-tolerant spanners, as well as about

the extremal properties of these spanners. Most obviously, the

size we achieve is a factor of � away from the optimal size, due

to our use of an � (�)-approximation for Length-Bounded Cut.

Can this be removed, either by giving a better approximation for

Length-Bounded Cut or through some other construction? While

� is somewhat small since spanners tend to be most useful for

constant stretch (and never have stretch larger than � (log�)), it

would still be nice to get fully optimal size in polynomial time.

Similarly, our distributed constructions are extremely simple, and

there is no reason to think that we actually need Ω(log�) rounds in

LOCAL or that we cannot get optimal size fault-tolerant spanners in

CONGEST. It would be interesting to design better distributed and

parallel algorithms for these objects, particularly since the greedy

algorithm (the only size-optimal algorithm we know) tends to be

diicult to parallelize.

From a structural point of view, we reiterate one of the main open

questions from [9] and [10]: understanding the optimal bounds for

edge-fault-tolerant spanners. The best upper bound we have is the

same � (� 1−1/��1+1/� ) that we have for the vertex case, while the

best lower bound is Ω(�
1
2 (1−1/�)�1+1/� ) (from [9]). What is the

correct bound?
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