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a b s t r a c t

Performance of adaptive control policies is assessed through the regret with respect to the optimal
regulator, which reflects the increase in the operating cost due to uncertainty about the dynamics
parameters. However, available results in the literature do not provide a quantitative characterization
of the effect of the unknown parameters on the regret. Further, there are problems regarding the
efficient implementation of some of the existing adaptive policies. Finally, results regarding the
accuracy with which the system’s parameters are identified are scarce and rather incomplete.

This study aims to comprehensively address these three issues. First, by introducing a novel
decomposition of adaptive policies, we establish a sharp expression for the regret of an arbitrary policy
in terms of the deviations from the optimal regulator. Second, we show that adaptive policies based
on slight modifications of the Certainty Equivalence scheme are efficient. Specifically, we establish a
regret of (nearly) square-root rate for two families of randomized adaptive policies. The presented
regret bounds are obtained by using anti-concentration results on the random matrices employed for
randomizing the estimates of the unknown parameters. Moreover, we study the minimal additional
information on dynamics matrices that using them the regret will become of logarithmic order. Finally,
the rates at which the unknown parameters of the system are being identified are presented.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

This work studies the problem of designing adaptive policies
for the following Linear–Quadratic (LQ) system. Given an initial
state x(0) ∈ Rp, the system evolves as

x(t + 1) = A0x(t) + B0u(t) + w(t + 1), (1)

for t ≥ 0, where the vector x(t) ∈ Rp corresponds to the state
(and also output) of the system at time t , u(t) ∈ Rr is the control
input, and {w(t)}∞t=1 denotes a sequence of random disturbances.
Further, the instantaneous quadratic cost of the control law π is
denoted by

ct (π) = x(t)′Qx(t) + u(t)′Ru(t), (2)

where Q ∈ Rp×p, R ∈ Rr×r are symmetric positive definite matri-
ces, and x(t)′, u(t)′ denote the transpose of the vectors x(t), u(t).
The dynamics of the system, i.e., both the transition matrix A0 ∈

Rp×p, as well as the input matrix B0 ∈ Rp×r , are fixed and
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unknown, while Q , R are assumed known. The overall objective
is to adaptively regulate the system in order to minimize its
long-term average cost.

Although regulation of LQ systems represents a canonical
problem in optimal control, adaptive policies have not been
adequately studied in the literature. In fact, a large number
of classical papers focuses on the setting of adaptive tracking,
where the objective is to steer the system to track a reference
trajectory (Bercu, 1995; Chen & Zhang, 1989; Guo, 1995; Guo
& Chen, 1988, 1991; Kumar, 1990; Lai, 1986; Lai & Wei, 1986;
Lai & Ying, 1991). So, because the operating cost is not directly
a function of the control signal (i.e., R = 0), analysis of adaptive
regulators becomes different and less technically involved. There-
fore, existing results are not applicable to general LQ systems,
wherein both the state and the control input impact the operating
cost. The adaptive Linear–Quadratic Regulators (LQR) problem
has been studied in the literature (Abbasi-Yadkori & Szepesvári,
2011; Abeille & Lazaric, 2017; Bittanti & Campi, 2006; Campi &
Kumar, 1998; Duncan, Guo, & Pasik-Duncan, 1999; Faradonbeh,
Tewari, & Michailidis, 2017b; Ibrahimi, Javanmard, & Roy, 2012;
Ouyang, Gagrani, & Jain, 2017), but there are still gaps that the
present work aims to fill by addressing cost optimality, parameter
estimation, and the trade-off between identification and control.

Since the system’s dynamics are unknown, learning the key
parameters A0, B0 is needed for designing an optimal regula-
tion policy. However, the system operator needs to apply some
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control inputs, in order to collect data (observations) for pa-
rameter estimation. A popular approach to design an adaptive
regulator is Certainty Equivalence (CE) (Bar-Shalom & Tse, 1974).
Intuitively, its prescription is to apply a control policy as if the
estimated parameters are the true ones guiding the system’s evo-
lution. In general, the inefficiency (as well as the inconsistency)
of CE (Becker, Kumar, & Wei, 1985; Bittanti & Campi, 2006; Lai &
Wei, 1982) has led researchers to consider several modifications
of the CE approach.

One idea is to use the principle of Optimism in the Face of
Uncertainty (OFU) (Abbasi-Yadkori & Szepesvári, 2011; Faradon-
beh et al., 2017b; Ibrahimi et al., 2012) (also known as bet
on the best (Bittanti & Campi, 2006), and the cost-biased ap-
proach (Campi & Kumar, 1998)). OFU recommends to apply the
optimal regulators by treating optimistic approximations of the
unknown matrices as the true dynamics (Lai & Robbins, 1985).
Another idea is to replace the point estimate of the system
parameters by a posterior distribution which is obtained through
Bayes law by integrating a prior distribution and the likelihood
of the data collected so far. One then draws a sample from this
posterior distribution and applies the optimal policy, as if the
system evolves according to the sampled dynamics matrices. This
approach is known as Thompson (or posterior) sampling (Abeille
& Lazaric, 2017; Ouyang et al., 2017).

Note that most of the existing work in the literature is purely
asymptotic in nature so that it establishes the convergence of
the adaptive average cost to the optimal value. It includes adap-
tive LQRs based on the OFU principle (Bittanti & Campi, 2006;
Campi & Kumar, 1998), as well as those based on the method
of random perturbations being applied to continuous time Ito
processes (Duncan et al., 1999). However, results on the speed
of convergences are rare and rather incomplete. On the other
hand, from the identification viewpoint, consistency of param-
eter estimates is lacking for general dynamics matrices (Pold-
erman, 1986a, 1986b). Moreover, accuracy rates for estimation
of system parameters are only provided for minimum-variance
problems (Bercu, 1995; Guo, 1995). Indeed, the estimation rate
for matrices describing the system’s dynamics is not currently
available for general LQ systems.

Since in many applications the effective horizon is finite, the
aforementioned asymptotic analyses are practically less relevant.
Thus, addressing the optimality of an adaptive strategy under
more sensitive criteria is needed. For this purpose, one needs
to comprehensively examine the regret; i.e., the cumulative de-
viation from the optimal policy. Regret analyses are thus far
limited to recent work addressing OFU adaptive policies (Abbasi-
Yadkori & Szepesvári, 2011; Faradonbeh et al., 2017b; Ibrahimi
et al., 2012), and results for TS obtained under restricted condi-
tions (Abeille & Lazaric, 2017; Ouyang et al., 2017). One issue with
OFU is the computational intractability of finding an optimistic
approximation of the true parameters, since it needs to solve
lots of non-convex matrix optimization problems. More impor-
tantly, we show that the existing regret bounds (Abbasi-Yadkori
& Szepesvári, 2011; Abeille & Lazaric, 2017; Faradonbeh et al.,
2017b; Ibrahimi et al., 2012; Ouyang et al., 2017) can be achieved
or improved through simpler adaptive regulators.

A key contribution of this work is a remarkably general result
to address the performance of control policies. Namely, tailoring
a novel method for regret decomposition, we utilize some results
frommartingale theory to establish Theorem 1. It provides a sharp
expression for the regret of arbitrary regulators in terms of the
deviations from the optimal feedback. Leveraging Theorem 1, we
analyze two families of CE-based adaptive policies.

First, we show that the growth rate of the regret is (nearly)
square-root in time (of the interaction with the system), if the
CE regulator is properly randomized. Performance analyses are

presented for both common approaches of additive randomiza-
tion and posterior sampling. Then, the adaptive LQR problem is
discussed when additional information (regarding the unknown
dynamics parameters of the system) is available. In this case, a
logarithmic rate for the regret of generalizations of CE adaptive
policies is established, assuming that the available side infor-
mation satisfies an identifiability condition. Examples of side
information include constraints on the rank or the support of
dynamics matrices, that in turn lead to optimality of the lin-
ear feedback regulator, if the closed-loop matrix is accurately
estimated. Further, the identification performance of the corre-
sponding adaptive regulators is also addressed. To the best of
our knowledge, this work provides the first comprehensive study
of CE-based adaptive LQRs, for both the identification and the
regulation problem.

The remainder of the paper is organized as follows. The prob-
lem is formulated in Section 2. Then, we provide an expression
for the regret of general adaptive policies in Section 3.1. Subse-
quently, the consistency of estimating the dynamics parameter is
given in Section 3.2. In Section 4, we study the growth rate of the
regret, as well as the accuracy of parameter estimation, for two
randomization schemes. Finally, in Section 5 we study a general
condition which leads to significant performance improvements
in both regulation and identification.

Remark 1 (Stochastic Statements). All probabilistic equalities and
inequalities throughout this paper hold almost surely, unless
otherwise explicitly mentioned.

The following notation will be used throughout this paper. For
a matrix A ∈ Ck×ℓ, A′ denotes its transpose. When k = ℓ, the
smallest (respectively largest) eigenvalue of A (in magnitude) is
denoted by λmin(A) (respectively λmax(A)). For v ∈ Cd, define the

norm ∥v∥ =

(∑d
i=1 |vi|

2
)1/2

. We also use the following notation
for the operator norm of matrices. For A ∈ Ck×ℓ let |||A||| =

sup∥v∥=1 ∥Av∥. In order to show the dimension of the manifold M
we employ dim (M). Finally, to indicate the order of magnitude,
we use an = O (bn) whenever lim supn→∞ |an/bn| < ∞.

2. Problem formulation

We start by defining the adaptive LQR problem this work is
addressing. The stochastic evolution of the system is governed
by the dynamics (1), where for all t ≥ 1, w(t) is the vector of
random disturbances satisfying: E [w(t)] = 0, E

[
w(t)w(t)′

]
= C ,

and |λmin (C)| > 0.
For the sake of simplicity, the noise vectors {w(t)}∞t=1 are

assumed to be independent over time t . The latter assump-
tion is made to simplify the presentation, and generalization
to martingale difference sequences (adapted to a filtration) is
straightforward.1 Further, the following moment condition for
the noise process is assumed.

Assumption 1 (Moment Condition). There is α > 4, such that α-th
moments exist: supt≥1 E

[
∥w(t)∥α

]
< ∞.

In addition, we assume that the true dynamics of the underly-
ing system are stabilizable, a minimal assumption for the optimal
control problem to be well-posed.

Assumption 2 (Stabilizability). The true dynamics [A0, B0] is
stabilizable: there exists a stabilizing feedback L ∈ Rr×p such that
|λmax (A0 + B0L)| < 1.

1 It suffices to replace the involved terms with those consisting of the
conditional expressions (w.r.t. the corresponding filtration).
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Note that Assumption 2 implies stabilizability in the average
sense: lim supn→∞ n−1∑n

t=0 ∥x(t)∥2 < ∞.

Definition 1. Henceforth, for A ∈ Rp×p, B ∈ Rp×r , we use θ to
denote [A, B]. So, θ ∈ Rp×q, where q = p + r .

We assume perfect observations; i.e., the output of the system
corresponds to the state vector x(t). Next, an admissible control
policy is a mapping π that designs the input according to the
dynamics matrices A0, B0, the cost matrices Q , R, and the history
of the system:

u(t) = π
(
A0, B0,Q , R, {x(i)}ti=0 , {u(j)}

t−1
j=0

)
,

for all t ≥ 0. An adaptive policy such as π̂ , is oblivious to the
dynamics parameter θ0; i.e.,

u(t) = π̂
(
Q , R, {x(i)}ti=0 , {u(j)}

t−1
j=0

)
.

When applying the policy π , the resulting instantaneous quadratic
cost at time t defined in (2) is denoted by ct (π). For an arbitrary
policy π , let J π (A0, B0) denote the expected average cost of the
system: J π (A0, B0) = lim supn→∞ n−1∑n−1

t=0 E [ct (π)]. Note that
the dependence of J π (θ0) to the known cost matrices Q , R is
suppressed. Then, the optimal expected average cost is defined
as J ⋆ (A0, B0) = minπ J π (A0, B0), where the minimum is taken
over all admissible control policies. The following proposition
provides an optimal policy for minimizing the average cost, based
on the Riccati equations:

K (θ) = Q + A′K (θ) A

− A′K (θ) B
(
B′K (θ) B + R

)−1 B′K (θ) A, (3)

L (θ) = −
(
B′K (θ) B + R

)−1 B′K (θ) A. (4)

Accordingly, define the linear time-invariant policy π ⋆:

π ⋆ : u(t) = L (θ0) x(t), t = 0, 1, 2, . . . . (5)

Proposition 1 (Optimal Policy (Chan, Goodwin, & Sin, 1984);
(De Souza, Gevers, & Goodwin, 1986; Faradonbeh, Tewari, & Michai-
lidis, 2019)). If [A0, B0] is stabilizable, (3) has a unique solution, and
π ⋆ defined in (5) is an optimal regulator. Conversely, if K (θ0) is a
solution of (3), L (θ0) defined by (4) is a stabilizer.

In the latter case of Proposition 1, the solution K (θ0) is unique
and π ⋆ is an optimal regulator. Note that although π ⋆ is the only
optimal policy among the time-invariant feedback regulators,
there are uncountably many time varying optimal controllers.

To rigorously set the stage, we denote the linear regulator
u(t) = Ltx(t) by π = {Lt}∞t=0, where Lt is a r×p matrix determined
according to A0, B0,Q , R, {x(i)}ti=0 , {u(j)}

t−1
j=0 . For time-invariant

policy π0 = {L0}∞t=0, we use π0 and L0 interchangeably. For an
adaptive operator, the dynamics matrices A0, B0 are unknown.
Hence, adaptive policy π̂ =

{̂
Lt
}∞

t=0 constitutes the linear feed-
backs u(t) = L̂tx(t), where L̂t ∈ Rr×p is required to be determined
according to Q , R, {x(i)}ti=0 , {u(j)}

t−1
j=0 . In order to measure the

efficiency of an arbitrary regulator π , the resulting instantaneous
cost will be compared to that of the optimal policy π ⋆ defined in
(5). Specifically, the regret of policy π at time n is defined as

Rn (π) =

n−1∑
t=0

[
ct (π)− ct

(
π ⋆
)]
. (6)

The comparison between adaptive control policies is made ac-
cording to regret, which is the cumulative deviation of the in-
stantaneous cost of the corresponding adaptive policy from that
of the optimal controller π ⋆.

An analogous expression for regret is previously used for the
problem of adaptive tracking (Lai, 1986; Lai & Wei, 1986). An

alternative definition of the regret that has been used in the
existing literature (Abbasi-Yadkori & Szepesvári, 2011; Abeille &
Lazaric, 2017; Faradonbeh et al., 2017b; Ibrahimi et al., 2012;
Ouyang et al., 2017) is the cumulative deviations from the opti-
mal average cost:

∑n−1
t=0 [ct (π)− J ⋆ (θ0)]. The expression above

differs from Rn (π) by the term
∑n−1

t=0 ct (π ⋆) − nJ ⋆ (θ0), which
is studied in the following result.

Proposition 2. We have

lim sup
n→∞

∑n−1
t=0 ct (π ⋆)− nJ ⋆ (θ0)

n1/2 log n
< ∞.

Therefore, the aforementioned definitions for the regret are
indifferent, as long as one can establish an upper bound of O

(
n1/2

)
magnitude (modulo a logarithmic factor) for either definition.
However, defining the regret by (6) leads to more accurate analy-
ses and tighter results (e.g. the regret specification of Theorem 1,
and the logarithmic rate of Theorem 5). To proceed, we introduce
the following definition.

Definition 2. For a stabilizable parameter θ ∈ Rp×q, define
L̃ (θ) =

[
Ip, L (θ)′

]′
∈ Rq×p.

We can then express the closed-loop matrices based on θ, L̃ (θ).
For arbitrary stabilizable θ1, θ2, if one applies the optimal feed-
back matrix L (θ1) to a system with dynamics parameter θ2, the
resulting closed-loop matrix is A2 + B2L (θ1) = θ2̃L (θ1).

3. General adaptive policies

Next, we study the properties of general adaptive regula-
tors. First, we study the regulation viewpoint in Section 3.1, and
examine the regret of arbitrary linear policies. Then, from an
identification viewpoint, consistency of parameter estimation is
considered in Section 3.2.

3.1. Regulation

The main result of this subsection provides an expression for
the regret of an arbitrary (i.e., either adaptive or non-adaptive)
policy. According to the following theorem, the regret of the regu-
lator {Lt}∞t=0 is of the same order as the summation of the squares
of the deviations of the linear feedbacks Lt from L (θ0). Note that
it is stronger than the previously known result that expressed
the regret as the summation of the deviations from L (θ0) (not
squared) (Abbasi-Yadkori & Szepesvári, 2011; Abeille & Lazaric,
2017; Faradonbeh et al., 2017b; Ibrahimi et al., 2012; Ouyang
et al., 2017). As will be shown shortly, this difference changes the
nature of both the lower-bound, as well as the upper-bound of
the regret.

Theorem 1 (Regret Specification). Suppose that π = {Lt}∞t=0 is a
linear policy. Letting {x⋆ (t)}∞t=0 be the trajectory under the optimal
policy π ⋆, we have

0 < lim inf
n→∞

Rn (π)

χn + ϱn
≤ lim sup

n→∞

Rn (π)

χn + ϱn
< ∞,

where ϱn = x⋆ (n)′ K (θ0) x⋆ (n) − x(n)′K (θ0) x(n), and χn =∑n−1
t=0 ∥(L (θ0)− Lt) x(t)∥2.

The above specification for the regret is remarkably general,
since policy π does not need to satisfy any condition. Even for
destabilized systems, the exponential growth of the state (and
so the regret) is captured by χn. Conceptually, χn captures the
effect of the past sub-optimality {Lt}n−1

t=0 on the regret, while the
influence of the sub-optimal feedback {Lt}∞t=n to be applied hence-
forth is reflected in ϱn. This is formally stated in the following
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result, which also addresses the magnitude of ∥x⋆ (n)∥. According
to Assumption 1, Corollary 1 shows that lim supn→∞ n−1/2ϱn = 0.

Corollary 1. We have lim supn→∞ n−β∥x⋆ (n)∥ = 0, for all β >
1/α. Further, letting Lt = L (θ0) for t ≥ n, and π = {Lt}∞t=0, we get
0 < R∞ (π) /χ∞ < ∞.

Theorem 1 can be used for the sharp specification of the
performance of adaptive regulators. The immediate consequence
of Theorem 1 provides a tight upper bound for the regret of an
adaptive policy, in terms of the linear feedbacks. Indeed, since the
presented result is bidirectional and not just an upper bound, it
will also provide a general information theoretic lower bound for
the regret of an adaptive regulator. For stabilized dynamics, it is
shown that the smallest estimation error when using a sample of
size t is at least of the order t−1/2 (Simchowitz, Mania, Tu, Jordan,
& Recht, 2018). Thus, at time t , the error in the identification of
the unknown dynamics parameter θ0 is at least of the same order.
Therefore, for the minimax growth rate of the regret, Theorem 1
implies the lower bound log n.

In other words, for an arbitrary adaptive policy π̂ , it holds
that lim infn→∞ (log n)−1 Rn (π̂) > 0. In general, the information
theoretic lower bound above is not known to be operationally
achievable because of the common trade-off between estimation
and control. We will discuss the reasoning behind the presence
of such a gap in Section 4, which leads to the operational lower
bound lim infn→∞ n−1/2Rn (π̂) > 0. Nevertheless, in Section 5 we
discuss settings where availability of some side information leads
to an achievable regret of logarithmic order.

Next, we provide some intuition behind Theorem 1 and
Corollary 1. The expression is in nature similar to the concept
of memorylessness, as discussed below. The dynamics of the
system in (1) indicate that the influence of non-optimal control
inputs lasts forever. That is, if Lt1x(t1) ̸= L (θ0) x(t1), then for all
t > t1, the state vector x(t) deviates from the optimal trajectory
{x⋆ (t)}∞t=0, and future control inputs {u(t)}∞t=t1+1 cannot fully
compensate this deviation. However, according to Theorem 1,
the regret is dominated by the magnitude of the square of the
deviations of the non-optimal feedbacks from L (θ0). In other
words, if switching to the optimal feedback L (θ0) occurs, then the
regret remains of the same order of the effect of the non-optimal
control inputs previously applied, and so is memoryless.

3.2. Identification

Another consideration for an adaptive policy is the estimation
(learning) problem. Since in general the operator has no knowl-
edge regarding the dynamics parameter θ0, a natural question
to address is that of identifying θ0, in addition to examining
cost optimality. In this subsection, we address the asymptotic
estimation consistency of general adaptive policies. That is, a
rigorous formulation of the relationship between the estimable
information (through observing the state of the system), and the
desired optimality manifold is provided.

On one hand, for a linear feedback L, the best one can do by ob-
serving the state vectors is ‘‘closed-loop identification" (Faradon-
beh et al., 2017b; Kumar, 1990); i.e., estimating the closed-loop
matrix A0 +B0L accurately. On the other hand, an adaptive policy
is at least desired to provide a sub-linear regret;

lim sup
n→∞

Rn (π̂)

n
= 0. (7)

The above two aspects of an adaptive policy provide the prop-
erties of the asymptotic uncertainty about the true dynamics pa-
rameter θ0. By the uniqueness of L (θ0) according to Proposition 1,
the linear feedbacks of the adaptive policy π̂ =

{̂
Lt
}∞

t=0 require to
converge to L (θ0). Further, π̂ uniquely identifies the asymptotic

closed-loop matrix limt→∞ A0 + B0̂Lt . This matrix according to
(7) is supposed to be θ0̃L (θ0). Putting the above together, the
asymptotic uncertainty is reduced to the set of parameters θ∞
that satisfy

L (θ∞) = L (θ0) , θ∞̃L (θ0) = θ0̃L (θ0) . (8)

To rigorously analyze this uncertainty, we introduce some addi-
tional notation. First, for an arbitrary stabilizable θ1, introduce the
shifted null-space of the linear transformation L̃ (θ1) : Rp×q

→

Rp×p by N (θ1) as:

N (θ1) =
{
θ ∈ Rp×q

: θ̃L (θ1) = θ1̃L (θ1)
}
. (9)

So, N (θ1) is indeed the set of parameters θ , such that the closed-
loop transition matrix of two systems with dynamics parameters
θ, θ1 will be the same, if applying the optimal linear regulator in
(4) calculated for θ1. Hence, if the operator regulates the system
by feedback L (θ1), one cannot identify θ, θ1. In other words,
N (θ1) is the learning capability of adaptive regulators. Then, we
define the desired planning of adaptive policies as follows. For
an arbitrary stabilizable θ1, define S (θ1) as the level-set of the
optimal controller function (4), which maps θ ∈ Rp×q to L (θ) ∈

Rr×p:

S (θ1) =
{
θ ∈ Rp×q

: L (θ) = L (θ1)
}
. (10)

Therefore, S (θ1) is in fact the set of parameters θ , such that
the calculation of optimal linear regulator (4) provides the same
feedback matrix for both θ, θ1. Intuitively, N (θ0) reflects the
identification aspect of the adaptive regulators by specifying the
accuracy of the parameter estimation procedure. Similarly, S (θ0)
reflects the control aspect, and specifies the regulation perfor-
mance in terms of optimality of the cost minimization procedure.
Hence, the asymptotic uncertainty about the true parameter θ0 is
according to (8) limited to the set

P0 = S (θ0) ∩ N (θ0) . (11)

The system theoretic interpretation is as follows. Assuming (7),
P0 is the smallest subset of dynamics parameters θ that one can
identify according to the state and the input sequences. Thus,
the consistency of identifying the true dynamics parameter θ0
is equivalent to P0 = {θ0}. The following result establishes the
properties of P0, and will be used later to discuss the operational
optimality of adaptive regulators. It generalizes some results in
the literature (Polderman, 1986a, 1986b).

Theorem 2 (Consistency). The set P0 defined in (11) is a shifted
linear subspace of dimension dim (P0) = (p − rank (A0)) r.

Therefore, consistency of estimating θ0 is automatically guar-
anteed for an adaptive policy with a sublinear regret, only if A0 is
a full-rank matrix. In other words, effective control (exploitation)
suffices for consistent estimation (exploration) only if rank (A0) =

p. For example, the sublinear regret bounds of OFU (Abbasi-
Yadkori & Szepesvári, 2011; Faradonbeh et al., 2017b) imply
consistency, assuming A0 is of the full rank. Intuitively, a sin-
gular A0 precludes unique identification of both of A0, B0 by (8).
Note that the converse is always true: consistency of parameter
estimation implies the sublinearity of the regret. Clearly, full-
rankness of A0 holds for almost all θ0 (with respect to Lebesgue
measure).

4. Randomized adaptive policies

The classical idea to design an adaptive policy is the following
procedure known as CE. At every time n, its prescription is to
apply the optimal regulator provided by (4), as if the estimated
parameter θ̂n coincides exactly with the truth θ0. According to (1),
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a natural estimation procedure is to linearly regress x(t + 1) on
the covariates x(t), u(t), using all observations collected so far;
0 ≤ t ≤ n − 1. Formally, the CE policy is

{
L
(̂
θn
)}∞

n=1, where θ̂n is
a solution of the least-squares estimator using the data observed
until time n. That is,

θ̂n = arg min
θ∈Rp×q

n−1∑
t=0

x(t + 1) − θ̃L
(̂
θt
)
x(t)

2.
The issue with CE is that it is capable of adapting to a non-

optimal regulation. Technically, CE possibly fails to falsify an
incorrect estimation of the true parameter (Bittanti & Campi,
2006). Suppose that at time n, the hypothetical estimate of the
true parameter is θ̂n ̸= θ0. When applying the linear feedback
L
(̂
θn
)
, the true closed-loop transition matrix will be θ0̃L

(̂
θn
)
.

Then, if this matrix is the same as the (falsely) assumed closed-
loop transition matrix θ̂ñL

(̂
θn
)
, the estimation procedure can

fail to falsify θ̂n. So, if L
(̂
θn
)

̸= L (θ0), the adaptive policy is
not guaranteed to tend toward a better control feedback, and a
non-optimal regulator will be persistently applied.

Fortunately, if slightly modified, CE can avoid unfalsifiable ap-
proximations of the true parameters. More precisely, we show
that the set of unfalsifiable parameters defined below is of zero
Lebesgue measure;

U (θ0) =
{
θ ∈ Rp×q

: θ0̃L (θ) = θ̃L (θ)
}
. (12)

Note that by (9), θ1 ∈ U (θ2) if and only if θ2 ∈ N (θ1). Recalling
the discussion in the previous section,N (θ1) captures the estima-
tion ability of adaptive regulators. That is, the set U (θ0) contains
the matrices θ for which the hypothetically assumed closed-loop
matrix is indistinguishable from the true one. The next lemma
sets the stage for the subsequent results which show that CE can
be efficient, if it is suitably randomized.

Lemma 1 (Unfalsifiable Set). The set U (θ0) defined in (12) has
Lebesgue measure zero.

4.1. Randomized certainty equivalence

According to Lemma 1, we can avoid the pathological set
U (θ0). As subsequently explained, it suffices to randomize the
least-squares estimates of θ0, with a small (diminishing) pertur-
bation. First, such perturbations are chosen to be continuously
distributed over the parameter space Rp×q, in order to evade
U (θ0). Further, since the linear transformation L̃

(̂
θn
)
is randomly

perturbed, we can estimate the unknown dynamics parameter
θ0. Note that as discussed in the previous section, the sequence{̃
L
(̂
θn
)}∞

n=0 relates the estimation of θ0 to the accurate identi-
fication of the closed-loop matrix θ0̃L

(̂
θn
)
. Finally, according to

Theorem 1, the magnitude of the random perturbation needs
to diminish sufficiently fast. Indeed, while a larger magnitude
perturbation helps to the improvement of estimation, an efficient
regulation requires it to be sufficiently small. Addressing this
trade-off is the common dilemma of adaptive control. At the end
of this section, we will examine this trade-off based on properties
of estimation methods and the tight specification of the regret in
Theorem 1.

In the sequel, we present the Randomized Certainty Equivalence
(RCE) adaptive regulator. RCE is an episodic algorithm as follows.
First, when identifying a linear dynamical system using n obser-
vations, the estimation accuracy scales at rate n−1/2. Therefore,
one can defer updating of the parameter estimates until collecting
sufficiently more data. This leads to the episodic adaptive poli-
cies, where the linear feedbacks are updated only after episodes
of exponentially growing lengths (Faradonbeh et al., 2017b). In
RCE, the randomization of the parameter estimate is episodic as

Algorithm 1: RCE
Input: γ > 1, and σ0 > 0
Let L

(̂
θ0
)
be a stabilizer

for m = 0, 1, 2, · · · do
while n < ⌊γm

⌋ do
Apply u(n) = L

(̂
θn
)
x(n)

θ̂n+1 = θ̂n
end while
Update the estimate θ̂n by (13)

end for

well. Thus, calculation of the linear feedbacks L
(̂
θn
)
by (4) will

occur sparsely (only O (log n) times, instead of n times), which
remarkably reduces the computational cost of the algorithm.

To formally define RCE, let {φm}
∞

m=0 be a sequence of i.i.d. p×q
random matrices with independent N

(
0, σ 2

0

)
entries, for a fixed

σ0 > 0. This sequence will be used to randomize the estimates.
RCE has an arbitrary parameter γ > 1 for determining the lengths
of the episodes, and starts by an arbitrary initial estimate θ̂0 such
that L

(̂
θ0
)
stabilizes the system. To find such initial estimates,

one can employ the existing adaptive algorithm to stabilize the
system in a short period (Faradonbeh et al., 2019). Later on, we
will briefly discuss the aforementioned stabilization algorithm.
Then, for each time n ≥ 0, we apply the linear feedback L

(̂
θn
)
.

If n satisfies n = ⌊γm
⌋ for some m ≥ 0, we update the estimate

by

θ̂n = θ̃n + arg min
θ∈Rp×q

n−1∑
t=0

x(t + 1) − θ̃L
(̂
θt
)
x(t)

2, (13)

where θ̃n =
(
n−1/4log1/4 n

)
φm is the random perturbation. Oth-

erwise, for n ̸= ⌊γm
⌋, the policy does not update the estimates:

θ̂n = θ̂n−1. Note that since the distribution of θ̃n over p×qmatrices
is absolutely continuous with respect to Lebesgue measure, θ̂n is
stabilizable (as well as controllable (Bertsekas, 1995; Faradonbeh,
Tewari, & Michailidis, 2017a)). Therefore, by Proposition 1, the
adaptive feedback L

(̂
θn
)
is well defined.

Remark 2 (Non-Gaussian Randomization). In general, it suffices to
draw {φm}

∞

m=0 from an arbitrary distribution with bounded prob-
ability density functions on Rp×q such that supm≥1 E

[
|||φm|||

4+ϵ] <
∞, for some ϵ > 0.

As mentioned before, the rate γ determines the lengths of
the episodes during which the algorithm uses θ̂n, before updating
the estimate. Smaller values of γ correspond to shorter episodes
and thus more updates and additional randomization; i.e., the
smaller γ is, the better the estimation performance of RCE is.
Although we will shortly see that such an improvement will not
provide a better asymptotic rate for the regret, it speeds up the
convergence and so is suitable if the actual time horizon is not
very large. Further, it increases the number of times the Riccati
equation (4) needs to be computed. Therefore, in practice the
operator can decide γ according to the time length of interacting
with the system, and the desired computational complexity. It is
important especially if the evolution of the real-world plant under
control requires the feedback policy to be updated fast (compared
to the time the operator needs to calculate the linear feedback).
The following theorem addresses the behavior of RCE, and shows
that adaptive policies based on OFU (Abbasi-Yadkori & Szepesvári,
2011; Faradonbeh et al., 2017b; Ibrahimi et al., 2012) do not
provide a better rate for the regret, while they impose a large
computational burden by requiring solving a matrix optimization
problem.
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Fig. 1. RCE performance: normalized regret
(
n−1/2 log−1 n

)
Rn (π̂) vs n (top),

and normalized estimation error
(
n1/4 log−1/2 n

) ⏐⏐⏐⏐⏐⏐̂θn − θ0
⏐⏐⏐⏐⏐⏐ vs n (bottom).

Theorem 3 (RCE Rates). Suppose that π̂ is RCE, and θ̂n is the
parameter estimate at time n. Then, we have

lim sup
n→∞

Rn (π̂)

n1/2 log n
< ∞, lim sup

n→∞

⏐⏐⏐⏐⏐⏐̂θn − θ0
⏐⏐⏐⏐⏐⏐2

n−1/2 log n
< ∞.

Note that the analysis of RCE strongly leverages the specifica-
tion of the regret presented in Theorem 1. Fig. 1 illustrates the
results of Theorem 3 by depicting the performance of RCE for
γ = 1.2, and the dynamics and cost matrices

A0 =

[1.04 0 −0.27
0.52 −0.81 0.83
0 0.04 −0.90

]
, B0 =

[
−0.47 0.61 −0.29
−0.50 0.58 0.25
0.29 0 −0.72

]
,

Q =

[ 0.65 −0.08 −0.14
−0.08 0.57 0.26
−0.14 0.26 2.50

]
, R =

[0.20 0.05 0.08
0.05 0.14 0.04
0.08 0.04 0.24

]
.

(14)

Curves of the normalized values of both the regret and the esti-
mation error are depicted as a function of time, with the colors
of the various curves corresponding to different replicates of the
stochastic dynamics, as well as the adaptive policy RCE.

4.2. Thompson sampling

Another approach in existing literature is Thompson Sampling
(TS), which has the following Bayesian interpretation. Applying
an initial stabilizing linear feedback, TS updates the estimate
θ̂n through posterior sampling. That is, the operator draws a
realization θ̂n of the Gaussian posterior for which the mean and
the covariance matrix are determined by the data observed to
date.

Formally, let Σ0 ∈ Rq×q be a fixed positive definite (PD)
matrix, and choose a coarse approximation µ0 ∈ Rp×q of the
truth θ0. We will shortly explain an algorithmic procedure for
computing such coarse approximations. Further, similar to RCE,
fix the rate γ > 1. Then, at each time n ≥ 0, we apply L

(̂
θn
)
,

where θ̂n is designed as follows. If n satisfies n = ⌊γm
⌋ for some

m ≥ 0, θ̂n is drawn from a Gaussian distribution N
(
µm,Σ

−1
m

)
,

where

µm = arg min
µ∈Rp×q

⌊γm
⌋−1∑

t=0

x(t + 1) − µ̃L
(̂
θt
)
x(t)

2, (15)

Σm = Σ0 +

⌊γm
⌋−1∑

t=0

L̃
(̂
θt
)
x(t)x(t)′̃L

(̂
θt
)′
. (16)

Algorithm 2: TS
Input: γ > 1
Let Σ0 ∈ Rq×q be PD, and L

(̂
θ0
)
be a stabilizer

for m = 0, 1, 2, · · · do
while n < ⌊γm

⌋ do
Apply u(n) = L

(̂
θn
)
x(n)

θ̂n+1 = θ̂n
end while
Calculate µm,Σm by (15), (16)
Draw all rows of θ̂n from N

(
µm,Σ

−1
m

)
end for

Namely, for 1 ≤ i ≤ p, the ith row of θ̂n is drawn inde-
pendently from a multivariate Gaussian distribution of mean µ(i)

m
(the ith row of µm), and covariance matrix Σ−1

m . Otherwise, for
n ̸= ⌊γm

⌋ the policy does not update: θ̂n = θ̂n−1. Clearly, µm is the
least-squares estimate and Σm is the (unnormalized) empirical
covariance of the data observed by the end of episode m. Note
that unlike RCE, the randomization in TS is based on the state and
control signals. The following result establishes the performance
rates for TS.

Theorem 4 (TS Rates). Let the adaptive policy π̂ be TS, and the
parameter estimate be θ̂n. Then, we have

lim sup
n→∞

Rn (π̂)

n1/2 log2 n
< ∞, lim sup

n→∞

⏐⏐⏐⏐⏐⏐̂θn − θ0
⏐⏐⏐⏐⏐⏐2

n−1/2 log2 n
< ∞.

Note that the above upper-bounds differ by those of
Theorem 3 by a logarithmic factor. The performance of TS for
γ = 1.2, and the matrices A0, B0,Q , R in (14) is depicted
in Fig. 2. Clearly, the curves of the normalized regret and the
normalized estimation error in Fig. 2 fully reflect the rates of
Theorem 4. For TS based adaptive LQRs, the Bayesian regret
(i.e., the expected value of the regret, wherein the expectation is
taken under the assumed prior) has been shown to be of a similar
magnitude (Ouyang et al., 2017). Of course, this heavily relies on
a Gaussian prior imposed on the true θ0, and the (non-Bayesian)
regret is known to be of O

(
n2/3

)
magnitude (Abeille & Lazaric,

2017). Therefore, Theorem 4 provides an improved regret bound
for TS, thanks to Theorem 1. By assuming stronger assumptions
(e.g. boundedness of the state), a similar result has been recently
established for the case p = 1, which holds uniformly over
time (Abeille & Lazaric, 2018).

For the sake of completeness, we briefly discuss an existing
adaptive stabilization procedure that one can employ before uti-
lizing RCE or TS. First, in the work of Faradonbeh et al. (Faradon-
beh et al., 2019), it is shown that for some fixed ϵ0 > 0,
a coarse approximation θ̂0 that satisfies

⏐⏐⏐⏐⏐⏐̂θ0 − θ0
⏐⏐⏐⏐⏐⏐ ≤ ϵ0, is

sufficient for stabilizing the system (Faradonbeh et al., 2019).
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Fig. 2. TS performance: normalized regret
(
n−1/2 log−1 n

)
Rn (π̂) vs n (top), and

normalized estimation error
(
n1/4 log−1/2 n

) ⏐⏐⏐⏐⏐⏐̂θn − θ0
⏐⏐⏐⏐⏐⏐ vs n (bottom).

Note that the closed-loop matrix can be unstable before termi-
nation of an stabilization procedure. On the other hand, there
exists a pathological subset of unstable matrices such that if
the closed-loop transition matrix belongs to that subset, it is
not feasible to be accurately estimated (Faradonbeh, Tewari, &
Michailidis, 2018a). Specifically, in order to ensure consistency,
the true unstable closed-loop transition matrix during the stabi-
lization period needs to be regular, as defined below (Faradonbeh
et al., 2018a). The unstable square matrix D is regular if the
eigenspaces corresponding to the eigenvalues of D outside the
unit circle are one dimensional (Faradonbeh et al., 2018a). Then,
it is established that random linear feedback matrices preclude
the closed-loop irregularity (Faradonbeh et al., 2019). Therefore,
the method of random feedback matrices guarantees that a coarse
approximation of θ0 is achievable in finite time, and a stabiliza-
tion set can be constructed (Faradonbeh et al., 2019). Thus, we
assume that the initial linear feedback matrix L

(̂
θ0
)
is a stabilizer

(i.e.,
⏐⏐λmax

(
θ0̃L

(̂
θ0
))⏐⏐ < 1), and the system remains stable when

RCE or TS is being employed. More details for establishing finite
time adaptive stabilization are provided in the aforementioned
Ref. Faradonbeh et al. (2019). As a matter of fact, closed-loop
regularity is not guaranteed, if only the control signals {u(t)}∞t=0
are randomized. Further, the classical framework of persistent
excitation is not applicable due to the possible instability of the
closed-loop matrix (Anderson, 1985; Faradonbeh et al., 2018a;
Johnstone & Anderson, 1983; Zhang, 1990).

4.3. Optimality

Next, we discuss the reason for the presence of a significant
gap between the operational regrets of Theorems 3 and 4, and
the information theoretic lower bound mentioned in Section 3.1.
In fact, the following discussion shows that the logarithmic lower
bound is not practically achievable. Nevertheless, in the next

section we show how using additional information for the true
dynamics parameter yields a regret of logarithmic order. In the
sequel, we discuss an argument that leads to the following con-
jecture: the regret is operationally of order n1/2. For this pur-
pose, we first state the following lemma about the level-set
manifold S (θ0) defined in (10). It is a generalization of a previ-
ously established result for full-rank matrices (Polderman, 1986a,
1986b).

Lemma 2 (Optimality Manifold). The optimality level-set S (θ0)
is a manifold of dimension dim (S (θ0)) = p2 + (p − rank (A0))

(r − rank (B0)) at point θ0.

By Theorem 2, we have dim (S (θ0))−dim (P0) = k, where k =

p2 − (p − rank (A0)) rank (B0). The tangent space of the manifold
S (θ0) at point θ0, shares (p − rank (A0)) r of its dimensions with
N (θ0), and the other k dimensions are apart from N (θ0). Intu-
itively, N (θ0) reflects the constraint of estimating the dynamics
parameter, and S (θ0) is the desired information to design an
optimal policy. Thus, those k dimensions of S (θ0) which are
not in N (θ0), cannot be estimated unless the subspace N (θ0)

is sufficiently perturbed. Such a perturbation is available only
through applying non-optimal feedbacks, which yields a larger
regret than the logarithmic rate mentioned in Section 3.1.

Next, we carefully analyze the regret based on the limits in fal-
sifying the parameters not belonging to S (θ0). First, inefficiency
of an adaptive regulator compared to the optimal feedback L (θ0)
is determined by the uncertainty for the exact specification of
the optimality manifold S (θ0). As an extreme example, suppose
that S (θ0) is provided to an operator who does not know θ0.
Then, denoting the adaptive policy above by π̂ , we have Rn (π̂) =

0. Theorem 1 states that if at time n the adaptive regulator
approximates S (θ0) with error ϵn, the growth in the regret is in
magnitude ϵ2n . Thus, it suffices to examine the estimation accu-
racy ϵn that in turn depends both on the identification accuracy
of the closed-loop transition matrix, as well as the falsification of
dynamics parameters θ /∈ S (θ0).

Now, suppose that the objective is to falsify θ1 ∈ N (θ0),
such that |||θ1 − θ0||| = σn, and θ1 − θ0 is orthogonal to the
linear manifold P0 defined in (11). The latter property of θ1
dictates lim infn→∞ σ

−1
n |||L (θ1)− L (θ0)||| > 0. The key point is

that in order to falsify θ1, non-optimal linear feedbacks need
to be applied sufficiently many times. For instance, if applying
L (θ0), the estimation provides N (θ0), i.e., θ1 can never get fal-
sified. More generally, assume that L is a δn-perturbation of the
optimal feedback: |||L − L (θ0)||| = δn. The shifted subspace of
uncertainty when applying L deviates from N (θ0) by at most
O (δn) (in the sense of inner products of the unit vectors). Next,
assume that the operator applies L (or a similar δn-perturbed
feedback) for a duration of n time points. Note that the closed-
loop estimation error is at least of the order of n−1/2 (Sim-
chowitz et al., 2018). Thus, the operator can falsify θ1 only if
lim infn→∞ n1/2δnσn > 0. In other words, the adaptive regu-
lator can avoid applying control feedbacks of distance at least
n−1/2δ−1

n from the optimal feedback, only if control feedbacks
of distance δn are in advance applied for a period of length
n. Hence, we obtain lim infn→∞ σ

−2
n (Rn+1 (π̂)− Rn (π̂)) > 0

by using Theorem 1, which also implies that such perturbed
feedbacks impose a regret of the order nδ2n . Putting together, we
get lim infn→∞ Rn (π̂) (Rn+1 (π̂)− Rn (π̂)) > 0. It leads to the
following conjecture which constitutes an interesting direction
for future work.

Conjecture 1 (Lower Bound). For an arbitrary adaptive policy π̂ we
have lim infn→∞ n−1/2Rn (π̂) > 0.
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Note that if the above conjecture is true, RCE and TS pro-
vide a nearly optimal bound for the regret. Even the logarithmic
gap between the lower and upper bounds is inevitable, due to
the existence of an analogous gap in the closed-loop identifi-
cation of linear systems (Simchowitz et al., 2018). Further, the
above discussion explains the intuition behind the design of RCE.
Specifically, the magnitude of the perturbation

⏐⏐⏐⏐⏐⏐̃θn⏐⏐⏐⏐⏐⏐ according
to the above discussion is optimally selected, since it satisfies
0 < lim infn→∞ σ

−1
n δn ≤ lim supn→∞ σ

−1
n δn < ∞, modulo

a logarithmic factor. Indeed, if randomization is (significantly)
smaller in magnitude than n−1/4, the portion of the regret due
to such a perturbation will reduce. However, it also reduces the
accuracy of the parameter estimate. Thus, the other portion of the
regret due to estimation error will increase. A similar discussion
holds for larger magnitudes of the perturbation θ̃n. On the other
hand, the magnitude of randomization in TS is determined by the
collected observations. As one can see in the proof of Theorem 4,
a similar magnitude of randomization is automatically imposed
by the structure of TS adaptive LQR.

5. Generalized certainty equivalence

It is possible that the operator has additional information on
the dynamics. Examples of such information are the set of non-
zero entries of θ0, the rank of θ0, or a plant whose subsystems
evolve independently of each other. Another example comes from
large network systems, where a substantial portion of the matrix
θ0 entries are zero (Faradonbeh et al., 2017a). Further, it is easy to
see that the transition matrix of a system whose dynamics exhibit
longer memory has a specific form (Faradonbeh et al., 2018a; Guo
& Chen, 1991).

In such cases, this additional structural information on θ0 can
be used by the operator in order to obtain a smaller regret for the
adaptive regulation of the system. Nevertheless, a comprehensive
theory needs to formalize how this side information can provide
theoretical sharp bounds for the regret. In this section, we provide
an identifiability condition that ensures that the adaptive LQRs
attain the informational lower bound of logarithmic order. In
addition to the classical CE adaptive regulator, we also consider
the family of CE-based schemes which provide a logarithmic
order of magnitude for the regret.

First, we introduce the Generalized Certainty Equivalence (GCE)
adaptive regulator. GCE is an episodic algorithm with exponen-
tially growing duration of episodes. Instead of randomizing the
parameter estimate similar to RCE and TS, in GCE the least-
squares estimate is perturbed with an arbitrary matrix θ̃n. Sup-
pose that the operator knows that θ0 ∈ Γ0, based on side
information Γ0 ⊂ Rp×q. Then, fixing the rate γ > 1, at time n ≥ 0,
we apply the controller L

(̂
θn
)
. If n satisfies n = ⌊γm

⌋ for some
m ≥ 0, we update the estimate by

θ̂n = θ̃n + argmin
θ∈Γ0

n−1∑
t=0

x(t + 1) − θ̃L
(̂
θt
)
x(t)

2, (17)

where θ̃n is arbitrary, and satisfies lim supn→∞ n1/2
⏐⏐⏐⏐⏐⏐̃θn⏐⏐⏐⏐⏐⏐ < ∞.

For n ̸= ⌊γm
⌋ the policy does not update: θ̂n = θ̂n−1. Note that

if θ̃n = 0, we get the episodic CE adaptive regulator. To proceed,
we define the following condition.

Definition 3 (Identifiability). Suppose that there is Γ0 ⊂ Rp×q such
that θ0 ∈ Γ0. Then, θ0 is identifiable, if for some β0 < ∞ and all
stabilizable θ1, θ2 ∈ Γ0:

|||L (θ2)− L (θ0)||| ≤ β0
⏐⏐⏐⏐⏐⏐(θ2 − θ0) L̃ (θ1)

⏐⏐⏐⏐⏐⏐. (18)

Algorithm 3: GCE

Inputs: γ > 1, Γ0 ⊂ Rp×q

Let L
(̂
θ0
)
be a stabilizer

for m = 0, 1, 2, · · · do
while n < ⌊γm

⌋ do
Apply u(n) = L

(̂
θn
)
x(n)

θ̂n+1 = θ̂n
end while
Update the estimate θ̂n by (17)

end for

Intuitively, the definition above describes settings where side
information Γ0 is sufficient in the sense that an ϵ-accurate iden-
tification of the closed-loop matrix (the RHS of (18)) provides an
O (ϵ)-accurate approximation of the optimal linear feedback (the
LHS of (18)). Subsequently, we provide concrete examples of Γ0,
such as presence of sparsity or low-rankness in θ0. Essentially, a
finite union of manifolds of proper dimension in the space Rp×q

suffices for identifiability. To see that, we use the critical subsets
N (θ0) , S (θ0), and P0 defined in (9), (10), and (11), respectively.

First, note that P0 ⊂ S (θ0) provides the optimal linear
feedback L (θ0). Hence, for θ1 ∈ N (θ0), |||L (θ1)− L (θ0)||| and
infθ∈P0 |||θ1 − θ ||| are of the same order of magnitude. Then, ac-
cording to Theorem 2, both N (θ0) and P0 are shifted linear
subspaces passing through θ0. Since dim (N (θ0)) = pr , the null-
space N (θ0) shares (p − rank (A0)) r dimensions with P0, and has
dim (N (θ0)) − dim (P0) = rank (A0) r dimensions orthogonal
to P0. The regret of an adaptive regulator π̂ becomes larger
than a logarithmic function of time, because of the uncertainty
N (θ0)/P0. In other words, although the RHS of (18) is estimated
accurately, the aforementioned uncertainty precludes obtaining
an accurate approximation for the LHS of (18). In Definition 3,
additional knowledge about θ0 removes such uncertainty. Thus,
a manifold (or a finite union of manifolds) of dimension pq −

rank (A0) r implies the aforementioned identifiability condition.
Below, we provide some examples of Γ0.

(i) Optimality manifold: obviously, a trivial example is Γ0 =

S (θ0). In this case, the LHS of (18) vanishes.
(ii) Support condition: let Γ0 be the set of p× q matrices with

a priori known support I. That is, for some set of indices I ⊂

{(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ q}, entries of all matrices θ ∈ Γ0 are
zero outside of I; Γ0 =

{
θ =

[
θij
]

: θij = 0 for (i, j) /∈ I
}
. Then,

Γ0 is a (basic) subspace of Rp×q and can satisfy the identifiability
condition (18). Note that it is necessary to have dim (Γ0) = |I| ≤

pq − rank (A0) r .
(iii) Sparsity condition: let Γ0 be the set of all p × q matrices

with at most pq − rank (A0) r non-zero entries. Then, Γ0 is the
union of the matrices with support I for different sets I. Hence,
the previous case implies that Γ0 is a finite union of manifolds of
proper dimension.

(iv) Rank condition: let Γ0 be the set of p × q matrices θ
such that rank (θ) ≤ d. Then, Γ0 is a finite union of manifolds
of dimension at most d (p + q − d) (Shalit, Weinshall, & Chechik,
2012). Hence, if d (p + q − d) ≤ pq − rank (A0) r , and (18) holds,
θ0 is identifiable.

(v) Subspace condition: for k = rank (A0) r , let {θi}
k
i=1 be

p × q matrices such that θĩL (θ0) = 0. Suppose that θ1, . . . , θk are
linearly independent: if

∑k
i=1 aiθi = 0, then a1 = · · · = ak = 0.

Define Γ0 =
{
θ + θ0 : tr

(
θ ′θi

)
= 0 for all 1 ≤ i ≤ k

}
. If for all

1 ≤ i ≤ k it holds that θ0 + θi /∈ P0, then Γ0 satisfies the
identifiability condition of Definition 3.

The following Theorem establishes the optimality of GCE un-
der the identifiability assumption. As mentioned in Section 4, a
logarithmic gap between the lower and upper bounds for the
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regret is inevitable due to similar limitations in system identi-
fication (Simchowitz et al., 2018).

Theorem 5 (GCE Rates). Suppose that θ0 is identifiable and the
adaptive policy π̂ corresponds to GCE. Defining P0 by (11), let θ̂n
be the parameter estimate at time n. Then, we have

lim sup
n→∞

Rn (π̂)

log2 n
< ∞, lim sup

n→∞

infθ∈P0

⏐⏐⏐⏐⏐⏐̂θn − θ
⏐⏐⏐⏐⏐⏐2

n−1 log n
< ∞.

Comparing the above result with Theorems 3 and 4, the
identifiability assumption leads to significant improvements in
rates of both the regret and the estimation error. Moreover, if
rank (A0) = p, then P0 = {θ0}. Thus, the estimation accuracy in
Theorem 5 becomes: lim supn→∞ n

(
log−1 n

) ⏐⏐⏐⏐⏐⏐̂θn − θ0
⏐⏐⏐⏐⏐⏐2 < ∞.

Finally, Theorem 5 improves an existing result for identifiable sys-
tems. That is, under stronger assumptions, Ibrahimi et al. (Ibrahimi
et al., 2012) show the regret bound O

(
n1/2 log2 n

)
for adaptive

policies based on OFU. However, according to Theorem 5, the
regret of GCE is O

(
log2 n

)
.

6. Concluding remarks

The performances of adaptive policies for LQ systems is ad-
dressed in this work, including both aspects of regulation and
identification. First, we established a general result which spec-
ifies the regret of an arbitrary adaptive regulator in terms of
the deviations from the optimal feedback. This tight bidirec-
tional result provides a powerful tool to analyze the subsequently
presented policies. That is, we show that slight modifications
of CE provide a regret of (nearly) square-root magnitude. The
modifications consist of two basic approaches of randomization:
additive randomness, and Thompson sampling. In addition, we
formulated a condition which leads to logarithmic regret. The
rates of identification are also discussed for the corresponding
adaptive regulators.

Rigorous establishment of the proposed operational lower
bound for the regret is an interesting direction for future works.
Besides, extending the developed framework to other settings
such as switching systems, or those with imperfect observa-
tions are topics of interest. On the other hand, extensions to
the dynamical models illustrating network systems (e.g., high-
dimensional sparse dynamics matrices) is a challenging problem
for further investigation.

7. Proofs of main results

The proofs of the main theorems are given next. Due to space
limitations, proofs of auxiliary lemmas are deferred to the sup-
plementary material (Faradonbeh, Tewari, & Michailidis, 2018b).

7.1. Proof of Theorem 1 and Corollary 1

Given n ≥ 1, and the linear policy π = {Lt}n−1
t=0 , define the

sequence of policies π0, . . . , πn as follows.

π0 = {L (θ0) , . . . , L (θ0)} ,
π1 = {L0, L (θ0) , . . . , L (θ0)} ,

...

πn = {L0, L1, . . . , Ln−1} .

Indeed, the policy πi applies the same feedback as π at every time
t < i, and then for t ≥ i switches to the optimal policy π ⋆. Clearly,
π0 = π ⋆, and πn = π . Since

Rn (π) =

n∑
k=1

n−1∑
t=0

[ct (πk)− ct (πk−1)] , (19)

it suffices to find ct (πk) − ct (πk−1), for 1 ≤ k ≤ n, and 0 ≤ t ≤

n − 1. Fixing k, let {x(t)}n−1
t=0 , {y(t)}

n−1
t=0 be the state trajectories

under πk, πk−1, respectively. So, letting D = A0 + B0L (θ0) and
Dk−1 = A0 + B0Lk−1, we have x(t) = y(t) for 0 ≤ t ≤ k − 1,
as well as ct (πk) = ct (πk−1) for 0 ≤ t ≤ k − 2, and x(k) =

Dk−1x(k − 1) + w(k). Further, if k ≤ t ≤ n − 1, then

y(t) = Dt−k+1x(k − 1) +

t∑
j=k

Dt−jw(j),

x(t) = Dt−kDk−1x(k − 1) +

t∑
j=k

Dt−jw(j).

Therefore, we have x(t) = y(t)+Dt−k∆k−1x(k− 1), for k ≤ t < n,
where

∆k−1 = Dk−1 − D = B0 (Lk−1 − L (θ0)) .

Thus, for we obtain

ck−1 (πk)− ck−1 (πk−1)

= x(k − 1)′
(
L′

k−1RLk−1 − L (θ0)′ RL (θ0)
)
x(k − 1).

Similarly, denote P0 = Q + L (θ0)′ RL (θ0), and replace for x(t) to
see that if k ≤ t < n, then

ct (πk)− ct (πk−1)

=
(
2y(t) + Dt−k∆k−1x(k − 1)

)′
P0Dt−k∆k−1x(k − 1).

To proceed, plug-in for y(t) to get ct (πk) − ct (πk−1) = x(k −

1)′Fk−1(t)x(k − 1) + ηk−1(t), where ∆k−1 = Dk−1 − D leads to

ηk−1(t) = 2x(k − 1)′∆′

k−1D
′t−kP0

t∑
j=k

Dt−jw(j),

Fk−1(t) = D′

k−1D
′t−kP0Dt−kDk−1 − D′t−k+1P0Dt−k+1.

Next, letting zk =
∑n−1

t=k ηk−1(t), and Gk = L′

k−1RLk−1 − L (θ0)′

RL (θ0)+
∑n−1

t=k Fk−1(t), clearly

n−1∑
t=0

[ct (πk)− ct (πk−1)] = x(k − 1)′Gkx(k − 1) + zk. (20)

To proceed, for 0 ≤ j ≤ n let Kj =
∑

∞

ℓ=n−j D
′ℓP0Dℓ. So,

n−1∑
t=k

Fk−1(t) = D′

k−1 (Kn − Kk)Dk−1 − D′ (Kn − Kk)D

implies Gk = Ek + Hk, where

Ek = −D′

k−1KkDk−1 + D′KkD,
Hk = L′

k−1RLk−1 − L (θ0)′ RL (θ0)
− D′KnD + D′

k−1KnDk−1.

The Lyapunov equation (see Faradonbeh et al. (2019))

K (θ0)− D′K (θ0)D = P0, (21)

leads to Kn = K (θ0). Thus, letting X = Lk−1 − L (θ0), M =

B′

0K (θ0) B0 + R, since ML (θ0) = −B′

0K (θ0) A0, after doing some
algebra we get

Hk = L (θ0)′ RX + X ′RL (θ0)+ D′K (θ0) B0X
+ X ′RX + X ′B′

0K (θ0)D + X ′B′

0K (θ0) B0X
= X ′MX

Hence, adding up the terms in (20), (19) implies that

Rn (π) = Zn + Sn + Tn, (22)
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where Zn =
∑n

k=1 zk, Sn =
∑n−1

k=0 x(k)
′Ek+1x(k), and Tn =∑n−1

k=0

M1/2 (Lk − L (θ0)) x(k)
2. In order to investigate Sn, we use

the dynamics x(k) = Dk−1x(k−1)+w(k), as well as D′Kk+1D = Kk,
to get

x(k)′D′ Kk+1 Dx(k) = x(k − 1)′D′

k−1KkDk−1x(k − 1)
+ w(k)′Kkw(k) + 2w(k)′KkDk−1x(k − 1),

for 0 < k < n. Substituting in the expression for Sn, and denoting
w(0) = x(0), the telescopic differences vanish:

Sn + x(n)′K (θ0) x(n)

=

n−1∑
k=0

2w(k + 1)′Kk+1Dkx(k) +

n∑
k=0

w(k)′Kkw(k). (23)

Plugging

Dkx(k) =

k∑
j=0

(
Dj+1w(k − j) + Dj∆k−jx(k − j)

)
,

as well as x⋆ (n) =
∑n

j=0 D
n−jw(j), in (23), we have S̃n = Sn +

x(n)′Knx(n) − x⋆ (n)′ Knx⋆ (n) =
∑n

k=1w(k)′Kkξk, where ξk =

2
∑k

ℓ=1 D
ℓ−1∆k−ℓx(k−ℓ). Moreover, it is straightforward to show

that Zn =
∑n−1

j=1 ζ
′

jw(j), where ζj = 2
∑j

ℓ=1
∑n−1

t=j D′t−jP0Dt−ℓ

∆ℓ−1x(ℓ− 1).
Hence, ζj =

(
Kn − Kj

)
ξj implies S̃n + Zn =

∑n
k=1w(k)′Knξk.

Next, we use the following lemma.

Lemma 3 (Lai & Wei, 1982). Suppose that for all t ≥ 0, y(t+1), v(t)
are Gt measurable, Gt ⊆ Gt+1, and E [v(t + 1)|Gt ] = 0. Define the
martingale ψn =

∑n
t=1 y(t)

′v(t), and let ϕn =
∑n

t=1 ∥y(t)∥2. If
supt≥0 E

[
∥v(t + 1)∥2

⏐⏐⏐Gt

]
< ∞, then

lim sup
n→∞

|ψn| < ∞ on ϕ∞ < ∞,

lim sup
n→∞

ψn

ϕ
1/2
n logϕn

= 0 on ϕ∞ = ∞.

Taking Gt = σ
(
{w(i)}ti=1 , {x(i)}

t
i=0 , {Li}

t
i=0

)
, and v(t) = w(t),

y(t) = ξt , we can use Lemma 3 since Assumption 1 holds.
So, stability of D (Proposition 1), and |λmin (M)| > 0, lead to∑n

k=1 ∥ξk∥
2

= O (Tn). Thus, by (22), we get the desired result
since S̃n + Zn = O

(
T 1/2
n log Tn

)
.

Next, the first statement in Corollary 1 follows from Theorem
1 in the work of Lai and Wei (Lai & Wei, 1985). To prove the
second result, first observe that S∞ = Sn, T∞ = Tn, and Z∞ = Zn.
Furthermore, note that for t ≥ n we have ct (π) = x(t)′P0x(t),
ct (π ⋆) = x⋆ (t)′ P0x⋆ (t), as well as

x(t) = Dt−nx(n) +

t∑
j=n+1

Dt−jw(j),

x⋆ (t) = Dt−nx⋆ (n)+

t∑
j=n+1

Dt−jw(j).

So, letting

δn = 2
∞∑
t=n

t∑
j=n+1

(
x(n) − x⋆ (n)

)′ D′t−nP0Dt−jw(j),

by (21) the following holds:
∞∑
t=n

[
ct (π)− ct

(
π ⋆
)]

= x(n)′Knx(n) − x⋆ (n)′ Knx⋆ (n)+ δn.

Finally,

x(n) − x⋆ (n)
2 =


n−1∑
j=0

Dn−1−j∆jx(j)


2

= O (Tn) , (24)

together with Lemma 3 imply δn = O
(
T 1/2
n log Tn

)
.

7.2. Proof of Theorem 2

First, for an arbitrary θ ∈ P0, since θ ∈ N (θ0), we have

A + BL (θ0) = A0 + B0L (θ0) = D0. (25)

Next, for an arbitrary fixed unit matrix (in the Frobenius norm)
X ∈ Rr×p, let L = L (θ0) + ϵX be a linear feedback matrix
which stabilizes the system of dynamics parameters θ . Note that
according to Proposition 1, θ ∈ S (θ0) leads to

⏐⏐λmax
(
θ̃L (θ0)

)⏐⏐ <
1. Thus, |λmax (A + BL)| < 1, as long as ϵ is sufficiently small.

Then, applying L to the system θ , we get J L (θ) = tr (P (ϵ) C),
where P (ϵ) is the unique solution of the Lyapunov equation

P (ϵ)− (A + BL)′ P (ϵ) (A + BL) = Q + L′RL. (26)

Note that according to (21) and (25), it holds that P (0) = K (θ0).
Letting ∆ (X) = limϵ→0 ϵ

−1 (P (ϵ)− P (0)), (26) leads to

∆ (X)− D′

0∆ (X)D0 = X ′N + N ′X, (27)

where N = RL (θ0) + B′K (θ0)D0. Next, θ ∈ S (θ0) implies that
L (θ0) is an optimal linear feedback for the system of dynamics
parameter θ . So, the directional derivative of J L (θ) with respect
to L is zero in all directions. In the direction of X , the derivative
is tr (∆ (X) C). Since all above statements hold regardless of the
positive definite matrix C , (27) and tr (∆ (X) C) = 0 imply N = 0;

D′

0K (θ0) B = −L (θ0)′ R. (28)

Therefore, (28) is a necessary condition for θ ∈ P0. Note that
according to (21) and (25), the necessary condition (28) implies
the necessity of D′

0K (θ0) A = K (θ0)− Q . Further, for every input
matrix B which satisfies (28), the transition matrix A will be
uniquely determined by (25) as A = D0 − BL (θ0).

Conversely, suppose that B is an arbitrary matrix which satis-
fies (28). Letting A = D0 − BL (θ0), we show that [A, B] = θ ∈ P0.
For this purpose, since the above definition of A automatically
leads to θ ∈ N (θ0), it suffices to show θ ∈ S (θ0). Writing Y =

B − B0, we get A = A0 − YL (θ0). Moreover, define G = A′K (θ0) A,
H = B′K (θ0) A, M = B′

0K (θ0) B0 + R, and S = B′

0K (θ0) Y +

Y ′K (θ0) B0 + Y ′K (θ0) Y . Then, we calculate the matrix

V = Q + G − H ′ (M + S)−1 H = Q + A′K (θ0) A

− A′K (θ0) B
(
B′K (θ0) B + R

)−1 B′K (θ0) A.

Writing A, B,G,H in terms of A0, B0,M, S, Y , we have

V = Q + A′

0K (θ0) A0 + L (θ0)′ SL (θ0)−
[
B′

0K (θ0) A0

− SL (θ0)
]′
(M + S)−1 [B′

0K (θ0) A0 − SL (θ0)
]

Then, using (M + S)−1
= M−1

− (M + S)−1 SM−1, (3), and
ML (θ0) = −B′

0K (θ0) A0, V can be written as V = K (θ0) +

L (θ0)′ SW , where

W = L (θ0)− (M + S)−1 (SL (θ0)+ B′

0K (θ0) A0
)

= L (θ0)− (M + S)−1 (S + M) L (θ0) = 0;

i.e., V = K (θ0) is a solution of the Riccati equation (3) for
θ . According to Proposition 1, the solution is unique; which is
K (θ) = K (θ0). Moreover, L (θ) = − (M + S)−1 H = L (θ0)
shows that θ ∈ S (θ0). So far, we have shown that θ ∈ P0, if
and only if (25) and (28) hold. Next, (28) is essentially stating
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that every column of B − B0 (which is a vector in Rp), is or-
thogonal to the all columns of K (θ0)D0. This verifies that (28)
specifies a shifted linear subspace. To find the dimension, since
B has r columns, and (25) uniquely determines A in terms of B,
we get dim (P0) = (p − rank (K (θ0)D0)) r . Finally, by positive
definiteness of Q , (21) implies rank (K (θ0)) = p. Further, since
D0 =

[
Ip − B0M−1B′

0K (θ0)
]
A0, it suffices to show

rank
(
Ip − B0M−1B′

0K (θ0)
)

= p. (29)

If (29) does not hold, there exists v ∈ Rp such that v ̸= 0 and
v = B0M−1B′

0K (θ0) v. So, v = B0̃v where ṽ = M−1B′

0K (θ0) v ∈

Rr . Thus,

B′

0K (θ0) B0̃v = B′

0K (θ0) v = Mṽ =
[
B′

0K (θ0) B0 + R
]
ṽ,

or equivalently, R̃v = 0. Positive definiteness of R implies that
ṽ = 0, which contradicts B0̃v ̸= 0. This proves (29), which
completes the proof.

7.3. Proof of Theorem 3

The proof is based on a sequence of intermediate results. First,
for i ≥ 1, let Vi be the (unnormalized) state covariance during the
ith episode: Vi =

∑⌊γ i
⌋−1

t=⌊γ i−1⌋
x(t)x(t)′.

Lemma 4. For the matrix Vi defined above, the followings hold:
|λmax (Vm)| = O (γm), lim infm→∞ γ

−m |λmin (Vm)| ≥ (γ − 1)
|λmin (C)|.

Then, in order to study the behavior of the least-squares
estimate in (13), define

Ui =

⌊γ i
⌋−1∑

t=0

L̃
(̂
θt
)
x(t)x(t)′̃L

(̂
θt
)′
.

Note that since the parameter θ̂t remains set (not changing)
during each episode, Ui can be written in terms of V1, . . . , Vi as
follows. First, for all ⌊γ i−1

⌋ ≤ t ≤ ⌊γ i
⌋ − 1, the parameter

estimate θ̂t does not change. So, if t belongs to the ith episode,
define the linear feedback matrix is Li = L

(̂
θt
)
. Letting L̃i = L̃

(̂
θt
)
,

we have Ui =
∑i

j=1 L̃jVj̃L′

j . Then, the smallest eigenvalue of Ui
follows a different lower bound compared to that of Vi:

Lemma 5. Define Um as above. Then, we have lim infm→∞ γ
−m/2

|λmin (Um)| > 0, and |λmax (Um)| = O (γm).

Next, the following result states that the estimation accuracy
is determined by the eigenvalues of Ui.

Lemma 6 (Lai & Wei, 1982). For n = ⌊γm
⌋, define θ̂n, θ̃n according

to (13). Then, we have⏐⏐⏐⏐⏐⏐̂θn − θ̃n − θ0
⏐⏐⏐⏐⏐⏐2 = O

(
log |λmax (Um)|

|λmin (Um)|

)
.

Therefore, Lemma 5 leads to
⏐⏐⏐⏐⏐⏐̂θn − θ̃n − θ0

⏐⏐⏐⏐⏐⏐ =

O
(
n−1/4 log1/2 n

)
. Using the moment condition in Remark 2,

Markov’s inequality gives P
(
|||φm||| > m1/4

)
= O

(
m−1−ϵ/4

)
. Thus,

an application of the Borel–Cantelli Lemma leads to |||φm||| =

O
(
m1/4

)
; i.e.,

⏐⏐⏐⏐⏐⏐̃θn⏐⏐⏐⏐⏐⏐ = O
(
n−1/4 log1/2 n

)
. So, we get the desired re-

sult about the identification rate:
⏐⏐⏐⏐⏐⏐̂θn − θ0

⏐⏐⏐⏐⏐⏐ = O
(
n−1/4 log1/2 n

)
.

To proceed, we present the following auxiliary result which
shows that a similar rate holds for the deviations from the
optimal linear feedback.

Lemma 7 (Faradonbeh et al., 2017b). There exist 0 < ϵ0, βL <
∞, such that for all stabilizable θ satisfying |||θ − θ0||| < ϵ0, the
following holds: |||L (θ)− L (θ0)||| ≤ βL|||θ − θ0|||.

So, utilizing Lemma 7, we have⏐⏐⏐⏐⏐⏐L (̂θn)− L (θ0)
⏐⏐⏐⏐⏐⏐ = O

(
log1/2 n
n1/4 +

⏐⏐⏐⏐⏐⏐̃θn⏐⏐⏐⏐⏐⏐) . (30)

On the other hand, since the policy is not being updated during
each episode, we can write down the regret in terms of the
matrices Vi. Henceforth in the proof, suppose that the time n
belongs to the mth episode: ⌊γm−1

⌋ ≤ n < ⌊γm
⌋. Then, applying

Theorem 1 and Corollary 1, we get

Rn (π̂) = O

(
m∑
i=0

(Li − L (θ0)) Vi (Li − L (θ0))′ + γm/2

)

= O

(
m∑
i=0

γ i
|||Li − L (θ0)|||2 + γm/2

)
,

where in the last equality above we applied Lemma 4. Based
on the definition of the perturbation θ̃n in terms of the random
matrix φm, define

Sm =

m∑
i=0

i1/2γ i/2
|||φi|||

2, Tm =

m∑
i=0

i3/4γ i/2
|||φi|||.

So, by (30), the regret is in magnitude dominated by Sm, Tm, and
mγm/2: Rn (π̂) = O

(
Sm + Tm + mγm/2

)
. Note that as m and

n grow, the magnitudes of n1/2 log n and mγm/2 are the same.
Finally, the following lemma leads to the desired result:

Lemma 8. For the terms Sm, Tm defined above the followings hold:
Sm = O

(
mγm/2

)
, Tm = O

(
mγm/2

)
.

7.4. Proof of Theorem 4

In this proof, we use the following result.

Lemma 9. For the matrix Σm defined in (16) we have lim infm→∞

γ−m/2m1/2 |λmin (Σm)| > 0, |λmax (Σm)| = O (γm).

Hence, since µm is the least-squares estimate, and Σm is the
unnormalized empirical covariance matrix, Lemma 6 leads to
|||µm − θ0||| = O

(
γ−m/4m

)
. Then, because every row of θ̂⌊γm⌋−µm

is a mean zero Gaussian with covariance matrixΣ−1
m , by Lemma 9

we have
∞∑

m=0

P
(⏐⏐⏐⏐⏐⏐̂θ⌊γm⌋ − µm

⏐⏐⏐⏐⏐⏐ > γ−m/4m
)
< ∞.

Thus, Borel–Cantelli Lemma leads to the desired result about the
identification rate:

⏐⏐⏐⏐⏐⏐̂θ⌊γm⌋ − θ0
⏐⏐⏐⏐⏐⏐ = O

(
γ−m/4m

)
. By Lemma 7, a

similar rate holds for the linear feedbacks:
⏐⏐⏐⏐⏐⏐L (̂θ⌊γm⌋

)
− L (θ0)

⏐⏐⏐⏐⏐⏐ =

O
(
γ−m/4m

)
. Finally, plugging in the expression of Theorem 1, and

utilizing Corollary 1, we get the desired result for the regret:

R⌊γm⌋ (π̂) = O

(
m∑
i=0

γ i
⏐⏐⏐⏐⏐⏐L (̂θ⌊γm⌋

)
− L (θ0)

⏐⏐⏐⏐⏐⏐2 + γm/2

)

= O

(
m∑
i=0

γ i/2i2
)

= O
(
γm/2m2) .

7.5. Proof of Theorem 5

Define Vi,Ui, Li, L̃i similar to the proof of Theorem 3. Further,
for i ≥ 1, let ni = ⌊γ i

⌋ − 1 be the end time of episode i, and
denote Li (θ) =

∑ni−1
t=0

x(t + 1) − θ̃L
(̂
θt
)
x(t)

2.
Letting θ⋆ = argminθ∈Rp×q Li (θ) for a fixed i, it is straightfor-

ward to show that

Li (θ) = tr
(
(θ − θ⋆)Ui (θ − θ⋆)

′
)
− tr

(
θ⋆Uiθ

′

⋆

)
.
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Therefore, since θ0 ∈ Γ0, (17) implies that Li
(̂
θni − θ̃ni

)
≤ Li (θ0).

So, the triangle inequality leads to

tr
((̂
θni − θ̃ni − θ0

)
Ui
(̂
θni − θ̃ni − θ0

)′)
≤ 4tr

(
(θ⋆ − θ0)Ui (θ⋆ − θ0)

′
)

Hence, the normal equation (θ⋆ − θ0)Ui =
∑ni−1

t=0 w(t + 1)x(t)′

L̃
(̂
θt
)′, in addition to Lemma 5 and Lemma 6 imply that

tr
((̂
θni − θ̃ni − θ0

)
Ui
(̂
θni − θ̃ni − θ0

)′)
= O (i)

Applying Lemma 4, we obtain
i∑

j=0

γ j
⏐⏐⏐⏐⏐⏐(̂θni − θ̃ni − θ0

)
L̃j
⏐⏐⏐⏐⏐⏐2 = O (i) . (31)

Since θ̃nj =O
(
n−1/2
j

)
, by Lemma 7 we have

⏐⏐⏐⏐⏐⏐Lj − L
(̂
θnj − θ̃nj

)⏐⏐⏐⏐⏐⏐ =

O
(
γ−j/2

)
. Hence,

i∑
j=0

γ j
⏐⏐⏐⏐⏐⏐(̂θni − θ̃ni − θ0

)
L̃
(̂
θnj − θ̃nj

)⏐⏐⏐⏐⏐⏐2 = O (i) .

Using θ̂nj − θ̃nj ∈ Γ0, (18) leads to
⏐⏐⏐⏐⏐⏐L (̂θni − θ̃ni

)
− L (θ0)

⏐⏐⏐⏐⏐⏐ =

O
(
i1/2γ−i/2

)
, which by Lemma 7 implies that⏐⏐⏐⏐⏐⏐L (̂θni)− L (θ0)

⏐⏐⏐⏐⏐⏐ = O
(
i1/2γ−i/2) . (32)

Thus, we have
nm−1∑
t=0

∥(L (θ0)− Lt) x(t)∥2
= O

(
m∑
i=0

γ i
|||Li − L (θ0)|||2

)
= O

(
m2) . (33)

Moreover, putting Assumption 1, Corollary 1, (24), and (32) to-
gether, we obtain ∥x(nm) − x⋆ (nm)∥∥x⋆ (nm)∥ = O (m), which in
turn leads to

x⋆ (nm)
′ K (θ0) x⋆ (nm)− x(nm)′K (θ0) x(nm) = O (m) . (34)

Then, (33) and (34) lead to the desired result for the regret:
Rnm (π̂) = O

(
m2
)
. Further, (31) and (32) imply that⏐⏐⏐⏐⏐⏐(̂θnm − θ̃nm − θ0
)
L̃ (θ0)

⏐⏐⏐⏐⏐⏐ = O
(
γ−m/2m1/2)

;

i.e., infθ∈N (θ0)

⏐⏐⏐⏐⏐⏐̂θnm − θ
⏐⏐⏐⏐⏐⏐ = O

(
γ−m/2m1/2

)
. Finally, since (32)

implies a similar result for S (θ0), the desired result for P0 holds.
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