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Keywords: Background: The ability to reconstruct neuronal networks, local microcircuits, or the entire connectome is a
Neuron tracing central goal of modern neuroscience. Recently, advancements in sample preparation (e.g., sample expansion and
Trace montage Brainbow labeling) and optical (e.g., confocal and light sheet) techniques have enabled the imaging of in-

Trace merging
Neuronal circuit reconstruction
Graph theory

creasingly large neural systems with high contrast. Tracing neuronal structures from these images proves
challenging, however, necessitating tools that integrate multiple neuronal traces, potentially derived by various
methods, into one combined (montaged) result.

Brainbow

ImageJ New method: Here, we present TraceMontage, an ImageJ/Fiji plugin for the combination of multiple neuron
Fiji traces of a single image, either redundantly or non-redundantly. Internally, it uses graph theory to connect
Plugin topological patterns in the 3-D spatial coordinates of neuronal trees. The software generates a single output

tracing file containing the montage traces of the input tracing files and provides several measures of consistency
analysis among multiple tracers.

Results and comparison to existing method(s): To our knowledge, our software is the first dedicated method for the
combination of tracing results. Combining multiple tracers increases the accuracy and speed of tracing of
densely-labeled samples by harnessing collaborative effort. This utility is demonstrated using fluorescence mi-
croscope images from the hippocampus and primary visual cortex (V1) in Brainbow-labeled mice.

Conclusions: TraceMontage provides researchers the ability to combine neuronal tracing data generated by either
the same or different method(s). As datasets become larger, the ability to trace images in this parallel manner
will help connectomics scale to increasingly larger neural systems.
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1. Introduction

One of the major goals of neuroscience is to map neuronal circuits at
the microscopic resolution to elucidate their structure-function re-
lationship and elaborate on the connection of brain and behavior, also
known as connectomics. For decades, these studies have been con-
ducted through direct observation of neuronal morphology under light
and electron microscopy.

Traditionally, neurons are sparsely labeled to be unambiguously
captured in a single sample. It leads directly to the need for computa-
tional tools to identify and separate neural structures from image
stacks. In 2010, the DIADEM (Dlgital reconstruction of Axonal and
DEndritic Morphology) (Gillette et al., 2011) contest was organized to
encourage development in the study of 3D reconstructions of neurons.
Recently, the BigNeuron (Peng et al., 2015) project was formed, aiming
to perform comprehensive comparisons of more recent developments in
the field using standardized data protocols and evaluation methods.
These two projects have resulted in a burgeoning of automated methods
for producing neuronal reconstructions. Additionally, manual and semi-
manual approaches have been created which allow human annotation
of images to form 3D reconstructions. These methods include Simple
Neurite Tracer (Longair et al., 2011), Neuromantic (Myatt et al., 2012) or
commercial tools such as Neurolucida and iMaris. More recently, the
transgenic Brainbow techniques (Cai et al., 2013; Lichtman et al., 2008;
Livet et al., 2007) have facilitated high throughput neuronal imaging at
the microscale resolution, using the combinatorial expression of several
fluorescent proteins in neurons to color-tag individual cells and fluor-
escence microscopy to visualize them. This allows dense and unique
labeling of neuronal processes, which permits short-to-long-range cir-
cuit tracing of multiple neurons of the same sample by the software
nTracer (Roossien et al., 2019).

The digitization of neuronal morphology normally describes the
tree-like branching of axons and dendrites as a sequence of inter-
connected cylinders (as in the industry-standard SWC file format
(Roossien et al., 2019; Stockley et al., 1993)). In this sparse re-
presentation, each point in the arbor is usually characterized by five
values including the three Euclidean coordinates, the diameter of the
cylinder, and the identity of the “parent” point from which it originates.
While the labor-intensive and rate-determining process of neuronal
reconstruction is largely facilitated by increasingly automated compu-
tational algorithms, error checking and quality control still require
human intervention (Parekh and Ascoli, 2013). In general, automated
solutions to neuronal reconstructions aim to answer the three inter-
related areas of active study (Acciai et al., 2016): the morphological
characterization of cell types, mapping projections of single cells in the
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whole brain, and describing convergence-divergences patterns in the
neuronal networks of different brain regions. The first and second
problems demand developing image processing techniques to automate
neuron tracing in single-color samples of brain tissues. Brainbow, as a
potential candidate to investigate the third problem, intends to map the
convergence-divergences patterns in neuronal networks, e.g. among
excitatory pyramidal neurons and different types of inhibitory inter-
neurons.

Despite the increasing amount of data produced through these
methods, utilities for the postprocessing of SWC files have been notably
lacking. A common operation, the merging of tracing results, is often
done manually in annotation software, requiring the effort of skilled
technicians. The requirement that tracing between multiple images be
merged can arise from several situations, for example, if multiple
(overlapping) tiles of a wide-field image are traced independently (e.g.
to increase throughput), if different neurons of a single image are traced
independently, or if a single neuron in a single image is traced re-
dundantly as a quality control measure. To address these different
scenarios, we present TraceMontage, an ImageJ/Fiji plugin, which was
developed to provide an automated combination (montage) methods
for merging the neural traces generated by multiple tracers or mod-
alities. These tracing datasets belong to one image or two adjacent
images. In the former case, the plugin is also able to remove the re-
dundant traces of one tracing dataset, and, in the latter case, the two
adjacent images must have an overlapped region. TraceMontage uses
graph theory to find patterns in the 3-D spatial coordinates of neuronal
trees and uses a model with few free parameters. The algorithms ap-
plied are fast and capable of handling large tracing datasets provided in
SWC format (which contain the neurites’ x, y, and z coordinates with a
known convention for branch naming in the form of a full binary tree
structure). It is applicable to both monochromatic neuron labeling and
multi-spectral neuron labeling (e.g., Brainbow) and forms a key part of
the growing toolkit of connectomics data analysis. In the following
sections, we will demonstrate TraceMontage using results generated by
nTracer from multi-spectral Brainbow samples. The Brainbow images
provide color information for the identification of distinct neurons,
which serves as a more general example than the canonical mono-
chrome images.

2. Methods
2.1. The TraceMontage workflow

Fig. 1 gives an overview of the workflow automated by TraceMon-
tage. To obtain the color of branches, TraceMontage accepts one or two

Fig. 1. An overview of the TraceMontage
workflow. First, the user inputs two over-
lapping neuron traces (generated with either
automatic or manual methods) and corre-
sponding microscope image stacks. The soft-
ware identifies neuron traces which are over-
lapping via graph theory methods, overlapping
branches are merged together, and, finally,

neurons which contain overlapping branches
| are merged. The merged result is output for
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TIFF-formatted image files, while tracings are read from one or two files
in SWC format or nTracer-ZIP format. For each branch in each image,
overlapping traces between the input files are identified using their
spatial coordinates and the color of the traces (if the TIFF file provided
has multiple channels of labeling, such as an ImageJ hyperstack). Next,
branches which overlap are merged locally to remove redundant data,
and, finally, the trees which contain the overlapping branches are
combined into a single model, preserving the binary structure initiated
from a single soma node. Notably, in cases of disagreement between
two tracers, the software will default to the “Primary” tracer, which is
indicated by the first input tracing file; this can result in differences of
merging results based on the selection of the primary. After running,
the plugin generates one output tracing data file which contains the
montage traces of the input tracing file(s). Additionally, a range of
quality control metrics that describe the consistency between tracers is
calculated and presented upon completion.

2.2. Algorithms

TraceMontage utilizes a theoretical model for neural reconstruction
derived on that used in the nTracer software (Fig. S1A). This model
represents a neuron reconstruction as a tree graph, which has a root
node, leaf nodes, branching nodes, and other internodes, following the
definitions of (Peng et al., 2011). This allows the manipulation of these
structures within the framework of graph theory. As such, TraceMontage
implements a fuzzy-logic (Radojevic and Meijering, 2017) inspired al-
gorithm for the identification of overlapping branches. Additional, de-
tailed information about the algorithms implemented in TraceMontage
can be found in the Supplementary Methods.

2.3. Testing and demonstration

TraceMontage was tested under various scenarios to demonstrate its
utility. Test microscope images were collected from Brainbow-labeled
mouse Hippocampus or primary visual cortex (V1) samples, as in-
dicated in (Roossien et al., 2019; Roossien and Cai, 2017). Each image
was constructed from multiple tiles which were stitched together using
the Stitching plugin of ImageJ (Preibisch et al., 2009). The image was
then split into overlapping tiles to simulate the result of a two-exposure
imaging experiment. Each tile was independently traced with nTracer
by separate, trained biologists, followed by merging with TraceMontage.
Resulting traces were then annotated for correctness through compar-
isons to a “gold-standard” traced from the original (before splitting)
image.

2.4. Software availability

The TraceMontage plugin, in addition to example Brainbow images
and tracing results, are available from the Cai Lab website at https://
www.cai-lab.org/tracemontage. TraceMontage is freely available under
the GPL3 License (https://www.gnu.org/licenses/gpl-3.0.en.html).
After installation, the software can be started from ImageJ/Fiji, under
the “plugins” interface.

3. Results
3.1. Merging horizontally-aligned image tiles

In Fig. 2, image tiles of Parvalbumin-expressing Basket Cells
(PVBCs) in the mouse Hippocampus were traced, followed by merging
with TraceMontage. As demonstrated in the enlarged portion of the
figure, TraceMontage is capable of merging matching traces in the
overlapped region of two Brainbow images. It is notable, however, that
inaccuracies in the human tracing (possibly caused by the difficulty
imposed by the dense labeling) can lead to an incomplete merging of all
possible neurites. The default values of parameters were used in this
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example, although optimization of the free parameters could lead to
decreases in the number of merged traces, at the cost of stringency and/
or accuracy of the combined set of output neurons.

3.2. Additional examples

TraceMontage was tested using image tiles from a vertically-aligned
PVBC image (Fig. S6), multiple tracers on a single PVBC image (Figs. S7
and S8). These cases were chosen to demonstrate the use of
TraceMontage as a tool for tracing wide-field images (similar to Fig. 1),
and as an automated proofreading tool between multiple tracers, re-
spectively.

3.3. TraceMontage accuracy evaluation

The merged traces (Fig. 2) were compared to a dataset traced from
the merged images by a separate individual. The mean path difference
between each nearest-neighbor paired trace (N = 92) was computed
(Fig. S9) yielding a median path difference of 0.16 pm (1.7 pixels) per
point, primarily from individual variance in human tracing. The few
outliers are easily identifiable and correctable by manual inspection
(Peng et al., 2011). We also note that the remaining discrepancy be-
tween the merged tracing and gold-standard is mostly contributed by
the choice of anchor points in different nTracer practices.

3.4. Performance evaluation of TraceMontage

Runtime and algorithmic performance evaluation was performed
for the tests described above to ensure TraceMontage is scalable with a
variety of inputs. We find (Fig. S10) that the time taken to merge 378
traces was 5310 + 182 ms (mean + SD) on a standard workstation
(with dual Intel Xeon X5675 processors and 72GB of DDR3 RAM). This
scales linearly with input, allowing the user to work with large datasets
and requires very little memory in excess of the size of the input images
(< 50MB).

4. Discussion

Increasing computational power and advancements in imaging
technology continue to enable the collection and processing of large
connectomic images. Currently, one rate-determining step in the usage
of this data is to efficiently and consistently generate tracing results
from the whole volume of very large microscopic images. The algo-
rithms powering TraceMontage are able to provide an efficient solution
for the combination of tracing results, and, as a result, this plugin and
its algorithms make a contribution to the large-scale neuronal tracing in
computational connectomics.

We demonstrate that TraceMontage has the ability to merge neuron
traces from overlapping images and merge redundant neuron traces as a
means for proofreading. These computations are all performed within
seconds, even when handling an image containing over 300 traces.
When comparing the output of TraceMontage to a separately-generated
gold standard, we find very close agreement, indicating that applying
TraceMontage to scalably trace image tiles would not result in a sig-
nificantly increased error rate in the final reconstruction. For this
reason, we believe that the present work is a crucial tool in the toolbox
of future large-scale connectomics studies.

There are, however, some limitations regarding the use of this
software. First, in the current format of its algorithms, the plugin is only
applicable to the alignment of neurites representable with a full binary
tree structure. This prohibits its usage to other non-binary structures,
such as the vasculature system. This issue can be resolved by con-
sidering the topological relations between the number of nodes and
edges when the tree structure is not necessarily binary. A second lim-
itation is that, in some situations, some traces may not be combined.
This is most evident when there are neurites that were not traced in
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both input reconstructions. In that case, some original tracings may be
excluded (for consistency) from the final montage result, and therefore,
some information which one of the tracers has been provided would be
missed. This issue arises because the two end-points of each branch are
the only signatures of the branch and there is no referencing to the
internodes of the branch in the whole tree. We think this could be
addressed in a future version of the software, but would be computa-
tionally more expensive due to the larger number of comparisons which
would be required. A third limitation is that the current version arbi-
trarily assumes one tracing result is always correct when presented
differences. The future version may provide options to calculate an
average as the merged results. As such, human proofreading is still
needed, however, TraceMontage allows the time spent on this proof-
reading to be minimized.
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Fig. 2. An example merge performed with
TraceMontage. An image of Parvalbumin-ex-
pressing basket cells (fast-spiking inhibitory
interneurons) of the Hippocampus of mouse
brain was split into two overlapping tiles; (A
and B) All visible neurites in each tile was
semi-manually traced using the nTracer tool by
two different scientists; (C) The traces with
overlapping regions were shown after merging
using TraceMontage; (D) The overlapping and
adjacent regions are enlarged to show the
merged traces clearly connect between (A) and
(B). All panels are Z-projected renderings of
the path, colored to match the original sam-
ple’s Brainbow labeling; the image is 560 X
560 x 225 pixels total.
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