Secure Real-Time Heterogeneous 10T Data
Management System

Md Shihabul Islam
Department of Computer Science
The University of Texas at Dallas

Richardson, Texas 75080
md.shihabul.islam @utdallas.edu

Murat Kantarcioglu
Department of Computer Science
The University of Texas at Dallas

Richardson, Texas 75080
muratk @utdallas.edu

Abstract—The growing adoption of IoT devices in our daily
life engendered a need for secure systems to safely store and
analyze sensitive data as well as the real-time data processing
system to be as fast as possible. The cloud services used to store
and process sensitive data are often come out to be vulnerable
to outside threats. Furthermore, to analyze streaming IoT data
swiftly, they are in need of a fast and efficient system. The Paper
will envision the aspects of complexity dealing with real time
data from various devices in parallel, building solution to ingest
data from different IOT devices, forming a secure platform to
process data in a short time, and using various techniques of
IOT edge computing to provide meaningful intuitive results to
users. The paper envisions two modules of building a real time
data analytics system.

In the first module, we propose to maintain confidentiality and
integrity of IoT data, which is of paramount importance, and
manage large-scale data analytics with real-time data collection
from various IoT devices in parallel. We envision a framework to
preserve data privacy utilizing Trusted Execution Environment
(TEE) such as Intel SGX, end-to-end data encryption mechanism,
and strong access control policies. Moreover, we design a generic
framework to simplify the process of collecting and storing
heterogeneous data coming from diverse IoT devices.

In the second module, we envision a drone-based data pro-
cessing system in real-time using edge computing and on-
device computing. As, we know the use of drones is growing
rapidly across many application domains including real-time
monitoring, remote sensing, search and rescue, delivery of goods,
security and surveillance, civil infrastructure inspection etc.
This paper demonstrates the potential drone applications and
their challenges discussing current research trends and provide
future insights for potential use cases using edge and on-device
computing.

Index Terms—IoT, data security, trusted execution environ-
ment, machine learning, edge device, edge computing, cloud,
drones, real-time systems, embedded devices.

I. INTRODUCTION

Recent emergence of the Internet of Things (IoT) has caused
data deluge, which needs careful maintenance and secure
storage system to ensure data integrity and protection, along
with fast processing technologies to cope with the myriad
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amount of data that reflect the era of big data. [oT devices are
found in our day-to-day life, such as smart homes, industrial
automation, agriculture, smart transportation, healthcare etc.
They have become a fundamental part of modern society and
as a result, contains highly vulnerable and sensitive data that
must be carefully dealt with. Moreover, the abundant use of
IoT devices generates continuous flow of information that must
be processed swiftly.

Recent development of cloud computing has provided the
opportunity to use cloud-based services to collect, process,
analyze, and mine large amounts of IoT data, which is both
cost effective and less time consuming. Although the cloud
service providers ensure that data is always protected at
rest, during transmission, and computation; in reality they
are vulnerable to many security threats, e.g., data breaches,
especially the public cloud services [1]. Moreover, adversaries
may physically access the machines or obtain root privileges
of the machines deployed at the service providers’ premises
and thus steal sensitive information with ease.

For instance, suppose we have a temperature sensor which
can open windows in a room. A temperature-related applica-
tion can periodically check the room temperature and if the
temperature is above a predefined threshold, then the sensor
will open the window. Now, if an attacker can get access to
the logic code in the cloud, he/she can change the value of
the threshold, which could trigger the window opening action
and cause a potential problem of break-in. Therefore, only
security policy-based rules or operating system access control
mechanisms of the cloud services are not sufficient to thwart
adversaries from stealing sensitive data and information.

The availability of cheap IoT devices has paved the way
for its incredible proliferation in our surroundings. These
devices are slowly becoming an indispensable component of
our habitual lives. As a result of the regular and frequent
usage, these devices are generating enormous amounts of
data that is stored and analyzed in cloud services. As many
IoT applications demands real-time processing of its data,



sometimes these cloud services fail to perform efficiently due
to lack of proper distributed architecture to manage real-time
data.

Moreover, one of the major obstacles in real-time analytics
with cloud-based servers is the latency caused over the net-
work transmission. Some applications need real-time results
with strict delay and cloud-based services may not provide
fast responses. This is where edge computing comes into
play, to process computation tasks as close as possible to the
data sources. Recent advancement of edge computing with
deep learning frameworks to provide intelligent services on
the edge, has received great attention among IoT applications.
Even though edge computing seems to mitigate the drawback,
its still may not be fast enough to provide output by performing
analytics using machine learning frameworks. As a conse-
quence, researchers are trying to run neural network models
in low powered embedded devices, which would deliver the
opportunity to perform analytics on IoT devices itself, opening
up a new era of IoT applications.

In this paper, we envision two modules of building a real-
time data analytics system by challenging the above mentioned
issues. In module 1, we present a secure data analytics system
with the help of Trusted Execution Environments (TEEs).
With the help of secure data processing module, we ensure
the integrity and confidentiality of IoT data by performing
simple analytics on a popular TEE called Intel Software Guard
Extensions (SGX) [2]. Intel SGX creates an isolated secure
memory container, where the code and data can be safely
stored and executed. No adversaries, not even higher privileged
software such as operating system (OS) or virtual machine
manager (VMM) can access the contents of SGX. Moreover,
we ensure data security in transit from IoT devices to cloud
service provider with SGX by following end-to-end encryption
mechanism of the data. That means, in transit data is always
kept in encrypted form, except when it is in the SGX. Even
if adversaries manage to steal the data in transit, they cannot
reveal any information from it as it will be always encrypted.

Additionally, as we have to deal with diverse amount of data
from different IoT devices, we propose a generic framework to
simplify the heterogeneity of the process. With the advent of
enormous real-time data from IoT devices, its highly important
to build a dynamic system that could ease the way to store
dynamic diverse data and process it securely. As a result, we
propose a solution to handle the data in a standard format
before storing them and using for further processing.

In module 2, we envision a drone-based data processing
system on the edge and device itself with help of TinyML [3].
As drones are easier to deploy anywhere and not that expen-
sive, these can be used in many applications. Recently, data
processing with the help of drones has become a popular topic,
where data are captured from drones and sent to the cloud
server to perform analytics. However, as discussed above, this
could introduce severe latency as the continuous data transfer
between the drones and the cloud servers heavily burdens the
networks. Here, we propose a drone-based data processing
system on the edge or even on the device itself. Introduction

of edge computing that can run neural network models has
made it possible to run data analytics close to the device
and TinyML has given us hope of processing data in the
device itself. We propose a use case of detecting abnormal
or suspicious behavior of ground vehicles by capturing images
from the drone and processing it with machine learning model
in the embedded device attached to the drone or on the edge.

To summarize, in this paper, we envision the following
contributions.

o We propose an end-to-end encrypted system for securely
analyzing IoT data using TEEs, particularly Intel SGX.

« We propose to simplify the heterogeneity of data collec-
tion and storage by a generic framework.

« We envision a drone-based data processing system on the
edge and device itself.

The rest of the paper is organized as follows. Section II
presents some background on related topics. Section III intro-
duces some related work. Section IV describes the proposed
two modules in detail. Finally, Section V concludes our work.

II. BACKGROUND
A. Trusted Execution Environment

Trusted computing has been an active field of research over
the last decade, and several architectures and methodologies
have been proposed for many devices. The goal of trusted
computing is to give users guarantees about the behaviour of
the software running on their devices by developing secure
technologies. More specifically, a device can be trusted if
it always behaves in the expected manner for the intended
purpose. This means that even when an attacker gains control
of the system, he cannot make it misbehave. This is a complex
goal, covering many aspects, resulting in a wide range of
solutions based on software, hardware, or co-design of both.
As a result, Trusted Execution Environments (TEEs) are
designed, which is a secure area inside the main processor.
It runs in a parallel way with the operating system in an
isolated environment, which ensures the software components
loaded in the TEE are protected with respect to confidentiality
and integrity. Everything outside TEE is untrusted. Moreover,
unpredictable software running in the main system software
cannot affect software running in the TEE.

One of the state-of-the-art TEE is Intel SGX. It was intro-
duced in 2015 with the sixth generation Intel Core processors,
which are based on the Skylake micro-architecture. Intel’s
Software Guard Extensions (SGX) [2] is an extension to the
Intel x86 architecture, that provides hardware-assisted trusted
execution environment that allows trusted part of an applica-
tion to be executed in a secure area of memory. This ensures
the integrity and confidentiality of an application’s security-
sensitive computation and data on a computer where all the
privileged software such as operating system is potentially
malicious.

The contents of enclaves are stored in the Enclave Page
Cache (EPC), which is a piece of cryptographically protected
memory with a page size of 4KB. Enclave is isolated from



other processes or applications running at the same or higher
privilege levels. No code, not even the higher privileged code
such as Operating System (OS) or Virtual Machine Manager
(VMM), can alter the contents of the Enclave, which makes it
pretty robust from outside attacks and makes the attack surface
of the SGX as little as possible.

In SGX, a remote entity can cryptographically verify the
integrity of an enclave and create a secure channel for sharing
secrets with it. In Intel SGX architecture, this process is called
Attestation. Intel SGX guarantees protection of data when it
is maintained within the boundary of the enclave. When the
data needs to be stored outside the enclave, SGX encrypts the
contents before writing to untrusted memory, so that integrity
and confidentiality of data remains intact. This process of
encrypting the data is called Sealing. The data can be read
back in by the enclave at a later date and then decrypted
or unsealed. The encryption keys are derived internally on
demand and are not exposed to the enclave.

B. IoT Analytics Platforms

ToT analytics is basically an application, used to understand
the large volumes of data generated from the connected IoT
devices and data analysis tools around the world. With the
help of widely increased usage of IoT sensing devices, some
sensory data are being collected over time, specialized for
different fields, applications and infrastructures. The aim of
these sensing devices is to generate fast/real-time big data
streams, depending on the requirement of the applications.
Yet the main challenge is to implement analytics over these
data streams, to gain meaningful insights, more accurate
predictions, sensitive information and make control decisions.
Hence, this is how IoT contributes in improving the world of
business, technology and quality-of-life.

C. Edge Computing

The idea of edge computing is to perform the computation
of data as close as possible to the data sources, rather than
performing that on remote or distant sources. This can be
achieved by simply adding an edge device nearby the data
resource or data generating devices. Generally, edge devices
are competent in both computation and communication tasks.
However, the computation part which is too complicated, are
sent to be performed at remote and more powerful servers. For
performing some basic machine learning tasks (i.e: language
processing, object detection, face recognition etc.), handling
massive streams of IoT data, also for reducing data latency and
dependence on the cloud, edge computing can be a potential
and slick solution.

D. TinyML

Tiny machine learning (TinyML) is broadly defined as
a fast growing field of machine learning technologies and
applications. It refers to performing data analytics at extremely
low power embedded devices, typically in the mW range and
below. This gives us the opportunity to run machine learning
algorithms in IoT devices itself such as any sensors, instead of

sending data back and forth from a server, helping to improve
latency, privacy, connectivity, and power consumption. Typi-
cally, TinyML is designed to run on microcontroller chips that
are small, low-powered computing devices (a few milliwatts of
power) that are often embedded within hardware that requires
basic computation, including household appliances and IoT
devices. They are often optimized for low energy consumption
and small size, at the cost of reduced processing power,
memory, and storage. By running machine learning inference
on microcontrollers, developers can add Al to a vast range
of hardware devices without relying on network connectivity,
which is often subject to constraints such as bandwidth and
power, and results in high latency. As no data has to leave the
device, it also helps to preserve privacy.

E. Unmanned Ariel Vehicles

The use of Unmanned Aerial Vehicles (UAVs), also known
as Drones, is growing swiftly across many domains, spe-
cially civil application domain. Emerging technologies such as
4G/5G networks have made it possible for the UAVs equipped
with cameras, sensors, and GPS receivers in delivering Internet
of Things services from great heights, creating an airborne
domain of the IoT. Some of the UAV applications include
remote sensing, search and rescue, real-time traffic monitoring,
providing wireless coverage, construction & infrastructure
inspection, delivery of goods, security and surveillance, and
precision agriculture. As UAVs provide new opportunities
in different application domains, it is emerging as a new
revolution due to their ease of deployment, low maintenance
cost, and high-mobility.

III. RELATED WORKS
A. Drones: Use Cases

1) UAVs can be used to transport food, packages and other
goods. In health-care field, ambulance drones can deliver
medicines, immunizations, and blood samples, into and
out of unreachable places. They can rapidly transport
medical instruments in the crucial few minutes after car-
diac arrests. They can also include live video streaming
services allowing paramedics to remotely observe and
instruct on-scene individuals on how to use the medical
instruments.

2) Cloud and Big Data: A cloud for UAVs contains
data storage and high-performance computing, com-
bined with big data analysis tools. It can provide an
economic and efficient use of centralized resources for
decision making and network-wide monitoring. If UAVs
are utilized by a traditional cellular network operator
(CNO), the cloud is just the data center of the CNO
(similar to a private cloud), where the CNO can choose
to share its knowledge with some other CNOs or utilize
it for its own business uses. On the other hand, if the
UAVs are utilized by an infrastructure provider, the
infrastructure provider can utilize the cloud to gather
information from mobile virtual network operators and
service providers. Under such scenario, it is important to



guarantee security, privacy, and latency. To better exploit
the benefit of the cloud, we can use a programmable
network allowing dynamic updates based on big data
processing, for which network functions virtualization
and software defined networking can be research trends.

B. Edge Computing with loT

Edge computing has become an important solution to break
the bottleneck of emerging technologies by virtue of its advan-
tages of reducing data transmission, improving service latency
and easing cloud computing pressure. The edge computing
architecture will become an important complement to the
cloud, even replacing the role of the cloud in some scenarios.

In the development of edge computing, there have been
various new technologies aimed at working at the edge of
the network, with the same principles but different focuses,
such as Cloudlet [4], Fog Computing [5] and Mobile Edge
Computing [6]. We use a common term “edge computing” for
this set of emerging technologies.

Edge Computing Systems: Solutions for edge computing
systems are blooming. For DL services with complex con-
figuration and intensive resource requirements, edge com-
puting systems with advanced and excellent micro service
architecture are the future development direction. Currently,
Kubernetes [7] is a mainstream container-centric system for
the deployment, maintenance, and scaling of applications in
cloud computing [8]. Based on Kubernetes, Huawei develops
its edge computing solution “KubeEdge” [9] for network-
ing, application deployment, and metadata synchronization
between the cloud and the edge (also supported in Akraino
Edge Stack). “OpenEdge” [10] focus on shielding computing
framework and simplifying application production. For IoT,
Azure IoT Edge and EdgeX are devised for delivering cloud
intelligence to the edge by deploying and running Al on cross-
platform IoT devices.

C. TinyML

Over the past decade, there has been some significant
work [11]-[18] conducted to handle myriad of data in efficient
way. Now-a-days, more and more researchers are focusing on
TinyML. Some of the related work on Tiny ML is described
below:

1) TinyML audio algorithms using asynchronous audio
events and Nyquist sampled audio: development of
audio TinyML algorithms and their implementation onto
embedded hardware have enabled pre-ASIC study of the
power-latency tradeoff of deep network architectures and
feature representations. TinyML deep networks is used
on audio tasks including keyword spotting and speaker
verification.

2) Voice Separation with tiny ML on the edge: Dr. Niels
H. Pontoppidan, Research Area Manager, Augmented
Hearing Science, Eriksholm Research Centre, Oticon:
With the recent advances in many areas of tiny ML sev-
eral use cases where tiny ML is an absolute requirement
has emerged. Hearing devices is an area where tiny ML

holds the potential to radically transform the function-
ality of a 1 mW always on device. People with hearing
problems can benefit from hearing device processing
that separates competing voices into individual channels
followed by re-synthesizing of the auditory scene with
spatial augmentation. The first successful segregation
enhancement of competing voices required deep neural
networks to achieve enough separation for the spatial
augmentation to enhance segregation. It is furthermore
a requirement that the latency of processing is below
20 ms — preferably less — and thus the processing must
take place at the ear level without uplink and downlink
latencies. Thus, for voice separation to work on the ears
of people with hearing problems tiny ML is a necessity.

3) Thinking Big with Tiny ML: Low Power High Perfor-
mance DNN Accelerators for Mobile and IoT Appli-
cations KAIST ICT Endowed Chair Professor, School
of Electrical Engineering, KAIST: The artificial intel-
ligence (AI) revolution is being widely spread even to
the IoT with the help of 5G wireless communication.
Compared to the Cloud-based or Edge-based Al ap-
plications, Internet-of-Things (IoT) applications require
more autonomous, adaptive, and cooperative operations
with extremely limited power, computing and mem-
ory resources without stable communication channels.
Al, especially deep neural network (DNN), is the key
technology to support such autonomy and adaptivity
of the IoT machines in an unpredictable environment
with limited available information. The IoT machines
should contain not only inference but also training
capabilities to adapt to environmental changes based
on their experiences. Therefore, software and hardware
co-optimization for DNN training is necessary for low-
power and high-speed accelerators, in the same way it
brought a dramatic increase in the performance of DNN
inference accelerators. In addition, deep reinforcement
learning (DRL) accelerators will be an essential part of
the tide, showing a lot of benefits at making continuous
decisions in an unknown environment, where labeled
data is difficult to acquire.

D. Trusted Execution Environment : Data Security

Protecting applications and their data from unauthorized ac-
cess by privileged system software is a long-standing research
objective. Initial work such as NGSCB [19] and Proxos [20]
executes untrusted and trusted OSs side by side using vir-
tualization, with security-sensitive applications hosted by the
trusted OS. Subsequent work, including Overshadow [21],
InkTag [22] and Virtual Ghost [23], has focused on reducing
the size of the TCB by directly protecting application memory
from unauthorized OS accesses. SEGO [24] extends these
approaches by securing data handling inside and across devices
using trusted metadata. Minibox [25] is a hypervisor-based
sandbox that provides two-way protection between native
applications and the guest OS. Unlike SCONE [26], all of
these systems assume a trusted virtualization layer and struggle



to protect applications from an attacker with physical access to
the machine or who controls the virtualization layer. Trusted
hardware can protect security-sensitive applications, and im-
plementations differ in their performance, commodification,
and security functionality.

Secure co-processors offer tamper-proof physical isolation
and can host arbitrary functionality. However, they are usually
costly and limited in processing power. While in practice
used to protect high-value secrets such as cryptographic keys
demonstrate that secure co-processors can be used to split
a database engine into trusted and untrusted parts. SCONE
instead focuses on securing entire commodity container work-
loads and uses SGX to achieve better performance.

ARM TrustZone [27] has two system personalities, secure
and normal world. This split meets the needs of mobile devices
in which a rich OS must be separated from the system software
controlling basic operations. Santos [28] use TrustZone to
establish trusted components for securing mobile applications.
However, isolation of mutually distrustful components requires
a trusted language runtime in the TCB because there is only
a single secure world. TrustZone also does not protect against
attackers with physical DRAM access.

I'V. PROPOSED WORK

A. Module 1: Secure Streaming IoT Data Management and
Processing System with Multivariate IoT devices

With the advent of enormous real time data, its highly
important to build a dynamic system that could ease the way
to store dynamic diverse data and process it securely. The pro-
posed solution can be further categorized in two parts. The first
part of the proposed solution provides a generic framework
which is used to handle and store diverse content traversing
from various IoT Devices and store them intuitively, so that
it could be used for processing in further steps providing
important analytic. The second part of the proposed solution
presents a secure distributed IoT data analytics system with
the help of TEEs to ensure the integrity and confidentiality of
IoT data.

1) Proposed Solution, Part-1 : Multi-level Web-framework
to Simplify Heterogeneous loT Data Processing: The first
proposed solution comprise of a multi-level web-framework
which helps to register new IOT devices, collect raw data from
it, allow users to dynamically select filtered metrics, which
would be later considered for analysis. The system uses no-
sqIDB (MongoDB [29]) to store all users details, various IOT
devices information, and the filtered metrics in encrypted form
to be considered for secure analysis.

Below, we explain the web application architecture to filter
metrics from IOT Devices:

« In first step the admin user registers a new device to the
system using web interface. The related device details are
stored in MongoDB. The snapshots of the solution with
sample data is illustrated in Figure 1 and the stored data
in MongoDB can be viewed in Figure 2. In this sample,
we used Rachio Smart Sprinkler Controller [30] for an
IoT device.

Device Registration Device Registration

Device Type Device Type

Rachio Sprinkler v Rachio Sprinkler v

Device Name Device Name

eg. My Sprinkler sprinkler
API Key API Key

0f73caal-767b-4be2-9616-

Submit Submit

(a) IoT device registration
page sample

(b) IoT device registration page
sample with provided data

Fig. 1: Snapshots of IoT Device Registration Page

mydb.customers vocuwenrs O 08 05 moexes 1

Fig. 2: 10T Device details in mongoDB.

o After registering the device, the users can view the
registered new device detail in “Device Details” webpage.
The user can request raw data from registered device to
view at runtime. A sample snapshot of the raw data from
Rachio Smart Sprinkler is shown in Figure 3.

o This allows user to visualize the data coming from various
IOT devices at run-time in web application. Now, the
web-app provides the functionality to users to select the
required fields from web interface for important metrics
to be considered from the raw data which will be later
used for data analysis. The checkbox option mentioning
all related fields of IOT data helps to ease the data
filtration part and provides easy solution to get important
fields of data from IOT devices. This is illustrated in
Figure 4.

Data

Fig. 3: Raw data collected from the IoT device.



o After the filtered data is generated from user, it is stored
in MongoDB in encrypted form, so that the system uses
the filtered data to make any real time processing.

o Now any system can read the filtered data from Mon-
goDB and pick the important fields for analysis related
to IOT device.

The overall architecture of the system can be visualized as

illustrated in Figure 5.

Rachio Smart Sprinkler Rachio Smart Sprinkler

Select the Data that you need : Select the Data that you need :

Create Date ¢ Create Date
Deleted ? Deleted
Devices ? Devices
Email ¢ Email
Full Name ¢ Full Name
Id v Id
Username ¢! Username
Submit Submit

(a) Fields from raw data to
make intuitive selection

(b) Filtered data after selection
of important fields

Fig. 4: Snapshots of IoT data selection Page.

2) Proposed Solution, Part-2: Secure Stream Data Pro-
cessing using Intel SGX: Intel’s Software Guard Extensions
(SGX) is Intel’s latest iteration of a trusted hardware solution
to the secure remote computation problem. The SGX design
is centered around the ability to create an isolated container
(Enclave), whose content receives special hardware protections
that are intended to translate into confidentiality, integrity, and
freshness guarantees. Therefore in our framework, we aim
to use Intel SGX to guarantee confidentiality and integrity
of sensitive data coming from IoT devices to untrusted re-
mote platforms. Utilizing SGX’s enclave features, we securely
perform simple analytics on delicate IoT data, so that no
unauthorized personnel can unlawfully access data or any
analytical results.

To ensure end-to-end secure system, IoT devices and SGX
use symmetric key encryption to communicate. We use one of
the most popular and widely adopted symmetric key encryp-
tion algorithms Advanced Encryption Standard (AES) [31] in
our framework. Once the enclave is initialized in the untrusted
platform, it is expected to participate in a software attestation
process, where it authenticates itself to a remote application
server. Upon successful authentication, the application server
is expected to disclose some secrets, in this case the symmetric
key for encryption/decryption, to the enclave on the untrusted
platform over a secure communication channel.

We collect data from IoT devices over HTTPS connection.
The communication protocol of HTTPS is encrypted with
Transport Layer Security (TLS) [32], or formerly known
as Secure Sockets Layer (SSL). Hence, data in transit over
HTTPS connection is always secure and eavesdropping on it is
almost hopeless. After data is received through secure channel,
it gets filtered with required fields only (discussed in previous
part), converted to a unique HSML [33] format, which is very

10T Devices Device Details In MongoDB

MongoDE In sync with device Details
J —
1071 /

Rule Based 0T
Engine

Data Processor
used o process and

SGX Processor Intuitive

This is used to do Nofifications
encrypt the filtered secure data and

data in unified HSML processing and rule Inference to
format based analysis users

Kafka Queuing
System

10T-2

10T-3
AES Encryption

Multivalent Secure parallel IOT devices Data Analytics system using SGX

Fig. 5: Secure IoT data analytic system using SGX

light weight. Then, it is immediately encrypted using AES
algorithm with the symmetric key, which was already agreed
upon with SGX enclave after the attestation process.

Next, this encrypted data is sent to Kafka system [34],
which is a distributed stream processing platform that follows
publish and subscribe methodology to streams of records.
Kafka is fault-tolerant, exceptionally fast, and used for build-
ing streaming applications that handle streams of data, and
real-time data pipelines. Next, from Kafka data reaches SGX,
which is on an untrusted cloud platform. The data is decrypted
only inside SGX enclave, which is the trusted environment
of the SGX, where the symmetric key is safely stored. Once
the data is decrypted, we perform some decision making on
the data based on the application. In our framework, the
logic code will be safely stored inside the SGX enclave, thus
preventing the attacker from manipulating the code or the
value. Furthermore, as the values are always encrypted outside
of enclave, the attacker cannot access those values as well,
making the mechanism pretty secure and robust.

Our framework also handles sending the decision back to the
IoT devices from the SGX depending on the user requirement.
For this, decision data is encrypted with the same encryption
key inside the enclave and then passed to the untrusted part of
the machine. The cloud server machine sends this data back
to the controller, which is essentially a gateway that contains
information of the IoT devices. The controller eventually takes
care of transmitting the decision to the particular IoT device
after decryption. Hence, in our system data stays encrypted
always in transmission for both ways and also in rest with the
help of SGX.

B. Module 2: UAV Data Processing System on edge and
device itself

As discussed in Section I, with the advent of more IoT
applications, it also demand fast real-time data processing with
minimal latency. As a result, researches have been conducted
to process data in the IoT devices itself. TinyML [3] proposes a
solution of running neural network models in microcontrollers,
which consumes only a few milliwatts of power and only
kilobytes of memory. This gives us the opportunity to use the
deep learning models in the IoT devices itself and perform
real-time anaytics with low latency. Here, we envision a UAV-



Model Model mAP computational cost
Name size (VOC 2007) (ops)
Tiny YOLOv2 [13] | 60.5MB 57.1% 6.97B
Tiny YOLOv3 [14] | 33.4MB 58.4% 5.52B
YOLO Nano 4.0MB 69.1% 4.57B

TABLE I: Yolo Nano comparison results: Object detection
accuracy results of tested compact networks on VOC 2007
test set. [35]

B
& ( )
(b) EP module
(c) PEP module
g B g
E = B B g B
& 4 B & I3 !

(d) FCA module

(a) YOLO Nano architecture

6: Yolo Nano Architecture [35]

Fig.

based real-time data processing system with TinyML. More
specifically, we propose a framework that will use TinyML to
perform real-time image processing captured by a drone with
the help of an embedded device mounted on the drone. As
an example, our framework will try to detect suspicious or
abnormal behaviors of ground vehicles by capturing images
from the drone and processing it with machine learning model
in the embedded device attached to the drone or on the edge.

Traffic monitoring is typically very dynamic and requires
continuous and accurate monitoring systems. Conventional
traffic surveillance relies on a set of fixed cameras or other
detectors, requiring a high density of the said devices in order

Real Time Detection and Tracking System using UAV(Drone) and Edge Computing Owver Tiny Object Detection Models

%

Object Data

Model 1
Nano Yolo Tiny ML
Object Model 2

Detection Track
Detection

Data
Storage

Inference
Tracker
Storage

Object Dala Flying Drone Object Data

v

Edge
Computing

Edge
Computing

Real time
Inference

Object Data

Fig. 7: Real-time detection and tracking system using UAVs
(Drone) and edge computing over tiny object detection models

The Edge
Server

Fig. 8: Abnormal Vehicle Trajectory Detection using UAVs.

to monitor the intersection in its entirety and to provide data
insufficient quality. Alternatively, a UAV can be converted
to a very agile and responsive mobile sensing platform for
data collection from such large scenes. UAVs can be easily
deployed anywhere, especially high traffic zone areas, and
images captured from these drones are analyzed for abnormal
vehicle trajectory. Recent study shows that, alcohol-impaired
drivers are behind the wheel more than 300,000 times every
day, however, only around 2,800 are arrested [36]. This low
number of arrests could be because of lack of proper traffic
monitoring system, which fails to notify local authorities in
real-time.

As a consequence, we envision to propose a framework to
detect unconventional vehicle trajectory with UAVs. The UAVs
will take images of the vehicles moving in the street and these
images will be used to carry out real time object tracking. The
tracking will help to detect the abnormal driving behavior
on the edge using object detection using nano yolo [35].
The nano yolo is miniature deep learning model for object
detection and can be used to track vehicles on the edge for
low resolution image system. The architectural view of yolo
nano can be visualized in Figure 6 and its comparison in
terms of model size, MAP, and computational cost with other
tiny models is shown in Table 1. This can help to perform
vehicle trajectory detection which can be used to foresee
abnormal driving behaviour and provide related notification
to nearby authorities. The overall architecture and process
is illustrated in Figures 7 and 8. As the object tracking is
computationally expensive procedure, it can also be processed
on the edge with today’s edge computing power to minimize
the latency. However, running the procedure in the device itself
is a challenging task, which will be an interesting problem
to solve in the near future, as it will give the best real-time
performance to this time sensitive problem. In addition, to
process the detection procedure securely, we could utilize our
envisioned module I'V-A for any sensitive computation.

V. CONCLUSION

As the usage of IoT devices increase, preserving data
privacy and processing substantial amount of data in real-
time becomes more crucial. This paper envisions two solutions



that provides secure data analytics system as well as a real-
time data analytics system. Our secure data processing system
utilizes Intel SGX to perform simple analytics that ensures
data integrity and confidentiality. Moreover, strong encryption
mechanism guarantees data privacy in transit, making the sys-
tem end-to-end encrypted. Also, it handles the heterogeneity of
data from various IoT devices. On the other hand, our drone-
based real-time data analytics system proposes to perform data
analytics on the edge or on the device itself to significantly
reduce latency. Although, depending on the application, this
could be computationally expensive for such devices, the
recent development of running machine learning models on
tiny embedded devices has opened up doors of many new
opportunities.
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