International Journal of Artificial Intelligence in Education
https://doi.org/10.1007/540593-020-00197-0

ARTICLE

®

Improving Engagement in Program Construction Ghee e
Examples for Learning Python Programming updates

Roya Hosseini' ©.Kamil Akhuseyinoglu' ® .Peter Brusilovsky'® .Lauri

Malmi2 @ . Kerttu Pollari-Malmi2 @ . Christian Schunn' ® . Teemu Sirkia?2

Published online: 17 June 2020
© International Artificial Intelligence in Education Society 2020

Abstract

This research is focused on how to support students’ acquisition of program con-
struction skills through worked examples. Although examples have been consistently
proven to be valuable for student’s learning, the learning technology for computer
science education lacks program construction examples with interactive elements
that could engage students. The goal of this work is to investigate the value of the
“engaging” features in programming examples. We introduce PCEX, an online tool
developed to present program construction examples in an engaging fashion. We also
present the results of a controlled study with a between-subject design that was con-
ducted in a large introductory Python programming class to compare PCEX with
non-interactive worked examples focused on program construction. The results of
our study show the positive impact of interactive program construction examples on
student’s engagement, problem-solving performance, and learning.

Keywords Introductory programming education - CS1 - Python -
Program construction - Worked examples - Classroom study

Introduction

Programming code examples play a crucial role in learning how to program. Instruc-
tors use examples extensively to demonstrate the semantics of the programming
language being taught and to highlight fundamental coding patterns. Programming
textbooks also place a heavy emphasis on examples, with a large proportion of text-
book space being devoted to program examples and associated comments. Moreover,
the code of all presented examples is typically provided on an accompanying CD
or website to encourage students to explore, run, and modify the examples. Finally,

< Roya Hosseini
roh38 @pitt.edu

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40593-020-00197-0&domain=pdf
http://orcid.org/0000-0003-0531-5530
mailto: roh38@pitt.edu

International Journal of Artificial Intelligence in Education

recent studies have also shown that, on many occasions, students prefer seeing exam-
ples to receiving hints on how to build the code and fix their programs (Rivers
2017).

To increase the overall pedagogical value of code examples, textbooks and e-
learning tools frequently augment the code with additional information that focuses
on building either program comprehension or program construction skills. Program
comprehension is related to reading, comprehending, and tracing the code, while
program construction is related to writing or building the code. However, e-learning
tools tend to support these two types of programming skills quite unevenly. While
there is an active stream of work that has focused on augmenting code examples to
support program comprehension (i.e., dynamic code animations and interactive pro-
gram visualizations (Sorva et al. 2013)), there are comparatively few e-learning tools
focused on augmenting code examples with the goal of supporting program construc-
tion skills (i.e., a step-by-step demonstration on how to solve a specific programming
problem (Sharrock et al. 2017)).

The most popular approach to present program construction examples is text-
based worked examples. A typical worked example, as presented in the majority
of printed and online textbooks, focuses on a meaningful programming problem
to solve, presents code of a sample solution, and augments this code with a tex-
tual explanation of the code design and implementation process shown in steps
with various granularity. While these explanations include all necessary informa-
tion, it is presented in a static and non-engaging form. Some recent work has
attempted to address the static textual nature of program construction examples
by offering tools to construct interactive explanations (Brusilovsky and Yudelson
2008) and codecasts (Sharrock et al. 2017); yet the technology for presenting
program construction examples is lagging behind the state-of-the-art in presented
program comprehension examples that actively engage students in the work with
examples (Hundhausen et al. 2002; Naps 2005). In contrast, the research on program-
construction problems has recently explored a number of interactive approaches to
engage students in program construction activities, such as the modification of code
elements or adding missing parts in the code using, for instance, the Activecode ele-
ments (Miller and Ranum 2012; Ericson et al. 2015) or Parsons problems (puzzles)
approach (Parsons and Haden 2006; Thantola and Karavirta 2011). Such activities
can range from smaller-scale program completion to constructing fully working
programs. Yet, unlike worked examples, program-construction problems offer no
explanations and have focused more on knowledge assessment than knowledge
acquisition.

In our work, we attempted to combine the explanatory power of traditional worked
examples with the elements of interactivity and engagement offered by interactive
examples and programming problems. We believe that our work bridges the gap
between these two categories of learning activities and forms a continuum from
static textbook examples into actual full-coding exercises. We introduce PCEX,
an online learning tool that focuses on presenting program construction exam-
ples to students. PCEX offers examples in an interactive, engaging form in order
to increase students’ motivation to work with examples and improve their overall
learning.

@ Springer

International Journal of Artificial Intelligence in Education

We formulated the following research questions in order to build a better under-
standing of the impact of PCEX on learning programming and to compare the impact
of this interactive style to that of non-interactive examples. In this study, the non-
interactive examples we presented were textbook-style worked examples that focused
on program construction skills. By textbook-style worked examples, we mean the
static worked examples typically presented in textbooks, which often lack interactiv-
ity and a challenge component. Specific hypotheses related to the research questions
are presented in “Hypotheses”:

[RQ1.] Will working with PCEX examples engage students more than working
with textbook-style worked examples? [Hypothesis 1]

[RQ2.] Will working with PCEX examples lead to better performance in solv-
ing program construction problems than working with textbook-style worked
examples? [Hypothesis 2]

[RQ3.] Will working with PCEX examples lead to better learning outcomes than
working with textbook-style worked examples? [Hypothesis 3]

In this article, we address these research questions by presenting results from a
semester-long classroom evaluation that we conducted in a large introductory pro-
gramming class to compare PCEX with textbook-style worked examples that focused
on program construction. Our results demonstrated the benefits of PCEX examples
over textbook-style worked examples on student’s engagement, performance, and
overall learning outcomes.

The remainder of this article is organized as follows. After reviewing the related
work in the next section, we describe our proposed tool, PCEX, in “Engaging Pro-
gram Construction Examples”. Section “The Study” describes our study design,
while “Results” presents the results of the study. Section “Summary and Discus-
sion” concludes with a summary and discussion of this work and direction for future
research.

Background and Related Work
Worked Examples in Problem-Solving

Over the last 30 years, worked examples, also referred to as worked-out exam-
ples (Atkinson et al. 2000), have gradually emerged as an important instructional
approach that is supported by learning technology. A sizable body of research on
instructional practices that support the use of worked examples for acquiring cog-
nitive skills has been accumulated in various domains, such as mathematics and
physics (Atkinson et al. 2000; Chi et al. 1989; Sweller and Cooper 1985). Worked
examples are comprised of the presentation of a problem, the solution steps, and
the final solution. Students use these examples as models of how to solve cer-
tain types of problems. Research on studying worked examples has consistently
shown that in the early stages of skill acquisition, when students typically have
little or no domain knowledge, instruction that relies more heavily on studying
worked examples is more effective for learning than the traditional approach of

@ Springer

International Journal of Artificial Intelligence in Education

being focused on only problem-solving. It has been shown that early example-
based instruction leads to better learning outcomes, which are reached in less time
and with less effort. This is usually referred to as the “worked example effect”
(Sweller et al. 1998).

The examples appear to be most valuable when presentation of the examples is
combined with problem-solving. Specifically, past studies found that the pairing of
worked examples with practice problems is more effective than providing learners
with only practice problems (Sweller and Cooper 1985) or only examples (Trafton
and Reiser 1993). During the later stages of skill acquisition, however, the posi-
tive effect of worked examples gradually declines. In fact, example-based learning
is inferior to problem-solving when learners have gained a reasonable degree of
domain knowledge (Kalyuga et al. 2000, 2001, 2003). While learning from exam-
ples is superior to problem-solving for learners with little domain knowledge, this
advantage disappears over time as the learners develop more content expertise. This
phenomenon is referred to as the “expertise reversal effect” (Kalyuga et al. 2003).
On one hand, this research points out the importance of examples for less prepared
students, while on the other hand, it stresses the importance of carefully adapting
to the current level of the student’s knowledge by decreasing the number of worked
examples as the student gains expertise. A successful approach to implement this is
using “faded worked examples” where the supportive guidance for students is gradu-
ally reduced as the student moves towards fully independent problem-solving (Renkl
and Atkinson 2007). A further improvement is adaptive fading, where the level of
fading and/or the choice between a regular worked example, a faded example, or a
problem is determined based on the students’ understanding of the examples (Salden
et al. 2010a) or their performance (Najar et al. 2016). More recent research explored
an adaptive alternation of worked examples, problem-solving, and erroneous exam-
ples (Chen et al. 2019a, b), a promising alternative to the faded examples (McLaren
et al. 2012).

According to Nokes-Malach et al. (2013), worked examples are hypothesized
to be effective for several reasons. First, they provide constraints to the solution
space; i.e., they highlight the correct solution path so students do not need to waste
time on incorrect or unfruitful searches. As a result, novices obtain the information
needed to gain generalized knowledge more quickly (Salden et al. 2010b). Sec-
ond, they reduce irrelevant cognitive load by highlighting the important elements
of the problem and solution for the learner to focus on, encode, and reason about
(Paas and Van Merriénboer 1994; Ward and Sweller 1990). Third, they encour-
age constructive cognitive processes such as self-explanation, in which the learner
explains to herself the underlying conceptual logic and justification behind each step
(Catrambone 1998; Renkl 1997). This may be particularly important for helping
students link the features of an example to abstract domain concepts or underlying
principles.

It is worth noting that while the example-based learning approach often fosters
learning for students with low levels of prior knowledge, this outcome is not guaran-
teed (Atkinson and Renkl 2007). The positive impact of examples for the student’s
learning can only be observed when (a) examples are designed effectively, and (b)
students study the examples thoroughly.

@ Springer

International Journal of Artificial Intelligence in Education

Worked Examples in Programming

While worked examples are generally less explored in the domain of programming,
there is a reasonable body of research that has guided our work. The earliest success-
ful research showing the value of examples for learning programming dates back to
the early 1980s, when Pirolli and Anderson (1985) reported that examples are help-
ful for guiding students to solutions for novel and difficult problems. Since then, a
considerable amount of research has been devoted to the development of example-
based learning environments to support students in learning programming in various
programming languages, such as LISP (Getao 1990; Lieberman 1987; Weber 1996;
Weber and Brusilovsky 2001; Weber and Mollenberg 1994), Prolog (Brna 1998),
C/Java (Loboda and Brusilovsky 2010; Esteves and Mendes 2003; Sirkid 2013;
Brusilovsky and Yudelson 2008), Javascript (Davidovic et al. 2003), SQL (Najar et al.
2016; Chen et al. 2019a, b), and mini-languages (Brusilovsky 1994; Zhi et al. 2019).

We classify program examples that have been used in teaching and learning to
program into two groups, according to their primary instructional goal: program
behavior examples and program construction examples. Program behavior examples
are used to demonstrate the semantics (i.e., behavior) of various programming con-
structs (i.e., what is happening inside a program or an algorithm when it is executed).
Program construction examples attempt to communicate important programming pat-
terns and practices by demonstrating the construction of a program that achieves
various meaningful purposes (e.g., summing an array). This distinction might not be
clear-cut for code-only examples, since the same code could be used for both pur-
poses. However, attempts to augment examples with learning technologies to increase
their instructional value (i.e., adding code animation or explanations) usually focus
on one of these goals.

Program behavior examples have been extensively studied. While textbooks and
tutorials still explain program behavior by using textual comments attached to lines
of program code, a more advanced method for this purpose — program visualiza-
tion, which visually illustrates the runtime behavior of computer programs — is
becoming increasingly popular. Over the past three decades, a number of specialized
educational tools for observing and exploring program execution in a visual form
have been built and assessed (Sorva et al. 2013). Despite their visual and dynamic
nature, the majority of tools for presenting animated examples, especially the first
generations, could be considered non-engaging, in that they limit the student’s role to
passively watching the animation (e.g., Miyadera et al. (2007), Sajaniemi and Kuit-
tinen (2003), and Sirkid (2013)). Following several studies that have demonstrated
the low effectiveness of “passively-watched” animated examples, several researchers
have experimented with interactive animations that are explorable and challenging,
for example, allowing the student to change input data (Lawrence 1993), asking stu-
dents to predict the result of a specific step (Byrne et al. 1999), or asking strategic
questions about the visualization (Hansen et al. 2000; Naps et al. 2000). A meta-
study or first-generation research on program visualization (Hundhausen et al. 2002)
helped to stress the value and the importance of interactive engagement in the con-
text of animated examples. With the help of this analysis, an international working
group attempted to classify several known types of interactive engagement (such as

@ Springer

International Journal of Artificial Intelligence in Education

viewing, responding, changing, or constructing) by its cognitive level or depth asso-
ciating deeper engagements with higher levels of taxonomy of educational objectives
(Bloom 1956). Since that time, a considerable volume of empirical evidence con-
firmed that that more active and deeper engagement of students into working with
visualized program examples improved their learning (Byrne et al. 1999; Hund-
hausen et al. 2002; Myller 2006; Lawrence 1993; Naps 2005; Sears and Wolfe 1995)
and had a positive influence on their problem-solving abilities in that domain (Evans
and Gibbons 2007).

Advanced technologies for presenting program construction examples are much
less developed. In contrast to interactive and engaging worked examples in math and
physics, for many years, the dominant approach for presenting worked code examples
was simply text with comments (Linn and Clancey 1992; Davidovic et al. 2003; Mor-
rison et al. 2016). More recently, this technology has been enhanced by adding audio
narrations to explain the code (Ericson et al. 2015) or by showing video fragments
of code screencasts with the instructor’s narration being heard while watching slides
or an editor window (Sharrock et al. 2017). Both approaches, however, can still be
considered as a passive presentation that does not allow for exploration and engage-
ment. An attempt to add interactivity and exploration to worked program construction
examples in the form of commented code was made in the WebEx system, which
allows students to interactively explore line-by-line comments for program exam-
ples via a web-based interface (Brusilovsky et al. 2009). More recently, (Khandwala
and Guo 2018; Park et al. 2018) attempted to make the screencast-based examples
more engaging by allowing inline code editing or embedding programming exercises
into the videos. However, with the notable exception of building faded examples for
SQL (Najar et al. 2016), existing approaches for presenting program construction
examples lack the engagement power of modern technologies for presenting program
behavior examples. In this work, we attempt to use research findings in the area of
program behavior examples to produce interactive program construction examples,
called PCEX, that better engage students and improve their learning.

Block-Based Programming and Parsons Problems

Block-based programming environments adopt a drag-and-drop interface that allows
users to construct and execute computer programs by composing atomic blocks of
code together. Common examples of block-based programming environments are
Scratch (Resnick et al. 2009); Snap, a web-based environment based on Scratch (Har-
vey and Monig 2010); and Alice. Scratch programs allow users to build the program
in small chunks, execute any piece of program code individually, and see its effects
immediately. Alice 2 (Cooper et al. 2003) and its successor Alice 3 (Dann et al. 2012)
apply an event-based object-oriented model. In Alice, users can program within a 3D
environment, add objects to the scene, manipulate the objects’ attributes, and call the
object’s methods.

Parsons problems are another related research to block-based programming. Par-
sons and Haden (2006) originally created Parsons problems as an easy way for
novices to solve programming assignments without having to type code or think
about the exact syntax of the programming language. The idea is clever: a small

@ Springer

International Journal of Artificial Intelligence in Education

number of code fragments are presented in a random order and the novice is asked
to construct the described function or a small program by placing the fragments in
the correct order. Each fragment may contain one or more lines of code and all of
the fragments may not be required in the solution. In Ihantola and Karavirta (2011),
the authors introduced a new family of Parsons problems inspired by the Python pro-
gramming language. They proposed a two-dimensional variant of Parsons problems
where lines of code are not only sorted, but also placed on a two-dimensional surface.
The vertical dimension is used for ordering the code, as in traditional Parsons prob-
lems. The horizontal dimension is used to define code blocks, based on indentation.
In another attempt, Ericson et al. (2017) proposed a 2D Parsons problem with paired
distractors where each distractor was shown paired with the matching correct code
block so that the learner only had to choose the distractor or the correct code. More
recently, Fabic et al. (2019) implemented and explored a version of Parsons problem
with internal re-shuffling for mobile phones.

Engaging Program Construction Examples

This section introduces PCEX, an online tool developed to present program con-
struction examples in an engaging fashion. First, it defines exactly what the student’s
engagement is, what are its different constructs, and which of the engagement con-
structs are used in the PCEX examples. Then, it presents the interface and discusses
which interactivity elements are used in the PCEX examples to engage students.

Targeted Aspects of Engagement

Engagement is a construct that has many different definitions in education, rang-
ing from activity completion to particular cognitive and affective forms of activity
completion. Therefore, we need to define our conception of student’s engagement
to ground our approach to creating examples that support engagement. We define
engagement as the extent of a student’s active involvement in a learning activity
(Christenson et al. 2012). It is often considered to be a multi-dimensional con-
struct of possibly four distinct, yet inter-correlated and mutually supportive aspects:
behavioral engagement, emotional engagement, cognitive engagement, and agentic
engagement (Christenson et al. 2012; Reeve 2013; Reeve and Tseng 2011). Each of
these dimensions offers different ways to measure student’s engagement; although,
as mentioned above, these measures are not fully independent.

Behavioral engagement refers to how effortfully the student is involved in the
learning activity, in terms of attention, effort, and persistence (Christenson et al.
2012; Skinner et al. 2009). Higher behavioral engagement is associated with larger
amount of work that the students are willing to perform, higher levels of completion
and retention, and higher persistence in problem-solving. These aspects could usu-
ally be measured by processing students’ logs. Emotional engagement refers to the
presence of positive emotions during task involvement, such as interest, and to the
absence of negative emotions, such as anxiety (Skinner et al. 2009). Higher levels of
emotional engagement could be recognized by higher levels of student’s satisfaction,

@ Springer

International Journal of Artificial Intelligence in Education

bringing a more positive attitude to the learning process, and a willingness to rec-
ommend a novel learning tool to peers. These aspects could be measured through
both surveys and questionnaires. Cognitive engagement refers to how strategically
the student attempts to learn in terms of using sophisticated rather than superficial
learning strategies, such as elaboration rather than memorization (Walker et al. 2006).
Cognitive engagement is defined to a considerable extent by the design of learn-
ing activities. In particular, the taxonomy of educational objectives (Bloom 1956)
was designed to help instructors in creating educational activities with higher lev-
els of cognitive engagement (such as activities based on responding, changing, or
constructing in the case of animated program examples). Agentic engagement is a
fourth and newly proposed aspect of student’s engagement that refers to the extent of
the student’s constructive contribution to the flow of the instruction in terms of ask-
ing questions, expressing preferences, and letting the teacher know what the student
wants and needs (Reeve 2013).

The work on engaging examples presented in this paper focuses predominantly
on behavioral and cognitive engagement, which are the aspects that are most con-
sistently linked with learning outcomes (Bathgate and Schunn 2017). Our design
focuses on cognitive engagement: we sought to design examples that would more
actively involve students in working through the full examples and encourage them
to think more deeply. In accordance with past research on engagement (Skinner et al.
2009), we expect that higher cognitive engagement will be associated with higher
behavior engagement and better learning outcomes. To better assess the increased
behavior engagement, we evaluate our technology in a voluntary practice context. In
our study we separate compulsory learning content, which the students are required
to work with to receive their course grade and voluntary learning content, which
the students are encouraged, but not required to work with. The presence of this
voluntary content allows us to more reliably assess the content-influenced behav-
ior engagement (working with compulsory content is not a reliable measure since
many students are working only to “get the points”). In our study, this voluntary con-
tent allows students to explore interactive examples, as well as work with additional
challenges where they can apply their knowledge through related problem-solving
tasks. In this context, behavioral engagement could be measured by counting how
many tasks or steps they carry out with the voluntary content, as well as how much
time they spend working with the content. The details of measures are explained in
“Metrics”. To more reliably measure student’s behavior engagement with voluntary
content, we performed our experiment as a semester-long study in a real (and large)
class. This design choice limited our ability to measure overall levels of emotional
and agentic engagement, since neither long surveys nor active student-teacher com-
munication were feasible in this context. While we expect that our technology could
also lead to higher emotional and agentic engagement, we will need different kinds
of experiments to confirm these expectations.

Characteristics and Design

PCEX (Program Construction EXamples) is an interactive tool to support master-
ing program construction skills through examples. The innovative idea behind PCEX

@ Springer

International Journal of Artificial Intelligence in Education

is to create “rich examples” that support free exploration and challenge the student.
Figure 1 illustrates a PCEX example. Each PCEX example includes a “goal” (Fig. 1a)
and worked program steps (Fig. 1b). The goal states the function that the example
program performs. The worked steps begin with a subgoal label (Fig. 1c) and are
represented in the form of the sequence of short fragments of code (no more than a
few lines of code) that illustrate how the program is constructed. Labeling subgoals
in worked examples is known to increase student’s performance by leading students
to group a set of steps and encouraging them to self-explain the reason for clustering
those steps (Catrambone 1998). The example is enriched with instructional expla-
nations that are indicated by question mark icons next to either all or a subset of
example lines (Fig. 1d). Once a student clicks on a question mark, an explanation is
shown on the right side (Fig. le). The student can request additional details for the
selected line by clicking on the “Additional Details” button (Fig. 1g) or can navigate
to the previous or next line to read an explanation (Fig. 1f).

In addition to being explorable, PCEX examples challenge students by engaging
them with a problem-solving activity. When a student clicks on the “Challenge me”
button (Fig. 1h), an interactive challenge activity is presented to the student, as shown
in Fig. 2. The goal of a challenge is to encourage students to apply the program con-
struction knowledge presented in the original example to self-assess whether their
understanding is correct. In essence, a challenge is a programming problem that is
similar to the original example, in both the goal to achieve and the code. A chal-
lenge has both a problem statement (Fig. 2i) and code. However, the code has no
explanation and is not complete — one or more of the code lines are missing. The
student’s goal is to complete the code by dragging and dropping lines from the set
of options (Fig. 2j) into each of the missing fields. This drag-and-drop interaction

‘ Example: Finding the Smallest Divisor of a Positive Number

Construct a program that finds the smallest divisor (other than 1) of a positive number.
- For example, the smallest divisor of 4 is 2.

Explanations x~ PREVIOUS NEXT *

We need to increment the divisor repeatedly as long as
the divisor is not a factor of the number. Therefore, we
need to use a loop structure. Since we don't know
4 divisor = 2 ® ahead of time how many times the loop will be
- repeated, we need to use a while loop. The condition in
#Step 2: Find the smallest divisor of the number the while loop tests whether the body of the loop
should be repeated, so it should test whether the
divisor is not a factor of the number.

0

1 #step 1: Assign initial values to the variables which we need for this program

2 num = 15

5 while num % divisor != 0 : O 0

6 divisor += 1 @
e . We could check whether the divisor is not a factor of
print("The smallest divisor of", num, "is’, divisor) (%) the number by computing the remainder of the division

of the number by the divisor.

AoormionaL peTals o

Fig. 1 A Python programming worked example in the PCEX activity. The example includes the goal
(a), interactive worked code (b), the subgoal label presented as a comment (c), the link to instructional
explanations (question mark symbols) (d), explanations (e), a navigation link to the explanation for the
previous/next line (f), additional details for the highlighted line (g), and a challenge navigation link (h)

@ Springer

International Journal of Artificial Intelligence in Education

5
&, Challenge: Finding the Largest Divisor of a Positive Number

Construct a program that finds the largest divisor of a positive number, excluding the number itself. For example, the largest divisor of 24 is 12.

i O i Drag a tile to each missing field to construct this program.
Incorrect. Try Again! G

is incorrect

#Step 1: Assign initial values to the variables which we need for this program

num = 15
aivisorkeinun-2 m

4 #Step 2: Find the largest divisor of the number

5 while num & divisor i= 0 : ﬂ
divisor += 1 e lllﬂullﬂmmn-'

@ print("The largest divisor of", num, "is", divisor) laivisor = num % divisor

w

®

Fig. 2 A Python programming challenge in the PCEX activity that follows the worked example shown
in Fig. 1. The challenge includes the goal (i), has one or more missing lines, and asks the student to drag
and drop a line from the given options (j) to each missing line to construct the program. The student can
decrease/increase the indentation of the line by using the indentation buttons (k)/(1). A student can request
feedback by pressing the “Check” button (M), and the feedback message is shown in part (n). The student
can go back to the example by pressing the “Back” button (o). If there are more challenges available, the
student can go to the next challenge by pressing the “Challenge Me” button (p). This button is shown only
when the current challenge is solved or after the student checks the solution after the third incorrect attempt

approach is similar to Parsons problems (Parsons and Haden 2006). The student can
decrease/increase the indentation of the line by using the indentation buttons (Fig. 2k
and 1), and the student can check whether the challenge is solved correctly by click-
ing on the “Check” button (Fig. 2m). The feedback is presented to the student by
highlighting correctly (in green) and incorrectly (in red) placed lines. The student can
also request a hint (Fig. 2n). If the student cannot solve the challenge within three
attempts, he or she can request the solution.

At any moment, the student can navigate to the core explained example by pressing
the “Back” button (Fig. 20). Also, if an example has several challenges, the student
may navigate between them by pressing the “Challenge Me” button (Fig. 2p). The
student can navigate to the next challenge only when the current challenge is solved
or the solution is seen after the third incorrect attempt.

Implementation Details

In this work, we use the term PCEX activity to refer to the PCEX worked example
and its associated challenges. PCEX activities are created by annotating the exam-
ple and challenge code with a set of predefined tags (see Fig. 3). These tags are used
to define the goal or the problem statement, the instructional explanations, the lines
to be faded, the set of line options, and the user input to the program. We used doc-
strings for Python or doc comments for Java to add these annotations to the program
code.

@ Springer

International Journal of Artificial Intelligence in Education

sitive number, excluding the number itself. For example, the largest divisor of 24 is 12.

ctor{code

Assign initial values to the variables which we need for this program

helpDescription(We define variable num to store the number that we want to find its largest divisor. We could initialize it to any positive integer greater than 1|
num = 15

('t ,‘"”@hlank(we define variable divisor to store the largest divisor of the number. We initialize variable divisor to num-1 because we want to find the largest divisor of
divisor = num-1

#Step 2: Find the largest divisor of the numbe
""ghelpDescription(We need to decrement the divisor repeatedly as long as the divisor is not a factor of the number. Therefore, we need to use a loop structure. Sinc
cﬂ;;) helpDescription(The body of the while loop is repeated as long as the divisor is not a factor of the number. The loop terminates when the loop condition evaluates
" ghelpDescription(Also note that the % operator returns the remainder of the division.)"""
while num % divisor != 0
"""" ‘@blank(When the divisor is not a factor of the number, we decrement the variable divisor by 1.)"""
""" ‘@lank(The —= operator subtract 1 from the value of variable divisor and the result is stored back into the variable divisor. Therefore, it is functionally equl
divisor -= 1
nnughelpDescription(This statement prints to the default standard output stream the largest divisor of the number.
The printed text shows the arguments of the prin
print("The largest divisor of", num, "is", divisor:

Fig. 3 An annotated Python programming code for the PCEX challenge shown in Fig. 2. The annotated
code includes the problem statement (@goalDescription, q), the title of the challenge (@name, r), the
set of option lines (@distractor, s), the lines to be faded (@blank, t), and the instructional descriptions
(@helpDescription, u). The annotation tags are inserted using Python docstrings

The annotated code is parsed to generate a corresponding JSON file for each of the
PCEX activities. The JSON file is then used by a single-page JavaScript application
to support interactive work with the examples and challenges as shown in Figs. 1 and
2. The JavaScript application only needs the parsed JSON file to operate functionally,
and it communicates back to the student modeling server (Yudelson et al. 2007) to
log students’ interactions. The current version of the PCEX supports any executable
code in both Java and Python.

PCEX employs an output-based evaluation of students’ solutions. As a result, the
program code of a challenge is required to produce an output. The JSON file gener-
ated by the parsing process contains the correct program output (i.e. ideal solution)
and the program outputs of all possible students’ solutions. This is achieved by first
completing the code with all permutations of the line options (Fig. 2j) and then by
running each completed code. This way, we can identify the cases where the stu-
dent’s solution is correct, even if the solution consists of a different option order than
the ideal solution. Moreover, this approach helps us to promptly provide feedback to
the student, as opposed to waiting for the program execution to finish each time the
student clicks on the “Check” button (Fig. 2m).

The Study

To evaluate the impact on student’s engagement and learning from adding explorabil-
ity and challenges to program construction examples, we conducted a classroom
study followed by a survey to collect students’ feedback on the overall usefulness of
the new program construction examples. Using a classroom study format was essen-
tial for our evaluation, since assessing engagement issues requires a realistic context.
While the less controlled nature of a classroom study makes it harder to assess the
overall impact of learning technology on learning gain, this type of study enables us
to more reliably measure the engagement and motivation side of student’s work. In
this section, we present details of the study, beginning by explaining the design of the

@ Springer

International Journal of Artificial Intelligence in Education

study, then presenting the information about participants and the study procedure. We
conclude this section with information about the objective and subjective measures
that were collected in the study and are later used in the data analysis.

Hypotheses

This study tests the following hypotheses regarding the benefits of PCEX compared
to textbook-style, static, worked examples:

H1. Work with PCEX examples would engage students more than the work with
textbook-style worked examples;

H?2. Work with PCEX examples would lead to better performance in solving pro-
gram construction problems than the work with textbook-style worked examples;
and

H3. Work with PCEX examples would lead to better learning outcomes than the
work with textbook-style worked examples.

Study Design

To test our hypotheses, we designed a classroom study with two groups. In both
groups, students could practice with voluntary examples and problems that were
accessible through an online practice system. In order to make the groups equivalent
in terms of the quantity and quality of learning material, both groups also received
the same problems, program examples, and explanations. The difference between
the groups was only in the way that examples were presented to the students. In the
Experimental group, students could practice with PCEX activities that presented the
sequence of similar examples with the first example fully worked (Fig. 1) and the rest
of the examples presented as tasks that challenged students (Fig. 2). In the Control
group, in contrast, students could practice with textbook-style example activities (see
“Control Condition Interface: Textbook-Style Worked Examples”) that presented
similar worked examples in the same order, all in the same form as shown in Fig. 4.

Control Condition Interface: Textbook-Style Worked Examples

The Control condition interface presents the examples in a traditional textbook-style
form using a simple technology that shows examples statically. Figure 4 illustrates
a worked example that was presented in this static interface. Each example includes
a “goal” (Fig. 4a) and worked program steps (Fig. 4b). To make the presentation
of the worked examples similar to those in programming textbooks, code segments
and explanations are interleaved by default. The interface also enables the student
to have a view of the code, similar to how to the code is presented in an integrated
development environment (IDE). The student can click on the “Hide Explanations”
button (Fig. 4c) to switch to the mode that presents the code with no explanations.
Figure 5 illustrates the code-only mode, with explanations hidden. The student can
switch back to the mode where the explanations are shown by clicking on the “Show

@ Springer

International Journal of Artificial Intelligence in Education

‘ Example: Finding the Smallest Divisor of a Positive Number

IConstruct a program that finds the smallest divisor (other than 1) of a positive number. For Example!
example, the smallest divisor of 4 is 2.

Hide Explanations @

#Step 1: Assign initial values to the variables which we need for this program@

Line 1. We define variable num to store the number that we want to find its smallest divisor. We could initialize it to any positive integer greater than 1.
In this program, we initialize variable num to 15.

1 num = 15

Line 2. We define variable divisor to store the smallest divisor of the number. We initialize variable divisor by 2 because we want to find the smallest
divisor except 1.

2 divisor = 2
#Step 2: Find the smallest divisor of the number

Line 3. We need to increment the divisor repeatedly as long as the divisor is not a factor of the number. Therefore, we need to use a loop structure.
Since we don't know ahezd of time how many times the loop will be repeated, we need to use a while loop. The condition in the while loop tests
whether the body of the loop should be repeated, so it should test whether the divisor is not a factor of the number.

Fig. 4 The default mode of a worked example in the Control interface that presents static worked exam-
ples for program construction skills. The example is presented in a textbook-style form and includes the
goal (a), worked code with subgoal labels and explanations (b), the link to hide explanations (c¢), and a
navigation link to the next similar example (d). When appropriate, a previous example arrow will appear
on the left side

Explanations” link (Fig. 5e). The student can go to the next similar example by click-
ing on the “Next Example” link (Fig. 4d). The next example will be presented in
the same style as the previous example. The student can navigate between similar
examples by using the navigation links.

‘ ample: Finding the Smallest Divisor of a Positive Number)

Next
Construct a program that finds the smallest divisor (other than 1) of a positive number. For example, Example!

the smallest divisor of 4 is 2.

Show Explanations ‘9

1 num = 15

2 divisor = 2

3 while num % divisor != @ :
4 divisor += 1

5 print("The smallest divisor of", num, "is", divisor)

Fig.5 The code-only mode of a worked example in the Control interface that presents worked examples
focused on program construction skill. The student can click on link (e) to view the explanations

@ Springer

International Journal of Artificial Intelligence in Education

Study Procedure

The study was carried out in an introductory Python programming course. This
course was a CS1 service course targeted to students of bachelor’s degree programs
in various engineering fields at a large research university. The students were not
Computer Science majors, and most of them were likely to complete only one or two
programming courses in their bachelor-level studies. The course consisted of lec-
tures, nine exercise rounds, and an exam. To pass the course, the student had to solve
enough problems (small Python coding exercises where the student mostly wrote the
whole program alone) in each of the exercise Rounds 1-8 and pass the final test.
To obtain a good grade, the student was also required to solve enough problems in
Round 9, which contained coding exercises about object-oriented programming.
Potential participants included 723 undergraduate students who were enrolled in
the course in the Fall semester of 2017. Students were randomly assigned to one of
the Control and Experiment groups, explained in “Study Design”. They were given
one week to take an online pre-test (see “Pre- and Post-Tests”). In the second week
of the class, the practice system with all practice content (see “Practice Content”)
was introduced and all students were provided with a link and an individual account
to access the system. The use of the practice system was voluntary; however, the
students were offered a few extra points to encourage them to explore the system
and its practice content. More specifically, the students who explored at least eight
examples and solved at least seven Parsons problems (see Fig. 6) were given 200
extra exercise points. The maximum number of exercise points the students could
receive in this course by solving mandatory exercises (assignments) was 5820. In
addition, the students who answered to the course feedback survey organized by the
university were given 200 exercise points. Thus, the total number of exercise points a
student could gather was 6220, from which 200 (about 3%) could be earned by using
the practice system. Because the minimum number of the exercise points which the

Topic: If-Else + Activity: Conditionals Temperature

Drag from here Construct your solution here

else: if temperature :

print("Hot") print("Cold")

if temperature elif temperature | ?2?

print("Moderate")

New instance Get feedback

Construct a program that prints out 'Cold', when the temperature is 15 degrees celcius or below, 'Moderate' when it is over 15 degrees but no more than
25 degrees, and 'Hot' when the temperature is over 25 degrees.

Close window

Fig.6 An instance of a Parsons problem in the practice system. The student assembles the solution to the
question (written at the bottom) by dragging lines of code to the right side

@ Springer

International Journal of Artificial Intelligence in Education

student needed for the best exercise grade was 5520, using the practice system was
genuinely voluntary. The required minimum number of the examples and problems
to receive those extra points was also much lower than the number of examples and
problems available in the practice system (see “Practice Content”). Doing more than
the required minimum was not incentivized by the awarding of any additional points.

A student could practice with the system up until the end of the semester, and at
that point was given one week to respond to an online example evaluation survey
(described in “Example Evaluation Survey”) and take the online post-test, which was
isomorphic to the pre-test. Completion of the pre-test, post-test, and survey was vol-
untary, too. Therefore, to increase students’ participation, the pre-test was included
in the first assignment, and students were offered a total of 4 extra final exam points
for answering the post-test and the survey (2 points for each). The maximum number
of exam points a student could achieve without those extra points was 96.

Materials
Practice Content

Practice content in the system included 52 example activities and 31 2D Parsons
problems (Thantola and Karavirta 2011). In this type of problem, the student was
asked to construct the described program by putting the fragments in the correct order
with the correct indentation (see Fig. 6). Feedback was shown upon student’s request,
which highlighted the correct and incorrect lines in the code.

Problem presentation was the same across the Control and Experimental groups,
but examples were presented differently. In the Control group, examples were pre-
sented as textbook-style worked examples (as in Fig. 4), while in the Experimental
group, examples were presented as PCEX activities (as in Figs. 1 and 2).

All practice content was organized into 15 topics that were ordered by increasing
difficulty and presented through the Mastery Grids portal (Loboda et al. 2014) that
used visual personal progress tracking (known as Open Student Modeling (OSM))
to engage students to work with the content. Each example activity started with a
worked example and was followed by one to three similar examples (in the Control
group) or challenges (in the Experimental group), and the median was one (1). In
total, the example activities included 52 worked examples, collectively containing
531 line explanations, and 71 similar examples/challenges, which were presented
after the worked examples in the Control/Experimental group.

Pre- and Post-Tests

The pre-test consisted of 10 questions that evaluated a student’s prior knowledge of
a subset of programming constructs that were covered in the course. The questions
were designed to cover both simple and complex concepts in Python program-
ming. The first five questions were multiple-choice questions that asked students
to select the correct code snippet for each given task. The remaining five questions
asked students to determine the correct order of the provided lines of code, in order
to achieve a certain purpose. The lines were shuffled and included distractors. A

@ Springer

International Journal of Artificial Intelligence in Education

post-test was isomorphic to the pre-test, employing the same concepts but using
different surface features. Cronbach’s « between pre-test and post-test was .58 (indi-
cating acceptable reliability). The maximum possible score on the pre/post-test was
10; one point was awarded for each question.

Metrics

We employed a variety of measures to compare the impact of the PCEX and textbook-
style program construction examples on student’s engagement and learning. Table 1
provides an overview of the metrics we used in our study. We grouped these into
engagement, performance, and learning metrics.

Engagement Metrics

Behavioral engagement metrics focused on 1) work done on the examples and prob-
lems, and 2) overall system usage. The specific measures include the number of
attempts, as well as the time on task for both examples and problems.

Each example activity consisted of subtasks that were similar code examples pre-
sented in different formats, depending on the group. In the Experimental group,
the first subtask was a worked example and the next-to-last subtask was a chal-
lenge. In the Control group, all subtasks were worked examples presented in a static,
textbook-style form. To measure the amount of work done on examples, we looked
at the student’s work on the first and next-to-last subtasks individually. Therefore,
the collected data included the following measures for representing the work done
on examples: number of first subtasks viewed, total time on first subtasks, number
of next-to-last subtasks viewed, total time on next-to-last subtasks, and interactions
with explanations. In the Control group, interactions with explanations indicated the
number of times the student switched between modes with and without explanations.
In the Experimental group, on the other hand, the interactions with explanations indi-
cated the number of times the student clicked on the question mark symbol next to a
line to view the explanation.

The data also included several measures related to overall system usage such as
total time spent on the practice system, total attempts on activities, and number of
sessions that the student practiced with the system.

Performance Metrics

We looked into coding performance within and outside of the practice system. The
total correct attempts on Parsons problems and the number of distinct Parsons prob-
lems solved were measures of coding performance within the practice system. The
measures of coding performance outside of the practice system included the total
number of points that the student earned from coding assignments in the class and
how early students submitted their coding assignments. It is not evident that earliness
in assignment submission could be used as a standard measure of student’s perfor-
mance, as it could be a sign of better motivation or preparation. However, the study
in Auvinen et al. (2018) has found some correlation between student’s performance

@ Springer

International Journal of Artificial Intelligence in Education

Table 1 Overview of the metrics used to evaluate the PCEX examples

Aspect Goal Metric

Engagement Work on examples Number of first subtasks viewed

Total time on first subtasks
Number of next-to-last subtasks viewed
Total time on next-to-last subtasks
Interactions with explanations

‘Work on problems Total correct attempts on Parsons problems
Distinct Parsons problems solved
Total time on Parsons problems

Overall system usage Total practice time
Total attempts on activities

Number of practice sessions

Performance Inside-system Total correct attempts on Parsons problems
problem-solving performance Distinct Parsons problems solved
Outside-system Assignment points
problem-solving performance Early submission

Learning Near transfer Pre- and post-test
Far transfer Final exam

e program comprehension questions
e program construction questions

(basic, complex)

and how early a student submits the assignment. As a result, we thought it would be
interesting to see the impact of work on examples on early submission.

The assignment points were obtained from nine rounds of coding exercises during
the course, producing a total with a minimum of 0 and maximum of 5,820 points.
Each assignment could be completed during a certain time window during the term.
Sometimes students spent a large amount of time completing the assignment and
other times they were quicker (apparently better prepared from prior instruction). As
a proxy measure for the degree of students’ preparation, enabling them to complete
their assignment sooner, we calculated the inverse of the median number of days that
assignment was submitted after the assignment had been introduced.!

Learning Metrics
We measured student’s learning by using the pre- and post-test (near transfer mea-

sure) and final exam score (far transfer measure). The final exam consisted of
questions that assessed program comprehension and program construction skills. The

I'We chose start date over due date as the time reference because some students submitted assignments
after the due date was passed. Therefore, using the difference between the due date and the submission
date would have made the interpretation of results more difficult, as some differences would be negative.

@ Springer

International Journal of Artificial Intelligence in Education

program construction questions were further grouped into two basic questions and
one complex question. The first basic question asked about basic concepts in the
course. The second basic question asked the student to complete a relatively simple
task: writing a simple class and a main program that used that class. The complex
question required a deeper understanding of loops, opening files, splitting strings,
and exception handling, and was more difficult than the basic questions. We sepa-
rated the grades for each group of exam questions. The maximum number of points
that students could obtain was 21 on the program comprehension questions, 55 on the
basic program construction questions, and 20 on the complex program question. The
Cronbach’s « between the three subcomponents in the exam was .67, which indicated
an acceptable level of reliability.

Example Evaluation Survey

To collect students’ feedback on the example activities, we administered a two-part
survey related to system use and system impact. In the first part of the survey, students
responded to questions about the amount of system use: Yes-more than 10 times;
Yes-between 5 and 10 times; Yes-less than 5 times; and No. Those who chose one
of the last two options were asked to provide their opinion on six follow-up items
that focused on why the system was not used. Two of the items referred to a bad
system experience, two emphasized no help needed, and two addressed other reasons,
especially a poor introduction to the system and a lack of time to use the system. For
this section of the survey and all questions in the second part of the survey, students
were asked to respond using a 5-point Likert scale ranging from Strongly Disagree
(1) to Strongly Agree (5).

The second part of the survey aimed to evaluate the impact of the example activ-
ities, focusing on only students who used the system. Following the suggestion in
Kay and Knaack (2009) that identified key constructs required to evaluate a learn-
ing objective, we included three constructs: learning, quality, and engagement. Each
construct had four items, with two negatively worded and two positively worded. For
the learning construct, the items referred to a student’s perception of how much they
learned from the examples. For the quality construct, the items referred to the quality
of the example activities. Finally, for the engagement construct, the items examined
the level of student’s involvement in the example activities.

Results
Students’ Participation and Collected Data

Out of the 723 students enrolled in the class, only 202 used the system (i.e., had at
least one attempt on an example or problem), 696 took the pre-test, 457 took the post-
test, 447 took both the pre-test and post-test, and 456 answered the questionnaire.
Among the students who used the system, 6 students had an extremely high pre-test
score (i.e., 90 percent or above). We discarded the data of those 6 students since
they had little to learn and were likely only participating for extra credit. The final

@ Springer

International Journal of Artificial Intelligence in Education

dataset included the data from 196 students: 118 students in the Control group and
78 students in the Experimental group. We used this data to perform our analysis of
engagement and performance.

According to the learning gain data, we observed that some students had negative
learning gains (minimum value was —.5), which likely reflects that a few students
did not take the post-test seriously. More precisely, among 196 students who used the
system, 49 earned fewer points in the post-test than in the pre-test, of which 32 were
in the Control group and 17 were in the Experimental group. For only the learning
analysis section, we excluded the group of students who had negative learning gains.?
After discarding these students, we were left with data on 147 students (86 in the
Control group, 61 in the Experimental) for the learning analysis. Note that there were
no significant differences in the mean pre-test scores of both the Experimental (M =
3.5,8D = 1.8) and Control group (M = 3.2,SD = 1.5), F(1,116.08) = .77,
p =0.38.

Prior to data analysis, we identified outliers in the collected data by using Tukey’s
box-plot method, which defines outliers as being outside the interval [Q1 — 1.5 x
IQR, Q03 + 1.5 x IQR], where Q stands for “quartile” and QR stands for
“interquartile range”. We used winsorization to replace the outliers with less extreme
values in the same direction (i.e., Q1 — 1.5 x IQR or Q3+ 1.5 x IQR).

Finally, we examined the collected data to remove highly correlated measures.
We observed that two of the measures related to the overall system usage, namely,
total practice time and total attempts on activities, were highly correlated with each
other (p = 0.83). Also, both measures were found to be highly correlated with the
number of first subtasks viewed, and p was .80 for the total practice time and .99
for the total attempts on activities. As a result, we chose to use only the number of
sessions as a measure of overall system usage. Similarly, the total correct attempts
on Parsons problems was highly correlated with distinct Parsons problems solved
(p = 0.99); therefore, we excluded the total number of Parsons problems solved
from our analysis.

The following “Engagement Analysis”, “Performance Analysis” and “Learning
Analysis” present the results from the data analyses. Table 2 summarizes our main
results by showing the hypotheses of classroom study (described in “Hypotheses™),
the corresponding data analyses, and whether the hypotheses were confirmed by the
data analyses. See the corresponding subsections for further details.

Engagement Analysis

Our first hypothesis (H 1) was that PCEX would cause students to be more actively
involved in PCEX worked examples than in the textbook-style worked examples.
To test hypothesis H 1, we used a one-way ANOVA analysis to compare the group
means; for statistically significant cases, effect sizes using eta-squared (%) are pre-
sented in (Table 3). The metrics in Table 3 are ordered with a decreasing order of
effect size. We used Cohen’s rules of thumb for interpreting this data, with an effect

2Using all students’ data showed the same pattern of results for this analysis.

@ Springer

International Journal of Artificial Intelligence in Education

X Vs uonoONNSu0d 9pod Xo[dwiod :urexd

X X UOTIONIISUOD 9POD JISe(q [WELXd

X X uorsuaya1duod opod Wexd Surures] :sojdwrexa

Vs X 1s9)-150d SIsA[euy Sururea,, 9[A1S-00qIX9) 'SA XHDd — €H

Vs Vs uorssruqns A[1ea

X Vs sjutod juowugisse Surajos-wdrqoid :sojdwrexa

X X paajos swafqoid suosied IsIp (SISA[eUY 90UBULIOLIYJ,, 9[A15-00q1%9) "sa XHDd — ¢H
V/N X suoneue[dXd YIIMm SUOTJORIUIT JuowaFesus :sojdwexa
V/N Vs ySe}-uo-auwn . SIsA[euy Juowadesuy,, 9[K)s-00qI%9) “SA XADd — TH

199JJ9 UONORIANU 199139 dnoin

({pauLIJuod sasaylodAH

({pawITjuod sasaylodAg

SAINSLIN

sasATeue Bleq

sasaypodAH

(pauwiyuod jou st ey sisayrodAy :x (s1sayrodAy pauLIjuod : A) Apnis WOOISSBIO Ay JO SINSAI pue sasaylodAy Jo Arewwng g ajqe)

pringer

AQs

International Journal of Artificial Intelligence in Education

93Ie[="7 ‘WINIpoW=Jy ‘[[eWS=S :9ZIS }09IH

'>d g0 >d, 0 > d,, 700 > d

el =d 67T = (9S9LI ‘DA S9TF 69T Y'6T FOTE ('surw) swd[qoId suosIed UO ouIn) [EIQ],
€1 =d ‘95T = (28891 ‘1A SITF €T 61T F Sl PaA[0S swoa[qod suosIed JounSI(T
SIWATEIOYd NO I0OM
5 €0° 1100 =4 €99 = (¥61 ‘DA I'vYFIS 0EFS8E SUOISSas JO ToquInN
AOVSN WALSAS TIVIFAO
S0 LSO =d 99°¢ = (9G'8LI ‘DA 0T F SHC TLTFITIE PIMAIA SYSBIQNS ISB[-0)-1XOUH
S0 "€L0=dyre=(61'LLL DA 691 F 061 681 F9°€C POMAIA SYSBIqNS ISIIH
90 «+100" = d ‘¥S01L = (6L'¥¥1 ‘1) €TFIE 61TFIT (‘surwr) sy[seiqns ISI1j UO AWM [eI0],
W 60 w100 > d “pL8T = (81491 ‘D 0vZF 671 6'€CF00€ suoneue[dxd PIM SUONORIANU]
16T wx100" > d 1619 = (TI'€01 ‘DA S'6CF L9 61T F€8 ('surur) syseiqns 1se[-01-1XaU UO AU 107,
SATdNVXE NO YJ0M

ds F uesy ds F uesy

(L) °z1s 19539 VAONYV Aem-auQ (8L=N) Teyuourtradxy (811=N) [onu0)

sdnoi3 oy Sunsenuod ‘sazIs 109Jj0 pue SONSTE)S [ENUAIAJUT JIM Fuofe ‘sdnois [ejuswredxy pue [01UO0D) S UT SOINAW JuawaSeIus 107 (IS Pue) SUBdN € 3|qel

pringer

Qs

International Journal of Artificial Intelligence in Education

size of 0.02 being considered “small” in magnitude, 0.06 being “medium”, and 0.14
being “large”.

We can see that among all the measures, the ones that are related to the worked
examples display the largest differences between the two groups. The largest effect
comes from working on the next-to-last subtasks. The mean of total time spent on
the next-to-last subtasks was 4 times greater in the Experimental group, as compared
to the Control group (36.7 vs. 8.3 mins.). This is expected because the next-to-last
subtasks in the Experimental group required the student to solve the challenge, while
the next-to-last subtasks in the Control group did not. The second largest effect was
seen for working on the first subtasks. The total amount of time that students spent on
the first subtasks was about 1.5 times greater in the Experimental group (3.1 minutes)
than in the Control group (2.1 minutes).

We also observed that students had more interactions with explanations in the
Control group than in the Experimental group. On average, the students in the Control
group clicked on the show/hide explanations links 30 times, which was twice as high
as in the Experimental group (14.9 times). We also found differences between the two
groups in terms of the number of first subtasks and next-to-last subtasks that students
viewed. Students in the Control group viewed, on average, more first subtasks and
next-to-last subtasks; yet the differences reached only marginal significance and the
effect size was small.

In addition to the differences between usage of activities, we also observed that
the two groups were different in terms of number of practice sessions. The mean
number of sessions differed by one across the two groups, with the Experimental
group having more sessions (M = 5.1, SD = 4.1) than the Control group (M =
3.8, SD = 3). However, both the number of Parsons problems solved and the time
spent on Parsons problems were not statistically different between the two groups.

In total, the ANOVA analyses of cognitive-behavioral engagement data partially
supported hypothesis H 1, favoring greater time-on-task but not more interactions
with explanations. While students in the Control group viewed marginally more
examples, they spent less time on the example subtasks. Students in the Experimen-
tal group, on the other hand, spent more time working with examples — about 1.5
more time on the first subtasks and 4 times more time on the next-to-last subtasks.
The increase on time-on-task can be attributed to students becoming more involved
when working with the PCEX examples than when working with the textbook-style
worked examples.

Contrary to our hypothesis for greater interactions with the PCEX examples,
we found that the Control group students used the “show/hide explanation™ but-
ton more frequently than the Experimental group students clicked on example lines
to view explanations. This difference, however, could be due to the way in which
the explanations were presented in the textbook-style worked examples and PCEX
examples. As mentioned earlier in “Control Condition Interface: Textbook-Style
Worked Examples”, explanations were shown by default in the textbook-style exam-
ples, to make the presentation of the worked examples similar to the programming
textbooks. On the other hand, explanations were only available by taking action in the
PCEX examples. Therefore, we hypothesize that the students viewing the textbook-
style examples were influenced by needing a greater number of clicks to hide the

@ Springer

International Journal of Artificial Intelligence in Education

explanations compared to viewing the code alone, similar to the way in which it was
presented to the Experimental group. Our data supports this hypothesis by showing
that, on average, the median of clicks on the “hide explanation” button was twice that
of the median of clicks on the “show explanation” button in an example (0.2 vs. 0.1).

Performance Analysis

Our second hypothesis (H2) was that working with PCEX would improve student’s
performance on program construction tasks more than that of the textbook-style
worked examples. To test hypothesis H2, we ran a series of regression analyses—to
examine the effect of the group, the amount of work on examples, and the interaction
between the group and the amount of work on examples—for the student’s coding
performance, while controlling for prior learning, as indicated by the pre-test. That
is, the independent variables were:

o Group: a dummy variable representing the group that student belonged to, with
the Control group serving as the reference group factor;

o WOE: Work On Examples (WOE) is a continuous variable representing the
combined work on the first subtasks and next-to-last subtasks in the example
activities;

Pre-test: a continuous variable representing the student’s pre-test score; and

The Group x WOE interaction: Group x WOE is the interaction between Group
and WOE variables. This interaction means that the effect of Group on the perfor-
mance measure is different for different values of work on examples. For example,
a positive value for the effect of the interaction term would imply that the more
work is done on examples, the more positive becomes the effect of the Experimen-
tal group on student’s performance. All numeric independent variables (Pre-test
and WOE) were mean-centered to reduce potential multicollinearity problems
(Aiken et al. 1991).

The dependent variables were measures of coding performance, including:

o Distinct Parsons problems that the student solved;
o Total points that the student earned in the coding assignments; and
o Earliness of the student’s submissions in the coding assignments.

The data that was used in the performance analysis was limited to the 194 students
who used the system and who had taken the pre-test. Table 4 shows the results of the
fitted models. The results revealed that WOE and Pre-test were positive predictors of
distinct Parsons problems that student solved (F(4, 189) = 217.2, p < .001, R? =
.82). Importantly, the effect of WOE on predicting distinct Parsons problems solved
(B = .88) was about 14.7 times larger than the effect of the pre-test score (8 = .06).
We found no significant influence of the Group (p = .371) or the Group x WOE
interaction (p = .299). This indicates that working on examples was associated with
solving more Parsons problems correctly, regardless of the treatment group.

Group, WOE, and Pre-test were found to be predictors of assignments points,
(F(4,189) = 5.54, p < .001, R? = .10), since all were positively associated with
assignment points. Among them, Group was the most influential (8 = .28) and

@ Springer

International Journal of Artificial Intelligence in Education

['>d g0 > d, 00 > d, 100" > gy

s 6 100’ #00’ 60— €v'e S0C— LO® 0 [} HOM x dnoip

wex 6T 10 o 8T €LOY L1°SOT 90" 1z 8¢ 1891-014

00— 00’ 00’ wox 9T 00T LO9 s 88 10 €T HOM

w7 sox 6€ i el or 8T 8L9¥1 16°062 <3 90 vL LY dnoip
A g as q N d s q A g s q SI0)01paI]

uorsstuqns A[reg

syutod sjuowrugIssy

paatos swa[qoid suosied IsIq

Sunorpaid ‘(FOM x dnoin) dnoid yum

syuowugIsse SUIpod Jo UOISSTUIqNS JO SSAUT[IRd pue ‘sjurod JuowuIIsse ‘poA[os swa[qoid suosred Jounsip
so[dwexa Uo YIOoM JO JUNOWE JO UONORIAUI AY) puk ‘(FOM) so[durexs uo yIom Jo junowe ‘dnoin Jo s)Nsal uolssaIoy ¢ djqel

pringer

AQs

International Journal of Artificial Intelligence in Education

WOE was the second most influential predictor (8 = .26). We found no significant
effect for Group x WOE interaction (p = .551). These results suggest that although
work on examples was generally helpful for getting more points in the coding assign-
ments, it was overall more helpful to be in the Experimental group and practice with
engaging examples.

The results of the regression analyses also showed that although WOE was not a
significant overall predictor of earliness of submission (p = .82), Group and Group
x WOE interaction were a predictor of early submission (Fig. 7). As the interaction
plot shows, more activity with examples was associated with submitting assignments
earlier in only the Experimental group. Furthermore, the interaction was found to be
the most important predictor for earliness of submission (8 = .59), with its effect
being about two times greater than the effect of the pre-test score (8 = 0.29).

In total, the multiple regression analyses supported hypothesis H2 for coding
performance outside of the practice system, but not within the practice system.
We found an overall positive effect in favor of the Experimental group on assign-
ment points and earliness of submission. Being in the Experimental group and
practicing with PCEX examples was associated with obtaining more points on
coding assignments and also with submitting the assignments earlier. Further-
more, the interaction effect of the work with examples and the treatment group
on earliness of submission was significant, which indicates that only more work
on PCEX examples (and not textbook-style worked examples) led to earlier sub-
mission of assignments. Our analysis did not show any difference between the
treatment groups in terms of performance within the practice system, though.
More work with examples was associated with solving more Parsons problems,
regardless of the treatment group; that is, textbook-style worked examples and
PCEX examples were both helpful for improving student’s performance on Parsons
problems.

a

Q Group

C

£ 1.001

5 — Control

c — Experimental
2 0.751

[%)]

R

5

S 0.501

(7]

.

o

8

3 0.251

©

>

3 0.001

Q

B r r r . T r
a -50 -25 0 25 50 75

Work on Examples (centered)

Fig. 7 Interaction between work on examples (WOE) and Group factor (Control/Experimental) for pre-
dicting the earliness of submissions for coding assignments. Notches indicate 95% confidence interval
ranges

@ Springer

International Journal of Artificial Intelligence in Education

Learning Analysis

Our third hypothesis (H3) was that working with PCEX would improve learn-
ing outcomes more than working with the textbook-style worked examples. To
test hypothesis H3, multiple regression analyses were performed to check the
effect of the work on examples, the group, and the interaction between the work
on examples and group on the post-test score and exam grade. The independent
variables in all the regression models were similar to the independent variables
in “Performance Analysis”.

For predicting the post-test score, we used data of 194 students who used the
system and who had taken the pre-test. For predicting the exam grade, this data was
further limited to the 170 students who had taken the final exam. Table 5 shows the
results of the regression model that tested the effect of Group, WOE, and Group x
WOE interaction on the post-test score, controlling for the effect of the pre-test score.
As expected, Pre-test was the most important predictor of students’ post-test scores
(B = .42). Neither Group (p = .128) nor WOE (p = .677) were accurate predictors
of post-test scores, but Group x WOE was (B = .29); this finding suggests that the
effect of the group depended on the amount of work on example (Fig. 8). As the
figure shows, work with examples in the Experimental group increased the student’s
post-test scores more than work with examples in the Control group.

The results of the fitted models for predicting the exam grade are shown in Table 6.
As the table shows, WOE positively predicts exam grade across all categories of
questions; namely, program comprehension (F (4, 165) = 3.98, p = .004, R> =
.09), basic program construction (F(4,165) = 2.56, p = .04, R? = .06), and
complex program construction (F(4, 165) = 3.07, p = .018, R? = .07). Also, the
Group factor is a significant predictor for the exam grade on the complex question.
The interaction Group x WOE is not statistically significant for any exam category.
For the complex program construction questions, Group (8 = .28) and WOE (8 =
.23) are the first and second most important predictors, respectively, and the effect of
each was about two times greater than the effect of the Pre-test (8 = .12).

In total, the multiple regression analyses of the learning outcomes supports
hypothesis H3, which demonstrates a significant positive interaction between work
with examples and treatment group on post-test (near transfer test) and a marginally
positive effect of the treatment group on the complex program construction ques-
tion in the final exam (far transfer test). More specifically, more work with only the
PCEX examples (and not the textbook-style worked examples) was associated with a
higher post-test score. Additionally, being in the Experimental group and practicing

Table 5 Regression results of
predicted post-test score while Predictors B SE B R?
controlling for the pre-test score

Group 32 21 22 22
WOE .0 .0 .04

Pre-test .35 .06 A2

Group x WOE .01 .0 .29%

#Ep < .001;%*p < .01;.p < .1

@ Springer

International Journal of Artificial Intelligence in Education

Group
10
— Control

— Experimental

Predicted values of post-test
[oe]

-50 -25 0 25 50 75
Work on Examples (centered)

Fig. 8 Interaction between work on examples (WOE) and Group factor (Control/Experimental) for
predicting the post-test score. Notches indicate 95% confidence interval ranges

with PCEX examples was marginally associated with obtaining a higher grade in the
complex program construction question of the final exam. We found no differences
between the PCEX and textbook-style worked examples on other questions in the
final exam. Work with examples in both groups was found to be positively associ-
ated with obtaining a higher grade in the program comprehension questions and basic
program construction questions of the final exam.

Survey Analysis

Before analyzing the survey group differences, we assessed each construct’s reliabil-
ity using Cronbach’s «. We dropped two items from the engagement construct and

Table 6 Regression results of group, amount of work on examples (WOE), and the interaction of amount
of work on examples with group predicting exam grade on the program comprehension and construction
questions

Program Construction

Program Comprehension Basic Complex
Predictors B SE B R? B SE B R> B SE B R?
Group —.66 75 —.13 .09 1.03 1.68 .09 06 122 66 .28. .07
WOE 02 .01 .20* 06 .02 23* .02 .01 .23%
Pre-test 43 21 .16* 94 47 15* 31 A8 .12,
Group x WOE .01 .02 .10 —-04 04 -—.15 -01 .02 -.12

*p<.05.p<.1

@ Springer

International Journal of Artificial Intelligence in Education

one item from the quality construct because their item-construct correlations were
lower than the recommended value of .30. Additionally, we checked whether the
internal consistency could improve if any of the items within a construct were deleted.
We discarded one item in the quality construct because the removal of that item
increased the internal consistency among the items of the construct and improved
the o from .7 to .73. No item was discarded from the learning and engagement con-
struct, as all items had acceptable internal consistency with the other items within
that construct. The o was .74 for the learning construct and .7 for the engagement
construct. After this step, all three constructs appeared to be sufficiently reliable for
assessing the value of the examples, with « values exceeding the suggested minimum
acceptable « coefficient of .50 (Nunnally 1978).

The survey was available for all students who enrolled in the course. As mentioned
in “Example Evaluation Survey”, only students who used the system were able to
respond to the second part of the survey that sought to evaluate the examples. Out of
the 456 students who completed the survey, 15% (N = 67) used the system more
than 10 times, 14% (N = 62) used the system between 5 and 10 times, 26% (N =
120) used the system less than 5 times, and 45% (N = 207) did not use the system
at all. The mean and standard deviation for the survey items (except the items that
were discarded during the reliability analysis) are shown in Table 7. Overall, students
mostly agreed that they did not use the system due to preferring other resources
and materials, not feeling the need for additional help, and a lack of time. Students
disagreed with items that suggested other reasons for low/zero usage of the practice
system, including the items that referred to having a bad system experience.

Overall, about 60% of the students agreed with each of the items in the quality
construct, while less than half of the students agreed with each of the items related to
the learning construct (the agreement level ranged from 30% to 45%). Overall agree-
ment with each of the items in the engagement construct was low (below 30%). As a
result, many students did not perceive the examples to be engaging. In both groups,
students were most positive about the quality of examples and the least positive about
overall engagement with the examples. The Kruskal-Wallis test showed no signifi-
cant differences in the the mean ratings of the study groups in the quality construct
(x2(1) = .67, p = 41), learning construct (x%(1) = .26, p = .61), or the engage-
ment construct (Xz(l) = .32, p = .57). The pattern of results did not change when
we excluded data of students who used the system fewer than 10 times or fewer than
5 times.

Summary and Discussion

Summary

This work describes the classroom study that was conducted to address RQ1, RQ2,
and RQ3 (described in “Introduction”), in order to measure the effect of PCEX
examples on student’s engagement, problem-solving performance, and learning, as

compared to non-interactive textbook-style examples. This section summarizes and
discusses our findings from the study.

@ Springer

International Journal of Artificial Intelligence in Education

Table 7 Mean and standard deviation of the responses for the classroom study survey. The response
options represented a 5-point Likert scale, ranging from 1 (Strongly Disagree) to 5 (Strongly Agree)

Ttem Mean (SD)

REASONS FOR LOW/ZERO USAGE

I preferred to use other resources and material to learn Python 4.0 (0.9)
I was doing well in class without the system and did not need any extra help 3.9(1.0)
1 did not have enough time to use the system 3.4 (1.1)
The system was not introduced properly in class 3.0 (1.0)
I didn’t think the system can help me to better master Python 3.0(0.9)
The user interface was too confusing to use 2.9 (0.8)
EXAMPLE EVALUATION
Quality
The explanations in the examples were easy to follow 3.6 (0.8)
The explanations in the examples were not hard to understand® 3.5(0.9)
Learning
The explanations in the examples helped me to 3.3(0.8)
better understand the Python programming concepts®
Working with the examples helped me learn Python 3.3(0.8)
Exploring similar examples helped me learn Python 3.2(0.7)
The examples helped me in solving Python exercises in this class® 3.0 (0.9)
Engagement
I tried hard to understand the examples 2.9 (1.0)
I did not skim-read the examples® 2.6 (1.0)

2A reverse-coded item

Overall Effects on Engagement

Students were more engaged in the work with PCEX than with the textbook-style
worked examples. The largest effect comes from the work on the next-to-last sub-
tasks. The mean of total time spent on the next-to-last subtasks was 4 times greater
in the Experimental group compared to the Control group. The second largest effect
was for the work on the first subtasks. The total time that a student spent on the
first subtasks was about 1.5 times higher in the Experimental group than in the
Control group. We also observed that the mean interaction with explanations was
low in both groups, which suggests that the interactivity element implemented in
the first subtasks in the Experimental group was not as engaging as that in the
next-to-last subtasks (i.e., challenges). We also observed that students in Experi-
mental group had, on average, more practice sessions. Although the effect size was
small, it suggests that students in the Experimental group were more interested in
returning to the system for practice. We could attribute this to PCEX, since the
only difference between the groups was in how examples were presented in the
system.

@ Springer

International Journal of Artificial Intelligence in Education

Overall Effects on Problem-Solving Performance

We found that working on examples and having higher pre-test scores were associ-
ated with solving more Parsons problems correctly, regardless of the treatment group.
Among these two predictors, the effect of the work on examples on predicting distinct
Parsons problems solved was about 14.7 times larger than the effect of the pre-test
score. We also found that work on examples, group, and pre-test were all positive pre-
dictors of assignment points. Notably, group and work on examples were found to be
the most influential predictors, with higher predictive power than the pre-test scores.
We also found that the effect of the group on earliness of submission depended on
the amount of work on examples. More work on the examples in the Experimental
group was associated with submitting assignments earlier. Furthermore, the interac-
tion was found to be the most important predictor for the earliness of submission; its
effect was about two times greater than that of the pre-test score.

Overall Effects on Learning Outcomes

For predicting post-test scores, as expected, pre-test scores had the most predic-
tive power. Yet, we observed that work with examples in the Experimental group
increased the students’ post-test scores more than the work with examples in the
Control group. This difference increased as the amount of work increased in the
Experimental group. Furthermore, work on both examples and pre-test positively pre-
dicted exam grade across all categories of questions. Work on examples became a
more important predictor than pre-test scores as our analysis moved from program
comprehension to basic program construction and then to complex program construc-
tion questions in the exam. For the complex program construction questions, group
was also a positive predictor, and the effect of the group and work on examples was
about two times greater than that of the pre-test scores.

Past research on engagement (Skinner et al. 2009; Christenson et al. 2012; Reeve
2013; Reeve and Tseng 2011) hints that the observed increase in learning outcomes
is caused by both a higher level of cognitive engagement with the new examples
(which was our design goal) and a considerably higher level of behavioral engage-
ment (which was directly observed). Our study does not differentiate between these
two factors. However, even if the larger share of performance increase was caused
by the observed behavioral engagement increase (i.e., time and efforts on task), it is
still a highly desired and important outcome in our explored context: the work with
voluntary content. In the context of modern e-learning, more and more learning con-
tent is released to the students in a voluntary form; i.e., the students are encouraged,
but not required, to work with such content and no grade points are offered for doing
so. Moreover, a considerable fraction of modern interactive content (simulations, ani-
mations, worked examples) are not designed to assess student’s performance and are
difficult to grade objectively. In this context, not the effectiveness, but the simple
amount of work becomes the most critical factor in ensuring the impact of this con-
tent on student’s learning. While novel types of content, such as animated program
examples, are usually proven to be effective in lab studies where the use of this con-
tent is required, a number of classroom studies confirmed that this content has low

@ Springer

International Journal of Artificial Intelligence in Education

to zero usage when it is offered in a voluntary form (Naps et al. 2002). Thus, the
very increase of voluntary work with learning content when it is offered in a more
engaging and interactive form is an important desired outcome.

Students’ Feedback

Survey results showed that students were positive toward the quality of explana-
tion, almost neutral toward the helpfulness of the examples for learning, and did not
perceive examples to be engaging.

Discussion

Our learning technology tool, PCEX, was designed to replicate and expand (to
another domain) prior research on worked examples in the domains of math and sci-
ence (e.g., Atkinson et al. (2000), Chi et al. (1989), and Sweller and Cooper (1985)).
It was also designed to help students acquire program construction skills by present-
ing examples in an engaging fashion. Our findings from the classroom study support
the positive impact of PCEX examples on student’s engagement, problem-solving
performance, and learning. Our findings reconfirm the results of previous work in
the domains of math and science (Atkinson and Renkl 2007) and program behaviour
examples (Hundhausen et al. 2002; Evans and Gibbons 2007; Naps 2005) which
showed that interactive worked examples help achieve better learning outcomes.
However, some aspects of our findings need to be discussed further:

First, while the measure of earliness of submission could be an indicator of
how students were prepared better or worse to submit the code, we also acknowl-
edge that submitting coding assignments earlier could have been due to better time
management skills or other factors related to a student’s self-regulation skills.

Second, on one hand, hypothesis H 1 states that engaging examples increase stu-
dent’s engagement (e.g., time on task) while working with the examples. On the other
hand, Hypotheses H2 and H3 state that engaging examples lead to better perfor-
mance in coding and learning outcomes, respectively. We acknowledge that H2 and
H3 are likely results of H1. In general, time on task is positively correlated with
learning and better performance, but the main challenge is how to get the student
motivated to spend more time. The use of engaging examples, which we proposed
in this work, is a solution to this challenge. Our results showed that students spent
more time on the PCEX examples because they were engaged more and, as a result,
learned more and obtained better problem-solving performance.

Third, we observed from the survey responses that students in both groups were
neutral toward learning from examples and had a negative opinion about being
engaged by the examples. These observations contradict what we have found from
our engagement, learning, and performance analyses, because results showed that
PCEX examples involved students in working more with examples; thus, increasing
the time spent on task. In a similar fashion, work with PCEX examples improved
both student’s learning and coding skills.

The difference in the quantitative and survey analysis implies that, first, PCEX
examples engaged students and improved their learning — but students did not

@ Springer

International Journal of Artificial Intelligence in Education

realize that they were engaged and improving their skills. Second, lower ratings might
mean that students had higher expectations for the learning tool in the context of our
study. Third, it might be that students perceived engagement items in the survey dif-
ferently than we expected they would. Another reason might be that when students
were questioned about how engaging the PCEX examples were (survey), they were
comparing it to game apps they play, but when they began to study programming,
their actual engagement with the system (log-based data) was reflecting how enthu-
siastic they felt about interactive PCEX examples, as compared to studying a flat,
static book (or the tutoring equivalent of a flat, static book).

Finally, we acknowledge that there is a blurred line between PCEX examples and
problems due to the dual nature of “engaging” features within tutoring systems. In
general, any engagement asking for additional student’s action will cause the stu-
dent to move from examples to problem-solving. Yet, we find examples to be a more
appropriate category for our developed learning tool rather than problems, because
the “engaging” features that we are using in the PCEX examples have been used in
previous learning tools that are known as examples. In particular, in the domain of
CS education, animated examples engage the student by asking a question or allow-
ing the student to change the input used by the example. Other aspects that shaped
our study include similarities to previous example research in the domains of math
and science, such as missing steps that the student has to fill in, or self-explanation
prompts that the student has to answer.

Limitations and Future Work

This work can be extended in several ways. The first direction for future work would
be to improve the PCEX interface features, while the second direction for future
work would be to extend the study conducted in this work that assessed the impact
of the examples. The last direction for future work would be to share the PCEX
examples with a broader audience, as well as to conduct more studies that connect our
work with previous work on program behavior examples. The following subsections
discuss these and other directions for future work.

Example Design

In the current design, PCEX combines explorability and challenge in the same inter-
face, which makes it impossible to separately assess the value of explorability and
challenges. In the future, it would be good to conduct a study to evaluate the com-
bined and separate impact of explorability and challenge in the PCEX activities. Also,
the interface of worked examples does not have any features to highlight which con-
cepts or code segments are important to be studied for each block of program code.
This is not an issue for small program coding, but the student may easily get lost
when the program code has many lines of code. Future work may explore possible
ways to emphasize important code segments or motivate the student to think more
deeply about the code. One approach would be to use self-explanation prompts in the
worked examples. Future research should study how and when to present the self-
explanation prompts to enhance learning from examples. Finally, our studies showed

@ Springer

International Journal of Artificial Intelligence in Education

that students rarely accessed available hints and explanations, and that it was not
clear why these features were not used extensively. Thus, future research needs to run
more usability studies for understanding how to improve the design of these features.

The Study Assessing Examples

First, the usage of the practice system was voluntary and, as a result, many of the stu-
dents did not use the system. For example, only 200 (28%) students used the system
in the classroom study. It’s not clear how this bias affected this group of students.
This limitation stems from the voluntary nature of practice, which might appeal to
certain types of students. Although self-selection limits us from having a reliable,
fully controlled study, it also helps us to conduct studies that are closer to the natu-
ral context of learning to program. Specifically, students who seek help for learning
to program have access to abundant resources for learning programming, including
online tutors such as the Python tutor, programming platforms such as CodeWork-
Out, CloudCoder, and CodingBat, and programming MOOCsSs and video tutorials that
are available on YouTube. The non-mandatory design of the classroom study in this
work enabled us to investigate the impact of the proposed learning tool in natural
context. Future work may investigate what happens when the system is offered in
a mandatory way to see if mandatory work within the practice system would have
positive effects on students who would not be using it otherwise.

Second, due to the loosely controlled nature of the classroom study, students may
have learned the skills that we controlled for by using resources outside the prac-
tice system. This is a factor that we can’t control for in our analyses. Future work
may investigate the impact of the system in a more controlled way, perhaps by dis-
tributing the practice across multiple lab sessions and assessing changes in student’s
knowledge both before and after each practice session.

Although the classroom study was conducted in a rather large course, it was
limited to a specific population. The target course in the study was presented as a
mandatory course for engineering students. The participants were mainly studying
electrical or civil engineering with a small number of students from other engi-
neering programs. For most students, except for electrical engineering students, this
was the only compulsory programming course in their curriculum. Our experience
has been that there is a considerable portion of such non-CS students who are not
highly motivated to learn to program, especially when compared with computer
science (CS) students. Thus, our results from the classroom study may not general-
ize well for CS major students elsewhere, but may better generalize for CS minors
or non-CS majors. Another limitation in the classroom study was that the Con-
trol and Experimental groups had different numbers of students using the system.
This is a limitation of our analysis and our results could have been influenced by
these groups having unmatched numbers. Therefore, a similar study should be con-
ducted in the future with CS majors to validate our observations in the classroom
study.

Future studies should also conduct individual interviews with students to under-
stand the possible reasons for reporting lower engagement in the survey, and also to
discuss options for enhancing engaging features in PCEX.

@ Springer

International Journal of Artificial Intelligence in Education

Other Directions

We plan to connect our work to previous work on program behavior tools. In par-
ticular, we plan to study the impact of integrating program behavior and program
construction learning activities when they are offered together in a practice system.
We also plan to build a repository of PCEX examples to make them available to the
public. Finally, we plan to develop an open-source authoring tool to allow instructors
and researchers to create and share their own PCEX examples.

References

Aiken, L.S., West, S.G., Reno, R.R. (1991). Multiple regression: Testing and interpreting interactions.
Sage.

Atkinson, R.K., & Renkl, A. (2007). Interactive example-based learning environments: Using interactive
elements to encourage effective processing of worked examples. Educational Psychology Review,
19(3), 375-386.

Atkinson, R.K., Derry, S.J., Renkl, A., Wortham, D. (2000). Learning from examples: Instruc-
tional principles from the worked examples research. Review of educational research, 70(2), 181—
214.

Auvinen, T., Hakulinen, L., Malmi, L. (2018). Increasing students’ awareness of their behavior in online
learning environments with visualizations and achievement badges. IEEE Transactions on Learning
Technologies, 8(3), 261-273.

Bathgate, M., & Schunn, C. (2017). The psychological characteristics of experiences that influence sci-
ence motivation and content knowledge. International Journal of Science Education, 39(17), 2402—
2432.

Bloom, S.B. (1956). Taxonomy of educational objectives, handbook I: The cognitive domain. New York:
David McKay Co Inc.

Brna, P. (1998). Searching for examples with a programming techniques editor. Journal of Computing and
Information Technology, 6(1), 13-26.

Brusilovsky, P. (1994). Explanatory visualization in an educational programming environment: connecting
examples with general knowledge. In: 4th international conference on human-computer interaction,
EWHCT’ 94, vol. 876 of Lecture Notes in Computer Science, pp. 202-212. Springer-Verlag.

Brusilovsky, P., & Yudelson, M.V. (2008). From webex to navex: Interactive access to annotated program
examples. Proceedings of the IEEE, 96(6), 990-999.

Brusilovsky, P., Yudelson, M., Hsiao, I.-H. (2009). Problem solving examples as first class objects in
educational digital libraries: Three obstacles to overcome. Journal of Educational Multimedia and
Hypermedia, 18(3), 267-288.

Byrne, M.D., Catrambone, R., Stasko, J.T. (1999). Evaluating animations as student aids in learning
computer algorithms. Computers & education, 33(4), 253-278.

Catrambone, R. (1998). The subgoal learning model: Creating better examples so that students can solve
novel problems. Journal of Experimental Psychology: General, 127(4), 355-376.

Chen, X., Mitrovic, A., Matthews, M. (2019a). Learning from worked examples, erroneous examples and
problem solving: Towards adaptive selection of learning activities. IEEE Transactions on Learning
Technologies, pages 1-1.

Chen, X., Mitrovic, A., Matthews, M. (2019b). Investigating the effect of agency on learning from worked
examples, erroneous examples and problem solving. International Journal of Artificial Intelligence in
Education.

Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., Glaser, R. (1989). Self-explanations: How students
study and use examples in learning to solve problems. Cognitive Science, 13(2), 145-182.

Christenson, S.L., Reschly, A.L., Wylie, C. (2012). Handbook of research on student engagement. Springer
Science & Business Media.

Cooper, S., Dann, W., Pausch, R. (2003). Teaching objects-first in introductory computer science. In: ACM
SIGCSE Bulletin, vol. 35, pp. 191-195. ACM.

@ Springer

International Journal of Artificial Intelligence in Education

Dann, W., Cosgrove, D., Slater, D., Culyba, D., Cooper, S. (2012). Mediated transfer: Alice 3 to java. In:
Proceedings of the 43rd ACM technical symposium on Computer Science Education, pp. 141-146.
ACM.

Davidovic, A., Warren, J., Trichina, E. (2003). Learning benefits of structural example-based adaptive
tutoring systems. IEEE Transactions on Education, 46(2), 241-251.

Ericson, B.J., Guzdial, M.J., Morrison, B.B. (2015). Analysis of interactive features designed to enhance
learning in an ebook. In: Proceedings of the 11th annual international conference on international
computing education research, pp. 169-178 ACM.

Ericson, B.J., Margulieux, L.E., Rick, J. (2017). Solving parsons problems versus fixing and writing code.
In: Proceedings of the 17th Koli calling conference on computing education research, pp. 20-29.
ACM.

Esteves, M., & Mendes, A. (2003). Oop-anim, a system to support learning of basic object oriented
programming concepts. In: Proceedings of compsystech’2003-international conference on computer
systems and technologies, Sofia. Bulgaria.

Evans, C., & Gibbons, N.J. (2007). The interactivity effect in multimedia learning. Computers &
Education, 49(4), 1147-1160.

Fabic, G.V.F, Mitrovic, A., Neshatian, K. (2019). Evaluation of parsons problems with menu-based
self-explanation prompts in a mobile python tutor. International Journal of Artificial Intelligence in
Education. ISSN 1560-4306.

Getao, K.W. (1990). An environment to support the use of program examples while learning to program in
lisp. In: Proceedings of the IFIP TC13 3rd international conference on human-computer interaction,
pp. 1015-1016. North-Holland Publishing Co.

Hansen, S.R., Narayanan, N.H., Schrimpsher, D. (2000). Helping learners visualize and comprehend
algorithms. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 2(1).

Harvey, B., & Monig, J. (2010). Bringing “no ceiling” to scratch: Can one language serve kids and
computer scientists. Proc Constructionism.

Hundhausen, C.D., Douglas, S.A., Stasko, J.T. (2002). A meta-study of algorithm visualization effective-
ness. Journal of Visual Languages & Computing, 13(3), 259-290.

Thantola, P., & Karavirta, V. (2011). Two-Dimensional Parson’s Puzzles: The Concept, Tools, and First
Observations. Journal of Information Technology Education: Innovations in Practice, 10, 1-14.
Kalyuga, S., Chandler, P, Sweller, J. (2000). Incorporating learner experience into the design of

multimedia instruction. Journal of Educational Psychology, 92(1), 126-136.

Kalyuga, S., Chandler, P., Tuovinen, J., Sweller, J. (2001). When problem solving is superior to studying
worked examples. Journal of Educational Psychology, 93(3), 579-588.

Kalyuga, S., Ayres, P, Chandler, P., Sweller, J. (2003). The expertise reversal effect. Educational
Psychologist, 38(1), 23-31.

Kay, R.H., & Knaack, L. (2009). Assessing learning, quality and engagement in learning objects:
The learning object evaluation scale for students (loes-s). Educational Technology Research and
Development, 57(2), 147-168.

Khandwala, K., & Guo, P.J. (2018). Codemotion: expanding the design space of learner interactions with
computer programming tutorial videos. In: Proceedings of the Fifth Annual ACM Conference on
Learning at Scale, pp. 57, 1-57, vol. 10.

Lawrence, A.W. (1993). Empirical studies of the value of algorithm animation in algorithm understanding.
PhD thesis: Georgia Institute of Technology.

Lieberman, H. (1987). An example-based environment for beginning programmers. In Artificial intelli-
gence and education (pp. 135-151). Norwood: Ablex Publishing.

Linn, MC., & Clancey, M.J. (1992). The case for case studies of programming problems. Communications
of the ACM, 35(3), 121-132.

Loboda, T., Guerra, J., Hosseini, R., Brusilovsky, P. (2014). Mastery grids: An open source social edu-
cational progress visualization. In de Freitas, S, Rensing, C., Mufioz Merino, P.J., Ley, T. (Eds.) 9th
European conference on technology enhanced learning (EC-TEL 2014), vol. 8719 of lecture notes in
computer science (pp. 235-248).

Loboda, T.D., & Brusilovsky, P. (2010). User-adaptive explanatory program visualization: Evaluation and
insights from eye movements. User Modeling and User-Adapted Interaction, 20(3), 191-226.

McLaren, BM., Adams, D., Durkin, K., Goguadze, G., Mayer, RE., Rittle-Johnson, B., Sosnovsky, S.,
Isotani, S., van Velsen, M. (2012). To err is human, to explain and correct is divine: A study
of interactive erroneous examples with middle school math students. In: 7th European conference

@ Springer

International Journal of Artificial Intelligence in Education

on technology enhanced learning (EC-TEL 2012), vol. 7563 of lecture notes in computer science,
pp. 222-235.

Miller, B.N., & Ranum, D.L. (2012). Beyond pdf and epub: toward an interactive textbook. In: Proceedings
of the 17th ACM annual conference on innovation and technology in computer science education,
pp. 150-155. ACM.

Miyadera, Y., Kurasawa, K., Nakamura, S., Yonezawa, N., Yokoyama, S. (2007). A real-time monitoring
system for programming education using a generator of program animation systems. JCP, 2(3), 12—
20.

Morrison, B.B., Margulieux, L.E., Ericson, B., Guzdial, M. (2016). Subgoals help students solve parsons
problems. In: Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
pages 42-47 ACM.

Mpyller, N. (2006). Automatic prediction question generation during program visualization. In: Proceed-
ings of the 4th program visualization workshop.

Najar, A.S., Mitrovic, A., McLaren, B.M. (2016). Learning with intelligent tutors and worked examples:
Selecting learning activities adaptively leads to better learning outcomes than a fixed curriculum. User
Modeling and User-Adapted Interaction, 26(5), 459—-491. ISSN 1573-1391.

Naps, T.L. (2005). Jhavé: Supporting algorithm visualization. IEEE Computer Graphics and Applications,
25(5), 49-55.

Naps, T.L., Eagan, J.R., Norton, L.L. (2000). Jhavé — an environment to actively engage students in
web-based algorithm visualizations. In: ACM SIGCSE bulletin, vol. 32, pp. 109-113. ACM.

Naps, TL., RoBling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi,
L., McNally, M., Rodger, S., Velazquez-Iturbide, J A. (2002). Exploring the role of visualization and
engagement in computer science education. ACM SIGCSE bulletin, 35, 131-152.

Nokes-Malach, T.J., VanLehn, K., Belenky, D.M., Lichtenstein, M., Cox, G. (2013). Coordinating prin-
ciples and examples through analogy and self-explanation. European Journal of Psychology of
Education, 28(4), 1237-1263.

Nunnally, J.C. (1978). Psychometric Ttheory: 2d Ed. McGraw-Hill.

Paas, EG.W.C., & Van Merriénboer, J.J.G. (1994). Variability of worked examples and transfer of geo-
metrical problem-solving skills: A cognitive-load approach. Journal of educational psychology, 86(1),
122-133.

Park, J., Park, Y.H., Kim, J., Cha, J., Kim, S., Alice, O.H. (2018). Elicast: embedding interactive exer-
cises in instructional programming screencasts. In Proceedings of the 5th annual ACM conference on
learning at scale, pp. 58, (Vol. 10 pp. 1-58).

Parsons, D., & Haden, P. (2006). Parson’s programming puzzles: a fun and effective learning tool for first
programming courses. In: Proceedings of the 8th Australasian conference on computing Education-
Volume 52, pp. 157-163. Australian Computer Society Inc.

Pirolli, PL., & Anderson, J.R. (1985). The role of learning from examples in the acquisition of recursive
programming skills. Canadian Journal of Psychology/Revue canadienne de psychologie, 39(2), 240—
272.

Reeve, J. (2013). How students create motivationally supportive learning environments for themselves:
The concept of agentic engagement. Journal of Educational Psychology, 105(3), 579-595.

Reeve, J., & Tseng, C.-M. (2011). Agency as a fourth aspect of students’ engagement during learning
activities. Contemporary Educational Psychology, 36(4), 257-267.

Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive
science, 21(1), 1-29.

Renkl, A., & Atkinson, R. (2007). An example order for cognitive skill acquisition. Oxford University
Press.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., et al (2009). Scratch: programming for all. Communications
of the ACM, 52(11), 60-67.

Rivers, K. (2017). Automated data-driven hint generation for learning programming. PhD thesis: Carnegie
Mellon University.

Sajaniemi, J., & Kuittinen, M. (2003). Program animation based on the roles of variables. In: Proceedings
of the ACM symposium on Software visualization, pp. 7-ff. ACM.

Salden, R.J.C.M., Aleven, V., Schwonke, R., Renkl, A. (2010a). The expertise reversal effect and
worked examples in tutored problem solving. Instructional Science, 38(3), 289-307. ISSN 1573-
1952.

@ Springer

International Journal of Artificial Intelligence in Education

Salden, R.J.C.M., Koedinger, K.R., Renkl, A., Aleven, V., McLaren, B.M. (2010b). Accounting for bene-
ficial effects of worked examples in tutored problem solving. Educational Psychology Review, 22(4),
379-392.

Sears, A., & Wolfe, R. (1995). Visual analysis: Adding breadth to a computer graphics course. In: ACM
SIGCSE Bulletin, vol. 27, pp. 195-198. ACM.

Sharrock, R., Hamonic, E., Hiron, M., Carlier, S. (2017). Codecast: An innovative technology to facilitate
teaching and learning computer programming in a c¢ language online course. In: Proceedings of the
4th ACM conference on learning at scale, pp. 147-148. ACM.

Sirkid, T. (2013). A javascript library for visualizing program execution. In: Proceedings of the 13th Koli
calling international conference on computing education research, pp. 189-190. ACM.

Skinner, E.A., Kindermann, T.A., Furrer, C.J. (2009). A motivational perspective on engagement and
disaffection: Conceptualization and assessment of children’s behavioral and emotional participation in
academic activities in the classroom. Educational and Psychological Measurement, 69(3), 493-525.

Sorva, J., Karavirta, V., Malmi, L. (2013). A review of generic program visualization systems for
introductory programming education. ACM Transactions on Computing Education (TOCE), 13(4),
15:1-15:64.

Sweller, J., & Cooper, G.A. (1985). The use of worked examples as a substitute for problem solving in
learning algebra. Cognition and instruction, 2(1), 59-89.

Sweller, J., Van Merrienboer, J.J.G., Paas, FG.W.C. (1998). Cognitive architecture and instructional
design. Educational psychology review, 10(3), 251-296.

Trafton, J.G., & Reiser, B.J. (1993). The contributions of studying examples and solving problems to
skill acquisition. In: Proceedings of the 15th annual conference of the cognitive science society,
pp- 1017-1022 ACM.

Walker, C.O., Greene, B.A., Mansell, R.A. (2006). Identification with academics, intrinsic/extrinsic moti-
vation, and self-efficacy as predictors of cognitive engagement. Learning and individual differences,
16(1), 1-12.

Ward, M., & Sweller, J. (1990). Structuring effective worked examples. Cognition and instruction, 7(1),
1-39.

Weber, G. (1996). Individual selection of examples in an intelligent learning environment. Journal of
Interactive Learning Research, 7(1), 3-31.

Weber, G., & Brusilovsky, P. (2001). Elm-art: An adaptive versatile system for web-based instruction.
International Journal of Artificial Intelligence in Education (IJAIED), 12, 351-384.

Weber, G., & Mollenberg, A. (1994). Elm-pe: A knowledge-based programming environment for learning
lisp. In: Proceedings of ED-MEDIA 1994, pp. 557-562 ERIC.

Yudelson, M., Brusilovsky, P., Zadorozhny, V. (2007). A user modeling server for contemporary adaptive
hypermedia: An evaluation of push approach to evidence propagation. In Conati, C., McCoy, K.,
Paliouras, G. (Eds.) 11th International Conference on User Modeling, UM 2007, vol. 4511 of Lecture
Notes in Computer Science, pp/ 27-36. Springer Verlag.

Zhi, R., Price, T.W., Marwan, S., Milliken, A., Barnes, T., Chi, M. (2019). Exploring the impact of
worked examples in a novice programming environment. In: Proceedings of the 50th ACM technical
symposium on computer science education, SIGCSE ’19, pp. 98-104. ACM.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

International Journal of Artificial Intelligence in Education

Affiliations

Roya Hosseini' ®.Kamil Akhuseyinoglu’ © .Peter Brusilovsky'® . Lauri
Malmi? ® . Kerttu Pollari-Malmi? @ . Christian Schunn' © . Teemu Sirki&?2

Kamil Akhuseyinoglu
kaal08 @pitt.edu

Peter Brusilovsky
peterb@pitt.edu

Lauri Malmi
lauri.malmi @aalto.fi

Kerttu Pollari-Malmi
kerttu.pollari-malmi @aalto.fi

Christian Schunn
schunn @pitt.edu

Teemu Sirkid
teemu.sirkia@aalto.fi

' University of Pittsburgh, Pittsburgh, PA, USA
Aalto University, Espoo, Finland

@ Springer

http://orcid.org/0000-0003-0531-5530
mailto: kaa108@pitt.edu
mailto: peterb@pitt.edu
mailto: lauri.malmi@aalto.fi
mailto: kerttu.pollari-malmi@aalto.fi
mailto: schunn@pitt.edu
mailto: teemu.sirkia@aalto.fi

	Improving Engagement in Program Construction Examples for Learning Python Programming
	Abstract
	Introduction
	Background and Related Work
	Worked Examples in Problem-Solving
	Worked Examples in Programming
	Block-Based Programming and Parsons Problems

	Engaging Program Construction Examples
	Targeted Aspects of Engagement
	Characteristics and Design
	Implementation Details

	The Study
	Hypotheses
	Study Design
	Control Condition Interface: Textbook-Style Worked Examples
	Study Procedure
	Materials
	Practice Content
	Pre- and Post-Tests

	Metrics
	Engagement Metrics
	Performance Metrics
	Learning Metrics

	Example Evaluation Survey

	Results
	Students' Participation and Collected Data
	Engagement Analysis
	Performance Analysis
	Learning Analysis
	Survey Analysis

	Summary and Discussion
	Summary
	Overall Effects on Engagement
	Overall Effects on Problem-Solving Performance
	Overall Effects on Learning Outcomes
	Students' Feedback

	Discussion
	Limitations and Future Work
	Example Design
	The Study Assessing Examples
	Other Directions

	References
	Affiliations

