
1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

1

Deep Learning for SVD and Hybrid Beamforming
Ture Peken, Sudarshan Adiga, Ravi Tandon, and Tamal Bose

Department of Electrical and Computer Engineering
University of Arizona, Tucson, Arizona 85721

Email: {turepeken, adiga, tandonr, tbose}@email.arizona.edu

Abstract—Hybrid beamforming (BF), which divides BF opera-
tion into radio frequency (RF) and baseband (BB) domains, will
play a critical role in MIMO communication at millimeter-wave
(mmW) frequencies. In principle, we can obtain unconstrained
(optimum) beamformers of a transceiver, which approach the
maximum achievable data rates, through its singular value
decomposition (SVD). Due to the use of finite-precision phase
shifters, combined with power constraints, additional challenges
are imposed on the problem of designing hybrid beamformers.
Motivated by the recent success of machine learning (ML)
techniques, particularly in areas such as computer vision and
speech recognition, we explore if ML techniques can be effectively
used for SVD and hybrid BF. To this end, we first present a data-
driven approach to compute the SVD. We propose three deep
neural network (DNN) architectures to approximate the SVD,
with varying levels of complexity. The methodology for training
these DNN architectures is inspired by the fundamental property
of SVD, i.e., it can be used to obtain low-rank approximations.
We next explicitly take the constraints of hybrid BF into
account (such as quantized phase shifters, power constraints),
and propose a novel DNN based approach for the design of
hybrid BF systems.

To validate the DNN based approach, we present simulation
results for both approximating the SVD as well as for hybrid BF.
Our results show that DNNs can be an attractive and efficient
solution for estimating SVD in a data-driven manner. For the
simulations of hybrid BF, we first consider the geometric channel
model. We show that the DNN based hybrid BF improves rates
by up to 50−70% compared to conventional hybrid BF algorithms
and achieves 10 − 30% gain in rates compared with the state-of-
art ML-aided hybrid BF algorithms. We also discuss the impact
of the choice of hyperparameters, such as the number of hidden
layers, mini-batch size, and training iterations on the accuracy of
DNNs. Furthermore, we provide time complexity and memory
requirement analyses for the proposed approach and state-of-
the-art approaches.

Index Terms—Hybrid beamforming, singular value decompo-
sition, machine learning, massive MIMO, millimeter-waves

I. INTRODUCTION

THE mmW band is crucial for enabling fifth-generation
(5G), autonomous vehicles, and Internet of Things (IoT)

enabled networks [1]–[3]. The combination of abundant band-
width of mmW frequencies ranging from 30 to 300 GHz,
along with a massive number of antennas, has the potential
of providing high data rates, improving spectral efficiency,
and signal coverage [4]. Since the wavelength gets smaller
with the higher frequencies, propagation loss increases in
mmWs. Large-scale antenna systems (massive MIMO) can
focus the radiated energy toward the specific directions by

Manuscript received July 19, 2019; revised Feb 28, 2020; accepted June
13, 2020.

using directional BF, which compensate for the performance
degradation due to the propagation loss [5]. Traditionally, BF
has been performed either in RF or BB domain. Digital BF
provides higher data rates; however, it requires a large number
of RF chains, leading to increased power consumption and
cost [6]. On the other hand, analog BF requires fewer RF
chains, thus lower power consumption; however, compromises
on the achievable rate [7]. The key idea behind hybrid BF is to
combine analog BF and digital BF, with the ultimate goal of
keeping the power consumption low, and data rates high [8].
Optimal unconstrained beamformers (which maximize channel
capacity) can be found through the SVD of the channel, i.e.,
k singular vectors corresponding to the largest singular values
of the channel matrix can be used to determine k optimum
beam directions. On the other hand, analog and digital beam-
formers in hybrid BF must be designed jointly to approach the
maximum achievable rates by considering the constraints due
to the use of finite-precision phase shifters in the RF domain
along with the power constraint. In particular, the elements of
RF beamformers are constrained to have constant modulus and
quantized phase values. As the RF and digital beamformers in
hybrid BF are required to be designed jointly and repeatedly
in real-time with changing channel conditions, the selection
of beamformers with maximum achievable rates becomes a
challenging task.

Several methods have been proposed for hybrid BF design
in the literature. In [9], the beams are selected exhaustively
based on maximum signal-to-noise-ratio (SNR). However,
choosing the beams by using exhaustive search methods leads
to high computational complexity. Near-optimum algorithms
using sparse approximation techniques have been proposed
for hybrid BF as well [10]–[12]. Even though sparse ap-
proximation methods can reduce the computational complexity
compared to exhaustive techniques, they still need significant
training overhead that scales with the number of antennas.
Hybrid BF techniques for multi-user MIMO (MU-MIMO)
systems have also been proposed in [13], [14]. A low-
complexity two-stage multi-user hybrid BF algorithm, which
assumes the availability of a limited feedback channel, has
been presented in [13]. Authors of [14] propose a hybrid
BF algorithm for multi-user massive MIMO systems, which
determines the beamformers using weighted sum mean square
error (WMSE) minimization. There has been significant recent
interest in exploring the use of ML techniques for the design
of wireless systems [15]–[19]. In [15], the authors study the
use of convolutional neural networks (CNNs) for the problem
of modulation classification. In [16], the design of single-user

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

2

MIMO (SU-MIMO) systems is considered through unsuper-
vised learning using an autoencoder. In this scheme, different
communication tasks such as modulation and encoding are
combined into a single end-to-end system. In [17], long short-
term memory (LSTM)-aided nonorthogonal multiple access
(NOMA) scheme is proposed to detect channel characteristics.
Authors of [18] propose to integrate deep learning (DL)
methods into massive MIMO systems for channel estima-
tion and direction-of-arrival (DoA) estimation by employing
DNNs. In [19], the development of DL-based solutions for 5G
communications has been reviewed, and then novel schemes
for DL-based 5G scenarios have been introduced.

ML approaches have also been recently explored for the
SVD and BF. Since the computation of SVD by conventional
methods such as [20], [21] requires intensive time for large
matrices, authors of [22] propose a linear NN to compute the
SVD in real-time [22]. In [23], an autoencoder is introduced to
find the truncated SVD of a given matrix. A DL-based fully-
digital BF design has been proposed in [24]. The authors of
[24] divide BF design problem into power allocation and vir-
tual BF design, and then propose the BF prediction network for
power allocation and predicting beamformers. In [25], a DNN-
based BF approach has been presented to learn the optimum
beamformers, which maximize the spectral efficiency under
hardware constraint with imperfect channel state information
(CSI). In [26], an adaptive cross-entropy (CE) optimization has
been proposed for a switch and inverter (SI)-based hybrid pre-
coding architecture. However, the achievable sum-rate needs
to be calculated for all the candidate beamformers, which still
brings a significant computational overhead. In [27], beam
selection in hybrid BF has been considered as a multi-class
classification problem. The authors of [27] have adopted the
support vector machine (SVM) algorithm to select beamform-
ers that maximize the sum rate over the mmW channel. A
DL model, which predicts the BF vectors at the base stations
(BS) by using received pilot signals, has been proposed in [28].
The main idea in this method is to use the received signals
with omni beam patterns to learn the RF-BF vectors. After
RF-BF vectors are selected, BB beamformers are designed by
using maximum ratio combining (MRC) technique. A DL-
based mmW massive MIMO for hybrid BF is presented in
[29]. In this paper, an autoencoder is used to estimate the
analog and digital precoders by adopting geometric mean
decomposition (GMD) technique. Authors of [30] propose a
hybrid BF scheme relying on ML assisted link adaptation.
This scheme selects either spatial multiplexing or diversity-
aided transmission based on different channel conditions. In
[31], first a novel technique to generate datasets for mmW
MIMO scenarios has been presented. Then, DL is leveraged
for beam-selection using the generated datasets.

The main idea of this work is to formulate the hybrid BF as a
constrained SVD problem since the SVD based unconstrained
BF constructs an upper bound on the maximum achievable
rates. Motivated by the recent success of ML in applications
such as image and speech processing [32], [33], we aim to
study the potential of ML approaches for the SVD and hybrid
BF. The complexity of the conventional SVD algorithms in-
creases quadratically with the dimension of the matrix, and our

motivation for calculating the SVD with ML-based techniques
is to reduce this complexity. Moreover, the common property
among the different conventional SVD algorithms such as
[20], [21] is that they first diagonalize the input matrix by
plane rotations and then calculate iteratively singular values
and singular vectors of the resulting matrix. Therefore, it is
intuitive to use a NN, where the elements of the rotation
matrices are the weights to be learned by the NN. Authors
of [22] show the validity of using a linear NN for computing
the SVD [22]. However, linear NNs have a limited capacity to
learn the singular values and singular vectors of large matrices
since the SVD is a non-linear operation. Therefore, DNNs are
more promising for computing the SVD of large matrices at
the expense of higher computational power requirements. Au-
thors of [23] indicate the potential of unsupervised approaches
such as autoencoders for computing the SVD and principal
component analysis (PCA). It has been shown in [23] that
the optimal weight matrix of the linear autoencoder with a
squared error loss function is the orthogonal projection onto
space spanned by the eigenvectors of the covariance matrix of
the input. However, the eigenvectors can be found applying
some orthogonalization techniques such as Gram-Schmidt to
the weight matrix of the autoencoder, which increases the
computational complexity.

In this work, we use CNNs to implement our proposed
DNN architectures to compute the SVD even though other ap-
proaches like feedforward NNs and recursive neural networks
(RNNs) can also be used. The first multilayered CNNs have
been proposed in [34] for handwritten digit recognition, and
since then have been used successfully in various applications,
which involve 2D data processing such as image classification.
It has also been shown that CNNs were easier to train than
the feedforward fully connected NNs [35]. On the other hand,
convolution operations have high computational complexity,
which causes the CNNs to be slower than the feedforward
NNs. The implementation of CNNs using graphical processing
units (GPUs) compensates for the computational complexity
issue of CNNs, which makes CNNs more advantageous than
the feedforward NNs overall. RNNs have been successfully
applied to sequence prediction problems such as speech recog-
nition, human motion prediction, etc. [36], [37]. However,
it has been recently indicated that simple CNNs outperform
canonical RNNs across many different tasks and datasets while
achieving longer effective memory [38]. Therefore, we use
CNNs for the implementation of our proposed approaches for
the SVD and hybrid BF.
Contributions of this paper:
• We first propose three novel DNN architectures to learn

the SVD, which is the fundamental operation for finding the
unconstrained optimum beamformers at the transmitter (Tx)
and the receiver (Rx). The first architecture predicts k most
significant singular values and singular vectors of a given
matrix using a single DNN. By leveraging the structure of
SVD, a low-complexity DNN architecture for rank-k matrix
approximation is introduced. The second architecture consists
of k low-complexity DNNs; each DNN is trained to estimate
the largest singular value and corresponding right and left
singular vectors of the given matrix. To further simplify the

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

3

SVD operation, we propose a third architecture for rank-
1 matrix approximation, which estimates k singular values
and singular vectors using a single DNN recursively. We
introduce customized loss functions to train the three DNN
architectures. In principle, the DNNs are trained to minimize
the Frobenius distance between the real and the estimated
rank-k approximations of the matrix while forcing the singular
vectors to be orthogonal.
• Then, we propose a novel DNN architecture for hybrid

BF by incorporating constraints that are specific to hybrid BF.
We consider the case where finite-precision phase shifters are
used in the RF domain, which restricts the analog beamformers
to have constant modulus and quantized phase values. There-
fore, quantization layers are included in the proposed DNN
for hybrid BF. However, incorporating quantization brings
additional challenges due to the non-differentiability of the
discretization operation. In particular, when we use gradient-
based optimization methods for training, the quantization
layers in DNNs produce zero gradients, which prevents to
update the weights. To circumvent this issue, we propose
four quantization approaches. In the first approach, we use
a combination of step and piece-wise linear functions to
approximate the phase quantization operation, which provides
non-zero gradients during training. In the second approach,
we consider a soft quantization by using a combination of
several sigmoid functions with different parameters during
both forward as well as backward propagation. In the third
approach, we use step function in the forward propagation
while incorporating sigmoid functions with different param-
eters during backward propagation. In the fourth approach,
we implement a stochastic quantization approach [39] during
forward propagation while replacing with a straight-through
estimator [40] during backpropagation. Finally, we satisfy the
power constraint through normalization layers in the proposed
DNN architecture.
• We provide the time complexity analysis for the pro-

posed DNN architectures for SVD and compare their time
complexities with the conventional SVD algorithms. We show
that the proposed DNN based approaches have a smaller time
complexity than the traditional SVD approaches while the
number of transmit and receive antennas increases, and the
other parameters remain constant. We present a comprehensive
set of simulation results to show the advantages of DNNs
for learning SVD and for hybrid BF. We implement three
DNN architectures for SVD using CNNs and discuss the
impact of mini-batch size, the number of hidden layers,
and training iterations size on accuracy. With the geometric
channel model, we simulate the proposed DNN based hybrid
BF algorithm and compare its rates with the unconstrained
BF, three conventional hybrid BF algorithms [10], [11], [41],
an ML-aided hybrid BF algorithm based on CE optimization
[26], two DL-based hybrid BF algorithms [28], [31], and an
autoencoder based hybrid BF algorithm [29]. The results show
that the proposed algorithm achieves up to 50 − 70% and
10−30% gains in rates compared to the conventional hybrid BF
approaches and ML-based algorithms, respectively. We also
compare the performance of the proposed DNN based SVD
approaches with the traditional SVD algorithms in terms of

the time complexity and memory requirements. Furthermore,
we perform a time complexity analysis and compare the DNN
based approach to other state-of-the-art methods 1.

Notation: We use the following notation throughout this
paper: A is a matrix, a is a vector, a is a scalar, and A is a
set. |A|, AT , A−1, A∗, ‖A‖F , and rank (A) are the determinant,
transpose, inverse, Hermitian (conjugate transpose), Frobenius
norm, and rank of A, respectively. [A]r,: and [A]:,c are the
rth row and cth column of A. ‖a‖2 is the Euclidean norm
of a. diag(a1, ..., an) denotes a diagonal matrix with the
entries of a1, ..., an on its diagonal. logb (x) and E [·] denote
the logarithm of x to base b and expectation respectively.
I is the identity matrix. e stands for Euler’s number and j
denotes

√
−1.N

(
µ, σ2

)
andN (m,R) are a complex Gaussian

random scalar with mean µ and variance σ2 and a complex
Gaussian random vector with mean m and covariance R,
respectively. R and C denote the set of real and complex
numbers, respectively.

II. PRELIMINARIES: SVD AND HYBRID BF

This section presents the preliminaries for SVD and hybrid
BF considered in the paper. Then, we formulate optimum
and hybrid BF by using unconstrained and constrained SVD,
respectively.

A. SVD

Given the matrix H ∈ CNR×NT with rank r ≤ l =
min{NT , NR }, there exists (i) a unitary matrix U ∈ CNR×NR ;
(ii) a diagonal matrix Σ ∈ CNR×NT with non-negative numbers
on its diagonal; (iii) a unitary matrix V ∈ CNT×NT that
construct the SVD of H as,

H = UΣV∗ (1)

where U∗U = INR , V∗V = INT , and Σ = diag(σ1, ..., σl),
σi > 0 for 1 ≤ i ≤ r , σ j = 0 for l = min(NR, NT) ≥ j ≥
r + 1. The diagonal elements of Σ are singular values, and the
columns of U and V are left and right singular vectors of H,
respectively.
B. Optimum BF using Unconstrained SVD

Consider a communication system with NT and NR anten-
nas at the Tx and Rx, respectively. We denote the channel
matrix of this system by H ∈ CNR×NT , which can be
decomposed as H = UΣV∗. We define the precoder at the
Tx as T ∈ CNT×L and the combiner at the Rx as R ∈ CNR×L .
At the Tx, the vector of transmitted symbols s ∈ CL×1 is first
processed by T, and then transmitted from NT antennas of the
Tx. The transmitted signal x ∈ CNT×1 is given as,

x = Ts. (2)

Then, NR antennas of the Rx receive the signal r ∈ CNR×1,
which is defined as,

r = HTs + n, (3)

1Source codes for the experiments are available at:
https://www.dropbox.com/sh/v0gs7ba0qq5x168/AACyqRoCz5m3fhpF-
azkbn3Qa?dl=0

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

4

where n ∼ N
(
0, σ2I

)
is the Gaussian noise vector of dimen-

sion NR × 1. After r is processed by R, the vector of received
symbols y ∈ CL×1 is obtained as,

y = R∗HTs + R∗n. (4)

The optimum beamformers for the given communication
system can be found by maximizing some performance utility
metric such as SNR [42], achieved rate [43], etc. For the
scope of this paper, we focus on the achieved rate, which
is maximized by selecting the singular vectors of H as
the beamformers of this system. In particular, the optimum
beamformers are found by maximizing the rate R, which is
given as,

R = log2

(���I +
P
L C−1

n R∗optHToptT∗optH
∗Ropt

���
)
, (5)

where Topt = VL and Ropt = UL denote the optimum
unconstrained precoder and combiner of this system. Here,
VL ∈ C

NT×L and UL ∈ C
NR×L are L most significant

right and left singular vectors of H [44], respectively. Cn =

R∗optRopt is the post-processing noise covariance matrix.

C. Hybrid BF using Constrained SVD

In this section, we consider a mmW system shown in Figure
1. A Tx with NT antennas and LT RF chains communicates
with a Rx with NR antennas and LR RF chains. We assume
there are L data streams such that L ≤ LT ≤ NT and
L ≤ LR ≤ NR . At the Tx, L data streams are processed
by a BB precoder TBB ∈ C

LT×L followed by an RF precoder
TRF ∈ C

NT×LT . Then, the transmitted signal x ∈ CNT×1 can
be written as,

x = TRFTBBs, (6)

where s ∈ CL×1 is the vector of transmitted symbols. The
average total transmit power is denoted as P, and s satisfies
E [ss∗] =

(
P
L

)
IL . We denote the mmW channel between the

Tx and Rx with H ∈ CNR×NT . The received signal over NR

antennas of the Rx is given as,

r = HTRFTBBs + n, (7)

where n ∼ N
(
0, σ2I

)
is the Gaussian noise vector of di-

mension NR × 1. Then, the Rx processes the received signal
r ∈ CNR×1 with an RF combiner RRF ∈ C

NR×LR followed by
a BB combiner RBB ∈ C

LR×L . The vector of received symbols
y ∈ CL×1 is then obtained as,

y = RBB
∗RRF

∗HTRFTBBs + RBB
∗RRF

∗n. (8)

Analog and digital beamformers of a hybrid BF system need
to be designed based on the constraints of power and finite-
precision phase shifters, which are used in the RF domain.
LT RF-BF vectors with the dimension of NT × 1 at the Tx
and LR RF-BF vectors with the dimension of NR × 1 at the
Rx are designed based on quantized directions. In particular,
ith BF vector of the RF precoder and jth BF vector of the
RF combiner are given as [TRF]:, i , i = 1, ..., LT and [RRF]:, j ,
j = 1, ..., LR , respectively. As in the optimum BF, we can
design analog and digital beamformers of a hybrid BF system
by maximizing a metric (e.g., SNR, achieved rate) over all
possible beamformers. By selecting the achieved rate as our

metric, our goal is to design beamformers at the Tx and Rx
(TRF , TBB , RRF , RBB), which maximize the rate defined in
(5) while the following constraints are satisfied:

1) Due to the usage of phase shifters, the entries of TRF

and RRF must have constant modulus. In particular,
|[TRF]i, j |2 = N−1

T and |[RRF]i, j |2 = N−1
R , where

|[TRF]i, j |(|[RRF]i, j |) corresponds to the magnitude of
(i, j)th element of TRF (RRF).

2) Elements of each column in TRF and RRF are rep-
resented as quantized phase shifts, where each phase
shifter is controlled by an Nq-bit input. n(m)th row of
the RF precoding matrix at the Tx(Rx), which corre-
sponds to the phase shifts of the n(m)th antenna of the

TRF (RRF), can be written as e
j2πnkq

2Nq
(
e

j2πmkq

2Nq
)

for some
kq = 0, 1, ..., 2Nq − 1.

3) The power constraint must be satisfied, i.e.,
‖TRFTBB ‖

2
F = L and ‖RRFRBB ‖

2
F = L.

D. mmW Channel Model

For the scope of this paper, we consider geometric channel
model. Various studies [45], [46] have shown that mmW
channels have limited scattering due to the high free-space path
loss. The geometric channel model, which has been proposed
in [47], [48], is suitable to characterize the mathematical
structure of mmW channels. In this model, each scatterer
contributes a single propagation path between the Tx and the
Rx. The channel representation is given as,

H =

√
NT NR

ρ

S∑
s=1

gsaR (θs)a∗T (φs), (9)

where S is the number of scatterers, ρ is the average path-loss
between the Tx and the Rx, and gs is the complex gain of
the sth path with Rayleigh distribution, i.e., gs ∼ N (0,G) for
s = 1, 2, ..., S. Here, G denotes the average power gain. aT (φs)
and aR (θs) are the array response vectors at the Tx and the
Rx, respectively. φs ∈ [0, 2π] and θs ∈ [0, 2π] indicate the sth
path’s azimuth Angle of Arrival (AoA) and Angle of Departure
(AoD), respectively. For more details of the geometric channel
model we refer the reader to [47], [48].

III. DL FOR SVD APPROXIMATIONS

In this section, our objective is to leverage DL to effectively
estimate the best rank-k approximation of a matrix H, which
can be defined as,

Hk = UkΣkVk
∗, (10)

where Uk is the first k columns of left singular vectors matrix
U, Vk is the first k columns of right singular vectors matrix
V, and Σk is the diagonal matrix with top k singular values of
Σ on its diagonal. The SVD provides the justified solution for
a best approximation of the matrix H as a rank-k matrix when
the error is measured in the Frobenius norm [49]. Furthermore,
Hk can be also written as a sum of k rank-1 approximations
of H as,

Hk =

k∑
i=1

σiuivi∗, (11)

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

5

s1
s2

TBB

sL

...
... TRF

...

x1

x2

xNT

H

LT RF chains NT Tx antennas

r1
r2

rNR

...

NR Rx antennas

RRF

... RBB

...

(NR ×NT)

y1
y2

yL

LR RF chains

Fig. 1. Hybrid BF architecture with RF and BB blocks. L data streams are processed by the BB precoder TBB . Each BB signal is connected to the one of
NT

RF RF chains of the RF precoder TRF . The reverse of this operation is performed at the Rx.

Deep
Neural

Network

h1

h2

hNRNT

(θ)

...

σ̃1

σ̃2

σ̃k

......

ũ1

ũ2

ũk

...

ṽ1

ṽ2

ṽk

...

}
}
}

Estimated
Singular Values

Estimated
Left Singular

Vectors

Estimated
Right Singular

Vectors

Re

Im

Re

Im

Re

Im

Fig. 2. DNN for rank-k matrix approximation.

where σ1, σ2, ..., σk are k top singular values, u1, u2, ..., uk

are k top left singular vectors, and v1, v2, ..., vk are k top right
singular vectors of H.

In this section, we propose three DNN architectures with
different levels of complexity to meet the trade-off between
complexity and accuracy. The proposed DNNs learn the best
rank-k matrix approximation in a supervised manner using the
factorization obtained by the SVD.

A. DNN for Rank-k Matrix Approximation

We first propose a DNN for rank-k matrix approximation,
which can be seen in Figure 2. We choose CNNs to implement
the proposed DNN, which can also be implemented by using
different models such as feedforward, multi-layer perceptron
(MLP), RNN, etc. [50]. DNN for rank-k matrix approx-
imation learns how to predict k most significant singular
values and singular vectors, i.e., σ̃1, σ̃2, ..., σ̃k , ũ1, ũ2, ..., ũk ,
and ṽ1, ṽ2, ..., ṽk , directly from a given matrix H by training
its parameters θ. Consider Hk =

∑k
i=1 σiuivi∗ and H̃k =∑k

i=1 σ̃i ũi ṽ∗i as real and estimated rank-k approximations of
the matrix H, respectively. The objective of the proposed DNN
is to estimate the best rank-k matrix approximation of a given
matrix. Therefore, we propose a custom loss function, which
satisfies the following:

1) | |Hk − H̃k | |F must be minimized.
2) Ũk = [ũ1, ũ2, ..., ũk] and Ṽk = [ṽ1, ṽ2, ..., ṽk] must be

unitary matrices. In particular, the columns of Ũk and Ṽk

must form a set of orthonormal vectors, which implies
that | |ũ∗i ũ j | |2 = | |ṽ∗i ṽ j | |2 = 0 ∀ i, j s.t. i , j.

Consequently, we define the loss function for the DNN for
rank-k matrix approximation as,

L (θ) =
| |Hk − H̃k | |F

| |Hk | |F
+ λ1

∑
i, j

| |ũ∗i ũ j | |2 + λ2

∑
i, j

| |ṽ∗i ṽ j | |2,

(12)
where θ denotes the parameters of the DNN. Here, σi , ui , and
vi are the ith largest singular value and left and right singular
vectors of H, respectively. λ1 and λ2 are the non-negative
constants of the penalty terms that satisfy U = [u1, u2, ..., uk]
and V = [v1, v2, ..., vk] to be unitary matrices.

The number of output nodes increases linearly with k, NR ,
and NT in the DNN for rank-k matrix approximation. For a
full-rank matrix H, k can be as large as min(NR, NT), and
then, the number of output nodes grows quadratically with
the smaller dimension of H.

B. Low-Complexity DNN for Rank-k Matrix Approximation

In this section, we propose a second DNN architecture,
which is shown in Figure 3-a. This architecture consists of
k low-complexity DNNs with the parameters denoted by θi ,
i = 1, .., k, in which the DNN-i is trained to estimate singular
value σi and corresponding singular vectors ui and vi of
a given matrix H. In other words, the DNN-i determines a
function between the input matrix and its largest singular
value and singular vectors by training its parameters θi . Given
the channel matrix H as an input, DNN-1 generates σ̃1,
ũ1, and ṽ1, which are the estimated values of σ1, u1, and
v1. We denote the input matrix for DNN-i, i = 2, ..., k as
Ĥi = H−

∑i−1
n=1 σ̃n ũn ṽn = H−H̃i−1. In particular, we represent

the input of DNN-2 as Ĥ2 = H − H̃1, where H̃1 = σ̃1ũ1ṽ∗1.
DNN-2 generates σ̃2, ũ2, and ṽ2. Then, H̃2 =

∑2
i=1 σ̃i ũi ṽ∗i

is calculated, and subtracted from H to generate the input for
DNN-3 as Ĥ3 = H−H̃2. This procedure continues until DNN-
k gets the Ĥk as an input and generates σ̃k , ũk , and ṽk .

For the training procedure of this architecture, we propose
two approaches. In the first approach, k DNNs are trained
jointly to minimize the total loss, which is formulated as,

L (θ1, θ2, ..., θk) = | |Hk−H̃k | |F
| |Hk | |F

+ λ1
∑

i, j | |ũ∗i ũ j | |2 + λ2
∑

i, j | |ṽ∗i ṽ j | |2, (13)

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

6

DNN

1

(θ1)

σ̃1

σ̃2

ũ1

ũ2

ṽ1

ṽ2

DNN

2

(θ2)

+
−

ũ

H

. . .

DNN

k

(θk)

σ̃k

ũk

ṽk

DNN

−(θk−1)

k − 1

ṽk−1

ũk−1

σ̃k−1

Input to Neural Network i:
Ĥi = H− Σi−1

n=1σ̃nũnṽ
∗
n = H− H̃i−1

××

×

+

++

+

(a) Low-complexity DNN for rank-k matrix approximation.

Deep Neural
Network

(θ)

σ̃i

ũi

ṽi

×Ĥi = H− H̃i−1 +

ith input to neural network

Ĥi+1 = H− H̃i

i+ 1th input to neural network

Is i < k?

Y

N
Stop

+

-

(b) DNN for SVD via rank-1 matrix approximation.

Fig. 3. The second and third DNN architectures for the SVD, which have
less complexity compared to the first DNN architecture.

where Θ = (θ1, θ2, ..., θk) denotes the parameters of k DNNs
to be learned. We also assume that a gradient-based technique
is used to learn Θ. In this case, Θ(t+1) , which corresponds to
the parameters at the (t + 1)th iteration, can be updated using
the loss function given in (13) as,

Θ(t+1) = Θ(t) − γ∇ΘL(Θ) |Θ=Θt , (14)

where γ is the learning rate. The second approach is to train
the k DNNs successively, in a sequential manner, where ith
DNN is trained to learn θi by minimizing its own loss function.
In particular, DNN-1 is trained by minimizing,

L (θ1) =
| |σ1u1v∗1 − σ̃1ũ1ṽ∗1 | |F

| |σ1u1v∗1 | |F
, (15)

where θ1 denotes the parameters of the first DNN in the low-
complexity architecture. To satisfy | |ũ∗1ũ2 | |2 = | |ṽ∗1ṽ2 | |2 = 0,
we define the loss function of DNN-2 as,

L (θ2) =
| |σ2u2v∗2−σ̃2ũ2ṽ∗2 | |F
| |σ2u2v∗2 | |F

+ λ1 | |ũ∗1ũ2 | |2 + λ2 | |ṽ∗1ṽ2 | |2, (16)

where θ2 are the parameters of the second DNN in the low-
complexity architecture. In general, the loss function of DNN-i
of this architecture for successive training is defined as,

L (θi) =
| |σiuiv∗i−σ̃i ũi ṽ∗i | |F
| |σiuiv∗i | |F

+ λ1
∑

i, j<i | |ũ∗i ũ j | |2 + λ2
∑

i, j<i | |ṽ∗i ṽ j | |2, (17)

where θi denotes the parameters of the ith DNN, λ1 and λ2
are non-negative constants of the penalty terms, respectively.

C. DNN for SVD via Rank-1 Matrix Approximation

For further simplicity, we propose a third DNN architecture,
which predicts k singular values and singular vectors of a
given matrix H with a single DNN recursively, as depicted in
Figure 3-b. Let the matrix Ĥi = H − H̃i−1 denote the input
matrix given to the DNN in the ith iteration, where H̃i−1 =∑i−1

n=1 σ̃n ũn ṽn . Then, top singular value and singular vectors
of Ĥi are actually the ith singular value and singular vectors of
H under the assumption that previous i−1 singular values and
singular vectors are estimated perfectly, i.e., σ̃n = σn , ũn =

un , and ṽn = vn for n = 1, 2, ..., i − 1. In the first iteration, the

DNN predicts σ̃1, ũ1, and ṽ1. Then, H̃1 = σ̃1ũ1ṽ∗1 is subtracted
from the input matrix H to obtain Ĥ2 = H − H̃1. The second-
highest singular value and singular vectors of H are estimated
by providing Ĥ2 to the DNN in the second iteration since
top singular value and singular vectors of Ĥ2 are the second-
highest singular value and singular vectors of H. This recursive
procedure ends when σ̃k , ũk , and ṽk are estimated by the
DNN, given that Ĥk = H − H̃k−1 as the input in the kth
iteration.

This DNN architecture is trained using the following loss
function,

L (θ) =
| |Hk − H̃k | |F

| |Hk | |F
+ λ1

∑
i, j

| |ũ∗i ũ j | |2 + λ2

∑
i, j

| |ṽ∗i ṽ j | |2,

(18)
where the second and third terms are included to satisfy
the orthogonality of the left and right singular vectors, i.e.,
| |ũ∗i ũ j | |2 = | |ṽ∗i ṽ j | |2 = 0, ∀ i, j s.t. i , j. Here, θ denotes
the parameters of the DNN for rank-1 approximation. At the
(t + 1)th iteration, θ(t+1) are calculated as,

θ(t+1) = θ(t) − γ∇θL(θ) |θ=θt , (19)

where γ denotes the learning rate.

D. Experimental Study of DNNs for SVD

In this section, we evaluate the performance of the proposed
DNN architectures for the SVD.

Data Generation: We consider a dataset, which consists
of 8000 training and 2000 testing channel matrices. Each of
the channel matrices is generated according to the geometric
channel model, as defined in (9). In this model, we assume
that the spacing between two successive antennas is equal to
λ/2, and we use uniform linear arrays (ULAs). We assume
the AoDs/AoAs are uniformly distributed in [0, 2π]. The gain
of each path in the channel has Rayleigh distribution.

DL Model: Each DNN in the proposed architectures has
2NRNT inputs, which represent the real and the imaginary
components of the given matrix H ∈ CNR×NT . The number of
output nodes in DNN for rank-k matrix approximation equals
to k (2NR + 2NT + 1), which is the sum of k singular values
(σ̃i, i = 1, 2, ..., k), and real and imaginary values of k right
singular vectors (ṽi, i = 1, 2, ..., k) and left singular vectors
(ũi, i = 1, 2, ..., k). Here, ṽi and ũi are column vectors with
a size of NT × 1 and NR × 1, respectively. The number of
output nodes in DNN-i of the low-complexity architecture
for rank-k matrix approximation is 2NR + 2NT + 1, which
denotes the sum of σ̃i , and real and imaginary values of
ṽi and ũi . The DNN for SVD via rank-1 approximation
also has 2NR + 2NT + 1 outputs. Each DNN consists of a
variable number of convolutional layers and followed by a
dropout layer with a rate of 0.4 and a fully connected dense
layer. Both the convolutional and the fully connected layers
use exponential linear units (ELU) as activation functions
[51]. The positive part of the ELU activation function has
a constant gradient of one to prevent to saturate a neuron
on the positive side of the function. On the other hand, it
saturates exponentially on the negative side of the function,
which leads to faster learning than other activation functions.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

7

0 2000 4000 6000 8000

Number of Iterations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
o

s
s

Test Loss

Training Loss

(a) 8-by-8 channel matrices.

0 2000 4000 6000 8000

Number of Iterations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
o
s
s

Test Loss

Training Loss

(b) 16-by-16 channel matrices.

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Iterations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
o

s
s

Test Loss

Training Loss

(c) 32-by-32 channel matrices.

Fig. 4. Training and test losses with the DNN for rank-k matrix approximation for different sized channel matrices.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Iterations

0

0.5

1

1.5

2

2.5

3

T
e

s
t

L
o

s
s

Dropout Rate=0.2

Dropout Rate=0.4

Dropout Rate=0.5

Max Pooling

None

(a) DNN for rank-k approximation.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of Iterations

0

0.5

1

1.5

2

2.5

3

3.5

T
e
s
t
L
o
s
s

Dropout Rate=0.2

Dropout Rate=0.4

Dropout Rate=0.5

Max Pooling

None

(b) Low-complexity DNN for rank-k approximation.

Fig. 5. Comparison of max pooling and dropout for 16-by-16 matrices.

We set the learning rate as 0.0001, and non-negative constants
λ1 and λ2 for the penalty in the loss function as 0.01 unless
otherwise specified. Adam [52], which is an adaptive learning
rate optimization algorithm, is used for training DNNs. For
the implementation, we used Tensorflow [53].

Comparison of Training and Test Losses: First, we obtain
the training and test losses for the different-sized channel
matrices using the loss function given in (12). In these
simulations, we use 6 convolutional layers and a mini-batch
size of 128. Figures 4-a, 4-b, and 4-c illustrate the training
and test losses versus the number of iterations used during
the training when NR = NT = 8, NR = NT = 16, and

NR = NT = 32, respectively. The results show that the training
and test losses are very close to each other for the 8-by-
8 and 16-by-16 matrices while the number of iterations for
the training increases up to 4000. However, test losses start
to saturate, and overfitting occurs when DNNs are trained
for more than 4000 iterations. Moreover, the training and
test losses are nearly the same for the 32-by-32 matrices
when the number of training iterations is less than 6000.
These results show that reasonable test performance can be
achieved by training the DNN for rank-k approximation with
a higher number of training iterations while the dimension
and rank of matrices increase. Therefore, overfitting starts
to occur after a greater number of training iterations for
the larger sized matrices. Moreover, we observe that SVD
prediction error increases with the greater number of antennas
at the Tx and the Rx. For instance, the SVD prediction errors
obtained after the DNN is trained for 10000 iterations are
0.428, 0.494, and 0.592 for 8-by-8, 16-by-16, and 32-by-32
matrices, respectively.

Comparison of Dropout and Max Pooling: In this section,
we study the performance of the DNN for rank-k approxima-
tion and the low-complexity DNN for rank-k approximation
when the max pooling and dropout are used. Figure 5-a
shows the test losses of the DNN for rank-k approximation
while the number of training iterations increases up to 10000
for 16-by-16 matrices. It is seen in Figure 5-a that the test
losses decrease slower with dropout compared to the case
when max pooling or none of them are used. However, the
smallest test losses are obtained with dropout when the DNN
for rank-k approximation is trained more than 5000 iterations.
In Figure 5-b, we observe the test losses versus a different
number of training iterations of the low-complexity DNN for
rank-k approximation using 16-by-16 matrices. For the low-
complexity architecture, the smallest test losses are obtained
when the dropout rate is 0.2. While the dropout rate increases
up to 0.5, the performance in terms of error slightly degrades.
Furthermore, smaller test losses are achieved with different
rates of dropout compared to the case when max pooling
or none of them are used for the higher number of training
iterations. Since the dropout reduces redundancies in the DNN,
it also decreases overfitting. Therefore, it outperforms max
pooling in both architectures. However, the low-complexity

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

8

DNN requires less generalization due to its simplicity com-
pared to the DNN for rank-k approximation. Therefore, a
lower dropout rate is required to achieve the best performance
for the low-complexity DNN.

Impact of Selected k Value During the Training and
Testing: We then investigate how the performance of the
proposed DNN based SVD approach changes if the DNN
is used to estimate a smaller or a larger number of singular
values and singular vectors than the selected k value during
the training. We first observe the performance of the proposed
approach when the DNN estimates a larger number of singular
values and singular vectors than k, which is used for the
training. Figure 6-a shows the test losses of 16-by-16 matrices
using the DNN for rank-k matrix approximation when k is
selected as 16, 14, 12, and 8 during the training. In these
simulations, we use 4 convolutional layers and a mini-batch
size of 32. In each case, the DNN is tested to predict 16
singular values and singular vectors of 16-by-16 matrices. It
is shown in Figure 6-a that the test losses increase with the
smaller k values used during the training. Therefore, the value
of k in training must be at least equal to the value of k used for
the testing. We then study the case when the DNN estimates
a smaller number of singular values and singular vectors than
the number of singular values and vectors predicted during the
training. Figure 6-b illustrates the test losses of the proposed
approach when the DNN estimates 16, 14, and 12 singular
values and singular vectors of 16-by-16 matrices when k is
set to 16 in the training phase. In this case, we observe that
the testing performance of the DNN based SVD approach is
not affected significantly when the DNN estimates a smaller
number of singular values and vectors compared to the training
phase, which implies that the DNN does not need to be
retrained to estimate a smaller number of singular values and
vectors than k used during the training. This result also shows
that the test losses of the DNN based SVD approach do not
change with the rank of the matrix when the size of the matrix
remains the same.

Performance of the Proposed Approach in Noisy Case:
In order to observe the performance of the DNN based SVD
approach in noisy scenarios, we conduct the simulations using
the additive white gaussian noise (AWGN) with different SNR
values during the training and testing. In these simulations,
we use 4 convolutional layers and a mini-batch size of 32.
In Figure 7-a, we observe training and test losses of 16-
by-16 channel matrices using the DNN for rank-k matrix
approximation when the AWGN with 0 dB SNR and 30 dB
SNR are added to the training and test matrices, respectively.
As it is shown in Figure 7-a, training and test losses of the
proposed approach do not degrade significantly when the noise
gap between training and test matrices is 30 dB. We then
increase the noise gap to 40 dB, as it is seen in Figure 7-
b, where the SNR of AWGN added to the training matrices
is decreased to −10 dB. As it is expected, the effect of
overfitting becomes more severe due to the increased gap
between the SNR used in the added noise to the training and
test matrices. We then compare the case when the SNR of
AWGN is higher for the training matrices compared to the
SNR of AWGN added to the test matrices. In Figure 7-c,

0 2000 4000 6000 8000 10000

Number of Iterations

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

L
o

s
s

Test loss with k = 16 when trained with k = 16

Test loss with k = 16 when trained with k = 14

Test loss with k = 16 when trained with k = 12

Test loss with k = 16 when trained with k = 8

(a) k is set to 16 during the testing while k changes
during the training.

0 2000 4000 6000 8000 10000

Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

L
o
s
s

Test Loss (k = 14)

(k = 12)

(k = 16)

Test Loss

Test Loss

(b) k is set to 16 during the training while k changes
during the testing.

Fig. 6. Test losses for 16-by-16 matrices using the DNN for rank-k matrix
approximation with the different values of k during the training and testing.

the training and test losses of 16-by-16 channel matrices are
observed when the SNR of AWGN added to the training and
test matrices are 30 dB and 0 dB, respectively. When the
results in Figure 7-a and Figure 7-c are compared, we see
that the performance degradation during the test phase due
to the overfitting becomes more significant in the latter case.
This result occurs since the overfitting increases more if the
training data is less noisy compared to the test data.

Comparison of the Proposed Architectures for SVD: Fig-
ures 8-a, 8-b, and 8-c illustrate the test losses with the proposed
architectures for 8-by-8, 16-by-16, and 32-by-32 matrices,
respectively. We use the loss functions defined in (12), (13),
and (18) to train the DNN for rank-k matrix approximation,
the low-complexity DNN for rank-k matrix approximation,
and the DNN for SVD via rank-1 matrix approximation,
respectively. We set the number of convolutional layers and the
mini-batch size to 4 and 32, respectively. As shown in Figure
8-a, for 8-by-8 matrices, the low-complexity DNN for rank-k
approximation outperforms the other two DNNs in terms of
accuracy at the beginning of the training. However, the DNN
for rank-k approximation gives smaller test losses than the
other DNNs while the number of training iterations increases.
We observe in Figures 8-b and Figures 8-c that the smallest test
losses are obtained with the DNN for rank-k approximation
when 16-by-16 and 32-by-32 matrices are used. When the
matrix size is not large, the low-complexity DNN for rank-

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

9

0 2000 4000 6000 8000 10000

Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

L
o
s
s

Test Loss

Training Loss
(SNR=30 dB)

(SNR=0 dB)

(a) Training=0 dB, Test=30 dB.

0 2000 4000 6000 8000 10000

Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

L
o

s
s

Test Loss

Training Loss

(SNR=30 dB)

(SNR=−10 dB)

(b) Training=−10 dB, Test=30 dB.

0 2000 4000 6000 8000 10000

Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

L
o

s
s

Test Loss

Training Loss (SNR=30 dB)

(SNR=0 dB)

(c) Training=30 dB, Test=0 dB.

Fig. 7. Training and test losses for 16-by-16 channel matrices in the noisy case.

0 2000 4000 6000 8000 10000

Number of Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

T
e
s
t
L
o
s
s

DNN for Rank-k Approximation

Low-Complexity DNN for Rank-k Approximation

DNN for Rank-1 Approximation

(a) 8-by-8 channel matrices.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Iterations

0

0.5

1

1.5

2

2.5

3
T

e
s
t

L
o

s
s

DNN for Rank-k Approximation

Low-Complexity DNN for Rank-k Approximation

DNN for Rank-1 Approximation

(b) 16-by-16 channel matrices.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
e
s
t
L
o
s
s

DNN for Rank-k Approximation

Low-Complexity DNN for Rank-k Approximation

DNN for Rank-1 Approximation

(c) 32-by-32 channel matrices.

Fig. 8. Comparison of the test losses for three DNNs with the different sizes of channel matrices.

k approximation can learn faster than the DNN for rank-k
approximation since the number of parameters to be learned by
each DNN of the former architecture is less than the number of
parameters in the latter. However, the performance of the low-
complexity DNN for rank-k approximation starts to degrade
with the larger sized matrices since the low-complexity of this
architecture cannot deal well with more complexed data.

Comparison of the Proposed Training Approaches for
the Low-Complexity DNN for Rank-k Approximation: We
then study the performance of the two approaches proposed
in Section III-B to train k DNNs of the low-complexity ar-
chitecture. Figure 9 shows the test losses when the sub-DNNs
in this architecture are trained jointly and sequentially for 8-
by-8 matrices. In particular, we use the loss function given
in (13) to train sub-DNNs of the low-complexity architecture
jointly. On the other hand, DNN-i of this architecture is trained
one-by-one using the loss function given in (17) in the other
approach. We observe that smaller test losses are achieved
when sub-DNNs are trained one-by-one. When sub-DNNs are
trained sequentially, we guarantee that the first DNN is trained
successfully, and the residual error occurs in the input to the
next DNN decreases compared to the case when sub-DNNs
are trained jointly.

Impact of Different Number of Convolutional Layers on
the Accuracy of DNNs: In Figures 10-a, 10-b, and 10-c, we
compare the test losses of 32-by-32 matrices obtained by the
DNN for rank-k matrix approximation, the low-complexity
DNN for rank-k approximation, and the DNN for rank-1

0 2000 4000 6000 8000 10000

Number of Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

T
e

s
t

L
o

s
s

Train sub-DNNs jointly

Train sub-DNNs one-by-one

Fig. 9. Comparison of the test losses when the sub-DNNs in this architecture
are trained jointly and sequentially using 8-by-8 matrices.

approximation with the different number of convolutional
layers, respectively. In these results, the size of the mini-batch
is set to 32. In Figure 10-a, the loss function given in (12)
is used. We observe in Figure 10-a that the test losses reduce
more rapidly when the number of convolutional layers is 2 and
4 in DNN for rank-k matrix approximation. While the number
of iterations increases, the test losses with 6 convolutional
layers become similar to the losses with 2 and 4 convolutional
layers. Since the number of parameters is higher when 6 layers
are used compared to 2 and 4 layers, a higher number of
iterations is required for the losses to converge with 6 layers.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Iterations

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
T

e
s
t

L
o

s
s

2 Convolutional Layers
4 Convolutional Layers

6 Convolutional Layers

(a) DNN for rank-k approximation.

500 1000 1500 2000 2500 3000 3500

Number of Iterations

0.9

1

1.1

1.2

1.3

1.4

1.5

T
e

s
t

L
o

s
s

2 Convolutional Layers
4 Convolutional Layers

6 Convolutional Layers

(b) Low-complexity DNN for rank-k approxima-
tion.

0 500 1000 1500 2000

Number of Iterations

10
0

10
1

10
2

10
3

T
e

s
t

L
o

s
s

2 Convolutional Layers
4 Convolutional Layers

6 Convolutional Layers

(c) DNN for rank-1 approximation.

Fig. 10. Test losses of the DNNs for SVD with the different number of convolutional layers using 32-by-32 channel matrices.

0 1000 2000 3000 4000 5000

Number of Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

T
e

s
t

L
o

s
s

Mini-Batch Size=32

Mini-Batch Size=64

Mini-Batch Size=128

(a) DNN for rank-k approximation.

0 1000 2000 3000 4000 5000

Number of Iterations

0.9

0.95

1

1.05

1.1

1.15

T
e

s
t

L
o

s
s

Mini-Batch Size=32

Mini-Batch Size=64

Mini-Batch Size=128

(b) Low-complexity DNN for rank-k approxima-
tion.

0 1000 2000 3000 4000 5000

Number of Iterations

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

T
e

s
t

L
o

s
s

Mini-Batch Size=32

Mini-Batch Size=64

Mini-Batch Size=128

(c) DNN for rank-1 approximation.

Fig. 11. Test losses of the DNNs for SVD with the different sizes of mini-batches using 32-by-32 channel matrices.

We use the loss function given in (13) in Figure 10-b. It is
shown in Figure 10-b that the smaller test losses are achieved
while the number of convolutional layers decreases. Since the
number of features to be learned by each DNN in the low-
complexity architecture is less than the number of parameters
to be learned by the DNN for rank-k approximation, the
low-complexity architecture requires a smaller number of
convolutional layers to achieve the maximum performance.
Otherwise, the performance degrades with the higher number
of convolutional layers due to overfitting. Finally, we train the
DNN for rank-1 approximation using the loss function given
in (18). We observe in Figure 10-c that the test losses decrease
with the smaller number of convolutional layers since the DNN
for rank-1 approximation also has less number of parameters
to be learned compared to other proposed DNN architectures.

Impact of Different Sizes of Mini-Batches on the Accu-
racy of DNNs: In this section, we evaluate the performance
of proposed DNNs in terms of accuracy with the different
sizes of mini-batches. Figures 11-a, 11-b, 11-c illustrate the
test losses for the DNN for rank-k matrix approximation,
the low-complexity architecture, and the DNN for rank-1
approximation for 32-by-32 matrices, respectively. We use
the loss function given in (12), (13), and (18) to train the

DNNs. We set the number of convolutional layers to 2. The
results in Figure 11-a show that the test losses decrease more
rapidly while the mini-batch size grows from 32 to 128. Since
the larger sizes of mini-batches provide a better estimate of
the gradient [35], the test losses with a mini-batch size 64
and 128 converge to smaller values than the case with a
mini-batch size 32. We observe in Figure 11-b that the test
losses decrease faster with the larger sizes of mini-batches
when the low-complexity DNN for rank-k approximation is
used. These results reveal that the test losses converge to the
global minimum more quickly with a mini-batch size of 128.
In the low-complexity DNN for rank-k approximation, the
global optimum is achieved eventually with the smaller sizes
of mini-batches. As shown in Figure 11-c, the test losses of the
DNN for rank-1 approximation are obtained the same with the
different sizes of mini-batches. Since the number of parameters
of the DNN for rank-1 approximation is smaller than the other
proposed DNN architectures, the test error converges rapidly
with different sizes of mini-batches.

E. Comparison of Conventional Methods and DNN Based
Approaches for SVD

Time Complexity Comparison: The conventional algo-
rithm proposed in [20] for computing the SVD of a matrix

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

11

TABLE I
TIME COMPLEXITY OF CONVENTIONAL AND DNN BASED SVD METHODS

SVD Computation Technique Time Complexity
SVD algorithm by Golub et al [20] O(N 2

RNT)
SVD algorithm based on LAPACK routine [21] O(NRN 2

T)
DNN for rank-k approximation O(n × m2 × f 2 × (NR × NT + p × (NR + NT) + p2) + k2 × (N 2

R + NRNT + N 2
T))

Low-complexity DNN for rank-k approximation O(k × (n × m2 × f 2 × (NR × NT + p × (NR + NT) + p2) + (N 2
R + NRNT + N 2

T)))
DNN for rank-1 approximation O(n × m2 × f 2 × (NR × NT + p × (NR + NT) + p2) + (N 2

R + NRNT + N 2
T))

H ∈ CNR×NT first computes H∗H and then calculates its
eigenvalues, which gives O(N2

RNT) as complexity for the
SVD. Another conventional method given in [21] transforms
H into an NT × NT bidiagonal matrix, and then computes the
singular values and singular vectors of the resulting bidiagonal
matrix. The algorithm proposed in [21] has O(NRN2

T) time
complexity.

The time complexity of the training and test
phases of a CNN with n convolutional layers are
given as O

(
N × b ×

∑n
i=1 mi−1 × f 2

i × mi × l2
i

)
and

O
(∑n

i=1 mi−1 × f 2
i × mi × l2

i

)
, respectively [54]. Here, i,

mi , f 2
i , and li are the index of the convolutional layer, the

number of filters, the spatial size of the filter, and the output
features in the ith layer, respectively. We denote the batch
size of the training with b and the number of training epochs
with N . Let us assume f 2

i = f 2 and mi = m are fixed for
i = 1, ..., n. In the proposed DNN architectures for the SVD,
zero-padding with size p is applied to the input matrix with
a size of NR × 2NT . Therefore, the spatial size of output
features is l2

i = (NR +2p)× (2NT +2p) for i = 1, ..., n. Finally,
a fully-connected layer is included in each DNN architecture
to generate estimated output values. The time complexity
of a fully-connected layer during the testing phase can be
approximated as O

(∑nhid

i=1
∑nout

j di j

)
, where nhid , nout ,

and di denote the number of hidden nodes, the number of
output nodes, and the distance between hidden neuron i and
output neuron j, respectively. The number of output nodes
are 2k NR + 2k NT + k and 2NR + 2NT + 1 in DNN for rank-k
and rank-1 approximation, respectively. The number of output
nodes of the ith DNN in the low-complexity architecture is
2NR + 2NT + 1. Moreover, the number of hidden nodes in
the fully-connected layer of each DNN architecture equals to
number of output nodes.

Then, the time complexity of conventional SVD meth-
ods and the time complexity of the proposed DNN based
approaches are obtained as in Table I. The time com-
plexity of conventional methods can be approximated as
O(min(N2

RNT , NRN2
T)). For the constant values of k, m,

n, f , and p, the DNN for rank-k approximation, the low-
complexity DNN, and the DNN for rank-1 approximation
have a time complexity of O(max(k2NRNT , k2N2

R, k2N2
T)),

O(max(k NRNT , k N2
R, k N2

T)), and O(max(NRNT , N2
R, N2

T)),
respectively. While the number of transmit and the number
of receive antennas increase and k, m, n, f , and p are kept
as constant, DNN based approaches become computationally
more efficient than the conventional SVD methods. When k
gets closer to NT and NR , the conventional methods become

computationally more efficient than the DNN for rank-k
approximation. The computation time of the low-complexity
architecture becomes comparable to the conventional methods
with the larger values of k. On the other hand, the time
complexity of the DNN for rank-1 approximation is still less
than the conventional methods when k approaches to NT and
NR . We also propose to reduce the number of convolutional
layers, the number of filters, and the spatial size of each filter in
the low-complexity DNN for rank-k approximation. Therefore,
the computational complexity can be further reduced compared
to the DNN for rank-k approximation. Similarly, we propose
to use a fewer number of convolutional layers and filters
with a smaller spatial size compared to the DNN for rank-
k approximation in the DNN for rank-1 approximation to
reduce the complexity. Furthermore, the low-complexity DNN
for rank-k approximation and DNN for rank-1 approximation
are required to train for a fewer number of iterations, which
implies that N is smaller than in the DNN for rank-k ap-
proximation. Therefore, the time complexity of the training
phase is further reduced in the low-complexity DNN for rank-
k approximation and DNN for rank-1 approximation.

Memory Requirements Comparison: The computations
in each convolutional layer of a CNN require performing
a convolution of each filter across the entire input. Each
of the three proposed DNNs for computing the SVD gets
the matrix with a size of NR × 2NT as the input. In each
convolutional layer of the proposed DNN architecture, one
filter is convolved across the input to generate an output
matrix of size (NR + 2p) × (2NT + 2p), where p is the
number of padded zeroes to each side of the input matrix.
This convolution operation is repeated for each of the m filters
with f 2 spatial size, producing a 1 × 1 strip of output values
of length m. The memory requirements of the input matrix
and the filter is 2NRNT and m f 2, respectively. After the
entire input matrix is convolved with m filters, 2mNRNT +

2mpNR + 4mpNT + 4mp2 output activations are generated.
The memory requirement for the output of a CNN with n
convolutional layers is 2nmNRNT + 2nmpNR + 4nmpNT +

4nmp2. The DNN for rank-k approximation is composed of
multiple convolutional layers and one fully-connected layer.
The fully connected layer multiplies an input vector of size
1×2mNRNT +2mpNR +4mpNT +4mp2 with a weight matrix
of size 2mNRNT +2mpNR+4mpNT +4mp2×2k NR+2k NT +k
to produce an output vector of size 1 × 2k NR + 2k NT + k,
where 2k NR + 2k NT + k is the number of output nodes in the
DNN for rank-k approximation. Therefore, the total memory
requirement of the DNN for rank-k approximation equals to
k + mn f 2 + (2k + n)mp2 + (NR + NT)(16kmp2 + 2k) + (NR+

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

12

TABLE II
MEMORY REQUIREMENTS FOR DNN BASED SVD METHODS

DNN for rank-k approximation Low-complexity DNN for rank-k approximation DNN for rank-1 approximation k l m n t NR NT

48.9 kB 24.4 kB 2.1 kB 8 3 4 8 2 16 16
3.4 kB 2.2 kB 425.2 B 4 2 3 6 2 8 8

274.6 B 131.8 B 112.2 B 2 1 2 4 1 4 4

2NT)(4kmp + 2mnp + 2mp) + NRNT (2 + 2n + 4m + 2km +
24kmp) + kmp(N2

R + 2N2
T) + 4k m(N2

RNT + NRN2
T).

Each of the DNN in the low-complexity architecture is
composed of multiple convolutional layers and one fully-
connected layer. Let us denote the number of convolutional
layers and the number of filters in each DNN with l ≤ n and
t ≤ m, respectively. The number of output nodes of the ith
DNN in this architecture is 2NR+2NT +1 as it is explained in
Section III-D. When the remaining parameters of each DNN
in this architecture are the same with the DNN for rank-k
approximation, the memory requirement of the fully-connected
layer of each DNN is (2NR + 2NT + 2)(2tNRNT + 2tpNR +

4tpNT +4tp2 + 1). Therefore, the total memory requirement
of the low-complexity DNN for rank-k approximation is
k+lt f 2+(2k+l)tp2+(NR+NT) (16ktp2+2k)+(NR+2NT)(4ktp+
2ltp + 2tp) + NR NT (2 + 2l + 4t + 2kt + 24ktp) + ktp(N2

R
+2N2

T) + 4kt(N2
RNT+NRN2

T). When l = n and t = m, the total
memory requirement of the DNN for rank-k approximation
and the low-complexity DNN architecture becomes equal to
each other. The DNN for rank-1 approximation also consists
of multiple convolutional layers and one fully-connected layer
with 2NR + 2NT + 1 output nodes. We assume that the
values of the parameters of this architecture equal to the
values of the parameters in the low-complexity DNN for
rank-k approximation. The memory requirement of the fully
connected layer of the DNN for rank-1 approximation is
(2NR + 2NT + 2)(2tNRNT + 2tpNR + 4tpNT + 4tp2 + 1) as in
the low-complexity architecture. Therefore, the total memory
requirement of the DNN for rank-1 approximation becomes 2+
2lt f 2+4tp2(2+l)+2tp(l+2)(NR+2NT)+ (8tp2+2)(NR+NT)
+NRNT (2+ 4t + 2lt + 12tp) + 4t(pN2

R + 2pN2
T + N2

RNT). This
result shows that a 1/k reduction in the memory requirement
is obtained with the DNN for rank-1 approximation compared
to the DNN for rank-k approximation and the low-complexity
DNN architecture. We assume that each element of the real-
valued arrays in the proposed architectures is represented with
a floating-point number, which is stored using four bytes (32-
bits). When f 2 = 9 and p = 2, the total memory requirements
of the proposed DNN architectures are obtained in terms
of bytes (B) and kilobytes (kB) for different values of the
parameters as in Table II.

IV. DL FOR HYBRID BF

In this section, we present a novel DL-based approach for
the hybrid BF system, as depicted in Figure 1. The problem
of the hybrid BF system design is formulated as,(

Topt
RF ,T

opt
BB ,R

opt
RF ,R

opt
BB

)
= maximize

TRF ,TBB,RRF ,RBB

R,

s.t. ‖TRFTBB ‖
2
F = L, ‖RRFRBB ‖

2
F = L,

(20)

where R can be obtained by substituting Topt = TRFTBB and
Ropt = RRFRBB in (5).

To solve this problem, we introduce a novel DNN based
hybrid BF approach, which can be realized by using either
of the three architectures proposed for the SVD in Section
III. In the proposed approach, we minimize the Frobenius
distance between the rank-k approximations obtained with
the unconstrained and hybrid beamformers instead of max-
imizing the rate directly. Figure 12 depicts the proposed
architecture for the hybrid BF in which the DNN for rank-
k matrix approximation is used. The DNN gets the chan-
nel matrix H ∈ CNR×NT as the input and transforms that
into a real-valued matrix with NR × 2NT size. As shown
in Figure 12, the DNN for rank-k matrix approximation,
which consists of multiple convolutional layers and one fully-
connected layer, is trained to estimate the L largest singular
values (σ̃1, σ̃2, ..., σ̃L), the unnormalized values of the BB
precoder

(
[t̂BB

1 , ..., t̂BB
LT L]T

)
, the unnormalized values of the

BB combiner
(
[r̂BB

1 , ..., r̂BB
LRL]T

)
, the unquantized values of the

RF precoder
(
[t̂RF

1 , ..., t̂RF
NT LT

]T
)
, and the unquantized values

of the RF combiner
(
[r̂RF

1 , ..., t̂RF
NRLR

]T
)
. Here, L denotes the

number of data streams sent through the hybrid BF system.
Then, the L largest singular values are transformed into a di-
agonal matrix Σ̃L with σ̃1, σ̃2, ..., σ̃L on its diagonal. Through
the quantization layers, the phase value of each unquantized
element of the RF precoder and combiner is quantized, and the
quantized elements of the RF precoder and combiner are esti-
mated as [t̃RF

1 , ..., t̃RF
NT LT

]T and [r̃RF
1 , ..., t̃RF

NRLR
]T , respectively.

The quantized elements of the RF precoder and combiner are
transformed into the RF precoder and combiner matrices as
T̃RF and R̃RF , respectively. The unnormalized values of the
BB precoder

(
[t̂BB

1 , ..., t̂BB
LT L]T

)
and the unnormalized values

of the BB combiner
(
[r̂BB

1 , ..., r̂BB
LRL]T

)
) are also turned into

the unnormalized BB precoder and combiner as T̂BB and R̂BB ,
respectively. Finally, the normalized BB precoder

(
T̃BB

)
and

the normalized BB combiner
(
R̃BB

)
are estimated by using

the normalization layers.
In this section, we explain the RF constraints that we

incorporate into our DNN based hybrid BF approach. Then,
we describe how we satisfy the power constraint and explain
the loss function used during the optimization step. Finally,
we summarize our experimental results.

A. Incorporation of RF Constraints

As the finite-precision phase shifters are used in the RF
domain, the elements of TRF ∈ C

NT×LT and RRF ∈ C
NR×LR

are restricted to satisfy |[TRF]n, i |2 = N−1
T and |[RRF]m, j |2 =

N−1
R , respectively. If each phase shifter in the analog beam-

formers is controlled by an Nq-bit input, n(m)th row of the

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

13

NR

2×NT

H (Input)

h1

h2NT

. .
.

...

...

. .
.

h2NRNT

...

t̃RF
1

t̃RF
NTLT

r̃RF
NRLR

...

...

r̃RF
1

...

σ̃1

σ̃L

...

...

...

F
u
ll
y
-C

on
n
ec
te
d

r̂RF
1

t̂RF
1

t̂BB
1

r̂BB
1

t̂BB
LTL

t̂RF
NTLT

r̂RF
NRLR

r̂BB
LRL

...
...

...

Quantization

Quantization

Quantization

Quantization

Σ̃L

T̂BB

R̂BB

R̃RF

T̃RF

Normalization

Normalization
√
L

T̂BB

T̃RF T̂BB

√
L

R̂BB

R̃RF R̂BB

R̃BB

T̃BB

Convolutional Layers

Fig. 12. DL-based hybrid BF architecture, which uses the DNN for rank-k matrix approximation.

[TRF](n, i)
(
[RRF](m, j)

)
is denoted by e

j2πnkq

2Nq

(
e

j2πmkq

2Nq

)
for

some kq = 0, 1, ..., 2Nq − 1. To incorporate these constraints,
we add quantization layers to quantize the phase of each
element of the RF beamformers in this architecture. A naive
approach would be discretizing the weights associated with
the RF beamformers using a uniform quantizer, in which
each weight is rounded to the nearest value from a finite
set of quantization levels. However, gradient-based optimiza-
tion techniques would generate zero gradients during the
training of the uniform quantizer, which would prevent to
update the weights associated with the quantization layers.
We propose four approaches to formulate the quantization
as a differentiable function. Let us denote the ith element of
the unquantized and vectorized RF precoder estimated by the
DNN as t̂RF

i = ct e jαi , where ct = 1√
NT

is the modulus and αi

is the phase of the ith element. Similarly, we can define the
kth element of the unquantized and vectorized RF combiner
as r̂RF

k
= cr e jβk where cr = 1√

NR
is the modulus and βk

is the phase of kth element. This section explains how the
proposed approaches can be used to estimate the quantized
RF precoder T̃RF . The same procedures can be applied to
estimate the quantized RF combiner R̃RF , which is omitted
due to the page limit.

Quantization Approach 1: In this approach, we use a com-
bination of step and piece-wise linear functions to approximate
uniform quantization. Such a quantization function has non-
zero gradients on the regions that are determined by piece-wise
linear functions so that it can be learned during backpropa-
gation. In this case, the weights related to the quantized RF
precoder and combiner are updated in each training iteration,
which would not be possible with the uniform quantization. In
the training, the phase of ith element t̂RF

i of the unquantized
and vectorized RF precoder [t̂RF

1 , ..., t̂RF
NT LT

]T is approximated

π

4

3π

4
π

2

π

4

π

2

3π

4

π 5π

4

3π

2

7π

4
2π

π

5π

4

7π

4

2π

3π

2

αi

α̃i

(a) γ = 0.25 and Nq = 1.

π 2π

π

2π

αi

α̃i

(b) γ = 0 and Nq = 1.

Fig. 13. Toy examples for quantization approach 1 based on piece-wise linear
functions.

as,

α̃i =




0, if 0 ≤ αi ≤
2π (n−γ)

2Nq

αi, if 2π (n−γ)
2Nq

< αi ≤
2π (n+γ)

2Nq
, n = 1, ..., 2Nq − 1

2πn
2Nq

, if 2π (n+γ)
2Nq

< αi ≤
2π ((n+1)−γ)

2Nq
, n = 1, ..., 2Nq − 1

αi, if 2π (2Nq−γ)
2Nq

< αi ≤ 2π
(21)

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

14

π

4

3π

4
π

2

π

4

π

2

3π

4

π 5π

4

3π

2

7π

4
2π

π

5π

4

7π

4

2π

3π

2

αi

α̃i

Fig. 14. Toy example for quantization approach 2 based on sigmoid functions.

where 0 ≤ γ ≤ 1. α̃i is the quantized phase value based on the
piece-wise linear approximations. Then, the quantized value of
the ith element in the RF precoder can be written as t̃RF

i =

ct e jα̃i for 1 ≤ i ≤ NT LT . The quantized and vectorized RF
precoder [t̃RF

1 , ..., t̃RF
NT LT

]T is then reshaped into the quantized
RF precoder matrix given as T̃RF . In Figures 13-a and 13-
b, toy examples for this quantization technique are presented.
In Figure 13-a, γ and Nq are set to 0.25 and 1, respectively.
Figure 13-b shows the case when γ = 0 and Nq = 1. In the
testing phase, αi is quantized as,

α̃i =
2πn
2Nq

, (22)

where 2πn
2Nq

≤ αi ≤
2π (n+1)

2Nq
and n = 0, 1, ..., 2Nq − 1. As

depicted in Figures 13-a and 13-b, quantization approach 1
starts to behave as the uniform quantization while γ goes to 0.
When γ = 0, quantization is realized in an exactly same way in
training and test phases. On the other hand, the differentiable
regions get larger while γ gets closer to 1, which would allow
to update the weights related to the RF precoder and combiner
in every iteration during the training.

Quantization Approach 2: The first proposed quantization
function is not smooth and has zero gradients on the regions
defined by step functions. Therefore, we replace each step
function in the uniform quantization with a sigmoid function
in the second quantization approach. The sigmoid function
has non-zero gradients everywhere, which prevents gradient
mismatch during backpropagation. For a set of phase values
of the unquantized and vectorized RF precoder of a hybrid BF
system with NT transmit antennas and LT RF chains at the
Tx ({αi, i = 1, ..., NT LT }), the second quantization approach
is applied to each αi as,

α̃i =
1

1 + exp (β(αi − bn))
+ on, (23)

where β is the scale factor of the input. bn and on are the bias
and offset for the nth quantization level, respectively. Here,
n = 1, ..., 2Nq and Nq is the number of bits used in phase
shifters. A toy example for quantization approach 2 is shown
in Figure 14. In the toy example, Nq = 1, b1 = 1, b2 = 2,
o1 = 0, o2 = 1, and β = −20. This approach converges to the
uniform quantization as the absolute value of β increases.

π 2π

π

2π

αi

α̃i

(a) Forward propagation.

π

4

3π

4
π

2

π

4

π

2

3π

4

π 5π

4

3π

2

7π

4
2π

π

5π

4

7π

4

2π

3π

2

αi

α̃i

(b) Backpropagation.

Fig. 15. Toy examples for quantization approach 3 during forward and
backward propagation.

Quantization Approach 3: The main idea of all proposed
quantization approaches is to approximate the quantization
operation as a differentiable function to update any weights
and activations during backpropagation in DNNs. Since the
weights are not updated during forward propagation, we use
step functions to apply uniform quantization in the third
approach for forward propagation. For Nq-bit phase shifters,
uniform quantization considers 2Nq − 1 equally spaced points
between 0 and 2π excluding endpoints and assigns the phase
value of the ith element of the unquantized and vectorized
RF precoder (αi) to the closest quantization value. During
backpropagation, we use a linear combination of sigmoid
functions. In particular, the quantized value of the ith element
in the RF precoder, which is written as t̃RF

i = ct e jα̃i for
1 ≤ i ≤ NT LT , is computed as in (23). Here, NT and
LT denote the number of transmit antennas and the number
of RF chains at the Tx, respectively. The gap between the
step and sigmoid functions can be reduced by increasing
the absolute value of the scale factor β in (23). In order
to visualize the difference between forward propagation and
backward propagation, we present toy examples as given in
Figures 15-a and 15-b. In both of the figures, Nq = 1. During
backpropagation as shown in Figure 15-b, we set the values
of b1, b2, o1, and o2 to 1, 2, 0, and 1, respectively.

Quantization Approach 4: Finally, we propose a fourth
quantization approach, which assigns αi to one of 2Nq quan-

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

15

tization points probabilistically during forward propagation.
Here, αi denotes the phase value of the ith element in the
unquantized and vectorized RF precoder, i.e., t̂RF

i = ct e jαi for
1 ≤ i ≤ NT LT . We apply the stochastic quantization approach
given in [39] to each {αi, i = 1, ..., NT LT } as,

α̃i =
b2Nqαic

2Nq
+

ri
2Nq

, (24)

where ri is the rounding function and defined as ri ∼
Bernoulli

(
2Nqαi − b2Nqαic

)
. Nq , NT , and LT denote the

number of bits used in phase shifters, the number of transmit
antennas, and the number of RF chains at the Tx, respectively.
To backpropagate the gradients through this quantization func-
tion, we use the straight-through estimator as defined in [40].
Let us denote the quantization function given in (24) as
Q(α)i =

b2Nqαi c

2Nq
+

ri
2Nq

. Then, the gradient of Q(α)i with
respect to α j is defined almost everywhere, and it is given as,

∂Q(α)i
α̃ j

=



1, if αi has been quantized to α̃ j

0, otherwise
(25)

Therefore, all the weights, whose gradients are generated
using the straight-through estimator, can be updated during
backpropagation.
B. Satisfying Power Constraints

We also require to design the analog and digital beamform-
ers by considering the power constraints. As we defined in
Section II-C, the hybrid BF system must satisfy the power
constraint, i.e., ‖TRFTBB ‖

2
F = L and ‖RRFRBB ‖

2
F = L,

where L is the number of transmitted data streams. To meet
with the power constraints of the hybrid beamformers, we
append normalization layers to the DNN, which normalize
the vectorized and unnormalized values of the BB precoder
and combiner generated by the DNN. Let denote the vec-
torized and unnormalized BB precoder with [t̂BB

1 , ..., t̂BB
LT L]T

and the vectorized and unnormalized BB combiner with
[r̂BB

1 , ..., r̂BB
LRL]T . Then, [t̂BB

1 , ..., t̂BB
LT L]T and [r̂BB

1 , ..., r̂BB
LRL]T

are transformed into the unnormalized BB precoder matrix
T̂BB and the unnormalized BB combiner matrix R̂BB . By
using the unnormalized BB precoder T̂BB , the quantized RF
precoder T̃RF , the unnormalized BB combiner R̂BB , and the
quantized RF combiner R̃RF , the normalized BB precoder and
combiner are computed as,

T̃BB =
√

L
T̂BB

| |T̃RF T̂BB | |F
, (26)

R̃BB =
√

L
R̂BB

| |R̃RF R̂BB | |F
. (27)

C. Overall Loss Function

In this subsection, we define a customized overall loss
function to train the DNN for the hybrid BF. Let ΣL =
diag(σ1, ..., σL), UL = [u1, ..., uL], and VL = [v1, ..., vL] de-
note the L largest singular values and singular vectors, where
L ≤ rank(H) is the number of data streams in the hybrid BF
system. We can define the rank-L matrix approximation of H
as,

HL = ULΣLVL
∗. (28)

By using the outputs of DNN, we approximate the left and
right singular vectors of H as R̃opt = R̃RF R̃BB and T̃opt =

T̃RF T̃BB , respectively. Then, rank-L approximation of H is
estimated as,

H̃L = R̃opt Σ̃LT̃∗opt . (29)

The DNN for the hybrid BF is trained to minimize the
Frobenius distance between HL and H̃L . Additionally, T̃opt =

[t̃1, ..., t̃L] and R̃opt = [r̃1, ..., r̃L] must be orthogonal matrices,
i.e., | |t̃∗i t̃ j | |2 = | |r̃∗i r̃ j | |2 = 0 ∀ i, j s.t. i , j. Here, t̃i ∈ CNT×1,
r̃i ∈ CNR×1, and i = 1, ..., L. Formally, we define the loss
function as,

L (θ) =
| |HL − H̃L | |F

| |HL | |F
+λ1

∑
i, j

| |r̃∗i r̃ j | |2+λ2

∑
i, j

| |t̃∗i t̃ j | |2, (30)

where λ1 and λ2 are the non-negative constants. The second
and third terms in (30) satisfy the orthogonality of the T̃opt

and R̃opt , i.e., | |r̃∗i r̃ j | |2 = 0 and | |t̃∗i t̃ j | |2 = 0, ∀ i, j s.t. i , j.

D. Experimental Study of DNNs for Hybrid BF

In this subsection, we compare the achieved rates with the
proposed hybrid BF approach based on three DNNs for the
SVD. We highlight the impact of different system parameters,
such as the number of antennas, the number of iterations,
and the types of quantization techniques, on the performance
of our approach. Moreover, we compare the achieved rates
of the proposed hybrid BF based on three DNNs with the
unconstrained BF, the conventional hybrid BF algorithms
given in [10], [11], [41], an ML-aided hybrid BF algorithm
based on adaptive CE optimization [26], two DL-based hybrid
BF algorithms [28], [31], an autoencoder based hybrid BF
algorithm [29]. For the simulations of [10], the parameters are
chosen as follows. The number of BF vectors at the Tx in each
stage of the algorithm is set to 2. The required resolutions for
the AoD and AoA are chosen as 2NT and 2NR , respectively.
In the simulations of [11], we set the number of paths of
the channel to the max{NT , NR } unless otherwise specified.
The simulation parameters of the algorithm proposed in [41]
are chosen as follows. Qt and Qr , which denote the Tx and
Rx beams with the largest effective powers selected for the
reduced set of the possible beams, are assumed to equal to
each other, i.e., Qt = Qr = Q = 2Nq . Here, Nq is the number
of bits used in the phase shifters. For the simulations of [26],
the number of candidates and elites for the beamformers are
set to 2 × 2Nq and 2Nq , respectively. We use a step size of
0.0001, and train the algorithm for 1000 iterations. In the
simulations of [28], we choose the parameters as follows. For
the training of the algorithm, an MLP with 4 hidden layers is
used. The ReLU activation functions are used in the hidden
layers. The dropout rate and the learning rare are set to 0.05
and 0.0001, respectively. We use a mini-batch size of 100.
The MLP is trained using the mean squared error function
with Adam optimization. The best weights are found using
early stopping to avoid overtraining. 10000 channel matrices
are divided into a training set with 8000 matrices and a test
set with 2000 matrices. The number of BS and the mobile
user is set to 1, and the number of antennas at the BS and
the user are selected as equal to each other, i.e., NT = NR .

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

16

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

0

5

10

15

20

25

30

35

40

45

R
a
te

 (
b
p
s
/H

z
)

Hybrid BF with DNN for Rank-k Approximation

Hybrid BF with Low-Complexity DNN

Hybrid BF with DNN for Rank-1 Approximation

Unconstrained BF

(a) 8-by-8 mmW system.

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

0

10

20

30

40

50

60

70

R
a
te

 (
b
p
s
/H

z
)

Hybrid BF with DNN for Rank-k Approximation

Hybrid BF with Low-Complexity DNN

Hybrid BF with DNN for Rank-1 Approximation

Unconstrained BF

(b) 16-by-16 mmW system.

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

0

20

40

60

80

100

120

R
a

te
 (

b
p

s
/H

z
)

Hybrid BF with DNN for Rank-k Approximation

Hybrid BF with Low-Complexity DNN

Hybrid BF with DNN for Rank-1 Approximation

Unconstrained BF

(c) 32-by-32 mmW system.

Fig. 16. Achievable rates of the proposed approach for hybrid BF based on three DNNs for SVD, and the unconstrained BF versus SNR for different number
of Tx and Rx antennas.

For [31], a CNN with four convolutional layers is used in
the simulations. The number of filters in the first, second, and
third convolutional layers in the CNN are 32, 64, and 128,
respectively. The last convolutional layer has 128 filters. The
spatial size of each filter in the CNN is set to 9, and the size of
zero-padding is 7. The CNN is trained using the mean squared
error function with Adam optimization. The learning rate used
during the training is 0.0001. Finally, the dropout rate, the
mini-batch size, the number of epochs are set to 0.05, 32 and
1000, respectively. In [29], the number of training iterations,
the learning rate, and the mini-batch size are selected as 1000,
0.0001, and 32, respectively. For the simulations of all the
algorithms, the number of bits used in the phase shifters is
set to 2 for 8-by-8 mmW systems, and 3-bit phase shifters are
used in the 16-by-16 and 32-by-32 mmW systems. Moreover,
the number of paths in the channel equals the max{NT , NR }

unless otherwise specified.
DL Model: We design the DNNs in our hybrid BF approach

using CNNs, as in Section III-D. We use mini-batches with a
size of 32, and we obtain the simulation results for DNN with 4
convolutional layers. The first convolutional layer uses a filter
with a size of 32 × 3 × 3. The second and third convolutional
layers apply filters with a size of 64× 3× 3. In the remaining
layers, filters with a size of 128×3×3 are used. Convolutional
layers are followed by a dropout layer with a rate of 0.4, a max
pooling layer, and a fully connected dense layer. DNNs for
the hybrid BF have ELU activation units in each hidden layer
except the quantization layers, which use sigmoid functions
instead. Finally, the linear activation function is used in the last
layer. The quantization approach 1 based on piece-wise linear
functions is used to generate the phases of RF beamformers
during the training of each DNN unless otherwise specified.
The loss function given in (30) with Adam optimization is
used for training DNNs. The test and training losses of the
algorithm with different sized matrices are observed while
changing the values of non-negative constants from 0.0001
to 0.1 with the step of 0.001. Since the best performance
is achieved when both of the non-negative constants equal
to 0.01, λ1 and λ2 are set to 0.01. The rates are obtained
after training DNNs for 1000 iterations with a 0.0001 learning
rate unless otherwise specified. We use the Keras [55] with a
Tensorflow [53] backend for the simulations.

Channel Model and Data Generation: For generating
datasets to represent the mmW channel in different time
instances, we use the geometric channel model introduced
in Section II. In the simulations of the geometric channel
model, we assume the antenna arrays to be ULAs. The
spacing between two successive antennas is equal to λ/2. The
AoDs/AoAs are uniformly distributed in [0, 2π]. The distance
between the Tx and Rx is 50 meters (m), the carrier frequency
is 28 GHz, the path loss exponent (PLE) is 3, and the system
bandwidth is 100 MHz. The average transmit power is set to 7
dB. 10000 channel matrices, which are divided into a training
set with 8000 matrices and a test set with 2000 matrices, are
generated for 8-by-8, 16-by-16, 32-by-32, and 64-by-64 mmW
systems.

Comparison of Hybrid BF Approaches based on Pro-
posed DNNs for SVD: To study the performance of the
proposed hybrid BF based on DNNs, we first conduct sim-
ulations using the geometric channel model given in Section
II-D. We implement each DNN using a mini-batch size of 32.
The number of convolutional layers is set to 4. We generate
full-rank channel matrices for all three cases. Therefore, the
number of channel paths (S) equals the number of transmit
and receive antennas of the mmW system. Figures 16-a, 16-
b, and 16-c illustrate the achieved rates with the proposed
hybrid BF approach based on three DNNs for the SVD, and
the unconstrained BF for 8-by-8 mmW system with 2-bit
phase shifters, 16-by-16 and 32-by-32 mmW systems with 3-
bit phase shifters. For different sized mmW systems, the hybrid
BF approach based on DNN for rank-k matrix approximation
outperforms the hybrid BF based on the low-complexity DNN
for rank-k approximation and the hybrid BF based on the
DNN for rank-1 approximation. In these results, we observe
that the performance gap between the DNN for rank-k matrix
approximation and the other DNN architectures increases as
the number of antennas increases at the Tx and the Rx. The
reason of this behavior is that an additional distortion is added
to the input matrix when ith singular value and singular vectors
are estimated from rank-k−i+1 matrix obtained by subtracting
rank-i − 1 matrix, which is computed using the estimated
i − 1 singular values and vectors, from the original rank-
k channel matrix. Therefore, the distortion increases as the
rank of the channel increases for the low-complexity DNN

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

17

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

0

5

10

15

20

25

30

35

R
a
te

 (
b
p
s
/H

z
)

Hybrid BF based on Adaptive CE [10]

Sparse Hybrid BF [11]

DL Coordinated BF for mmW Systems [28]

Hybrid BF Based on Efficient Power [41]

DL-Based BF via CNN [31]

Autoencoder Based BF via GMD [29]

Proposed Hybrid BF with DNNs

ML-Based BF via CE Optimization [26]

55.3% improvement compared to [10]

23% improvement compared to [26]

(a) 8-by-8 mmW system.

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

0

10

20

30

40

50

60

R
a

te
 (

b
p

s
/H

z
)

Hybrid BF based on Adaptive CE [10]

Sparse Hybrid BF [11]

DL Coordinated BF for mmW Systems [28]

Hybrid BF Based on Efficient Power [41]

DL-Based BF via CNN [31]

Autoencoder Based BF via GMD [29]

Proposed Hybrid BF with DNNs

ML-Based BF via CE Optimization [26]

8% improvement compared to [31]

69.5% improvement compared to [10]

(b) 16-by-16 mmW system.

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

0

20

40

60

80

100

120

R
a

te
 (

b
p

s
/H

z
)

Hybrid BF based on Adaptive CE [10]

Sparse Hybrid BF [11]

DL Coordinated BF for mmW Systems [28]

Hybrid BF Based on Efficient Power [41]

Autoencoder Based BF via GMD [29]

Proposed Hybrid BF with DNNs

ML-Based BF via CE Optimization [26]

7.9% improvement compared to [29]

DL-Based BF via CNN [31]

40.4% improvement compared to [31]

(c) 32-by-32 mmW system.

Fig. 17. Achieved rates of DNN based hybrid BF, conventional hybrid BF algorithms given in [10], [11], [41], and the data-driven hybrid BF algorithms
given in [26], [28], [29], [31] for mmW systems with different number of Tx and Rx antennas.

for rank-k matrix approximation and the DNN for rank-1
matrix approximation. Since we consider full-rank channel
matrices in these simulations, the number of transmit and
receive antennas is equal to the rank of the channel, which
leads to an increase in the performance gap with a higher
number of antennas. Moreover, the achieved rates of the low-
complexity DNN for rank-k approximation and the DNN for
rank-1 approximation get closer while the number of antennas
increases due to the accumulated noise in each DNN of the
low-complexity architecture.

Comparison of Proposed DL-Based Hybrid BF Ap-
proach with the State-of-the-Art: We compare the achieved
rates of the hybrid BF based on DNN for rank-k matrix
approximation presented in Section III-A with conventional
hybrid BF algorithms given in [10], [11], [41], an ML-aided
hybrid BF algorithm based on CE optimization [26], two
DL-based hybrid BF algorithms given in [28], [31], and an
autoencoder based hybrid BF algorithm [29] in Figures 17-a,
17-b, and 17-c. In these results, the DNN has 4 convolutional
layers and a mini-batch size of 32. We use 2-bit phase shifters
in the RF beamformers of 8-by-8 mmW systems, and 3-bit
phase shifters in the RF beamformers of 16-by-16 and 32-
by-32 mmW systems. The hybrid BF algorithm proposed in
[10] designs the beamformers by approximating the chan-
nel’s dominant singular vectors based on a multi-resolution
BF codebook. The proposed multi-resolution codebook has
multiple levels, each with BF vectors, which are defined in
terms of the set of quantized angles. In [11], a hybrid BF al-
gorithm based on orthogonal matching pursuit (OMP) has been
proposed. Authors of [11] formulate the problem as a sparse
signal approximation in which near-optimal beamformers are
found. The hybrid BF algorithm given in [41] first reduces the
set of possible RF-BF vectors based on the dominant beams,
which are determined by a metric such as effective power
or AoA direction. Then, an exhaustive search is performed
over all beamformers in the reduced set. The authors of
[26] have proposed an ML-aided hybrid BF algorithm based
on adaptive CE optimization. In this algorithm, the weight
of each candidate hybrid beamformer is adaptively updated
according to their achievable sum-rates and calculates the
probability distributions of elements in hybrid beamformers
by minimizing the CE. In [28], a DNN is used to predict the

BF vectors from received signals using omni beam patterns.
In [31], a CNN-based BF technique is proposed to solve the
optimum beam-selection problem in Vehicle to Infrastructure
(V2I) scenario. In this work, the authors focus on finding the
best pair of beams for analog BF of a transceiver with one
RF chain and fixed codebooks. Finally, a DNN framework is
employed to construct an autoencoder to learn the mapping
between the optimum precoder and the multiplication of the
analog and digital precoders in [29].

We consider the geometric channel model defined in Sec-
tion II-D. Figures 17-a, 17-b, and 17-c show the achieved
rates of the hybrid BF based on DNN for rank-k matrix
approximation, conventional hybrid BF algorithms, a ML-
aided hybrid BF algorithm based on CE optimization, two
DL-based hybrid BF algorithms, and an autoencoder based
hybrid BF algorithm versus SNR for 8-by-8, 16-by-16, and 32-
by-32 mmW systems, respectively. It is shown in Figure 17-a
that we obtain 23% improvement in rates with the proposed
DNN based hybrid BF compared to the ML-based hybrid BF
algorithm given in [26] for 8-by-8 mmW system when SNR is
20 dB. Since our proposed approach is based on CNNs, which
generally perform better than the other ML-based approaches
when the input is multi-dimensional, the higher data rate is
achieved with our algorithm compared to other data-driven
approaches. Moreover, our approach outperforms the other
CNN based hybrid BF given in [31], and 26.33% gain in
rates is achieved. In the algorithm given in [31], MSE is
used as the loss function during the training of CNNs. On
the other hand, our proposed loss function minimizes the
error between the estimated and real rank-k approximation
of the given matrix, which achieves better results compared to
MSE. We also achieve 55.3% gain in rates with our approach
compared with the conventional hybrid BF algorithm given in
[10]. Conventional hybrid BF approaches find the sub-optimal
beamformers, while the ML-based hybrid BF algorithms can
find the global optimum. Therefore, the performance gain of
the proposed approach compared to conventional algorithms
further increases.

We see in Figure 17-b that the DNN based hybrid BF
achieves 8% gain in rates compared to the CNN based hybrid
BF algorithm [31]. Since the performance of the proposed
DNN architecture for rank-k approximation degrades with

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

18

-20 -15 -10 -5 0

SNR (dB)

0

1

2

3

4

5

6

7

R
a

te
 (

b
p

s
/

H
z
)

Quantization Approach 1
Quantization Approach 2
Quantization Approach 3
Quantization Approach 4

Unconstrained BF

(a) DNN for rank-k approximation.

-20 -15 -10 -5 0

SNR (dB)

0

1

2

3

4

5

6

7

R
a

te
 (

b
p

s
/
H

z
)

Quantization Approach 1
Quantization Approach 2
Quantization Approach 3
Quantization Approach 4

Unconstrained BF

(b) Low-complexity DNN.

-20 -15 -10 -5 0

SNR (dB)

0

1

2

3

4

5

6

7

R
a

te
 (

b
p

s
/

H
z
)

Quantization Approach 1
Quantization Approach 2
Quantization Approach 3
Quantization Approach 4

Unconstrained BF

(c) DNN for rank-1 approximation.

Fig. 18. Achieved rates of the constrained BF and the hybrid BF based on three proposed DNNs with four quantization approaches for the 8-by-8 mmW
system.

the higher number of antennas, the improvement compared
to the CNN based algorithm also decreases. Moreover, the
performance of autoencoder based hybrid BF gets better
than the DL-based hybrid BF algorithm [28] with a higher
number of antennas. However, our approach achieves 21%
gain compared to the autoencoder based hybrid BF algorithm.
Furthermore, we obtain 34.35% gain in rates compared to
the DL-based hybrid BF algorithm [28] for 16-by-16 mmW
system. Finally, we achieve 69.5% improvement with our
approach compared to the conventional algorithm proposed in
[10]. Moreover, the performance of the ML-based hybrid BF
algorithm degrades significantly for 16-by-16 mmW system.
We observe in Figure 17-c that for 32-by-32 mmW system, our
approach achieves 7.9% and 32.68% gains in rates compared
to the autoencoder based [29] and the DL-based hybrid BF
algorithm [28], respectively. We can see in the results that
the gain obtained with the DNN based hybrid BF compared
to the DL-based hybrid BF, which uses feedforward neural
networks, increases when the number of transmit and receive
antennas increases from 8 to 16. The increase in gain occurs
since the performance of feedforward neural networks used in
the algorithm given in [28] degrades with the larger number
of antennas. On the other hand, the performance gap between
the autoencoder based hybrid BF and our approach degrades
with the higher number of antennas due to the performance
loss of the proposed DNN for rank-k approximation with
larger sized matrices. Since the proposed loss function is
more effective in learning the features of beamformers, the
proposed approach achieves 40% gain in rates compared to
the CNN based hybrid BF algorithm given in [31] for 32-by-
32 mmW system. In these results, we also observe that the
gain in achieved rates with the proposed approach increases
with SNR for different sized mmW systems. For instance, the
improvement in achieved rates with the proposed approach
compared to the DL-based algorithm given in [28] is 25%
for 16-by-16 mmW system when SNR is −10 dB. On the
other hand, the gain in achieved rates compared to the same
approach increases to 34.35% when SNR is 20 dB for the same
16-by-16 mmW system. Furthermore, the proposed approach
achieves 4.6% gain in rates compared to the autoencoder based
BF algorithm given in [29] for 32-by-32 mmW system when

SNR is 0 dB. When SNR is 20 dB, the improvement in rates
becomes 7.9% for 32-by-32 mmW system.

Impact of Different Approaches of Quantization: In this
section, we compare the achieved rates of the proposed hybrid
BF approaches based on the DNN for rank-k matrix approxi-
mation, low-complexity DNN for rank-k matrix approxima-
tion, and DNN for rank-1 matrix approximation with four
quantization methods proposed in Section IV-A. By using the
geometric channel model, we conduct simulations for the 8-by-
8 mmW system in which the RF beamformers have 2-bit phase
shifters. Figure 18-a shows the achieved rates with the hybrid
BF based on DNN for rank-k matrix approximation. We ob-
serve that the first and second quantization approaches achieve
similar rates and outperform other quantization methods when
DNN for rank-k matrix approximation is used. It is shown in
18-b that the third quantization approach achieves the highest
data rates with the low-complexity DNN for rank-k matrix
approximation. We observe in 18-c that the fourth quantization
approach outperforms other methods when the DNN for rank-
1 matrix approximation is used. The first approach uses a
combination of step and piece-wise linear functions during
backward propagation. Therefore, it is differentiable on the
regions that are determined by piece-wise linear functions.
The second and third approaches use sigmoid function, while
the fourth approach sets the derivative of the gradients to the
identity matrix during backward propagation. Since these three
approaches are differentiable in all regions, they can be learned
without suffering the gradient mismatch. We observe that
the low-complexity DNN and DNN for rank-1 approximation
get the benefit of quantization approaches 2, 3, and 4 more
than the DNN for rank-k approximation. The performances
of low-complexity DNN and DNN for rank-1 approximation
are worse than the DNN for rank-k approximation since they
are trained to learn from noisy input data. The results in
this section show that quantization approaches 2, 3, and 4
can compensate for this performance degradation more than
the quantization approach 1 since the first approach is not
differentiable in all regions.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

19

TABLE III
TIME COMPLEXITY OF DNN BASED HYBRID BF AND STATE-OF-THE-ART

Hybrid BF Technique Time Complexity
Proposed Hybrid BF Based on DNN for Rank-k Approximation O(max(k2NRNT , k

2N 2
R, k

2N 2
T))

Proposed Hybrid BF Based on the Low-Complexity DNN for Rank-k Approximation O(max(kNRNT , kN
2
R, kN

2
T))

Proposed Hybrid BF Based on DNN for Rank-1 Approximation O(max(NRNT , N
2
R, N

2
T))

Hybrid BF Based on Adaptive CE [10] O
(
K2S3
LR

(
S − logSK

) (
NRN 2

T

))
Sparse Hybrid BF [11] O

(
NRN 2

T

)
Hybrid BF Based on Efficient Power [41] O

(
QLRQLT

)
ML-Aided Hybrid BF Based on CE Optimization [26] O

(
I
(
2Nq NT N 2

R

))
DL-Based Hybrid BF via MLP[28] O

(
NKp + NRNT

)
DL-Based Hybrid BF via CNN[31] O(max(L2NRNT , L

2N 2
R, L

2N 2
T))

Autoencoder Based Hybrid BF [29] O
(
max(LN 2

T , LN
2
R

)

E. Time Complexity Analysis of DNN Based Hybrid BF and
State-of-the-Art

It has been shown in Section III-E that the DNN
for rank-k approximation has a time complexity of
O(max(k2NRNT , k2N2

R, k2N2
T)) for the constant values of

m, n, f , and p, which denote the number of filters, the
number of convolutional layers, the spatial size of the filter,
and the size of zero-padding, respectively. Moreover, we
show in Section III-E that the time complexity of the low-
complexity DNN and the DNN for rank-1 approximation
is O(max(k NRNT , k N2

R, k N2
T)) and O(max(NRNT , N2

R, N2
T)),

respectively. Since the DNN consumes the major computation
time, the time complexity of the proposed hybrid BF can
be approximated with the time complexity of the used DNN
architecture. To estimate the mmW channel, the authors of [10]
have proposed an algorithm which has a time complexity of
O

(
K 2S3

LR

(
S − logS

K

))
, where K , LR , and S denote the number

of BF vectors at the Tx in each stage, the number of RF chains
at the Rx, and the number of paths in the channel, respectively.
In the hybrid BF algorithm of [10], the SVD of estimated
NR-by-NT channel matrix is calculated, which has a time
complexity of O(NRN2

T). With some mathematical manipu-
lations, the time complexity of this algorithm is approximated
as O

(
K 2S3

LR

(
S − logS

K

) (
NRN2

T

))
. Authors of [11] propose an

OMP based hybrid BF algorithm with an approximate time
complexity of O

(
NRN2

T

)
. In [41], Q Tx and Q Rx beams with

the largest effective powers are selected, and an exhaustive
search is performed on the reduced set. The time complexity
of this algorithm is approximated as O

(
QLRQLT

)
. In the ML-

aided hybrid BF algorithm proposed in [26], effective channel
matrices and corresponding BB beamformers are computed
for CN candidate beamformers. This part of the algorithm,
which has the highest time complexity, is O

(
CN NT N2

R

)
. The

number of candidate beamformers CN should be selected at
least 2Nq , where Nq is the number of bits used in the phase
shifters, to cover the all possible beam directions. After I
iterations, the total time complexity of the algorithm given
in [26] becomes O

(
I
(
2Nq NT N2

R

))
. In the training phase

of the DL-based hybrid BF algorithm introduced in [28],
the Rx receives training symbols using Ntr different RF-BF
vectors, which leads to time complexity of O (NRNT Ntr).
Finally, a fully-connected feed-forward DNN is trained with

N pilot sequences each of with a length of Kp . Since the
complexity of the DNN is approximately linear in the size
of the input, which is NKp for the DNN in this algorithm,
the time complexity of training and prediction phases are
found to be O

(
NKp + NRNT Ntr

)
and O

(
NKp + NRNT

)
,

respectively. In [29], the matrix multiplication of the analog
and digital beamformers dominates the computation time. We
assume that TA ∈ C

LT×NT and TD ∈ C
L×LT are the analog

and digital precoders, respectively. Moreover, RA ∈ C
NR×LR

and RD ∈ C
LR×L are considered to be the analog and digital

combiners, respectively. Then, the time complexity of this
algorithm becomes O

(
max(LN2

T , LN2
R

)
. In [31], a CNN with

four convolutional layers and one fully-connected layer is
used. Moreover, the number of filters in each convolutional
layer, the spatial size of each filter, and the size of zero-
padding are kept the same with the DNN for rank-k approx-
imation. The number of output nodes in the fully connected
layer is k (2NR+2NT+1) as in the DNN for rank-k approxima-
tion. Therefore, the time complexity of the algorithm given in
[31] can be approximated as O(max(L2NRNT , L2N2

R, L2N2
T)).

In the given time complexities, L, NT , and NR denote the
number of data streams, the number of transmit antennas, and
the number of receive antennas, respectively. The complexities
of testing phases for the proposed approach and other state-
of-the-art approaches are given in Table III.

Based on the given approximations for the time complexities
of our approach and the state-of-art algorithms, the DL-based
hybrid BF algorithm given in [28] achieves the least time
complexity for small values of N and Kp . For large values
of N and Kp , the time complexity of the DNN for rank-1
approximation becomes smaller than [28]. Furthermore, the
DNN for rank-k approximation and the low-complexity DNN
have comparable time complexities to the DNN for rank-
1 approximation for the small values of k. On the other
hand, the time complexity of the hybrid BF algorithms given
in [11] and [29] are less than the hybrid BF algorithms
given in [10] and [41]. Moreover, [29] has a smaller time
complexity than the sparse hybrid BF algorithm when the
number of data streams (L) is less than min(NR, NT). The time
complexity of the ML-aided hybrid BF algorithm proposed
in [26] grows exponentially with the number of bits used
in the phase shifters. Therefore, the time complexity of this

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

20

TABLE IV
RUN TIME RESULTS FOR DNN BASED HYBRID BF AND STATE-OF-THE-ART

Size DNN for Rank-k Approximation Adaptive CE [10] Sparse BF [11] Efficient Power [41] ML-Aided BF [26] BF via MLP [28] BF via CNN [31] BF via Autoencoder [29]

4-by-4 0.313 sec 0.066 sec 0.0024 sec 0.162 sec 0.0136 sec 0.0645 sec 0.1597 sec 0.0405 sec
8-by-8 0.365 sec 0.468 sec 0.0038 sec 0.335 sec 0.0175 sec 0.0705 sec 0.447 sec 0.054 sec

16-by-16 0.526 sec 3.885 sec 0.006 sec 0.453 sec 0.0321 sec 0.0853 sec 0.932 sec 0.0764 sec

algorithm is comparable to the complexity of the sparse hybrid
BF algorithm when the number of bits is small. However,
it starts to increase rapidly while the number of bits grows.
Finally, we measure the average run time of our approach, and
the state-of-art hybrid BF algorithms over a batch size equal
to 256, as shown in Table IV. In our simulations, the values
of Q, Nq , K , and S are set to 4, 3, 2, and 1, respectively.
For the scope of these results, the values of k, L, NR , NT ,
LR , LT , and NKp are picked as either 4, 8, or 16 such that
k = L = NR = NT = LR = LT = NKp .

V. CONCLUSION

In this paper, we first presented three DNN architectures
with different levels of complexity to learn the SVD operation.
The first architecture estimates the k most significant singular
values and singular vectors of the given matrix. The second
architecture uses k low-complexity DNNs in which each
DNN predicts one singular value and one singular vector.
The third architecture estimates the k largest singular values
and singular vectors of the given matrix by using a single
DNN recursively. Finally, we introduced a DNN based hybrid
BF approach to design the analog and digital beamformers
under the constraints of the finite-precision phase shifters and
the power constraint. Extensive simulations were presented to
evaluate the performance of the proposed DNN architectures
for the SVD. By using the geometric channel model, we
compared the achieved rates of the DNN based hybrid BF
approach with the unconstrained BF, three conventional hybrid
BF algorithms, an ML-aided hybrid BF algorithm, two DL-
based hybrid BF algorithms, and an autoencoder based hybrid
BF algorithm. With our simulation results, we show that the
DNN based hybrid BF approach obtains up to 50 − 70%
gain in rates compared to conventional hybrid BF algorithms,
and it achieves 10 − 30% improvement compared to ML-
based hybrid BF algorithms. In the future, we aim to explore
the unsupervised techniques such as generative adversarial
networks (GANs) for the SVD and hybrid BF to eliminate the
need for supplying valid singular values and singular vectors,
which leads to reduced overhead.

ACKNOWLEDGMENT

This work was supported by the Broadband Wireless Access
and Applications Center (BWAC); NSF Award No. 1822071;
the work of R. Tandon was supported in part by NSF grants
CAREER 1651492, CNS 1715947 and the 2018 Keysight
Early Career Professor Award.

REFERENCES

[1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, February 2014.

[2] L. Kong, M. K. Khan, F. Wu, G. Chen, and P. Zeng, “Millimeter-wave
wireless communications for IoT-cloud supported autonomous vehicles:
Overview, design, and challenges,” IEEE Communications Magazine,
vol. 55, no. 1, pp. 62–68, January 2017.

[3] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel,
and L. Ladid, “Internet of things in the 5G era: Enablers, architecture,
and business models,” IEEE Journal on Selected Areas in Communica-
tions, vol. 34, no. 3, pp. 510–527, March 2016.

[4] S. Han, C. l. I, Z. Xu, and C. Rowell, “Large-scale antenna systems
with hybrid analog and digital beamforming for millimeter wave 5G,”
IEEE Communications Magazine, vol. 53, no. 1, pp. 186–194, January
2015.

[5] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, 2013.

[6] S. Han, C. l. I, Z. Xu, and C. Rowell, “Large-scale antenna systems
with hybrid analog and digital beamforming for millimeter wave 5G,”
IEEE Communications Magazine, vol. 53, no. 1, pp. 186–194, January
2015.

[7] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter wave beamforming for wireless backhaul and
access in small cell networks,” IEEE Transactions on Communications,
vol. 61, no. 10, pp. 4391–4403, October 2013.

[8] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and
K. Haneda, “Hybrid beamforming for massive MIMO: A survey,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 134–141, September
2017.

[9] Y. Ren, Y. Wang, C. Qi, and Y. Liu, “Multiple-beam selection with
limited feedback for hybrid beamforming in massive MIMO systems,”
IEEE Access, vol. 5, pp. 13 327–13 335, 2017.

[10] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp.
831–846, October 2014.

[11] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499–
1513, March 2014.

[12] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Hybrid
precoding for millimeter wave cellular systems with partial channel
knowledge,” in Proceedings of the Information Theory and Applications
Workshop (ITA), February 2013, pp. 1–5.

[13] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid
precoding for multi-user millimeter wave systems,” IEEE Transactions
on Wireless Communications, vol. 14, no. 11, pp. 6481–6494, November
2015.

[14] T. E. Bogale and L. B. Le, “Beamforming for multiuser massive MIMO
systems: Digital versus hybrid analog-digital,” in Proceedings of the
IEEE Global Communications Conference, December 2014, pp. 4066–
4071.

[15] T. O‘Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, December 2017.

[16] T. J. O‘Shea, T. Erpek, and T. C. Clancy, “Deep learning based MIMO
communications,” CoRR, vol. abs/1707.07980, 2017.

[17] G. Gui, H. Huang, Y. Song, and H. Sari, “Deep learning for an effective
nonorthogonal multiple access scheme,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 9, pp. 8440–8450, September 2018.

[18] H. Huang, J. Yang, H. Huang, Y. Song, and G. Gui, “Deep learning for
super-resolution channel estimation and doa estimation based massive
MIMO system,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 9, pp. 8549–8560, September 2018.

[19] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi,
“Deep learning for physical-layer 5G wireless techniques: Opportunities,
challenges and solutions,” IEEE Wireless Communications Magazine,
vol. 27, no. 1, pp. 214–222, February 2020.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

21

[20] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–420,
1970.

[21] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen,
“Lapack: A portable linear algebra library for high-performance comput-
ers,” in Proceedings of the ACM/IEEE Conference on Supercomputing,
1990, pp. 2–11.

[22] A. Cichocki, “Neural network for singular value decomposition,” Elec-
tronics Letters, vol. 28, no. 8, pp. 784–786, April 1992.

[23] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural Networks,
vol. 2, pp. 53–58, 1989.

[24] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming
design via deep learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 1, pp. 1065–1069, January 2020.

[25] T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays
using deep learning,” IEEE Wireless Communications Letters, vol. 9,
no. 1, pp. 103–107, January 2020.

[26] X. Gao, L. Dai, Y. Sun, S. Han, and I. Chih-Lin, “Machine learning
inspired energy-efficient hybrid precoding for mmWave massive MIMO
systems,” in Proceedings of the IEEE International Conference on
Communications (ICC), 2017, pp. 1–6.

[27] Y. Long, Z. Chen, J. Fang, and C. Tellambura, “Data-driven-based analog
beam selection for hybrid beamforming under mm-Wave channels,”
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2,
pp. 340–352, May 2018.

[28] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep
learning coordinated beamforming for highly-mobile millimeter wave
systems,” IEEE Access, vol. 6, pp. 37 328–37 348, 2018.

[29] H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, “Deep-learning-
based millimeter-wave massive MIMO for hybrid precoding,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 3, pp. 3027–3032,
March 2019.

[30] K. Satyanarayana, M. El-Hajjar, A. A. M. Mourad, and L. Hanzo,
“Multi-user hybrid beamforming relying on learning-aided link-
adaptation for mmWave systems,” IEEE Access, vol. 7, pp. 23 197–
23 209, 2019.

[31] A. Klautau, P. Batista, N. González-Prelcic, Y. Wang, and R. W. Heath,
“5G MIMO data for machine learning: Application to beam-selection
using deep learning,” in Proceedings of the Information Theory and
Applications Workshop (ITA), February 2018, pp. 1–9.

[32] C. Szegedy, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 1–9.

[33] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, May 2013, pp.
6645–6649.

[34] Y. L. Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Proceedings of the International Conference
on Neural Information Processing Systems, 1989, pp. 396–404.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[36] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, May 2013, pp.
6645–6649.

[37] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” CoRR, vol. abs/1705.02445, 2017.

[38] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” CoRR,
vol. abs/1803.01271, 2018.

[39] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distil-
lation and quantization,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2018.

[40] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
CoRR, vol. abs/1308.3432, 2013.

[41] J. Singh and S. Ramakrishna, “On the feasibility of codebook-based
beamforming in millimeter wave systems with multiple antenna arrays,”
IEEE Transactions on Wireless Communications, vol. 14, no. 5, pp.
2670–2683, May 2015.

[42] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming
and space-time block coding based on channel mean feedback,” IEEE

Transactions on Signal Processing, vol. 50, no. 10, pp. 2599–2613,
October 2002.

[43] M. Stojnic, H. Vikalo, and B. Hassibi, “Rate maximization in multi-
antenna broadcast channels with linear preprocessing,” IEEE Trans-
actions on Wireless Communications, vol. 5, no. 9, pp. 2338–2342,
September 2006.

[44] S. A. Jafar, S. Vishwanath, and A. Goldsmith, “Channel capacity and
beamforming for multiple transmit and receive antennas with covari-
ance feedback,” Proceedings of the IEEE International Conference on
Communications (ICC), vol. 7, pp. 2266–2270 vol.7, June 2001.

[45] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S.
Rappaport, and E. Erkip, “Millimeter wave channel modeling and
cellular capacity evaluation,” IEEE Journal on Selected Areas in Com-
munications, vol. 32, no. 6, pp. 1164–1179, June 2014.

[46] T. S. Rappaport, Y. Qiao, J. I. Tamir, J. N. Murdock, and E. Ben-Dor,
“Cellular broadband millimeter wave propagation and angle of arrival
for adaptive beam steering systems (invited paper),” in Proceedings of
the IEEE Radio and Wireless Symposium, January 2012, pp. 151–154.

[47] A. A. M. Saleh and R. Valenzuela, “A statistical model for indoor multi-
path propagation,” IEEE Journal on Selected Areas in Communications,
vol. 5, no. 2, pp. 128–137, February 1987.

[48] A. F. Molisch, “A generic model for MIMO wireless propagation chan-
nels in macro- and microcells,” IEEE Transactions on Signal Processing,
vol. 52, no. 1, pp. 61–71, January 2004.

[49] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge
University Press, 2012.

[50] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[51] D. A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (ELUs),” in Proceedings of
the International Conference on Learning Representations (ICLR), May
2016.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), May 2015.

[53] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), November
2016, pp. 265–283.

[54] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015, pp. 5353–5360.

[55] F. Branchaud-Charron, F. Rahman, and T. Lee, “Keras.” [Online].
Available: https://github.com/keras-team

Ture Peken received her B.S. degrees in Telecom-
munications and Computer Engineering from Is-
tanbul Technical University, Turkey, in 2011, and
her M.S. degree in Electrical Engineering: Systems
from University of Michigan, Ann Arbor, in 2012.
She joined the University of Arizona as a Graduate
Assistant in 2014. Since 2019, she has been with
Keysight Technologies, Santa Rosa, CA, USA. She
is currently a Ph.D. candidate at the Electrical and
Computer Engineering Department, the University
of Arizona, Tucson, AZ, USA. Her current research

interests include wireless communications, millimeter-wave systems, machine
learning and its applications to beamforming and massive MIMO systems.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3004386, IEEE
Transactions on Wireless Communications

22

Sudarshan Adiga received his B.E. degree in
Telecommunication Engineering from Ramaiah In-
stitute of Technology, Bangalore, in 2015, and his
M.S. degree in Electrical and Computer Engineering
from the University of Arizona, Tucson, AZ, USA
in 2019. He is currently pursuing his Ph.D. at the
Electrical and Computer Engineering Department,
University of Arizona. His current research interests
include Machine Learning, Information Theory, and
Wireless Communications.

Dr. Ravi Tandon is an Assistant Professor in the
Department of ECE at the University of Arizona.
Prior to joining the University of Arizona in Fall
2015, he was a Research Assistant Professor at Vir-
ginia Tech with positions in the Bradley Department
of ECE, Hume Center for National Security and
Technology and at the Discovery Analytics Center
in the Department of Computer Science. He received
the B.Tech. degree in Electrical Engineering from
the Indian Institute of Technology, Kanpur (IIT
Kanpur) in 2004 and the Ph.D. degree in Electrical

and Computer Engineering from the University of Maryland, College Park
(UMCP) in 2010. From 2010 to 2012, he was a post-doctoral research
associate at Princeton University. He is a recipient of the 2018 Keysight
Early Career Professor Award, NSF CAREER Award in 2017, and a Best
Paper Award at IEEE GLOBECOM 2011. He is a Senior Member of
IEEE and currently serves as an Editor for IEEE Transactions on Wireless
Communications. His current research interests include information theory and
its applications to wireless networks, communications, security and privacy,
machine learning and data mining.

Dr. Tamal Bose is the department head and pro-
fessor of the Electrical and Computer Engineering
Department at the University of Arizona, Tucson. He
was the founder and national director of the NSF
sponsored multi-university multi-industry wireless
research center called Broadband Wireless and Ap-
plications Center from 2012-2017. From 2007-2013,
Dr. Bose was a tenured professor of the Bradley
Department of Electrical and Computer Engineering
at Virginia Tech. There he served as the associate
director of Wireless@VT. In 2008, he established

the NSF sponsored WICAT@VT site and served as the site director. Dr. Bose
also served as the department head of Electrical and Computer Engineering at
Utah State University, Logan, Utah. There he founded and directed the Center
for High-speed Information Processing. Dr. Bose’s research expertise is in
signal detection and classification for cognitive radios, channel equalization,
adaptive filtering algorithms, and nonlinear effects in digital filters. He is
author of the text Digital Signal and Image Processing, John Wiley, 2004,
and coauthor of Basic Simulation Models of Phase Tracking Devices Using
MATLAB, Morgan & Claypool Publishers, 2010. Dr. Bose’s current research
projects are funded by the National Science Foundation (NSF), Department
of Energy (DOE), Defense Intelligence Agency (DIA), and some private
companies. Throughout his career, he has directed research and worked as the
Principal Investigator (PI) and Co-PI of research funded by NSF, DOE, DIA,
Defense Advanced Research Program Administration (DARPA), Office of
Naval Research (ONR), Missile Defense Agency (MDA), Air Force Research
Laboratory (AFRL), NASA, and over 15 different private companies. The
total volume of research he has conducted as PI/Co-PI exceed 20M. He is the
author/co-author of over 70 journal papers and over 100 conference papers.
He received his Ph.D. from Southern Illinois University.

Authorized licensed use limited to: The University of Arizona. Downloaded on August 31,2020 at 20:10:43 UTC from IEEE Xplore. Restrictions apply.

