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ABSTRACT 
During a design process, designers iteratively go back and 

forth between different design stages to explore the design space 

and search for the best design solution that satisfies all design 

constraints. For complex design problems, human has shown 

surprising capability in effectively reducing the dimensionality 

of design space and quickly converging it to a reasonable range 

for algorithms to step in and continue the search process. 

Therefore, modeling how human designers make decisions in 

such a sequential design process can help discover beneficial 

design patterns, strategies, and heuristics, which are important 

to the development of new algorithms embedded with human 

intelligence to augment computational design. In this paper, we 

develop a deep learning based approach to model and predict 

designers’ sequential decisions in a system design context. The 

core of this approach is an integration of the function-behavior-

structure model for design process characterization and the long 

short term memory unit model for deep leaning. This approach 

is demonstrated in a solar energy system design case study, and 

its prediction accuracy is evaluated benchmarked on several 

commonly used models for sequential design decisions, such as 

Markov Chain model, Hidden Markov Chain model, and random 

sequence generation model. The results indicate that the 

proposed approach outperforms the other traditional models. 

This implies that during a system design task, designers are very 

likely to rely on both short-term and long-term memory of past 

design decisions in guiding their decision making in future 

design process. Our approach is general to be applied in many 

other design contexts as long as the sequential design action data 

is available. 

 

Keywords: Sequential decision making, Deep learning, 

Artificial neural network, Engineering design process, CAD. 
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NOMENCLATURE 
ANN Artificial Neural network 

FFNN Feed Forward neural network 

HMM Hidden Markov model  

LSTM Long short-term memory 

MM  Markov model 

REP Repetitive model 

RNN Recurrent neural network 

 

1. INTRODUCTION 
Design involves an iteratively searching process of design 

space for desired solutions. In such a search process, designers 

make sequential decisions that involve the selection of design 

actions and/or determination of design parameters so that they 

can get the best output. Since uncertainties are always 

accompanied with the search process, strategies of tradeoff and 

decisions on when and where to explore and exploit design space 

are important to the quality of design outcomes and the resources 

needed to achieve the outcomes. For example, in our previous 

sequential design behaviors study [1], we integrated Markov 

chain and unsupervised clustering methods to explore designers’ 

sequential behaviors and observe that designers follow certain 

design patterns, such as a high frequent design synthesis-related 

operations, in engineering systems design that has many 

coupling design variables and exhibits large design uncertainties. 

These sequential decision-making strategies are often the 

key features that differentiate expert designers and novice. These 

strategies are also the essences of human intelligence in design 

and the reason why sometimes human designers are effective in 

reducing the dimensionality of design space and quickly 

converging it to a reasonable range for search. For example, 

human shows very different strategy or patterns as compared to 

computational algorithms [2]. Also, it is found that human 

designers are more effective than algorithms doing search for 
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promising design candidates in certain situations, such as early-

stage systems design with large and high-dimensional or discrete 

solution space [3]. 

Therefore, modeling and machine learning of human 

sequential design decisions is of great interest and has potential 

impact to engineering design process and design automation. On 

the one hand, successful modeling of sequential decision-making 

can help discover quantifiable design patterns and strategies 

which are useful to existing computational design framework by 

embedding human intelligence. Early computational design 

mainly solves parametric and configuration design tasks through 

solver framework or linear mathematical programming. On the 

other hand, the discovery of beneficial design patterns from 

expert designers can be used to train novice designers. Moreover, 

computational modeling of sequential decision-making can help 

build artificial design agent which can be used in CAD systems 

and work collaboratively with human designers to improve 

design outcomes by reducing unnecessary design iterations and 

reinforce useful iterations. 

However, modeling and predicting human sequential design 

decisions is challenging. First, human decisions are a result of 

mental process that is hidden, implicit and sometimes tacit [4] 

because they are difficult to be transferred in an explicit way like 

writing or verbalizing. Second, design decisions are intricate, 

particularly in systems design scenarios where design process 

often spans over a long period and designers’ decisions involve 

with multiple interdependent variables; thus their decisions are 

highly correlated in the time sequence. Moreover, in complex 

design, patterns are weak and strategies vary across different 

designers. So, it is very challenging for traditional sequential 

learning models such as Markov model, autoregressive 

integrated moving average (ARIMA), etc., to discover 

prominent design patterns for the purpose of prediction. To 

address these challenges, the objective of this study is to 

computationally model and predict human designers’ sequential 

decisions in the context of engineering systems design. The 

research question we aim to answer is: 

What is the effect of past design decisions on predicting 

designers’ future sequential decision making? 

To achieve the objective, we develop a deep learning based 

approach with recurrent neural network (RNN). Artificial neural 

network (ANN) which mimics the human brain has been proved 

to be capable in machine learning sequential behavioral patterns 

in various fields recently such as natural language processing [5], 

healthcare [6], image recognition [7], finance [8], etc. Despite its 

success in these fields, the capability of ANN and deep learning 

in design research on sequential design decisions has not been 

explored. This is one of the motivations of this study. 

Particularly in this paper, we focus on the systems design 

problem that involves parametric and configuration design 

decisions. In real design scenario, especially in industry from 

product design to product manufacturing pipeline, configuration 

and parametric design plays a vital role where designers make 

decisions on which design components to use and what design 

parameter values to choose in order to construct the desired 

design artefact that satisfies a set of given constraints. These 

decisions can be recorded continuously in time scale as a 

sequence of actions taken. In the proposed approach, these 

sequential design actions are transcribed by the function-

behavior-structure (FBS) design process model in order to obtain 

the sequential data that depicts the design process stages of each 

designer. Then we use ANN on those processed data to train a 

deep learning model that can be used, in turn, to predict a 

designers’ design sequence. To gauge the performance of the 

developed model, we adopt accuracy metrics including 

parentage of prediction correctness and the area under the 

receiver operating characteristics (ROC) curve. These metrics 

are used to compare our model with the existing models of 

sequential design decisions in the engineering design field, such 

as Markov Chain model and Hidden Markov Chain model.  

The major contributions of the work are twofold: 1) An 

approach that integrates FBS-based design process model and 

RNN to model, learn and predict human sequential design 

decisions in the context of systems design. 2) An exploration and 

examination of the capability of deep learning models in 

predicting human sequential design decisions as compared to 

commonly-used models in engineering design field. 

The remaining paper is organized as follows. In Section 2, 

we discuss the state-of-the-art research on sequential design 

decision making and deep learning of sequential data. In Section 

3, we present our research approach and briefly introduce the 

technical backgrounds on different types of ANN models. In 

Section 4, a case study is presented on predicting designers’ 

sequential decisions in a solar energy system design project with 

the proposed approach. The details of the design experiment and 

data collection are provided in this section too. In Section 5, 

comparative study is performed, the results are presented and 

discussed. Finally, we conclude the paper with closing insights 

and discuss our future work in Section 6. 

 

2. LITERATURE REVIEW 
In this section, we first discuss the relevant studies on 

sequential decision making in the engineering design field. Next, 

we review the current work that leverages deep learning models 

in training and predicting sequential data in different areas. 

 

2.1 Studies on sequential design decisions 
Several studies have been done in engineering design field 

to explore the sequential patterns, optimize the sequence of 

design task and finding heuristics from the sequence learning. 

Particularly, a large number of works have been conducted based 

on Markov chain model for sequence learning. For example, in 

order to compare designers’ design behaviors, function-

behavior-structure ontology and first-order Markov chain [9] 

was used. Second-order Markov chain is also used to explore the 

effect of previous experience and design knowledge on design 

sequence [10]. Moreover, in order to explore the designers’ 

sequential learning strategy, McComb et al. [11] use Markov 

model in a truss design problem. Their results indicate that the 

first-order Markov chain better represents designers’ action 

sequences. In a later study, they use hidden Markov model 
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(HMM) to study the patterns of sequential design state in the 

same design problem. They found four hidden states in the 

configuration design and observed that designers used the first 

two states to topology operation, third state to spatial, and the 

fourth state to parameter operation. The trained HMM model is 

utilized to compare the design performance (in term of strength 

to weight ration of the truss design) among designers [12]. 

To study human sequential design behaviors in different 

design scenarios, there have been studies conducted based on 

Bayesian Optimization (BO) framework. For example, in order 

to mimic the human searching strategy, Sexton and Ren [3] 

develop a searching process using BO algorithm which can 

replace human solvers from a design process. Sha et al. [13] also 

integrated Weiner-process BO with game theory to develop a 

model for estimating designers’ sequential decisions while two 

designers compete with each other for monetary reward. 

Prior studies on sequential design processes have been also 

focused on project task level in support of product development 

and project management. For example, design structure matrix 

(DSM) [12-14] has been used to study task sequencing for 

identifying the sequence that minimizes expected project 

completion time. Some other work has been grounded in 

theoretical processes. For example, Miller et al. [14] use multi-

objective formulations to study the design process sequentially 

advancing through to smaller sets of alternatives using models of 

increasing fidelity. In addition, optimization approaches, such as 

the expected value of perfect information [15], genetic algorithm 

[16], and optimal learning [17], have been utilized in studying 

optimal design sequences. However, these studies are 

fundamentally different from this study in that they formulate a 

design problem and cast it into a sequential decision process to 

be optimized with normative models. In this study, however, we 

focus on sequential decision-making of human designers. It is 

about the actual actions that designers sequentially take. By 

modeling and analyzing such a design sequence at a fine-grained 

resolution, it is expected that insights and new knowledge 

regarding the design process can be obtained. 

 

2.2 Deep learning to model sequential data 
In recent years, deep learning techniques have shown their 

promise in predicting complex sequential data. For example, 

customer behavior is essentially a sequential data where they 

interact with market continuously over time. Santolaya et al. [18] 

leverage historical customer interaction data to predict the items 

that a customer may buy in future. This study shows that 

recurrent neural network (RNN) can successfully model the 

sequential customer data. 

A large number of studies have been performed in order to 

recognize speech and text patterns using ANN due to the 

sequential nature of those events. Many early works are focused 

on integrating feed forward neural network (FFNN) with HMM 

[19] to discover the patterns of speech. Also, RNN-based 

approach has been used to in phone probability estimation which 

aims to recognize phone in speech in terms of sound or gesture 

of a specific language [20]. Recently, long short term memory 

(LSTM), a special variant of RNN is introduced [21] and has 

shown better performance in both handwritten text recognition 

[22] and speech recognition [23] than previously used sequential 

learning models such as HMM.  

In the medical field, deep learning-based algorithms, e.g., 

FFNN and RNN/LSTM have been utilized to treat sequential 

data in different application scenarios. For example, both FFNN 

[24] and RNN [25] have been used to explore the complex 

patterns of gene expression. In biomedical sequential signal 

processing problems, such as electrocardiogram (ECG) signal 

and brain decoding [26], the success of many deep learning 

models is also mention-worthy. 

Deep learning is also used to study human daily sequential 

activities such as walking, standing, eating, etc. For example, 

Baccouche et al. [27] develop a fully automated deep learning 

model by integrating convolution neural network (CNN) and 

RNN to classify human daily routine activities without any prior 

knowledge. Apart from this areas, deep learning is successfully 

applied in online fraud detection [28], identifying discrimination 

[29], and predicting financial time series [30] through the use of 

users’ online sequential log data. 

Although researches have been conducted on modeling and 

predicting sequential data using deep learning models in many 

disciplines, to the best of our knowledge, no studies have been 

conducted yet to handle the sequential design data using deep 

learning in engineering design field. Design sequential data 

follows some unique patterns which are quite different from the 

sequential data in other fields. For example, designers perform 

conceptual design at the beginning of a design project and 

involve design actions and strategies that would be totally 

different from the ones in the embodiment design phase. Also, 

some of the design tasks may be iterated within one design phase 

but not in another. These patterns are not the same as the ones 

typically seen in natural language or human daily routine 

activities where deep learning approaches normally success. So, 

even though deep learning shows optimistic results in many 

 
FIGURE 1: The overall research approach 
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fields, its predictive power is still unexplored in studying 

sequential design behaviors. 

 
3. Research Approach and Technical Background 

In this section, first, we introduce the research approach of 

this study. Next, we introduce the technical background 

regarding the deep learning models adopted in our approach. 

 

3.1 The research approach 
The approach starts with the raw data collection of 

designers’ sequential design decisions from different sources 

such as the action logger of computer-aided design (CAD) 

software, interviews of designers, design documents, etc. The 

raw data contains the details of human design behaviors (i.e., 

design actions) as well as design artefact’s information, such as 

values of design parameters, simulation results, etc. In this study, 

we only extract the design actions which are only design-related, 

for example, in a CAD environment, adding a new component 

or editing that component. But changing the camera view is not 

considered as a design action in this study. Designers act based 

on given requirements and constraints, thus these actions 

essentially reflect their design thinking and strategies during a 

design task. Next, we apply design process model to convert the 

design actions into design process data. Design process model 

consists of a series of design stages that characterize a design 

process. This treatment transforms the action space into a design 

process space, which can significantly reduce the dimensionality 

of the sequential data. This leads to better interpretation and 

understanding of designers’ design process and sequential design 

thinking (see Section 4.2 for details). Then, we use the sequential 

design process data to train deep learning models and predict the 

next immediate design action category (i.e., the design stage 

defined by a design process model) based on the trained models. 

In this study, we use ANN models including FFNN and RNN to 

implement the deep learning approach. Finally, we evaluate the 

predictive performance of these models and compared them with 

several commonly used models with different metrics, such as 

training accuracy, testing accuracy, and the receiver operating 

characteristics (ROC) curve, and area under curve, at both 

aggregated level and design process stage level (see Section 5 

for details). Figure 1 depicts a schematic diagram of the overall 

approach used in this study.  

 
3.2 Artificial neural network 
An artificial neural network (ANN) is a biological inspired 

mathematical model, introduced by Rosenblatt [31] that mimics 

human brain to learn from the input dataset and produce the 

predictive outcomes based on that dataset. An ANN consists of 

artificial neurons which are known as nodes. The process starts 

with passing weighted inputs to the artificial neurons. This 

means each input is multiplied by individual weight. Then all the 

weighted input is summed with an adjustable unit bias that can 

help the artificial neural in a learning process. Finally, the sum 

of the weighted inputs and the bias are passed through the 

activation function to produce the final output. 

Depending on the problem studied, the activation function 

can be varied. Commonly used activation functions are step 

function, linear function, non-linear sigmoid function, non-linear 

hyperbolic tangent function [32]. Combined with these 

activation functions, the output of an artificial neural is 

mathematically represented as follows: 

 𝑦 = 𝑓(∑ 𝑤𝑖 ∙ 𝑥𝑖 + 𝑏𝑚
𝑖=1 ),  (1) 

where 𝑦 is the output, 𝑥𝑖 is the input value, 𝑤𝑖is the weight value, 

𝑏 is the bias and 𝑓 is the activation function.  Figure 2 shows an 

artificial neuron with its operations including multiplication, 

summation and activation. In reality, a single node is not efficient 

to solve a complex problem. For this reason, ANN commonly 

consists of large numbers of nodes that interact with each other 

through their weighted interconnections which eventually builds 

the architecture of a particular ANN. The power of the ANN 

mainly depends on these architectures, such as the number of the 

nodes and how each of the nodes operates [33]. In the following 

sections, we briefly introduce the two of the most important 

ANN architectures that adopted in this study.  

 

3.2.1 Feedforward neural network    
ANN that follows the feedforward architecture means that 

the information follows one direction from input to output with 

no back loops. In addition to the input layer and output layer, 

FFNN may have single or multiple hidden layers, as shown in 

Figure 3. When FFNN has only one layer between input and 

 

FIGURE 2: An artificial neuron and the basic building 

blocks of an artificial neural network 
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output, it is known as the single-layer perceptron. An FFNN with 

more than one hidden layer including the output layer is called 

multilayer perceptron. An FNN with a single hidden layer 

between the input layer and the output layer (as the one shown 

in Figure 3) is often sufficient to be universal function 

approximation [34]. However, deep neural network with 

additional hidden layers outperforms this shallow model.  A 

standard depth of deep neural network (i.e., the number of hidden 

layers) may vary from two or three to even one thousand  [7]. 

 

3.2.2 Recurrent neural network 
The structure of an RNN architecture is similar to that of an 

FFNN. The only distinction is that there is no restriction on back 

loops. So, the information not only passes in one direction 

forward but also does it flow backward, called recurrence (see 

Figure 4). This feature allows RNN to create a hidden state which 

carries information from the previous time steps. Figure 4(a) 

shows the architecture of an RNN. The feedback arrow indicates 

the recurrence of the hidden layer. The two layers in the dot-line 

box show the fully connected feed-forward information flow. An 

RNN can be unfolded, and Figure 4(b) shows an unfolded 

structure, where each input node of the input layer takes input as 

𝑿𝑡 = [𝑥1, 𝑥1, … . 𝑥𝑡]. These input units are connected to the 

hidden nodes with the weight matrix 𝑾𝑰. The hidden layer 

associated with the hidden nodes can be represented as 𝒉𝑡 =
[ℎ1,ℎ ,…… . , ℎ𝑡]. The hidden nodes are also connected with a 

weight value, 𝑼. Finally, the hidden layer is connected to the 

output layer 𝒀𝑡 = [𝑦1,𝑦 ,… . , 𝑦𝑡] via the weight matrix 𝑾𝑂. The 

output of the RNN can be presented with the following equation, 

 𝒀𝑡 = 𝑓(𝑾0𝒉𝑡),  (2) 

where 𝑓 indicates the activation function (logistic sigmoid or 

hyperbolic tangent functions are typically used). There are 

several types of recurrent unit or node. The most common and 

simplest RNN unit is called simple recurrent unit with the hidden 

layer defined as follows,  

 𝒉𝒕 =  𝜎(𝑾𝐼𝑿𝑡 + 𝑼𝒉𝑡−1 + 𝒃𝐻) , (3) 

where, 𝑾𝑰 and 𝑼 are the weights as mentioned earlier, 𝜎 is the 

sigmoid activation function and 𝒃𝐻 is the bias of the hidden 

layer. In order to compute the value of the current hidden node 

𝒉𝑡, the output from the previous time step is combined with the 

input of the network 𝑿𝑡.  

Although RNN can be used for capturing long-term 

dependencies, simple recurrent units are not effective in this task 

due to vanishing gradient problem [35]. To solve this problem, 

Hocreiter et al. [21] proposed the long short term memory units 

(LSTM), a special type of mechanism where information flow is 

controlled by three different gates namely input gate, forget gate 

and output gates. The corresponding equations described by 

Graves et al. [23], are as follows,  

𝑖𝒕 =  𝜎(𝑊𝑥𝑖𝒙𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖), (4) 

𝑓𝒕 =  𝜎(𝑊𝑥𝑓𝒙𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓, (5) 

𝑐𝒕 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐), (6) 

𝑜𝒕 =  𝜎(𝑊𝑥𝑜𝒙𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜), (7) 

ℎ𝒕 =  𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡), (8) 

where 𝑖𝒕, 𝑓𝒕, and 𝑜𝒕 are input gate, forget gate and output gate, 

respectively. Their associated weight matrices are 𝑾𝑥𝑖, 𝑾𝑥𝑓 and 

𝑾𝑥𝑜, respectively. 𝑐𝒕 is the memory cell which stores memory 

from the previous time step. 𝑊ℎ𝑖 is the hidden-input gate weight 

matrix. The bias terms (i.e., 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑐 and 𝑏𝑜) are added to each 

of the corresponding gates as well. 

LSTM is more widely used than simple RNN in many 

domains for its capability of modeling long-term dependencies. 

To study to what extent the past decisions of designers’ can 

influence their future decision-making, we use LSTM as a 

representative of RNN in our study. In the next section, we 

overview a case study for data collection in order to implement 

these models. 

4. Predicting sequential design processes in solar 
energy systems design: A case study 
In this section, we present a case study on solar energy 

systems design and implement the proposed approach to 

predicting designers’ sequential design decisions. First, we 

 
FIGURE 4: (a) Standard recurrent neural network architecture with feedback loop; (b) Unfolded recurrent neural network. 
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introduce the design experiment conducted for data collection. 

Next, we present the collected data and introduce the methods 

for processing it. 

4.1 The design context  
In order to collect sequential design behavioral data, we 

conducted a series of design challenges on real-world 

engineering design problems. The challenges were held at the 

University of Arkansas in 2018. Both undergraduate and 

graduate students from engineering disciplines participated in 

these challenges. In this study, we mainly adopt the data 

collected from one challenge where the students were asked to 

design a solarized energy-plus home in Texas with the budget of 

$200,000 (see Figure 5). 

The design objective is to maximize the annual net energy 

(ANE) given a budget. The design requirements and constraints 

are provided to the participants so they start the project with 

more focus on configuration design and parametric design. To 

keep the design complexity at a manageable level, the design 

variables are mainly related to the nine components that have 

direct impact on the design objective (see Table 1). More details 

on the design experiment and design problem are discussed in 

our previous article [1].  

Students’ designs were conducted within a computer-aided 

design (CAD environment, called Energy3D. Energy3D is a full-

fledged CAD software specially built for solar systems design 

[36]. Energy3D has several unique features such as interactive 

visualization, high-fidelity simulation, and built-in financial 

evaluation. These features can help designers effectively explore 

and exploit the design space. Moreover, Energy3D has a non-

intrusive data action logger. That means designers are not aware 

of the data collection process, and this help reduces participants’ 

cognitive burden that are normally introduced in experimental 

settings. As a result, the data that reflects designers thinking and 

decision-making can be less biased. Energy3D sort and log the 

sequential design action data at a fine-grained level. For 

example, it logs every performed action and intermediate 

artefacts in every 20 seconds [37]. This high-resolution data 

provides us with a large amount of data that are essential to 

implementing deep learning models. 

4.2 Data collection and preprocessing 

Energy3D collects the continuous flow of design action data 

in JSON format which includes time-steps, design actions, 

design parameter values and simulation results. In this study, a 

total of 38 engineering students participated in this design 

challenge. Among them, 20 students are undergraduate students 

and 18 are graduate students. 29 students are from Mechanical 

Engineering. On average, the design action log records 1500 

lines and 220 intermediate files per student. Example of a line of 

the design action log is presented below: 

{"Timestamp": "2017-11-16 11:01:23", "File": 

"EnergyPlusHome.ng3", "Add SolarPanel": {"Type": 

"SolarPanel", "Building": 2, "ID": 58, "Coordinates": [{"x": 

30.785, "y": 1.185, "z": 37.009}]}} 

We ignored the actions (i.e., “camera”, “add human”) that 

does not have effects on the design outcomes (i.e. ANE). After 

removing those irrelevant actions, there are 300 actions per 

participant on average and 115 actions are unique. Analysis of 

such a high dimension action space would yield results hard to 

interpret. To better understand the design process in this case 

study and designers sequential decision-making strategies, the 

function-behavior-structure (FBS) based design process model 

[38] is adopted. According to the FBS model, a coding scheme 

can be established to transcribe different types of design actions 

to seven design process stages including Formulation (F), 

Analysis (A),Evaluation (E), Synthesis (S), Reformulation 1 

(R1), Reformulation 2 (R2), and Reformulation 3 (R3) (see 

details in [1] about how each type of design actions corresponds 

to the design process stages in FBS model). This dimension 

reduction also help us to reduce the effect of “curse of 

dimensionality” [39]. Curse of dimensionality occurs when there 

is large number of features but the total dataset is limited. 

 

FIGURE 5: An example of the energy-plus home design  

TABLE 1: The design requirements and constraints of the 

solarized energy-plus home 

Components Requirements 

Story 1 

Number of windows > 4 

Size of windows >1.44 m2 

Number of doors ≥1 

Size of doors (Width × Height) >1.2 m × 2m 

Height of wall >2.5m 

Distance between ridge to panel >0 

 

Design process stages F A E S R1 R2 R3 

Formulation 1 0 0 0 0 0 0 

Analysis 0 1 0 0 0 0 0 

Reformulation 1 0 0 0 0 1 0 0 

: : : : : : : : 

: : : : : : : : 

Analysis 0 1 0 0 0 0 0 

Figure 6: One hot vector representation of a sequence. 
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Given a set of actions data, we need to convert or encode the 

sequences in a way such that it can be implemented as an input 

in neural network. The most popular encoding technique is 

known as “one hot encoding”  [40]. One hot encoding transforms 

a single variable of 𝑛 observations with 𝑚 distinct variables into 

𝑚 binary variable with 𝑛 observations. Each observation 

indicates the presence (1) for the corresponding position of that 

variable and absence (0) in all other dimension. Figure 6 shows 

the one hot vector presentation of a sequence.  

 

5. RESULTS AND DISCUSSION 
 In this section, we present the results of the LSTM and 

FFNN models and compare them with the models that are 

commonly used in existing literature, such as the Markov model 

(MM) and hidden Markov model (HMM). Additionally, we 

develop a repetitive model (REP model) for comparison because 

we found from our previous study [1] that designers quite 

frequently repeat the previous design action in the CAD 

environment. For example, we found that on overage 53.6% of 

design actions were simply repeating the action just one step 

before. So, in the REP model, we simply use the average 

percentage of occurrence of each design stage as the model to 

predict the next design stage with the highest percentage value. 

Finally, a random model is developed as the benchmark for all 

the models investigated. The purpose is to examine whether the 

design sequences indeed follow certain patterns or just shows 

randomness. For our study, we have seven design process stages. 

Then the prediction of the next stage will be a random selection 

of one process stage from seven following a uniform 

distribution. On average, every process stage has a probability of 

1/7 to be selected. 

 In the following two sections, we first evaluate the 

performance of different models in terms of training accuracy 

and prediction accuracy regardless of the category of design 

actions (i.e., the design process stages defined by the FBS 

model). Next, we perform in-depth analysis on how accurately 

each design process stage in the next step can be predicted and 

compare the performance of different models using the metrics 

of receiver operating curve (ROC) and the area under ROC curve 

(see Section 5.2 for details). 

 

5.1 Evaluation of model performance at the level 
of entire sequence  

To validate the models, we adopt k-fold cross-validation 

[41] technique where we divide our data into 5 folds. First, we 

use any 4 folds to train the models and leave the remaining fold 

for validation purpose. Next, we train the models on a new 

combination of 4 folds including the previously withheld fold 

and validate the model again with the remaining one. In this way, 

we iterate through all over the 5 rounds. An illustration of the 5-

fold cross-validation method is shown in Figure 7.  

Keras deep learning library [42] is used to run the HMM, 

FFNN and LSTM model, and we programmed by ourselves for 

the MM. While going through each of the rounds, training data 

set performs forward pass and backward pass (a.k.a. 

backpropagation) [43] in order to update the models’ parameters 

(including both weight values and bias values). When forward 

pass and backward pass complete passing the whole data set, it’s 

called one epoch. During testing, we predict the next action 

(𝑎𝑡+1) by passing the previous actions from time 0 to 𝑡 as the 

input into the trained model. So, if a design sequence has 𝑛 

actions, then 𝑛 − 1 predictions will be made. Then, by 

comparing with the real observation of a design sequence, we 

count the total number of correctly predicted actions (𝑛𝑐𝑝) and 

divide it by the total number of predictions, i.e. 𝑛 − 1. In this 

way, we can get the prediction accuracy of that model in every 

epoch. In this study, only the prediction accuracy of the last 

epoch (when the model is fully trained) in each round is taken 

and the average from five rounds is used as the metric for 

evaluating a model’s predictive power. The mathematical 

expression of this metric is as follows: 

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑅
∑ (

𝑛𝑐𝑝

𝑛𝑖
𝑚𝑎𝑥 −1

)𝑅
𝑖=1 , (9) 

where, 𝑅 denotes the number of rounds for cross validation. 𝑅 =
5 in this study. 𝑛𝑖

𝑚𝑎𝑥  is the maximal number of actions of the 

design sequence (i.e., the length of the longest design sequence) 

in round 𝑖.  In our experiment, we found all the models converge 

after 20 epochs. The models were trained by stochastic gradient 

descent [44] algorithm with a learning rate of 0.1. This learning 

rate is determined by trial and error for producing the best 

accuracy. Section 5.3 presents a sensitivity analysis on this 

hyperparameter.  

Round 1 Train Train Train Train Test 

 

Round 2 Train Train Train Test Train 

 

Round 3 Train Train Test Train Train 

 

Round 4 Train Test Train Train Train 

 

Round 5 Test Train Train Train Train 

 
FIGURE 7 Training and testing data split according to 5-

fold cross validation technique 

 
FIGURE 8: Training and testing accuracy of 4 models.  
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MM provides the prediction of the design process state in 

the next step based on the state in the current time step. With the 

design sequence as input, training of a MM will produce a 7 ×
7 transition probability matrix because the FBS design process 

model contains seven design process stages which represent 

seven states in MM. Each of the entry of the matrix defines the 

probability of one design stage transitioning to the next design 

stage. We follow the same structure in Figure 7 to train and test 

MM. The trained model (i.e., the transition probability matrix) is 

an aggregation by averaging the matrices obtained from every 

designer in the training dataset. When testing a MM model, for 

every given FBS design process stage in a design sequence, the 

MM will predict seven probabilities of design stages following 

that given stage, and the one with the highest probability is 

picked for comparing with the real data, and then calculating the 

prediction accuracy. Markov model is not associated with any 

external parameters. So, we calculate the prediction accuracy 

just based on the transition probability matrix. 

 Figure 8 shows a comparison of the prediction accuracy of 

both training data and testing data among all the models. The 

baseline model, i.e., the random model, shows the least accuracy 

of 14.5 % with the standard deviation of 1.66%. The accuracy of 

the REP model is much higher than the random model which is 

about 52%. This is because REP model is developed based on 

the simple repetition process in design and it is observed that 

when designers were working on this design problem using CAD 

software, many of them repeated their previous action very 

frequently and the REP model captures such a pattern. We 

present only the prediction accuracy for the random model and 

the REP model because these models are not built with data and 

the training process is not needed.  

It is shown from Figure 7 that both MM and HMM yields 

better performance than the random model with the prediction 

accuracy of 43.2% and 58.1%, respectively. This indicates that 

designers’ actions indeed follow certain patterns and are not 

random. In MM, each action is dependent only on the action of 

the previous step. As a consequence, MM does not encode 

“memory” of past events in the prediction. On the other hand, 

the inclusion of hidden-state architecture in HMM allows it to 

“remember” a few past states. As in design, designers do have to 

refer to past information in guiding their future design decisions, 

the successful modeling of past information into the hidden state 

may be the reason why HMM has significant higher prediction 

accuracy (the average is 58.1%) than those of MM and REP 

model. This observation echoes many of the existing studies on 

the comparison between MM and HMM, and the conclusion that 

HMM outperforms MM [45] is very likely due to the reason that 

HMM can better model the interdependencies between past 

states and current state. 

We also observe that HMM outperforms the FFNN model. 

FFNN gives the average prediction accuracy of 56.6% (with the 

standard deviation of 1.79%) that is 1.5% lower than that of the 

HMM. The ability of passing information from the previous state 

to the current hidden state makes HMM a better predictor than 

FFNN in this study. FFNN does not essentially have hidden state 

as it does not consider feedback loop in hidden layers and there 

not connection between hidden units. (see Section 3.2.1 for the 

architecture of FFNN). 

Among all of the models, LSTM produces the highest 

prediction accuracy with an average value of 59.5% and the 

standard deviation is 3.49%. This implies that during the systems 

design process, there is a strong correlation between designers’ 

previous actions and their next immediate actions. For example, 

we observe that one designer, most of the time, analyzes 

“Building cost” after adding several new components, such as 

“Add window”  “Edit window”  “Building cost”, and again, 

“Add Rack”  “Edit Rack”  “Add SolarPanel”  “Building 

cost”. This infers that after adding new components, this 

designer started configuring the related components to try 

improving the design performance and check if the total cost is 

still within the budget. Since LSTM leverages longer “memory” 

of past events and their interconnections in predicting future 

states, it yields the best performance in this study. LSTM’s 

highest prediction accuracy also implies that designer doesn’t 

not only recall short-term memory (like what MM does), but also 

use long-term memory information in their design process. 

The results of prediction accuracy presented in Figure 8 

demonstrate the performance of the models that can “recall” 

information from more than one-time step (such as the LSTM 

and the HMM) and the models that recall no memory (such as 

the MM, the REP model, and the random model). Generally, the 

models that encode longer “memory” in their architecture 

generally performs better in predicting designers’ future actions.  

The possible reason is that in systems design, there are many 

design variables that are interdependent, and designers may not 

be able to immediately understand such a complex relationship. 

One method that can help understand the interdependencies 

among design variables and their effects on design objective is 

to continue changing the variables and then perform simulations 

to see how it would affect the objective value. Since there are 

multiple variables in this design case study (see Table 1), 

designers often perform a series of configurations (such as “Add 

wall”“Edit wall”“Edit Foundation”“Add Roof”“Add 

Rack”), and then perform ANE analysis cost evaluation. This 

process may have to be repeated several times in order to find 

the best configuration/combination of design variables for the 

desired objective. Such a pattern can reflect designers’ 

exploration-exploitation strategies for design tradeoff (i.e., the 

sequential decision-making strategy) and their design heuristics. 

From the results, the hidden states of LSTM and HMM work as 

a memory unit seem to well capture those patterns. 

 

5.2 Evaluation of model performance at each 
category of design actions 

In order to understand the models’ performance at a finer 

resolution, we check how well each model can predict each 

category of design actions, i.e., the design process stage defined 

by the FBS design process model. To achieve this, we adopt 

receiver operating characterizes curve (ROC) [46] as the method 

which evaluates model’s two operating characteristics (true 

positive rate and false positive rate) on each design process stage 

under different threshold values from 0 to 1. After obtaining the 
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ROC curves for each design process stage, the area under the 

ROC curve (AUCROC) is used to provide one single metric 

which aggregates the predictive performance cross the 

thresholds so that we can compare on which design process stage 

does the model perform better. Larger AUCROC indicates better 

predictive performance.  

For example, for the LSTM model as shown in Figure 9(a), 

the AUCROC of Formulation and Analysis both reaches the 

maximum of 0.82 among the seven design process categories. 

LSTM model also produces good AUCROC score (0.81) for 

Evaluation. These results imply that designers tend to enter into 

these design stages after completing a certain series of design 

tasks. For example, the designers must first construct the house 

which involves many design actions related to Formulation and 

then evaluate the performance by simulating annual net energy 

(Analysis) and analyzing the building cost (Evaluation).  

However, LSTM has relatively lower AUCROC values for 

Reformulation 1, 2 and 3. This is because Reformulation 

involves the design actions of removing components, such as 

remove a solar panel or remove a window. These removal 

actions are often paired with another Reformulation and/or 

Formulation actions, such as add a wall or add a window. These 

action pairs reflect designers’ fine-tuning behaviors on particular 

design components immediately based on the observations from 

the CAD interface and no necessary to run a simulation for 

feedback to support their design decisions. Therefore, referring 

to the action in the last step should be sufficient for prediction 

         

         
FIGURE 9: Receiver operating characteristics (ROC) curves for LSTM, HMM, FFNN and MM, respectively. Each of the figure 

contains the average area under the curve (AUCROC) score of the model as well as the AUCROC score of each design process 

stages. The closer the score is to 1, the higher predictive performance does a model have. 

Table 2: Area under the receiver operating characteristics 

curve (AUCROC) score for different models. 

 LSTM HMM FFNN MM 

Formulation 0.82 0.81 0.65 0.26 

Synthesis 0.77 0.74 0.73 0.63 

Evaluation 0.81 0.71 0.77 0.48 

Analysis 0.82 0.63 0.73 0.47 

Reformulation 1 0.75 0.76 0.64 0.23 

Reformulation 2 0.76 0.78 0.72 0.55 

Reformulation 3 0.73 0.76 0.69 0.65 

Average 0.79 0.74 0.70 0.47 
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and it does require to use long-term memory in predicting these 

design stages. This may also be the reason why MM can produce 

higher AUCROC scores for Reformulation 2 and 3 (0.55 and 

0.63, respectively). For example, Reformulation 2 contains the 

design actions related to the removal of solar panels. As solar 

panels directly affect the system performance, most designers 

spent a significant amount of time fine-tuning (e.g., add, remove 

and then add back again) this component, and therefore, there 

exist a large number of action pairs of Add Solar Panel  

Remove Solar Panel in the designs sequence. Since MM predicts 

the state only one-time step ahead based on the current state, it 

captures this design pattern very well. But, on the other hand, it 

does not effectively capture the patterns that involve much and 

long historical information, such as the Evaluation and Analysis 

stages, as compared to the other models. Please note that MM 

has the least AUCROC for Formulation. This is because MM is 

derived from frequency of the event. In the design, the repetition 

of Formulation (corresponds to adding components) does not 

occur frequently. For example, once a designer finishes adding 

all the necessary components, e.g., “Add Wall” and “Add 

Window”, she/he would never take those actions again because 

the house has been already established. Instead, she/he tends to 

start fine-tuning the associated parameters through the actions of 

“Edit Wall” and “Edit Window” (i.e., the auctions related to 

Synthesis).  

If we take average for the AUCROC scores from every 

design process stages, that average value can be used to compare 

the performance between different models, as shown in the last 

row of Table 2. We observe that on average the LSTM model 

outperforms the other models with the AUCROC of 0.79. The 

HMM model (0.74) also performs better than FFNN (0.70) and 

MM (0.47). Both FFNN and HMM perform relatively in average 

across all the design process stages. Their scores are also in 

between the ones from LSTM and MM, respectively, both for 

each design process stage as well as for the final average value. 

This indicates that even if HMM and FFNN take historical 

design information into their prediction, they are not effectively 

processing those information during the model training. But 

LSTM’s gate mechanism (e.g., input gate, forget gate and output 

gates) seem well to capture and process the dependent relations 

between different design stages during a design process, 

therefore, it yields the best performance. Figure 9 visually shows 

the ROC curves of the models including MM, HMM, FFNN and 

LSTM. These results cross-validate the conclusion we reached 

from the prediction accuracy results shown in Figure 8.  

5.3 Sensitivity analysis 

When training an LSTM model, there are several pre-

determined hyperparameters, such as the number of LSTM layer, 

LSTM size, the number of dense layer, the size of dense layer, 

learning rate and dropout value. LSTM size refers to LSTM 

nodes in each LSTM layer. Dense number indicates the number 

of layers of the feedforward part in Figure 4. The size of dense 

layer indicates the number of nodes in each dense layer. Dropout 

is the value of dropout regularization. Learning rate is the 

converge rate used in the stochastic gradient descent algorithm 

used in backpropagation. In order to prevent the model 

overfitting, we use dropout regularization [47] with two different 

values. 

To investigate how the prediction accuracy would be 

affected by these hyperparameters, we perform a sensitivity 

analysis by changing the values of these parameters and values 

the corresponding prediction accuracies. In the experiment, we 

use one layer of LSTM for all the settings but try various number 

of LSTM nodes. Table 3 shows the training accuracy and test 

accuracy of the LSTM models with different hyperparameter 

settings. From all the settings, it is observed that the model with 

one dense layer performs better (i.e. above 58%) that the models 

with two dense layers (i.e., 56.20% for training and 54.95% for 

testing, respectively). Given the same number of dense layers 

and the same dense size, it is observed that a learning rate of 

0.001 produces relatively lower performance (58.48%) than 

those of other settings. But the dropout rate (changing from 0.3 

to 0.2) and the LSTM size (changing from 256 to 128 nodes) do 

not influence the model significantly. Among all the settings, it 

is found that the model with LSTM unit 128, dropout value with 

0.3 and learning rate with 0.1 provides the best accuracy.  

 

6. CONCLUSION 
In this study, a deep learning approach is developed to 

analyze and predict the sequential design decisions in a system 

design context. We use Energy3D as the research platform to 

conduct design challenges and collect designers’ sequential 

design behavioral data. Then, the FBS-based design process 

model is adopted to transform the sequential design action data 

into the sequential design process data. Based on the design 

process data, we established two deep learning models, i.e., the 

FFNN and the LSTM, to predict designers’ next immediate 

design process stage. These deep learning models are evaluated 

with different performance metrics including training accuracy, 

testing accuracy, and area under ROC curve. Their predictive 

Table 3: Different hyperparameter settings for LSTM model. 

No. LSTM size Dense 

Number 

Dense 

Size 

Dropout Learning rate Training 

accuracy 

Testing 

accuracy 

1 256 1 7 0.3 0.1 60.61% 59.50% 

2 128 1 7 0.3 0.001 60.12% 58.48% 

3 256 1 7 0.2 0.01 60.41% 58.97% 

4 128 1 7 0.3 0.01 59.60% 59.16% 

5 128 1 7 0.3 0.1 62.63% 59.52% 

6 256 2 128 and 7 0.2 0.1 56.20% 54.95% 
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performances are compared with other four models, including a 

MM, an HMM, a repetitive model, and a random model. The 

predictive power is assessed at the level of entire design 

sequence as well as at the level of each design process stage.  

We found that on average LSTM outperforms all the other 

models while FFNN shows lower performance than traditionally 

used HMM. From the ROC curve analysis, we found that LSTM 

yields better performance on the design actions that belong to 

Formulation, Evaluation, and Analysis, while HMM better 

predicts the actions related three Reformulation design 

processes. With these findings, we revisit the research question 

that we aim to answer: What is the effect of past decisions on 

predicting designers’ future sequential decision making? Since 

LSTM incorporates historical information of both short-term and 

long-term and captures the interconnections between the current 

design stage and past, its higher predictive performance indicates 

that designers effectively leverage both short-term and long-term 

memories in guiding their sequential decision making in 

engineering systems design. But increasing the LSTM size does 

not improve the prediction significantly, so it is inferred that 

designers would not maintain a long memory in systems design 

activities. Validating the effect of long-term and short-term 

memories and investigating how exactly they play a role in 

sequential decision making is our ongoing research. 

This work shows that deep learning can be a stepping stone 

for modeling and predicting sequential decision making in 

engineering design and facilitating design automation. The 

approach introduced in this paper is general and can be 

implemented in many other design areas, especially complex 

configuration design problems, to extract the design decision-

making strategies and design heuristics. However, there are 

some limitations in our approach. For example, in this study, we 

only consider time-dependent data to explore designer’s 

sequential decision. Time-independent data such as 

demographics or experiential knowledge pertaining to designers 

may also affect their design decisions and strategies. 

Additionally, to train a high-fidelity deep learning model, a large 

number of subjects is required which may not be available 

readily in college setting. 

In future work, on the one hand, we will continue doing the 

experiment to collect more data. On the other hand, we plan to 

develop a more robust deep learning architecture, which 

combines both dynamic information (time-series data) and static 

information (designer-specific data), for better understanding the 

roles that different factors play in sequential design decision. We 

envision that by adding the time-independent feature, the model 

performance of LSTM can be further improved.  
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