
 1 © 2019 by ASME

Proceedings of the ASME 2019

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference

IDETC/CIE2019
August 18-21, 2019, Anaheim, CA, USA

IDETC2019-97625

A DEEP LEARNING BASED APPROACH TO PREDICT SEQUENTIAL DESIGN DECISIONS

Molla Hafizur Rahman
Department of Mechanical Engineering

University of Arkansas
Fayetteville, AR

Charles Xie
Concord Consortium

Concord, MA

Zhenghui Sha1
Department of Mechanical Engineering

University of Arkansas
Fayetteville, AR

ABSTRACT
During a design process, designers iteratively go back and

forth between different design stages to explore the design space

and search for the best design solution that satisfies all design

constraints. For complex design problems, human has shown

surprising capability in effectively reducing the dimensionality

of design space and quickly converging it to a reasonable range

for algorithms to step in and continue the search process.

Therefore, modeling how human designers make decisions in

such a sequential design process can help discover beneficial

design patterns, strategies, and heuristics, which are important

to the development of new algorithms embedded with human

intelligence to augment computational design. In this paper, we

develop a deep learning based approach to model and predict

designers’ sequential decisions in a system design context. The

core of this approach is an integration of the function-behavior-

structure model for design process characterization and the long

short term memory unit model for deep leaning. This approach

is demonstrated in a solar energy system design case study, and

its prediction accuracy is evaluated benchmarked on several

commonly used models for sequential design decisions, such as

Markov Chain model, Hidden Markov Chain model, and random

sequence generation model. The results indicate that the

proposed approach outperforms the other traditional models.

This implies that during a system design task, designers are very

likely to rely on both short-term and long-term memory of past

design decisions in guiding their decision making in future

design process. Our approach is general to be applied in many

other design contexts as long as the sequential design action data

is available.

Keywords: Sequential decision making, Deep learning,

Artificial neural network, Engineering design process, CAD.

1 Corresponding author: zsha@uark.edu

NOMENCLATURE
ANN Artificial Neural network

FFNN Feed Forward neural network

HMM Hidden Markov model

LSTM Long short-term memory

MM Markov model

REP Repetitive model

RNN Recurrent neural network

1. INTRODUCTION
Design involves an iteratively searching process of design

space for desired solutions. In such a search process, designers

make sequential decisions that involve the selection of design

actions and/or determination of design parameters so that they

can get the best output. Since uncertainties are always

accompanied with the search process, strategies of tradeoff and

decisions on when and where to explore and exploit design space

are important to the quality of design outcomes and the resources

needed to achieve the outcomes. For example, in our previous

sequential design behaviors study [1], we integrated Markov

chain and unsupervised clustering methods to explore designers’

sequential behaviors and observe that designers follow certain

design patterns, such as a high frequent design synthesis-related

operations, in engineering systems design that has many

coupling design variables and exhibits large design uncertainties.

These sequential decision-making strategies are often the

key features that differentiate expert designers and novice. These

strategies are also the essences of human intelligence in design

and the reason why sometimes human designers are effective in

reducing the dimensionality of design space and quickly

converging it to a reasonable range for search. For example,

human shows very different strategy or patterns as compared to

computational algorithms [2]. Also, it is found that human

designers are more effective than algorithms doing search for

mailto:zsha@uark.edu

 2 © 2019 by ASME

promising design candidates in certain situations, such as early-

stage systems design with large and high-dimensional or discrete

solution space [3].

Therefore, modeling and machine learning of human

sequential design decisions is of great interest and has potential

impact to engineering design process and design automation. On

the one hand, successful modeling of sequential decision-making

can help discover quantifiable design patterns and strategies

which are useful to existing computational design framework by

embedding human intelligence. Early computational design

mainly solves parametric and configuration design tasks through

solver framework or linear mathematical programming. On the

other hand, the discovery of beneficial design patterns from

expert designers can be used to train novice designers. Moreover,

computational modeling of sequential decision-making can help

build artificial design agent which can be used in CAD systems

and work collaboratively with human designers to improve

design outcomes by reducing unnecessary design iterations and

reinforce useful iterations.

However, modeling and predicting human sequential design

decisions is challenging. First, human decisions are a result of

mental process that is hidden, implicit and sometimes tacit [4]

because they are difficult to be transferred in an explicit way like

writing or verbalizing. Second, design decisions are intricate,

particularly in systems design scenarios where design process

often spans over a long period and designers’ decisions involve

with multiple interdependent variables; thus their decisions are

highly correlated in the time sequence. Moreover, in complex

design, patterns are weak and strategies vary across different

designers. So, it is very challenging for traditional sequential

learning models such as Markov model, autoregressive

integrated moving average (ARIMA), etc., to discover

prominent design patterns for the purpose of prediction. To

address these challenges, the objective of this study is to

computationally model and predict human designers’ sequential

decisions in the context of engineering systems design. The

research question we aim to answer is:

What is the effect of past design decisions on predicting

designers’ future sequential decision making?

To achieve the objective, we develop a deep learning based

approach with recurrent neural network (RNN). Artificial neural

network (ANN) which mimics the human brain has been proved

to be capable in machine learning sequential behavioral patterns

in various fields recently such as natural language processing [5],

healthcare [6], image recognition [7], finance [8], etc. Despite its

success in these fields, the capability of ANN and deep learning

in design research on sequential design decisions has not been

explored. This is one of the motivations of this study.

Particularly in this paper, we focus on the systems design

problem that involves parametric and configuration design

decisions. In real design scenario, especially in industry from

product design to product manufacturing pipeline, configuration

and parametric design plays a vital role where designers make

decisions on which design components to use and what design

parameter values to choose in order to construct the desired

design artefact that satisfies a set of given constraints. These

decisions can be recorded continuously in time scale as a

sequence of actions taken. In the proposed approach, these

sequential design actions are transcribed by the function-

behavior-structure (FBS) design process model in order to obtain

the sequential data that depicts the design process stages of each

designer. Then we use ANN on those processed data to train a

deep learning model that can be used, in turn, to predict a

designers’ design sequence. To gauge the performance of the

developed model, we adopt accuracy metrics including

parentage of prediction correctness and the area under the

receiver operating characteristics (ROC) curve. These metrics

are used to compare our model with the existing models of

sequential design decisions in the engineering design field, such

as Markov Chain model and Hidden Markov Chain model.

The major contributions of the work are twofold: 1) An

approach that integrates FBS-based design process model and

RNN to model, learn and predict human sequential design

decisions in the context of systems design. 2) An exploration and

examination of the capability of deep learning models in

predicting human sequential design decisions as compared to

commonly-used models in engineering design field.

The remaining paper is organized as follows. In Section 2,

we discuss the state-of-the-art research on sequential design

decision making and deep learning of sequential data. In Section

3, we present our research approach and briefly introduce the

technical backgrounds on different types of ANN models. In

Section 4, a case study is presented on predicting designers’

sequential decisions in a solar energy system design project with

the proposed approach. The details of the design experiment and

data collection are provided in this section too. In Section 5,

comparative study is performed, the results are presented and

discussed. Finally, we conclude the paper with closing insights

and discuss our future work in Section 6.

2. LITERATURE REVIEW
In this section, we first discuss the relevant studies on

sequential decision making in the engineering design field. Next,

we review the current work that leverages deep learning models

in training and predicting sequential data in different areas.

2.1 Studies on sequential design decisions
Several studies have been done in engineering design field

to explore the sequential patterns, optimize the sequence of

design task and finding heuristics from the sequence learning.

Particularly, a large number of works have been conducted based

on Markov chain model for sequence learning. For example, in

order to compare designers’ design behaviors, function-

behavior-structure ontology and first-order Markov chain [9]

was used. Second-order Markov chain is also used to explore the

effect of previous experience and design knowledge on design

sequence [10]. Moreover, in order to explore the designers’

sequential learning strategy, McComb et al. [11] use Markov

model in a truss design problem. Their results indicate that the

first-order Markov chain better represents designers’ action

sequences. In a later study, they use hidden Markov model

 3 © 2019 by ASME

(HMM) to study the patterns of sequential design state in the

same design problem. They found four hidden states in the

configuration design and observed that designers used the first

two states to topology operation, third state to spatial, and the

fourth state to parameter operation. The trained HMM model is

utilized to compare the design performance (in term of strength

to weight ration of the truss design) among designers [12].

To study human sequential design behaviors in different

design scenarios, there have been studies conducted based on

Bayesian Optimization (BO) framework. For example, in order

to mimic the human searching strategy, Sexton and Ren [3]

develop a searching process using BO algorithm which can

replace human solvers from a design process. Sha et al. [13] also

integrated Weiner-process BO with game theory to develop a

model for estimating designers’ sequential decisions while two

designers compete with each other for monetary reward.

Prior studies on sequential design processes have been also

focused on project task level in support of product development

and project management. For example, design structure matrix

(DSM) [12-14] has been used to study task sequencing for

identifying the sequence that minimizes expected project

completion time. Some other work has been grounded in

theoretical processes. For example, Miller et al. [14] use multi-

objective formulations to study the design process sequentially

advancing through to smaller sets of alternatives using models of

increasing fidelity. In addition, optimization approaches, such as

the expected value of perfect information [15], genetic algorithm

[16], and optimal learning [17], have been utilized in studying

optimal design sequences. However, these studies are

fundamentally different from this study in that they formulate a

design problem and cast it into a sequential decision process to

be optimized with normative models. In this study, however, we

focus on sequential decision-making of human designers. It is

about the actual actions that designers sequentially take. By

modeling and analyzing such a design sequence at a fine-grained

resolution, it is expected that insights and new knowledge

regarding the design process can be obtained.

2.2 Deep learning to model sequential data
In recent years, deep learning techniques have shown their

promise in predicting complex sequential data. For example,

customer behavior is essentially a sequential data where they

interact with market continuously over time. Santolaya et al. [18]

leverage historical customer interaction data to predict the items

that a customer may buy in future. This study shows that

recurrent neural network (RNN) can successfully model the

sequential customer data.

A large number of studies have been performed in order to

recognize speech and text patterns using ANN due to the

sequential nature of those events. Many early works are focused

on integrating feed forward neural network (FFNN) with HMM

[19] to discover the patterns of speech. Also, RNN-based

approach has been used to in phone probability estimation which

aims to recognize phone in speech in terms of sound or gesture

of a specific language [20]. Recently, long short term memory

(LSTM), a special variant of RNN is introduced [21] and has

shown better performance in both handwritten text recognition

[22] and speech recognition [23] than previously used sequential

learning models such as HMM.

In the medical field, deep learning-based algorithms, e.g.,

FFNN and RNN/LSTM have been utilized to treat sequential

data in different application scenarios. For example, both FFNN

[24] and RNN [25] have been used to explore the complex

patterns of gene expression. In biomedical sequential signal

processing problems, such as electrocardiogram (ECG) signal

and brain decoding [26], the success of many deep learning

models is also mention-worthy.

Deep learning is also used to study human daily sequential

activities such as walking, standing, eating, etc. For example,

Baccouche et al. [27] develop a fully automated deep learning

model by integrating convolution neural network (CNN) and

RNN to classify human daily routine activities without any prior

knowledge. Apart from this areas, deep learning is successfully

applied in online fraud detection [28], identifying discrimination

[29], and predicting financial time series [30] through the use of

users’ online sequential log data.

Although researches have been conducted on modeling and

predicting sequential data using deep learning models in many

disciplines, to the best of our knowledge, no studies have been

conducted yet to handle the sequential design data using deep

learning in engineering design field. Design sequential data

follows some unique patterns which are quite different from the

sequential data in other fields. For example, designers perform

conceptual design at the beginning of a design project and

involve design actions and strategies that would be totally

different from the ones in the embodiment design phase. Also,

some of the design tasks may be iterated within one design phase

but not in another. These patterns are not the same as the ones

typically seen in natural language or human daily routine

activities where deep learning approaches normally success. So,

even though deep learning shows optimistic results in many

FIGURE 1: The overall research approach

Raw design

data

Design action

data

Design

process data

Prediction

model

Prediction

accuracy

Receiver

operating

characteristic

curve

Design

process model

 4 © 2019 by ASME

fields, its predictive power is still unexplored in studying

sequential design behaviors.

3. Research Approach and Technical Background

In this section, first, we introduce the research approach of

this study. Next, we introduce the technical background

regarding the deep learning models adopted in our approach.

3.1 The research approach
The approach starts with the raw data collection of

designers’ sequential design decisions from different sources

such as the action logger of computer-aided design (CAD)

software, interviews of designers, design documents, etc. The

raw data contains the details of human design behaviors (i.e.,

design actions) as well as design artefact’s information, such as

values of design parameters, simulation results, etc. In this study,

we only extract the design actions which are only design-related,

for example, in a CAD environment, adding a new component

or editing that component. But changing the camera view is not

considered as a design action in this study. Designers act based

on given requirements and constraints, thus these actions

essentially reflect their design thinking and strategies during a

design task. Next, we apply design process model to convert the

design actions into design process data. Design process model

consists of a series of design stages that characterize a design

process. This treatment transforms the action space into a design

process space, which can significantly reduce the dimensionality

of the sequential data. This leads to better interpretation and

understanding of designers’ design process and sequential design

thinking (see Section 4.2 for details). Then, we use the sequential

design process data to train deep learning models and predict the

next immediate design action category (i.e., the design stage

defined by a design process model) based on the trained models.

In this study, we use ANN models including FFNN and RNN to

implement the deep learning approach. Finally, we evaluate the

predictive performance of these models and compared them with

several commonly used models with different metrics, such as

training accuracy, testing accuracy, and the receiver operating

characteristics (ROC) curve, and area under curve, at both

aggregated level and design process stage level (see Section 5

for details). Figure 1 depicts a schematic diagram of the overall

approach used in this study.

3.2 Artificial neural network
An artificial neural network (ANN) is a biological inspired

mathematical model, introduced by Rosenblatt [31] that mimics

human brain to learn from the input dataset and produce the

predictive outcomes based on that dataset. An ANN consists of

artificial neurons which are known as nodes. The process starts

with passing weighted inputs to the artificial neurons. This

means each input is multiplied by individual weight. Then all the

weighted input is summed with an adjustable unit bias that can

help the artificial neural in a learning process. Finally, the sum

of the weighted inputs and the bias are passed through the

activation function to produce the final output.

Depending on the problem studied, the activation function

can be varied. Commonly used activation functions are step

function, linear function, non-linear sigmoid function, non-linear

hyperbolic tangent function [32]. Combined with these

activation functions, the output of an artificial neural is

mathematically represented as follows:

 𝑦 = 𝑓(∑ 𝑤𝑖 ∙ 𝑥𝑖 + 𝑏𝑚
𝑖=1), (1)

where 𝑦 is the output, 𝑥𝑖 is the input value, 𝑤𝑖is the weight value,

𝑏 is the bias and 𝑓 is the activation function. Figure 2 shows an

artificial neuron with its operations including multiplication,

summation and activation. In reality, a single node is not efficient

to solve a complex problem. For this reason, ANN commonly

consists of large numbers of nodes that interact with each other

through their weighted interconnections which eventually builds

the architecture of a particular ANN. The power of the ANN

mainly depends on these architectures, such as the number of the

nodes and how each of the nodes operates [33]. In the following

sections, we briefly introduce the two of the most important

ANN architectures that adopted in this study.

3.2.1 Feedforward neural network
ANN that follows the feedforward architecture means that

the information follows one direction from input to output with

no back loops. In addition to the input layer and output layer,

FFNN may have single or multiple hidden layers, as shown in

Figure 3. When FFNN has only one layer between input and

FIGURE 2: An artificial neuron and the basic building

blocks of an artificial neural network

 𝑓()

𝑥1

𝑥

𝑏

𝑤1

𝑤 𝑦

Multiplication Summation Activation function

FIGURE 3: The architecture of a feed forward neural

network. Nodes are neurons and links represent weights.

Information flows from left (input) to right (output).

Inputs Outputs

Inputs layer Hidden layer Output layer

Weights 1 Weights 2

 5 © 2019 by ASME

output, it is known as the single-layer perceptron. An FFNN with

more than one hidden layer including the output layer is called

multilayer perceptron. An FNN with a single hidden layer

between the input layer and the output layer (as the one shown

in Figure 3) is often sufficient to be universal function

approximation [34]. However, deep neural network with

additional hidden layers outperforms this shallow model. A

standard depth of deep neural network (i.e., the number of hidden

layers) may vary from two or three to even one thousand [7].

3.2.2 Recurrent neural network
The structure of an RNN architecture is similar to that of an

FFNN. The only distinction is that there is no restriction on back

loops. So, the information not only passes in one direction

forward but also does it flow backward, called recurrence (see

Figure 4). This feature allows RNN to create a hidden state which

carries information from the previous time steps. Figure 4(a)

shows the architecture of an RNN. The feedback arrow indicates

the recurrence of the hidden layer. The two layers in the dot-line

box show the fully connected feed-forward information flow. An

RNN can be unfolded, and Figure 4(b) shows an unfolded

structure, where each input node of the input layer takes input as

𝑿𝑡 = [𝑥1, 𝑥1, … . 𝑥𝑡]. These input units are connected to the

hidden nodes with the weight matrix 𝑾𝑰. The hidden layer

associated with the hidden nodes can be represented as 𝒉𝑡 =
[ℎ1,ℎ ,…… . , ℎ𝑡]. The hidden nodes are also connected with a

weight value, 𝑼. Finally, the hidden layer is connected to the

output layer 𝒀𝑡 = [𝑦1,𝑦 ,… . , 𝑦𝑡] via the weight matrix 𝑾𝑂. The

output of the RNN can be presented with the following equation,

 𝒀𝑡 = 𝑓(𝑾0𝒉𝑡), (2)

where 𝑓 indicates the activation function (logistic sigmoid or

hyperbolic tangent functions are typically used). There are

several types of recurrent unit or node. The most common and

simplest RNN unit is called simple recurrent unit with the hidden

layer defined as follows,

 𝒉𝒕 = 𝜎(𝑾𝐼𝑿𝑡 + 𝑼𝒉𝑡−1 + 𝒃𝐻) , (3)

where, 𝑾𝑰 and 𝑼 are the weights as mentioned earlier, 𝜎 is the

sigmoid activation function and 𝒃𝐻 is the bias of the hidden

layer. In order to compute the value of the current hidden node

𝒉𝑡, the output from the previous time step is combined with the

input of the network 𝑿𝑡.

Although RNN can be used for capturing long-term

dependencies, simple recurrent units are not effective in this task

due to vanishing gradient problem [35]. To solve this problem,

Hocreiter et al. [21] proposed the long short term memory units

(LSTM), a special type of mechanism where information flow is

controlled by three different gates namely input gate, forget gate

and output gates. The corresponding equations described by

Graves et al. [23], are as follows,

𝑖𝒕 = 𝜎(𝑊𝑥𝑖𝒙𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖), (4)

𝑓𝒕 = 𝜎(𝑊𝑥𝑓𝒙𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓, (5)

𝑐𝒕 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐), (6)

𝑜𝒕 = 𝜎(𝑊𝑥𝑜𝒙𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜), (7)

ℎ𝒕 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡), (8)

where 𝑖𝒕, 𝑓𝒕, and 𝑜𝒕 are input gate, forget gate and output gate,

respectively. Their associated weight matrices are 𝑾𝑥𝑖, 𝑾𝑥𝑓 and

𝑾𝑥𝑜, respectively. 𝑐𝒕 is the memory cell which stores memory

from the previous time step. 𝑊ℎ𝑖 is the hidden-input gate weight

matrix. The bias terms (i.e., 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑐 and 𝑏𝑜) are added to each

of the corresponding gates as well.

LSTM is more widely used than simple RNN in many

domains for its capability of modeling long-term dependencies.

To study to what extent the past decisions of designers’ can

influence their future decision-making, we use LSTM as a

representative of RNN in our study. In the next section, we

overview a case study for data collection in order to implement

these models.

4. Predicting sequential design processes in solar
energy systems design: A case study
In this section, we present a case study on solar energy

systems design and implement the proposed approach to

predicting designers’ sequential design decisions. First, we

FIGURE 4: (a) Standard recurrent neural network architecture with feedback loop; (b) Unfolded recurrent neural network.

Recurrence

Feed-forward part

𝑿𝑡

𝒀𝒕

𝒉𝒕

𝑼
𝑾

𝑥1 𝑥 𝑥𝑡

𝑦1 𝑦 𝑦𝑡

ℎ ℎ𝑡
Unfold

𝑾𝑰

ℎ1

(a) (b)

𝑊𝐼 𝑊𝐼 𝑊𝐼

𝑊𝑂 𝑊𝑂 𝑊𝑂

Inputs Outputs

 6 © 2019 by ASME

introduce the design experiment conducted for data collection.

Next, we present the collected data and introduce the methods

for processing it.

4.1 The design context
In order to collect sequential design behavioral data, we

conducted a series of design challenges on real-world

engineering design problems. The challenges were held at the

University of Arkansas in 2018. Both undergraduate and

graduate students from engineering disciplines participated in

these challenges. In this study, we mainly adopt the data

collected from one challenge where the students were asked to

design a solarized energy-plus home in Texas with the budget of

$200,000 (see Figure 5).

The design objective is to maximize the annual net energy

(ANE) given a budget. The design requirements and constraints

are provided to the participants so they start the project with

more focus on configuration design and parametric design. To

keep the design complexity at a manageable level, the design

variables are mainly related to the nine components that have

direct impact on the design objective (see Table 1). More details

on the design experiment and design problem are discussed in

our previous article [1].

Students’ designs were conducted within a computer-aided

design (CAD environment, called Energy3D. Energy3D is a full-

fledged CAD software specially built for solar systems design

[36]. Energy3D has several unique features such as interactive

visualization, high-fidelity simulation, and built-in financial

evaluation. These features can help designers effectively explore

and exploit the design space. Moreover, Energy3D has a non-

intrusive data action logger. That means designers are not aware

of the data collection process, and this help reduces participants’

cognitive burden that are normally introduced in experimental

settings. As a result, the data that reflects designers thinking and

decision-making can be less biased. Energy3D sort and log the

sequential design action data at a fine-grained level. For

example, it logs every performed action and intermediate

artefacts in every 20 seconds [37]. This high-resolution data

provides us with a large amount of data that are essential to

implementing deep learning models.

4.2 Data collection and preprocessing

Energy3D collects the continuous flow of design action data

in JSON format which includes time-steps, design actions,

design parameter values and simulation results. In this study, a

total of 38 engineering students participated in this design

challenge. Among them, 20 students are undergraduate students

and 18 are graduate students. 29 students are from Mechanical

Engineering. On average, the design action log records 1500

lines and 220 intermediate files per student. Example of a line of

the design action log is presented below:

{"Timestamp": "2017-11-16 11:01:23", "File":

"EnergyPlusHome.ng3", "Add SolarPanel": {"Type":

"SolarPanel", "Building": 2, "ID": 58, "Coordinates": [{"x":

30.785, "y": 1.185, "z": 37.009}]}}

We ignored the actions (i.e., “camera”, “add human”) that

does not have effects on the design outcomes (i.e. ANE). After

removing those irrelevant actions, there are 300 actions per

participant on average and 115 actions are unique. Analysis of

such a high dimension action space would yield results hard to

interpret. To better understand the design process in this case

study and designers sequential decision-making strategies, the

function-behavior-structure (FBS) based design process model

[38] is adopted. According to the FBS model, a coding scheme

can be established to transcribe different types of design actions

to seven design process stages including Formulation (F),

Analysis (A),Evaluation (E), Synthesis (S), Reformulation 1

(R1), Reformulation 2 (R2), and Reformulation 3 (R3) (see

details in [1] about how each type of design actions corresponds

to the design process stages in FBS model). This dimension

reduction also help us to reduce the effect of “curse of

dimensionality” [39]. Curse of dimensionality occurs when there

is large number of features but the total dataset is limited.

FIGURE 5: An example of the energy-plus home design

TABLE 1: The design requirements and constraints of the

solarized energy-plus home

Components Requirements

Story 1

Number of windows > 4

Size of windows >1.44 m2

Number of doors ≥1

Size of doors (Width × Height) >1.2 m × 2m

Height of wall >2.5m

Distance between ridge to panel >0

Design process stages F A E S R1 R2 R3

Formulation 1 0 0 0 0 0 0

Analysis 0 1 0 0 0 0 0

Reformulation 1 0 0 0 0 1 0 0

: : : : : : : :

: : : : : : : :

Analysis 0 1 0 0 0 0 0

Figure 6: One hot vector representation of a sequence.

 7 © 2019 by ASME

Given a set of actions data, we need to convert or encode the

sequences in a way such that it can be implemented as an input

in neural network. The most popular encoding technique is

known as “one hot encoding” [40]. One hot encoding transforms

a single variable of 𝑛 observations with 𝑚 distinct variables into

𝑚 binary variable with 𝑛 observations. Each observation

indicates the presence (1) for the corresponding position of that

variable and absence (0) in all other dimension. Figure 6 shows

the one hot vector presentation of a sequence.

5. RESULTS AND DISCUSSION
 In this section, we present the results of the LSTM and

FFNN models and compare them with the models that are

commonly used in existing literature, such as the Markov model

(MM) and hidden Markov model (HMM). Additionally, we

develop a repetitive model (REP model) for comparison because

we found from our previous study [1] that designers quite

frequently repeat the previous design action in the CAD

environment. For example, we found that on overage 53.6% of

design actions were simply repeating the action just one step

before. So, in the REP model, we simply use the average

percentage of occurrence of each design stage as the model to

predict the next design stage with the highest percentage value.

Finally, a random model is developed as the benchmark for all

the models investigated. The purpose is to examine whether the

design sequences indeed follow certain patterns or just shows

randomness. For our study, we have seven design process stages.

Then the prediction of the next stage will be a random selection

of one process stage from seven following a uniform

distribution. On average, every process stage has a probability of

1/7 to be selected.

 In the following two sections, we first evaluate the

performance of different models in terms of training accuracy

and prediction accuracy regardless of the category of design

actions (i.e., the design process stages defined by the FBS

model). Next, we perform in-depth analysis on how accurately

each design process stage in the next step can be predicted and

compare the performance of different models using the metrics

of receiver operating curve (ROC) and the area under ROC curve

(see Section 5.2 for details).

5.1 Evaluation of model performance at the level
of entire sequence

To validate the models, we adopt k-fold cross-validation

[41] technique where we divide our data into 5 folds. First, we

use any 4 folds to train the models and leave the remaining fold

for validation purpose. Next, we train the models on a new

combination of 4 folds including the previously withheld fold

and validate the model again with the remaining one. In this way,

we iterate through all over the 5 rounds. An illustration of the 5-

fold cross-validation method is shown in Figure 7.

Keras deep learning library [42] is used to run the HMM,

FFNN and LSTM model, and we programmed by ourselves for

the MM. While going through each of the rounds, training data

set performs forward pass and backward pass (a.k.a.

backpropagation) [43] in order to update the models’ parameters

(including both weight values and bias values). When forward

pass and backward pass complete passing the whole data set, it’s

called one epoch. During testing, we predict the next action

(𝑎𝑡+1) by passing the previous actions from time 0 to 𝑡 as the

input into the trained model. So, if a design sequence has 𝑛

actions, then 𝑛 − 1 predictions will be made. Then, by

comparing with the real observation of a design sequence, we

count the total number of correctly predicted actions (𝑛𝑐𝑝) and

divide it by the total number of predictions, i.e. 𝑛 − 1. In this

way, we can get the prediction accuracy of that model in every

epoch. In this study, only the prediction accuracy of the last

epoch (when the model is fully trained) in each round is taken

and the average from five rounds is used as the metric for

evaluating a model’s predictive power. The mathematical

expression of this metric is as follows:

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑅
∑ (

𝑛𝑐𝑝

𝑛𝑖
𝑚𝑎𝑥 −1

)𝑅
𝑖=1 , (9)

where, 𝑅 denotes the number of rounds for cross validation. 𝑅 =
5 in this study. 𝑛𝑖

𝑚𝑎𝑥 is the maximal number of actions of the

design sequence (i.e., the length of the longest design sequence)

in round 𝑖. In our experiment, we found all the models converge

after 20 epochs. The models were trained by stochastic gradient

descent [44] algorithm with a learning rate of 0.1. This learning

rate is determined by trial and error for producing the best

accuracy. Section 5.3 presents a sensitivity analysis on this

hyperparameter.

Round 1 Train Train Train Train Test

Round 2 Train Train Train Test Train

Round 3 Train Train Test Train Train

Round 4 Train Test Train Train Train

Round 5 Test Train Train Train Train

FIGURE 7 Training and testing data split according to 5-

fold cross validation technique

FIGURE 8: Training and testing accuracy of 4 models.

45.3

60.6 58.7 57.4

43.2

59.5 58.1 56.6

14.5

52.0

MM LSTM HMM FFN RANDOM REP

MODEL

A
cc

u
ra

cy

Model name

Training accuracy Testing accuracy

 8 © 2019 by ASME

MM provides the prediction of the design process state in

the next step based on the state in the current time step. With the

design sequence as input, training of a MM will produce a 7 ×
7 transition probability matrix because the FBS design process

model contains seven design process stages which represent

seven states in MM. Each of the entry of the matrix defines the

probability of one design stage transitioning to the next design

stage. We follow the same structure in Figure 7 to train and test

MM. The trained model (i.e., the transition probability matrix) is

an aggregation by averaging the matrices obtained from every

designer in the training dataset. When testing a MM model, for

every given FBS design process stage in a design sequence, the

MM will predict seven probabilities of design stages following

that given stage, and the one with the highest probability is

picked for comparing with the real data, and then calculating the

prediction accuracy. Markov model is not associated with any

external parameters. So, we calculate the prediction accuracy

just based on the transition probability matrix.

 Figure 8 shows a comparison of the prediction accuracy of

both training data and testing data among all the models. The

baseline model, i.e., the random model, shows the least accuracy

of 14.5 % with the standard deviation of 1.66%. The accuracy of

the REP model is much higher than the random model which is

about 52%. This is because REP model is developed based on

the simple repetition process in design and it is observed that

when designers were working on this design problem using CAD

software, many of them repeated their previous action very

frequently and the REP model captures such a pattern. We

present only the prediction accuracy for the random model and

the REP model because these models are not built with data and

the training process is not needed.

It is shown from Figure 7 that both MM and HMM yields

better performance than the random model with the prediction

accuracy of 43.2% and 58.1%, respectively. This indicates that

designers’ actions indeed follow certain patterns and are not

random. In MM, each action is dependent only on the action of

the previous step. As a consequence, MM does not encode

“memory” of past events in the prediction. On the other hand,

the inclusion of hidden-state architecture in HMM allows it to

“remember” a few past states. As in design, designers do have to

refer to past information in guiding their future design decisions,

the successful modeling of past information into the hidden state

may be the reason why HMM has significant higher prediction

accuracy (the average is 58.1%) than those of MM and REP

model. This observation echoes many of the existing studies on

the comparison between MM and HMM, and the conclusion that

HMM outperforms MM [45] is very likely due to the reason that

HMM can better model the interdependencies between past

states and current state.

We also observe that HMM outperforms the FFNN model.

FFNN gives the average prediction accuracy of 56.6% (with the

standard deviation of 1.79%) that is 1.5% lower than that of the

HMM. The ability of passing information from the previous state

to the current hidden state makes HMM a better predictor than

FFNN in this study. FFNN does not essentially have hidden state

as it does not consider feedback loop in hidden layers and there

not connection between hidden units. (see Section 3.2.1 for the

architecture of FFNN).

Among all of the models, LSTM produces the highest

prediction accuracy with an average value of 59.5% and the

standard deviation is 3.49%. This implies that during the systems

design process, there is a strong correlation between designers’

previous actions and their next immediate actions. For example,

we observe that one designer, most of the time, analyzes

“Building cost” after adding several new components, such as

“Add window”  “Edit window”  “Building cost”, and again,

“Add Rack”  “Edit Rack”  “Add SolarPanel”  “Building

cost”. This infers that after adding new components, this

designer started configuring the related components to try

improving the design performance and check if the total cost is

still within the budget. Since LSTM leverages longer “memory”

of past events and their interconnections in predicting future

states, it yields the best performance in this study. LSTM’s

highest prediction accuracy also implies that designer doesn’t

not only recall short-term memory (like what MM does), but also

use long-term memory information in their design process.

The results of prediction accuracy presented in Figure 8

demonstrate the performance of the models that can “recall”

information from more than one-time step (such as the LSTM

and the HMM) and the models that recall no memory (such as

the MM, the REP model, and the random model). Generally, the

models that encode longer “memory” in their architecture

generally performs better in predicting designers’ future actions.

The possible reason is that in systems design, there are many

design variables that are interdependent, and designers may not

be able to immediately understand such a complex relationship.

One method that can help understand the interdependencies

among design variables and their effects on design objective is

to continue changing the variables and then perform simulations

to see how it would affect the objective value. Since there are

multiple variables in this design case study (see Table 1),

designers often perform a series of configurations (such as “Add

wall”“Edit wall”“Edit Foundation”“Add Roof”“Add

Rack”), and then perform ANE analysis cost evaluation. This

process may have to be repeated several times in order to find

the best configuration/combination of design variables for the

desired objective. Such a pattern can reflect designers’

exploration-exploitation strategies for design tradeoff (i.e., the

sequential decision-making strategy) and their design heuristics.

From the results, the hidden states of LSTM and HMM work as

a memory unit seem to well capture those patterns.

5.2 Evaluation of model performance at each
category of design actions

In order to understand the models’ performance at a finer

resolution, we check how well each model can predict each

category of design actions, i.e., the design process stage defined

by the FBS design process model. To achieve this, we adopt

receiver operating characterizes curve (ROC) [46] as the method

which evaluates model’s two operating characteristics (true

positive rate and false positive rate) on each design process stage

under different threshold values from 0 to 1. After obtaining the

 9 © 2019 by ASME

ROC curves for each design process stage, the area under the

ROC curve (AUCROC) is used to provide one single metric

which aggregates the predictive performance cross the

thresholds so that we can compare on which design process stage

does the model perform better. Larger AUCROC indicates better

predictive performance.

For example, for the LSTM model as shown in Figure 9(a),

the AUCROC of Formulation and Analysis both reaches the

maximum of 0.82 among the seven design process categories.

LSTM model also produces good AUCROC score (0.81) for

Evaluation. These results imply that designers tend to enter into

these design stages after completing a certain series of design

tasks. For example, the designers must first construct the house

which involves many design actions related to Formulation and

then evaluate the performance by simulating annual net energy

(Analysis) and analyzing the building cost (Evaluation).

However, LSTM has relatively lower AUCROC values for

Reformulation 1, 2 and 3. This is because Reformulation

involves the design actions of removing components, such as

remove a solar panel or remove a window. These removal

actions are often paired with another Reformulation and/or

Formulation actions, such as add a wall or add a window. These

action pairs reflect designers’ fine-tuning behaviors on particular

design components immediately based on the observations from

the CAD interface and no necessary to run a simulation for

feedback to support their design decisions. Therefore, referring

to the action in the last step should be sufficient for prediction

FIGURE 9: Receiver operating characteristics (ROC) curves for LSTM, HMM, FFNN and MM, respectively. Each of the figure

contains the average area under the curve (AUCROC) score of the model as well as the AUCROC score of each design process

stages. The closer the score is to 1, the higher predictive performance does a model have.

Table 2: Area under the receiver operating characteristics

curve (AUCROC) score for different models.

 LSTM HMM FFNN MM

Formulation 0.82 0.81 0.65 0.26

Synthesis 0.77 0.74 0.73 0.63

Evaluation 0.81 0.71 0.77 0.48

Analysis 0.82 0.63 0.73 0.47

Reformulation 1 0.75 0.76 0.64 0.23

Reformulation 2 0.76 0.78 0.72 0.55

Reformulation 3 0.73 0.76 0.69 0.65

Average 0.79 0.74 0.70 0.47

 10 © 2019 by ASME

and it does require to use long-term memory in predicting these

design stages. This may also be the reason why MM can produce

higher AUCROC scores for Reformulation 2 and 3 (0.55 and

0.63, respectively). For example, Reformulation 2 contains the

design actions related to the removal of solar panels. As solar

panels directly affect the system performance, most designers

spent a significant amount of time fine-tuning (e.g., add, remove

and then add back again) this component, and therefore, there

exist a large number of action pairs of Add Solar Panel 

Remove Solar Panel in the designs sequence. Since MM predicts

the state only one-time step ahead based on the current state, it

captures this design pattern very well. But, on the other hand, it

does not effectively capture the patterns that involve much and

long historical information, such as the Evaluation and Analysis

stages, as compared to the other models. Please note that MM

has the least AUCROC for Formulation. This is because MM is

derived from frequency of the event. In the design, the repetition

of Formulation (corresponds to adding components) does not

occur frequently. For example, once a designer finishes adding

all the necessary components, e.g., “Add Wall” and “Add

Window”, she/he would never take those actions again because

the house has been already established. Instead, she/he tends to

start fine-tuning the associated parameters through the actions of

“Edit Wall” and “Edit Window” (i.e., the auctions related to

Synthesis).

If we take average for the AUCROC scores from every

design process stages, that average value can be used to compare

the performance between different models, as shown in the last

row of Table 2. We observe that on average the LSTM model

outperforms the other models with the AUCROC of 0.79. The

HMM model (0.74) also performs better than FFNN (0.70) and

MM (0.47). Both FFNN and HMM perform relatively in average

across all the design process stages. Their scores are also in

between the ones from LSTM and MM, respectively, both for

each design process stage as well as for the final average value.

This indicates that even if HMM and FFNN take historical

design information into their prediction, they are not effectively

processing those information during the model training. But

LSTM’s gate mechanism (e.g., input gate, forget gate and output

gates) seem well to capture and process the dependent relations

between different design stages during a design process,

therefore, it yields the best performance. Figure 9 visually shows

the ROC curves of the models including MM, HMM, FFNN and

LSTM. These results cross-validate the conclusion we reached

from the prediction accuracy results shown in Figure 8.

5.3 Sensitivity analysis

When training an LSTM model, there are several pre-

determined hyperparameters, such as the number of LSTM layer,

LSTM size, the number of dense layer, the size of dense layer,

learning rate and dropout value. LSTM size refers to LSTM

nodes in each LSTM layer. Dense number indicates the number

of layers of the feedforward part in Figure 4. The size of dense

layer indicates the number of nodes in each dense layer. Dropout

is the value of dropout regularization. Learning rate is the

converge rate used in the stochastic gradient descent algorithm

used in backpropagation. In order to prevent the model

overfitting, we use dropout regularization [47] with two different

values.

To investigate how the prediction accuracy would be

affected by these hyperparameters, we perform a sensitivity

analysis by changing the values of these parameters and values

the corresponding prediction accuracies. In the experiment, we

use one layer of LSTM for all the settings but try various number

of LSTM nodes. Table 3 shows the training accuracy and test

accuracy of the LSTM models with different hyperparameter

settings. From all the settings, it is observed that the model with

one dense layer performs better (i.e. above 58%) that the models

with two dense layers (i.e., 56.20% for training and 54.95% for

testing, respectively). Given the same number of dense layers

and the same dense size, it is observed that a learning rate of

0.001 produces relatively lower performance (58.48%) than

those of other settings. But the dropout rate (changing from 0.3

to 0.2) and the LSTM size (changing from 256 to 128 nodes) do

not influence the model significantly. Among all the settings, it

is found that the model with LSTM unit 128, dropout value with

0.3 and learning rate with 0.1 provides the best accuracy.

6. CONCLUSION
In this study, a deep learning approach is developed to

analyze and predict the sequential design decisions in a system

design context. We use Energy3D as the research platform to

conduct design challenges and collect designers’ sequential

design behavioral data. Then, the FBS-based design process

model is adopted to transform the sequential design action data

into the sequential design process data. Based on the design

process data, we established two deep learning models, i.e., the

FFNN and the LSTM, to predict designers’ next immediate

design process stage. These deep learning models are evaluated

with different performance metrics including training accuracy,

testing accuracy, and area under ROC curve. Their predictive

Table 3: Different hyperparameter settings for LSTM model.

No. LSTM size Dense

Number

Dense

Size

Dropout Learning rate Training

accuracy

Testing

accuracy

1 256 1 7 0.3 0.1 60.61% 59.50%

2 128 1 7 0.3 0.001 60.12% 58.48%

3 256 1 7 0.2 0.01 60.41% 58.97%

4 128 1 7 0.3 0.01 59.60% 59.16%

5 128 1 7 0.3 0.1 62.63% 59.52%

6 256 2 128 and 7 0.2 0.1 56.20% 54.95%

 11 © 2019 by ASME

performances are compared with other four models, including a

MM, an HMM, a repetitive model, and a random model. The

predictive power is assessed at the level of entire design

sequence as well as at the level of each design process stage.

We found that on average LSTM outperforms all the other

models while FFNN shows lower performance than traditionally

used HMM. From the ROC curve analysis, we found that LSTM

yields better performance on the design actions that belong to

Formulation, Evaluation, and Analysis, while HMM better

predicts the actions related three Reformulation design

processes. With these findings, we revisit the research question

that we aim to answer: What is the effect of past decisions on

predicting designers’ future sequential decision making? Since

LSTM incorporates historical information of both short-term and

long-term and captures the interconnections between the current

design stage and past, its higher predictive performance indicates

that designers effectively leverage both short-term and long-term

memories in guiding their sequential decision making in

engineering systems design. But increasing the LSTM size does

not improve the prediction significantly, so it is inferred that

designers would not maintain a long memory in systems design

activities. Validating the effect of long-term and short-term

memories and investigating how exactly they play a role in

sequential decision making is our ongoing research.

This work shows that deep learning can be a stepping stone

for modeling and predicting sequential decision making in

engineering design and facilitating design automation. The

approach introduced in this paper is general and can be

implemented in many other design areas, especially complex

configuration design problems, to extract the design decision-

making strategies and design heuristics. However, there are

some limitations in our approach. For example, in this study, we

only consider time-dependent data to explore designer’s

sequential decision. Time-independent data such as

demographics or experiential knowledge pertaining to designers

may also affect their design decisions and strategies.

Additionally, to train a high-fidelity deep learning model, a large

number of subjects is required which may not be available

readily in college setting.

In future work, on the one hand, we will continue doing the

experiment to collect more data. On the other hand, we plan to

develop a more robust deep learning architecture, which

combines both dynamic information (time-series data) and static

information (designer-specific data), for better understanding the

roles that different factors play in sequential design decision. We

envision that by adding the time-independent feature, the model

performance of LSTM can be further improved.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial support

from the U.S. National Science Foundation (NSF) CMMI

through grant CMMI-1842588, DUE-1348530 and DRL-

1503196. We also greatly acknowledge the advices provided by

Dr. Xintao Wu and Dr. Shuhan Yuan on the topic of recurrent

neural network modeling.

REFERENCES

1. Rahman, M.H., et al. Automatic Clustering of

Sequential Design Behaviors. in ASME 2018

International Design Engineering Technical

Conferences and Computers and Information in

Engineering Conference. 2018.

2. Panchal, J.H., Z. Sha, and K.N. Kannan, Understanding

design decisions under competition using games with

information acquisition and a behavioral experiment.

Journal of Mechanical Design, 2017. 139(9): p. 091402.

3. Sexton, T. and M.Y. Ren, Learning an Optimization

Algorithm Through Human Design Iterations. Journal

of Mechanical Design, 2017. 139(10): p. 101404.

4. Brockmann, E.N. and W.P. Anthony, The influence of

tacit knowledge and collective mind on strategic

planning. Journal of Managerial Issues, 1998: p. 204-

222.

5. Collobert, R. and J. Weston. A unified architecture for

natural language processing: Deep neural networks

with multitask learning. in Proceedings of the 25th

international conference on Machine learning. 2008.

6. Miotto, R., et al., Deep learning for healthcare: review,

opportunities and challenges. Briefings in

bioinformatics, 2017. 19(6): p. 1236-1246.

7. He, K., et al. Deep residual learning for image

recognition. in Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016.

8. Heaton, J.B., N.G. Polson, and J.H. Witte, Deep

learning in finance. arXiv preprint arXiv:1602.06561,

2016.

9. Kan, J.W.T. and J.S. Gero. Using the FBS ontology to

capture semantic design information in design protocol

studies. in About: Designing. Analysing Design

Meetings. 2009.

10. Yu, R.O.N.G.R.O.N.G., et al. An empirical foundation

for design patterns in parametric design. in 20th

International Conference of the Association for

Computer-Aided Architectural Design Research in Asia

(CAADRIA), Daegu, South Korea, May. 2015.

11. McComb, C., J. Cagan, and K. Kotovsky, Capturing

human sequence-learning abilities in configuration

design tasks through markov chains. Journal of

Mechanical Design, 2017. 139(9): p. 091101.

12. McComb, C., J. Cagan, and K. Kotovsky, Mining

process heuristics from designer action data via hidden

markov models. Journal of Mechanical Design, 2017.

139(11): p. 111412.

13. Sha, Z., K.N. Kannan, and J.H. Panchal, Behavioral

Experimentation and Game Theory in Engineering

Systems Design. Journal of Mechanical Design, 2015.

137(5): p. 051405-051405-10.

14. Smith, R.P. and S.D. Eppinger, A predictive model of

sequential iteration in engineering design.

Management Science, 1997. 43(8): p. 1104-1120.

15. Griffin, S., N.J. Welton, and K. Claxton, Exploring the

research decision space: the expected value of

 12 © 2019 by ASME

information for sequential research designs. Medical

Decision Making, 2010. 30(2): p. 155-162.

16. Meier, C., A.A. Yassine, and T.R. Browning, Design

process sequencing with competent genetic algorithms.

Journal of Mechanical Design, 2007. 129(6): p. 566-

585.

17. Duff, M.O.G. and A. Barto, Optimal Learning:

Computational procedures for Bayes-adaptive Markov

decision processes. 2002, University of Massachusetts

at Amherst.

18. Santolaya, D.S.a., nchez, Using recurrent neural

networks to predict customer behavior from interaction

data. 2017.

19. Mohamed, A.-r., G.E. Dahl, and G. Hinton, Acoustic

modeling using deep belief networks. IEEE

Transactions on Audio, Speech, and Language

Processing, 2012. 20(1): p. 14-22.

20. Robinson, T., An application of recurrent nets to phone

probability estimation. IEEE transactions on Neural

Networks, 1994. 5(2).

21. Hochreiter, S. and J. Schmidhuber, Long short-term

memory. Neural computation, 1997. 9(8): p. 1735-1780.

22. Graves, A., et al. Unconstrained on-line handwriting

recognition with recurrent neural networks. in

Advances in neural information processing systems.

2008.

23. Graves, A., A.-r. Mohamed, and G. Hinton. Speech

recognition with deep recurrent neural networks. in

2013 IEEE international conference on acoustics,

speech and signal processing. 2013.

24. Chen, Y., et al., Gene expression inference with deep

learning. Bioinformatics, 2016. 32(12): p. 1832-1839.

25. Lee, B., et al., DNA-level splice junction prediction

using deep recurrent neural networks. arXiv preprint

arXiv:1512.05135, 2015.

26. Soleymani, M., et al. Continuous emotion detection

using EEG signals and facial expressions. in 2014 IEEE

International Conference on Multimedia and Expo

(ICME). 2014.

27. Baccouche, M., et al. Sequential deep learning for

human action recognition. in International workshop

on human behavior understanding. 2011.

28. Zhang, R., F. Zheng, and W. Min, Sequential

Behavioral Data Processing Using Deep Learning and

the Markov Transition Field in Online Fraud Detection.

arXiv preprint arXiv:1808.05329, 2018.

29. Yuan, S., X. Wu, and Y. Xiang. A Two Phase Deep

Learning Model for Identifying Discrimination from

Tweets. in EDBT. 2016.

30. Korczak, J. and M. Hemes. Deep learning for financial

time series forecasting in A-Trader system. in 2017

Federated Conference on Computer Science and

Information Systems (FedCSIS). 2017.

31. Rosenblatt, F., The perceptron: a probabilistic model

for information storage and organization in the brain.

Psychological review, 1958. 65(6): p. 386.

32. Karlik, B. and A.V. Olgac, Performance analysis of

various activation functions in generalized MLP

architectures of neural networks. International Journal

of Artificial Intelligence and Expert Systems, 2011.

1(4): p. 111-122.

33. Nicoletti, G.M., An analysis of neural networks as

simulators and emulators. Cybernetics \& Systems,

2000. 31(3): p. 253-282.

34. Hanin, B., Universal function approximation by deep

neural nets with bounded width and relu activations.

arXiv preprint arXiv:1708.02691, 2017.

35. Bengio, Y., P. Simard, and P. Frasconi, Learning long-

term dependencies with gradient descent is difficult.

IEEE transactions on neural networks, 1994. 5(2): p.

157-166.

36. Xie, C., et al., Learning and teaching engineering

design through modeling and simulation on a CAD

platform. Computer Applications in Engineering

Education, 2018. 26(4): p. 824-840.

37. Xie, C., et al., A time series analysis method for

assessing engineering design processes using a CAD

tool. International Journal of Engineering Education,

2014. 30(1): p. 218-230.

38. Gero, J.S., Design prototypes: a knowledge

representation schema for design. AI magazine, 1990.

11(4): p. 26.

39. Verleysen, M. and D. François. The curse of

dimensionality in data mining and time series

prediction. in International Work-Conference on

Artificial Neural Networks. 2005. Springer.

40. Potdar, K., T.S. Pardawala, and C.D. Pai, A comparative

study of categorical variable encoding techniques for

neural network classifiers. International Journal of

Computer Applications, 2017. 175(4): p. 7-9.

41. Kohavi, R. and others. A study of cross-validation and

bootstrap for accuracy estimation and model selection.

in Ijcai. 1995.

42. Chollet, F., Deep Learning mit Python und Keras: Das

Praxis-Handbuch vom Entwickler der Keras-

Bibliothek. 2018: MITP-Verlags GmbH \& Co. KG.

43. Friedman, J., T. Hastie, and R. Tibshirani, The elements

of statistical learning. Vol. 1. 2001: Springer series in

statistics New York.

44. Ruder, S., An overview of gradient descent optimization

algorithms. arXiv preprint arXiv:1609.04747, 2016.

45. Lee, K.C., S. Phon-Amnuaisuk, and C.Y. Ting. A

comparison of HMM, Na}ve Bayesian, and Markov

model in exploiting knowledge content in digital ink: A

case study on handwritten music notation recognition.

in 2010 IEEE International Conference on Multimedia

and Expo. 2010.

46. Fawcett, T., An introduction to ROC analysis. Pattern

recognition letters, 2006. 27(8): p. 861-874.

47. Srivastava, N., et al., Dropout: a simple way to prevent

neural networks from overfitting. Journal of Machine

Learning Research, 2014. 15(1): p. 1929-1958.

