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Abstract

Natural environments are often filled with obstacles and disturbances. Traditional navigation and planning approaches

normally depend on finding a traversable ‘‘free space’’ for robots to avoid unexpected contact or collision. We hypothesize

that with a better understanding of the robot–obstacle interactions, these collisions and disturbances can be exploited as

opportunities to improve robot locomotion in complex environments. In this article, we propose a novel obstacle distur-

bance selection (ODS) framework with the aim of allowing robots to actively select disturbances to achieve environment-

aided locomotion. Using an empirically characterized relationship between leg–obstacle contact position and robot tra-

jectory deviation, we simplify the representation of the obstacle-filled physical environment to a horizontal-plane distur-

bance force field. We then treat each robot leg as a ‘‘disturbance force selector’’ for prediction of obstacle-modulated

robot dynamics. Combining the two representations provides analytical insights into the effects of gaits on legged traver-

sal in cluttered environments. We illustrate the predictive power of the ODS framework by studying the horizontal-plane

dynamics of a quadrupedal robot traversing an array of evenly-spaced cylindrical obstacles with both bounding and trot-

ting gaits. Experiments corroborate numerical simulations that reveal the emergence of a stable equilibrium orientation

in the face of repeated obstacle disturbances. The ODS reduction yields closed-form analytical predictions of the equili-

brium position for different robot body aspect ratios, gait patterns, and obstacle spacings. We conclude with speculative

remarks bearing on the prospects for novel ODS-based gait control schemes for shaping robot navigation in

perturbation-rich environments.
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1. Introduction

Existing research on robot navigation and path planning

(Khatib, 1986; LaValle, 2006) has largely been premised

on a clear distinction between a traversable ‘‘free space,’’

separated from the set of ‘‘obstacles’’ that can never be

even touched. Indeed, because most available platforms

lack any capability to cope with unanticipated mechanical

contacts, robots generally rely heavily on active sensing to

avoid engagement of any kind. However, as our increas-

ingly capable robots begin to operate in more natural, less

structured environments, it seems clear that this constraint

must be relaxed, or even exploited.

We hypothesize that the disturbances from obstacles

can be regarded as opportunities to enhance mobility in

complex environments (Figure 1). Biological studies have

demonstrated that animals (Kinsey and McBrayer, 2018;

Kohlsdorf and Biewener, 2006; McInroe et al., 2016;

Wilshin et al., 2017) can coordinate their appendages or

body segments (Schiebel et al., 2019; Zhong et al., 2018)

to adjust the timing and positions of environment engage-

ment (Gart and Li, 2018; Gart et al., 2018; Li et al., 2015)

to achieve effective locomotion. In analogy to the selected

leg sequence timing in biological locomotors, Johnson and

Koditschek (2013) demonstrated that with a human-

programmed leg activation sequence, a hexapedal robot

can jump up a vertical cliff by using its front legs to hook
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on the cliff edge while pushing its rear legs against the

vertical surface. These studies suggested that with a better

understanding of environment responses and interaction

dynamics, robots could exploit obstacles and collisions to

achieve environment-aided locomotion.

A key challenge in endowing robots with the ability to

autonomously generate such environment-aided locomo-

tion is the problem of conceptualizing how to even extract

information about, much less exploit, these interaction

opportunities from physical properties (e.g., shape, size,

distribution) of the environment. On flat and rigid ground,

robot dynamics can be modeled accurately (Blickhan,

1989; Brown and Loeb, 2000; Schmitt and Holmes, 2000),

and numerous methods have been developed for control

and planning on such simple terrain (De and Koditschek,

2018; Raibert, 1986). However, once the robots are

allowed to interact with more complex environment (Li

et al., 2010; Marvi et al., 2014; Qian and Goldman,

2015b; Qian et al., 2013), many simplified models and

templates (Full and Koditschek, 1999) fail to capture the

coupled dynamics, and previous control and planning

methods are no longer applicable.

Gibson (1979) proposed the notion of environmental

affordance as an agent’s acting to exploit an environmen-

tal structure in a manner favorable to some desired out-

come. In the past few decades, there have been a number

of biomechanics (Gart et al., 2019; Li et al., 2015;

McInroe et al., 2016; Sane and Dickinson, 2001; Schiebel

et al., 2019; Winter et al., 2012) and robotics (Arslan and

Saranli, 2012; Bayraktaroglu and Blazevic, 2005; Byl

and Tedrake, 2009; Curet et al., 2010; Kim et al., 2008;

Qian and Goldman, 2015a; Qian et al., 2013; Rieser

et al., 2019; Transeth et al., 2008; Winter et al., 2014)

studies that began to reveal a wide variety of environ-

mental affordances (Gibson, 1979) for locomotion, and

how different locomotor morphology and kinematics

allows exploitation of such affordances to effectively

move through complex environments.

As a first step towards constructing a general frame-

work of exploiting environmental affordance through gaits

(Gibson, 1979), in this study we abstract the physical

obstacles to treat them as the source of a horizontal-plane

disturbance force field (Section 3.1). A previous study

(Qian and Goldman, 2015b) on robot interaction with a

single obstacle revealed that the change of robot orienta-

tion state after the interaction depended primarily on the

initial fore–aft contact position on the obstacle. In this

work, we expand this empirically characterized relation-

ship to propose a disturbance field representation of

horizontal-plane obstacle influences on robot dynamics.

The values of the two-degree-of-freedom (2-DoF) distur-

bance field represent the direction and magnitude of fore–

aft obstacle forces on the hip joint of a contacting robot

leg.

The disturbance field provides a map of available inter-

action forces in the given physical environment. That said,

the total obstacle reaction forces on and the resulting

dynamics of the center of mass (CoM) of a robot depend

sensitively on the position and time of contact between

robot legs and obstacles. In this article, we regard robot

legs as a collection of disturbance selectors (Section 3.2),

and we calculate the total interaction force exerted on the

robot CoM by adding disturbance forces from each leg in

contact with the obstacle. By coordinating leg movements

and engaging its limbs with obstacles at different positions

and times, a multi-legged robot can elicit a wide variety of

dynamical effects from the same environment.

Combining the disturbance-field representation of envi-

ronment and the disturbance-selector representation of the

locomotor, our obstacle disturbance selection (ODS)

framework provides a general method to predict robot

dynamics under obstacle modulation. To validate our

method, we construct a numerical model (Section 4) using

the ODS framework. We study in both experiment

(Section 2) and numerical simulation (Section 4) the

dynamics of a quadrupedal robot, HQ-RHex (Figure 2A,

(c)(a) (b)

Fig. 1. Natural terrains on Earth and in extraterrestrial environments are often filled with obstacles that generate large, repeated

disturbances to robot locomotion. (A) Boulder field at Hickory Run State Park. Photo courtesy of Clyde. (B) Martian surface. Photo

taken by NASA’s Curiosity Rover. (C) Log jam. Photo courtesy of Scampblog.
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Section 2.2), as it locomotes across an array of half-

cylindrical obstacles (‘‘logs’’). Although a quadruped, a

relatively simple form of multi-legged platform, is used to

demonstrate the application of our framework in experi-

ment (Section 2) and simulation (Section 4), we posit that

the framework described in Section 3 is applicable to more

general multi-legged platforms with different numbers of

legs.

We analyze the horizontal-plane dynamics of the HQ-

RHex robot for two periodic gaits, a bound and a trot

(Figure 2B). In both experiments and ODS-framework-

derived numerical simulation, we find that the bounding

robot exhibits a stable equilibrium state at a yaw angle of

08 independent of initial orientation or obstacle spacing,

whereas the trotting robot exhibits orientation equilibria at

6u8, with u 2 (08, 908) independent of initial orientation

but dependent on obstacle spacing and robot aspect ratio.

Further analysis suggests that the emergence of this

‘‘locking angle’’ is a result of spatial period matching

(Section 5) between the cyclic gait and the periodically

structured environment. Using the spatial period matching

principle, we demonstrate that the equilibrium orientation

angle can be analytically predicted for a variety of obstacle

spacings and robot body dimensions. In addition, the emer-

gence of this passive stabilization mechanism from the

simplified environments (periodic gaits in structured obsta-

cle fields) suggests the possibility of active gait control

schemes in more complex environments. We envision that

by actively adapting gait sequences, a multi-legged robot

can strategically select obstacle disturbances to achieve

desired dynamics in cluttered environments (Section 6).

2. Obstacle modulation experiments

To begin to understand how robot dynamics changes under

repeated obstacle disturbances, we performed locomotion

experiments with a quadrupedal robot traversing across a

field of evenly spaced obstacles. We systematically varied

obstacle spacing and robot gait, and analyzed how these

parameters affect the coupling between the robot and the

environment.

2.1. Environment

The environment we used in this study was a simplified

obstacle field with an array of half-cylindrical obstacles

(‘‘logs’’) of diameter D and spacing P (Figure 2C). The

periodic structure reduces the uncertainty in repeated

obstacle disturbances, and allows the observed stable inter-

action pattern to emerge (see Section 2.4). The structured

spacing also allows us to systematically vary P relative to

the robot dimension and analyze how this parameter

affects the stable interaction pattern (see Section 5.2). The

symmetry of the cylindrical shape reduces the complexity

(c)(a)

(b)

Fig. 2. Experiment setup for exploring the effect of different gaits on robot traversal of a periodic obstacle field. (A) HQ-RHex, a

small RHex-class (Saranli et al., 2001) robot. For experiments in this study we used a quadrupedal version of this robot by removing

the two middle legs. (B) Two quadrupedal gaits were tested in the experiment, both of which involved two sets of two legs paired in

phase, with the two pairs of legs in anti-phase. In bounding, two front legs are paired to move synchronously and then alternate with

the two back legs; in trotting, two diagonal legs are paired and alternates with the other pair. (C) HQ-RHex’s instantaneous CoM

positions (x, fore–aft; y, lateral; z, vertical) and orientations (pitch; yaw; u, roll) were recorded as it traversed over an array of evenly

spaced half-cylindrical obstacles.
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of modeling obstacle disturbance force fields (see Section

4.1). In addition, owing to the similar surface inclination

profile between logs and spheres in the fore–aft direction,

we are able to use the empirical results from Qian and

Goldman (2015b) to generate the disturbance force field in

this study.

The outer diameter D of the half-cylindrical obstacles

was chosen to be ’0:11m, comparable to the robot leg

size (0:12m outer diameter) so that the each obstacle inter-

action would produce a significant amount of perturbation

to the robot locomotion but would not cause the robot to

get stuck or flip over. Obstacle spacing P was chosen to

be ’0:10m, slightly smaller than the step length (0:15–
0:2m on flat ground) of the robot, such that the robot

would be repeatedly disturbed during every step but would

not be able to return to its flat-ground steady state between

disturbances.

2.2.Robot

The robot used in this study, HQ-RHex (48cm in length,

27cm in width, 4:8kg, Figure 2A), is a RHex-class

(Saranli et al., 2001) robot with six C-shaped legs. The

robot body was made with laser-cut ABS plastic to allow

quick morphological parameter variations for laboratory

experiments. The legs were actuated by gearless direct-

drive motors (Tiger Motor, U8) to achieve better force

transparency (Kenneally et al., 2016) during interaction

with obstacles. The legs were made from a relatively rigid

material, 14-ply composite fiber glass (Custom Composite

Technologies Inc.), to reduce deformation during obstacle

collision and facilitate contact modeling. The outer sides

of the legs were coated with 2mm thick rubber to increase

traction on flat ground. The robot was powered by a four-

cell Li-Po battery (16:8V when fully charged), and battery

voltage was monitored between experiments and main-

tained at a minimum of 16V for all trials. The gait and

clock parameters (Saranli et al., 2001) and the stride fre-

quency of the robot were controlled by a customized

(Kenneally et al., 2016) micro-controller (Ghost Robotics

MBLC v0.5.2).

As a first step to investigate the effect of gait patterns

on robot dynamics under obstacle modulation, we tested

the dynamics of HQ-RHex with two periodic gaits, bound-

ing and trotting (Figure 2B). Bounding refers to the gait

where two front legs move synchronously and two back

legs move synchronously and out of phase with the front

legs. Trotting refers to the gait where two diagonal legs

move synchronously and out of phase with the other two

legs.

2.3. Data collection and analysis

We performed 49 experiments with a bounding gait and

68 experiments with a trotting gait. We selected the initial

fore–aft distance to ensure that the robot maintains the

desired initial orientation and moves at least three

complete stride cycles before entering the obstacle field.

Each bounding trial started with the robot standing with a

fore–aft distance of ;1:260:1 m in front of the first

obstacle, with desired initial orientation angle between 08

and 608 with an increment of 58. For initial orientation

angles larger than 608, the robot deflected off the first log

and failed to enter the obstacle field in most of the trials.

We performed three trials for each desired initial orienta-

tion angle. We only performed trials with positive initial

orientation angle owing to the symmetry. Similarly, each

trotting trial started with the robot standing with a fore–aft

distance of ;1:060:2 m from the first obstacle, with

desired initial orientation angle between 08 and 608 with

an increment of 58 on both sides. We performed five trials

for each positive initial orientation angle. Owing to sym-

metry, we performed fewer trials for negative initial orien-

tation (one trial per initial orientation angle).

We used a wireless remote joystick (Quanum i8) to set

the stride frequency and gait pattern of the robot at the

beginning of each trial. Once the trial started, the leg

motors followed a desired angular position sequence gen-

erated based on the commanded stride frequency and gait

pattern, and the robot traversed the obstacle-cluttered ter-

rain in a feed-forward fashion without steering control. All

changes in robot orientation, therefore, resulted from

obstacle disturbances.

For each trial, the robot was set to a fixed stride fre-

quency. Two different stride frequencies, 0:5 and 2Hz,
were tested. For the equilibrium steady states discussed in

this article, there is no major difference between the two

different stride frequencies. We merge the results from

different stride frequencies in later discussions. During

each stride, the instantaneous angular position of each leg

was specified by the ‘‘Buehler clock’’ parameterization of

stance and flight phasing as described in Saranli et al.

(2001). For all trials in this study, the angular extent of the

stance phase was set to 608 with its center at �158. Leg

angles are measured clockwise about the axle and between

the downward vertical and a diameter through the axle.

The fraction of time spent in stance during each leg rota-

tion (duty cycle) was set to 70%.

To track the dynamics of the robot during interaction

with obstacles, we glued reflective markers (B&L

Engineering, 12:7mm) to the robot and tracked its CoM

positions (x, fore–aft; y, lateral; z, vertical; Figure 2C) and

orientations1 (pitch, yaw, roll) using a 20-camera motion

capture (Vicon) system. In this experiment, all obstacles

were fixed on the ground and not allowed to move during

the interaction. We attached tracking markers on each

obstacle to record their actual positions. In addition, the

robot gait parameters, leg positions, motor torques, and

inertial measurements (measured by IMU VectorNav 100-

S) were logged to an onboard SD card on the robot con-

troller to complement Vicon measurements.

The initial orientation angle of the robot before it began

interacting with the obstacle field, u0, was calculated as

the average yaw angle of the robot CoM, before either of

4 The International Journal of Robotics Research 00(0)



the front legs reached the front edge of the first log.

Similarly, to obtain the final orientation angle after the

robot reached a steady state in the obstacle field, uf , aver-

age CoM yaw angle was calculated for the last 0:5m of

trajectory before either of the robot front legs exited the

obstacle range.

2.4.Experiment observations

Robot trajectories measured from experiments are plotted

in Figure 3A and C. We observed that with a bounding

gait, despite the large variation in initial orientations the

robot converged to traversing perpendicularly across the

logs (uf’0) after a few leg–obstacle collisions (Figures

3A and 4, and Extension 1), with the exception of a few

trajectories with large initial orientation angles, where the

robot converged to a trajectory that traverses sideways

along the logs (uf = 908).

With the trotting gait, however, the stabilized orienta-

tions were significantly different from those with the

bounding gait. None of the trajectories (Figure 3C) con-

verged to uf = 08 as observed from the bounding gait

experiments. Instead, the majority of the robot trajectories

stabilized to a final orientation of uf = 24:7864:28
(Figures 3C and 5, and Extension 2). For a few trajectories

with small magnitude of initial yaw angle (ju0j\158), the

robot’s final orientation does not stabilize to a fixed value,

but oscillated periodically around juf j= 58 (Figure 3C),

much like a ‘‘limit cycle’’2 behavior. Similar to the bound-

ing gait case, the final orientation of the trotting robot

could also stabilize at 6908, in which case the robot tra-

versed sideways.

Plots of juf j (Figure 3B and D) supported our observa-

tion that 908 was a stable orientation state for both bound-

ing and trotting gaits. In contrast, 08 was a stable

orientation state for only the bounding gait (Figure 3B)

and 6258 was a stable orientation state for only the trot-

ting gait (Figure 3D). That 908 was a stable orientation

was not surprising, as when the robot traversed sideways

(u= 908) its legs could step on the flat ground between the

logs, avoiding any obstacle disturbances that would push

it away from the 908 orientation. If the robot slightly

deviated away from 908 and one or more legs started to

step on the edge of the logs, those legs would quickly slip

off the edge of the logs and fall back to the gaps, and

eventually bring the robot orientation back to around 908.

This is true for a variety of other gaits, and therefore 908

is a commonly observed steady state. Because the stability

mechanism for 908 is trivial and is not significantly differ-

ent for different gaits, we do not discuss this stable orien-

tation further in the following sections. To investigate the

mechanism behind the difference in stable orientation of

08 in bounding and 6258 in trotting, in the following sec-

tion (Section 3) we propose an ODS framework, where we

model the robot gait as different timing patterns for robot

legs to select obstacle disturbances.

(a) (b)

(c) (d)

Fig. 3. Robot trajectories and steady-state yaw angles measured from experiments. (A) Paths of the robot traversing across the

obstacle field with a bounding gait. Colors represent different initial yaw angle magnitude. Horizontal lines represent the obstacles’

positions. Each obstacle was marked by a distinct color, with two horizontal lines representing the front and back edges. (B)

Magnitude of the final yaw angle uf for different magnitude of initial yaw angle u0 in bounding experiments. Each circle represents

one trial. (C) Paths of the robot traversing across the obstacle field with a trotting gait. Color convention is the same as (A). (D)

Magnitude of final yaw angle uf for different magnitude of initial yaw angle u0 in trotting experiments. Each circle represents one trial.
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3. ODS framework: connecting

obstacle-modulated robot CoM dynamics

to leg–obstacle contact positions

The surprisingly simple behavior of the obstacle-

modulated robot steady state observed from experiments

suggests that despite the complicated, repeated collisions

between robot legs and obstacles, there exists a simple

mechanism that dominates the obstacle-modulated robot

CoM dynamics. In this section, we propose a horizontal

plane ODS framework that abstracts and simplifies the

complicated low-level contacts and explains the strikingly

uniform steady-state robot orientation angles emerging

from the leg–obstacle contacts.

The framework entails three key conceptual compo-

nents, to generate a simplified representation of the envi-

ronment, the gait, and the coupling between the two. The

first component represents the physical obstacle perturba-

tions as a simplified 2-DoF disturbance force field in the

world frame (Section 3.1). The second component inter-

prets the robot gait as an ‘‘activation pattern’’ whereby

each activated leg selects the available obstacle distur-

bances at its location (Section 3.2). Selected disturbances

from all activated legs contribute to the total external

Fig. 4. Sequence of images from a bounding experiment showing the robot orientation was locked to 08 under periodic obstacle

modulation. Circles highlight hips of the synchronized leg pair that was selecting obstacle disturbances.

Fig. 5. Sequence of images from a trotting experiment showing the robot orientation was locked to �258 under periodic obstacle

modulation. Circles highlight hips of the synchronized leg pair that was selecting obstacle disturbances.
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forces and torques in the third component (Section 3.3),

allowing calculation of the obstacle-modulated robot CoM

state, q : = (xCoM, u), in the horizontal plane. Here xCoM
represents the fore–aft position of the robot’s CoM in the

world frame (x direction; Figure 2C), and u represents the

orientation angle of the robot’s CoM body frame relative

to the inertial world frame.

3.1. Obstacle abstraction and disturbance field

generation

Qian and Goldman (2015b) found that the orientation of a

legged robot could change up to 6208 during one interac-

tion event between one leg and one obstacle, depending

on the initial condition of the leg–obstacle contact. It was

also found that the direction and magnitude of the change

in robot orientation (the ‘‘scattering angle’’ (Qian and

Goldman, 2015b)) depended primarily on the fore–aft sur-

face inclination angle on the obstacle, b (Figure 6A), at

the initial contact position. This dependence was found for

a variety of obstacle shapes and surface frictions in Qian

and Goldman (2015b).

Here we use this dependence to convert physical obsta-

cles into a 1-DoF artificial disturbance force field. In our

ODS framework, we model each single-leg, single-

obstacle (SLSO) collision as a disturbance force, f ,

exerted on the hip joint of the contacting robot leg. Since

this disturbance primarily depends on the fore–aft obstacle

surface inclination b for a given obstacle with known

sagittal-plane shape profile, b(�x), we can use the universal

disturbance–inclination relationship f (b) (Figure 6A)

(Qian and Goldman, 2015b) to obtain the obstacle

(a)

(c)

(b)

Fig. 6. Obstacle disturbance field model. (A) For SLSO interactions, robot orientation change (the ‘‘scattering angle’’) after the

collision depends primarily on the fore–aft inclination angle, b, at the initial contact position (Qian and Goldman, 2015b). Here b is

negative on uphill slopes and positive on downhill slopes. Scattering angle refers to the robot trajectory deviation after a single

obstacle interaction. Positive scattering angle indicates attractive disturbance (i.e., the robot turns towards the obstacle after

collision) and negative angle indicates repulsive disturbance (i.e, the robot turns away from the obstacle after collision). Reproduced

from Qian and Goldman (2015b: Figure 5), where spherical mobile obstacle was used to demonstrate various leg–obstacle

interaction modes. That said, it was discovered in Qian and Goldman (2015b) that the dependence of scattering angle on initial fore–

aft contact position is similar between cylindrical fixed obstacle and spherical mobile obstacle (Qian and Goldman, 2015b: Figure

6). (B) Diagram of the repeated obstacle disturbances setup. Orange rectangles represent the array of cylindrical obstacles with

diameter D and spacing P. The left front, right front, right rear, and left rear legs of the quadrupedal robot were represented as

vertices LF,RF,RR,LR, respectively, of the rectangular box representing the robot body. The body length (distance between front

and rear legs) is 2L and the body width (distance between left and right legs) is 2W . The x axis represents the fore–aft direction in

the world frame and the y axis represents the lateral direction in the world frame. Robot orientation, u, is defined as the angle

between x axis and robot heading. (C) Abstracted obstacle disturbance force field for evenly spaced cylindrical obstacles with

P= 0:10m, D= 0:11m. Positive Fi indicates forward (i.e., + x direction in B) disturbance force on leg i and negative Fi indicates

backward (i.e., �x direction in B) disturbance force on leg i.

Qian et al. 7



disturbance force (ODF) in the world frame, f (�x), as a

function of �x. Here �x denotes the relative contact position,

the distance measured from the x-direction position of the

contacting leg to the near edge of the contacting obstacle.

The total obstacle disturbance field comes from all

obstacles in the physical environment. This 2-DoF ODF

field that a robot leg (leg i) experiences, Fi, can be com-

puted as a superposition of all localized SLSO responses,

f (�x), based on the distribution of obstacles in the

environment:

Fi =
f (�xi) (xi, yi) 2 O

0 (xi, yi) 2 G

�
ð1Þ

Here xi and yi represent the fore–aft and lateral posi-

tions of leg i (i 2 H , where H is the set of all legs

H = fLF,RF,RR, LRg, Figure 6B) in the world frame, O

represents the set of locations on the horizontal plane that

is occupied by obstacles, and G represents the set of loca-

tions on the horizontal plane without obstacles. We note

that in this highly simplified model we attach the distur-

bance obstacle force directly at the robot hip joint, and

therefore do not take into account the periodic fore–aft

oscillation movement of the leg relative to the hip joint.

Since Fi is a function of fore–aft positions in the world

frame, Equation (1) provides an abstracted map of available

obstacle reaction forces in the world frame. In the follow-

ing sections, we show that combined with the simplified

representation of robot gaits, a robot can use this map of

available interaction forces to predict and plan obstacle-

modulated CoM dynamics in cluttered environments.

3.2. Gait pattern abstraction and ODS

The obstacle disturbance force field provides the map of

interaction force opportunities. To connect the repeated

leg–obstacle collisions to the change of robot state, we rep-

resent each robot leg as a ‘‘disturbance selector’’. At each

instant, two conditions are necessary for a leg i to ‘‘select’’

the obstacle disturbance at its current location. First, leg i

must be within the obstacle portion of the space, O (as

opposed to the flat ground portion, G), see Equation (1).

Second, leg i must be in stance phase.

The second condition provides a multi-legged robot the

option to select different combinations of obstacle distur-

bances. To study the effect of such selection, we model

robot gaits as a time-varying ‘‘activation pattern’’, S(t). At
any instance in time, S represents the subset of robot legs

that are in stance phase (S : R ! P(H))3, and therefore

subject to ground reaction forces and obstacle distur-

bances. The total force exerted on the robot CoM, Fo, can

then be calculated for the specific gait as a sum of the

ODF from all contacting legs:

Fo =
X
i2S(t)

Fi ð2Þ

Similarly, the total torque exerted on the robot CoM by

the obstacles can be calculated as

To =
X
i2S(t)

(FiDyi) ð3Þ

where yi is the lateral position of leg i, and

Dyi = yi � yCoM is the relative lateral position of leg i rela-

tive to the CoM, both in the world frame.

We note that the ODS framework presented in this

section applies not only to the quadruped demonstrated

in Section 4 but also more general multi-legged

platforms.

As Equations (2) and (3) stipulate, the obstacle dis-

turbances for multi-leg, multi-obstacle (MLMO) situa-

tions depend on both the environment properties (the

obstacle disturbance force field) and the choice of gait

patterns. Given the same physical environment (i.e.,

same obstacle disturbance field), the total perturbation

to the robot CoM can be significantly different depend-

ing on the activated leg groups (i.e., subset of legs) or

their sequencing. Therefore, by using a different gait

pattern or designing a different leg group sequence

(such as a transitional gait), a legged robot can select

over a highly diverse range of influences over a fixed

terrain (see Section 6).

3.3. Robot CoM dynamics under obstacle

disturbance modulation

Combining the disturbance field representation of the leg–

environment interaction and the disturbance selection pat-

tern representation of robot gait yields an abstraction of

the robot CoM dynamics in response to repeated obstacle

collisions.

On flat ground, the robot does not experience obstacle

disturbances, and the CoM’s fore–aft acceleration is deter-

mined by the thrust force, Fth, propelling the robot along

the current orientation, in opposition to the stabilizing

damping force, Fd . Both thrust force and damping force

are defined in the local robot frame (Fthr, Fdr) and pro-

jected to the world frame (Fthw, Fdw) to calculate CoM

acceleration along the x direction. Once engaged, the

obstacle’s perturbing influence is represented by the addi-

tional force term, Fo (Equation (2)), defined in the world

frame. These three forces together yield the robot’s fore–

aft acceleration in the world frame, given by

€xCoM=
1

m
(Fow +Fthw +Fdw) ð4Þ

where m is the mass of the robot.

Similarly, our ODS abstraction neglects the small oscil-

lations in orientation due to each step on flat ground while

positing an obstacle-engaged disturbance torque, To
(Equation (3)), opposed by a stabilizing damping term, Td ,

which allows the robot to subsequently recover a steady

orientation:
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€u=
1

I
(To + Td) ð5Þ

where I is the moment of inertia of the robot.

4. Numerical model: capturing robot steady

states under periodic obstacle modulation

using the ODS framework

In this section, we demonstrate how the obstacle-

modulated robot states can be computed using the ODS

framework, and we use the results to explain the emer-

gence of the robot’s steady states observed in experiments.

We implemented a numerical model in MATLAB

Simulink to compute robot state under repeated obstacle

perturbation. To facilitate comparison with experiments, in

the numerical study we used the same setup as the experi-

ment, with a quadrupedal robot traversing over evenly

spaced cylindrical obstacles, and we compared the beha-

viors of the bounding and trotting gaits. All dimensions

used in the simulation were directly measured from the

experiments.

The numerical model executes three steps correspond-

ing to the three components in the ODS framework. The

first step (Section 4.1) computes the disturbance force field

in the world frame based on the distribution of the obsta-

cles in the physical environment. The second step (Section

4.2) generates a time series of leg activation set based on

the two given gait patterns (Equations (12) and (13)), and

computes the total disturbance force and torque exerted on

the robot CoM. The third step (Section 4.3) updates the

time-varying robot CoM state (fore–aft position xCoM and

orientation angle u) in the world frame by numerically

integrating the equation of motion under obstacle modula-

tion in discrete time steps.

In Section 4.4, we show that the highly simplified

horizontal-plane model is able to successfully capture the

equilibrium steady-state behaviors of the coupled robot–

obstacle system observed from experiments for both

bounding and trotting gaits. In addition, the framework

allows examination of forces and torques exerted on robot

legs and CoM that lead to the observed steady states, and

therefore facilitates discovery of the underlying mechan-

ism of obstacle modulation behind seemingly complicated

repeated leg–obstacle collisions.

4.1. Obstacle abstraction

Based on the ODS framework, each obstacle is modeled

as a localized disturbance field, where the direction and

magnitude of the disturbance force at each fore–aft posi-

tion depends on the obstacle surface inclination. For the

cylindrical obstacles (logs) used in our experiment, the

SLSO disturbance f (�x) is the same as the spherical obsta-

cles used in Qian and Goldman (2015b) owing to the same

sagittal-plane shape profile. Therefore, in this article we

use the empirically characterized relationship between

robot trajectory deviation and fore–aft contact position for

SLSO interaction from Qian and Goldman (2015b) to gen-

erate the ODF. We numerically approximate this previ-

ously empirically measured f (�x) as a sine function4:

f (�xi)= sin
2p�xi
D

� �
ð6Þ

This function qualitatively captures the dependence of

obstacle disturbance observed in Qian and Goldman

(2015b), where leg contacting on positive (�xi\D=2) and
negative (�xi.D=2) obstacle inclination receives backward

(f (�xi)\0) and forward (f (�xi).0) disturbances, respec-

tively, whereas contact position at zero obstacle inclina-

tion (�xi =D=2) resembles flat ground and receives zero

additional disturbance (f (�xi)= 0).

As mentioned previously, �x denotes the relative contact
position, the distance from the x direction position of the

contacting leg to the near edge of the contacting obstacle.

For our experiment setting, �xi =mod(xi,D+P)5 denotes

the relative contact position of leg i. Here D is the log

dimension, and P is the log spacing.

The fore–aft position of leg i in the world frame, xi,

depends on the robot’s CoM state, q : = (xCoM, u)
(Figure 6B):

xLF = xCoM+ L cos (u)+W sin (u) ð7Þ

xRF = xCoM+ L cos (u)�W sin (u) ð8Þ

xRR= xCoM � L cos (u)�W sin (u) ð9Þ

xLR= xCoM � L cos (u)+W sin (u) ð10Þ

In the experiments, obstacles were an array of evenly

spaced logs along the y axis with diameter D and spacing

P (Figure 6B). The obstacle distribution, therefore, is sim-

ply O : ½0,D) for the obstacle-occupied area, and

G : ½D,D+P) for flat ground. For the low-frictional

cylindrical obstacles with orientation along the y axis, the

obstacle disturbance forces are mostly along the x direc-

tion. Given this lateral symmetry of the obstacle setup, the

ODF field representing our experiment environment is 1-

DoF (2-DoF in general cases). The 1-DoF obstacle distur-

bance field can be written as a periodic sine function with

flat intervals (Figure 6C):

Fi(q)=
sin 2p�xi(q)

D

� �
�xi(q) 2 ½0,D)

0 �xi(q) 2 ½D,D+P)

(
ð11Þ

Here Fi represents the available disturbance forces in the

environment for any contacting leg. As mentioned in

Section 3.1, Fi is a function of the x-direction positions in

the world frame. Therefore, for a certain physical environ-

ment, the disturbance force field is fixed. However, as we

will see in Section 4.2, for different gait choices, the total

forces exerted on the robot CoM can be significantly dif-

ferent. By adjusting the timing and position of obstacle

contact, a robot can potentially select desired environment
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interaction forces to improve its locomotion and naviga-

tion in cluttered environments.

4.2. Disturbance selection

In a bounding gait, the two front legs always ‘‘activate’’

together to engage the obstacle disturbances at the same

time, and then alternate with the two rear legs every half

stride period, T . Therefore, we can write down the expres-

sion of the time-varying activation set, S, for a bounding

gait:

S(t)=
LF,RF 0ł t\T=2
LR,RR T=2ł t\T

�
ð12Þ

We note that our model is highly simplified and not

intended to take into account all physical details. In this

highly simplified model, we assume perfectly alternating

pairs. In physical experiments, the two pairs can overlap

during stance depending on the duty cycle. Despite such

simplification we show in Section 4.4 that the steady states

persist.

Similarly, in a trotting gait, two diagonal legs always

‘‘activate’’ together and alternate with the other pair every

half gait period. The activation set S for a trotting gait can

therefore be written as

S(t)=
LF,RR 0ł t\T=2
RF, LR T=2ł t\T

�
ð13Þ

where T is the stride period, defined as the time takes for

the robot to complete a stride cycle (two steps for both

bounding and trotting).

With Equations (12) and (13), we can calculate the total

obstacle disturbance force and torque on robot CoM using

Equations (2) and (3):

Fo(q)=
X
i2S(t)

Fi(q)

To(q)=
X
i2S(t)

Fi(q)(yi(q)� yCoM(q))

In this study, owing to the symmetry of the obstacles in

the horizontal direction, the lateral position of the CoM

was not updated.6 Here yi can be calculated as a function

of the robot CoM orientation state, u:

yLF = L sin (u)�W cos (u)

yRF = L sin (u)+W cos (u)

yRR = � L sin (u)+W cos (u)

yLR = � L sin (u)�W cos (u)

Representing gaits as disturbance selection patterns

allows a simplified analysis of how different S allows a

robot to passively (i.e., without active steering) generate

distinct horizontal-plane dynamics within the same

environment.

4.3. State prediction

Here we compute the robot dynamics for different obstacle

distributions and gait patterns using the total disturbance

force and torque computed in the disturbance selection

step (Section 4.2).

The fore–aft acceleration of the robot CoM in the world

frame was calculated using the equation of motion (4). As

mentioned in Section 3.3, on flat ground the robot’s fore–

aft acceleration is determined by the thrust force, Fthr, and

the damping force, Fdr, defined in the robot frame. Once

engaged with obstacles, the obstacle disturbance force,

Fow, defined in the world frame, is added to the total

force. In this study we are interested in capturing the robot

steady-state orientation, which is insensitive to the thrust

and damping force function forms, as suggested by the

simulation data. Therefore, here we assume a constant

thrust force, Fthr(q)= cF , in the robot frame. This thrust

force is then projected onto the world frame as

Fthw(q)= cF cos (u) to calculate the robot’s acceleration

along the x direction. The damping force, Fdr, scales line-

arly with the robot’s fore–aft speed in the robot frame:

Fdr(q)= � cx _xCoM

where cF is the thrust force constant and cx is the linear

damping coefficient. Similarly, the damping force is pro-

jected to the world frame as Fdw(q)= � cx _xCoM cos (u).
Without obstacle modulation, the steady-state speed of the

robot, vss, was determined by the values of the thrust

force, Fth, and the linear damping coefficient, cx. Here we

use a thrust force constant, cF = 2N, and a damping coef-

ficient, cx = 3, yielding a resulting flat-ground speed of

vss(cF , cx)= 0:6m=s, similar to the experimentally mea-

sured robot CoM speed for stride frequencies around 2Hz
for both bounding and trotting gaits. The equilibrium posi-

tion of robot orientation states were insensitive to the val-

ues of the constants, cF and cx.

The fore–aft position of the robot in the world frame,

xCoM, is then given by Equation (4):

€xCoM(q)=
1

m
(
X
i2S(t)

Fi(q)+Fthw(q)+Fdw(q)) ð14Þ

In our simulation, xCoM was updated at 0:01s using the

ODE45 solver.

Similarly, the orientation of the robot, u, was also

updated at each time step. The change in the robot orienta-

tion was mainly driven by the total torque from obstacle

disturbances, To. A damping torque proportional to the

angular speed,

Td(q)= � cu _u
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was implemented to stabilize the robot after the

perturbation:

€u(q)=
1

I

X
i2S(t)

Fi(q)yi(q)+ Td(q)

 !
ð15Þ

In our experiments, the weight of the robot, was primarily

due to the battery (’0:5 kg) at the CoM and the six motors

(’0:4 kg each) distributed at the edges and corners of the

body, and therefore I , the moment of inertia of the robot, is

calculated using a uniformly distributed weight assumption:

I =
m½(2L)2 + (2W )2�

12

Here L is the model robot half body length (set to 0.178

m based on the experimentally measured distance between

the front and rear legs),W is the model robot half body width

(set to 0.127 m based on the experimentally measured dis-

tance between the left and right legs). We use cu to denote

the angular damping coefficient. Simulation data show that

the equilibrium state of the robot was insensitive to the varia-

tion of cu, but the convergence rate to steady states increased

as cu increased. Here cu was set to 0.18 yielding a similar

convergence rate as observed in experiments.

4.4. Capturing the observed steady states with

the highly simplified ODS model

Here we calculate the robot steady-state orientation states

for bounding and trotting using the numerical model. We

compute robot state q for initial orientations between 08

and 908, and initial fore–aft positions between 0 and envi-

ronment spatial period, P+D. The final orientation angle,

uf , is calculated by averaging the orientation angle u for

the last 10 seconds for trials where robot orientation stabi-

lizes. We define the conditions for the equilibrium trials

as: (1) the variation in orientation angle in the last 10 sec-

onds is always smaller than 0:187; (2) the forward speed of

the robot during the stabilized region is larger than 1 cm/s.

The first criterion selects the trials where the robot stabi-

lizes at a certain orientation angle or stabilizes at a limit

cycle-like behavior with sufficiently small angular posi-

tion oscillation range, whereas the second criterion elimi-

nates trials where the robot is stuck in place.

Figure 7A and B show the robot orientation state com-

puted from stabilized trials. Figure 7A demonstrates that

similar to experiment observations, despite variations in

initial conditions, a bounding robot has a steady-state

orientation at 08, where the robot moves stably along + z

direction (perpendicular to the logs) under repeated pertur-

bation from the obstacles. Similarly, Figure 7B shows the

robot orientation state for the trotting gait. Similar to

experiment observations, a trotting robot can no longer

maintain a steady-state orientation at 08 for the obstacle

spacings tested, but would instead be attracted to one of

the two stable equilibrium angular positions, 6u�. We

show that we can analytically predict the equilibrium

angular position u� for given log spacing and robot dimen-

sion in Section 5. Future work shall examine the interest-

ing transient behaviors beyond equilibrium more closely.

5. Steady-state mechanism and prediction

of equilibrium orientations using the ODS

framework

The ODS framework not only allows numerically captur-

ing the coupled dynamics, but since the computation of

the change of states arises from physical understanding of

low-level leg–obstacle interactions, the framework also

(a) (b)

Fig. 7. ODS framework-based numerical simulation of robot orientation angle under repeated obstacle modulation (Equations (14)

and (15)). Since limit cycles are beyond the scope of this article, only equilibrium trajectories with non-908 final orientations are

plotted here. (A) Temporal trajectory of orientation of a bounding robot traversing over evenly spaced logs (Figure 6B) with spacing

P= 0:1 m. Color represents initial orientation. (B) Temporal trajectory of orientation of a trotting robot traversing over evenly

spaced logs with spacing P= 0:1 m. Color represents initial orientation.
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allows close examination of the forces and torques that

lead to the steady states, and reveals the underlying

mechanism that produces or maintains the equilibria of the

coupled system.

In this section, we first discuss the mechanism for the

emergence of the steady-state robot orientations observed

in both simulation and experiments using the ODS frame-

work (Section 5.1). We then use this discovered mechan-

ism to develop a theoretical model (Section 5.2) to

analytically calculate stable equilibrium states of robot

orientation for different environments, robot morphology

and gait parameters without requiring numerical

simulation.

5.1. Mechanism of obstacle-modulated steady

state

Here we calculate the equilibrium positions of the robot

orientation using the ODS framework. The orientation

state of the robot is ½u, _u�T. From Equation (15) we know

that at equilibrium orientation u� we have

€uju= u� =
1

I
(
X
i2S(t)

(Fi(t)yi(t))� cu _u)j(u, _u)= (u�, 0) = 0

which leads to the following condition at u�:

X
i2S(t)

To(q)ju= u� =
X
i2S(t)

(Fi(q)yi(q))ju= u� = 0 ð16Þ

Intuitively, this means that the sum of torques from all

contacting legs i 2 S(t) should remain zero at the equili-

brium angle. For gaits such as bounding and trotting, one

way to achieve this condition is for the two synchronously

activated legs to always ‘‘select’’ canceling (i.e., same

magnitude but opposite direction) obstacle disturbances to

result in a total torque of zero.

5.1.1. Bounding analysis. For the bounding gait, the set of

contacting legs S alternates between the two front legs,

LF,RF, and the two rear legs, LR,RR. Therefore, the

equilibrium orientation criterion in Equation (16) can be

rewritten as

To =

FLF(u, xCoM)yLF(u)+FRF(u, xCoM)yRF(u)ju= u�
b
= 0,

0ł t\T=2
FLR(u, xCoM)yLR(u)+FRR(u, xCoM)yRR(u)ju= u�

b
= 0,

T=2ł t\T

8>><
>>:

ð17Þ

A sufficient condition for u�b to satisfy Equation (17)

arises when the two synchronized legs (LF,RF and

LR,RR) that located on opposite sides of the CoM with

equal distance (Equation (18)) select the same amount of

obstacle disturbance forces (Equation (19)):

yLF(u)= � yRF(u)ju= u�
b

yLR(u)= � yRR(u)ju= u�
b

(
ð18Þ

FLF(u, xCoM)=FRF(u, xCoM)ju= u�
b

FLR(u, xCoM)=FRR(u, xCoM)ju= u�
b

(
ð19Þ

As discussed in Section 4.1, the ODF in the world

frame for any contacting leg, Fi, is a fixed function of �xi
(Equation (11)). Therefore, to satisfy Equation (19), the

two synchronous legs should always contact the obstacles

at the same relative position:

�xLF(u, xCoM)=�xRF(u, xCoM)ju= u�
b

�xLR(u, xCoM)=�xRR(u, xCoM)ju= u�
b

ð20Þ

Therefore, if there exists a u�b that satisfies Equation

(20), then the resulting disturbance torques from a syn-

chronized pair of legs will cancel each other out and result

in a total of zero perturbation on the robot orientation, and

such a u�b would be an equilibrium orientation angle for the

bounding gait. In Section 5.2 we discuss how this mechan-

ism explains the equilibrium orientation observed from our

experiment and simulation.

Obviously, another sufficient condition that satisfies

Equation (17) would be

FLF(u, xCoM)=FRF(u, xCoM)= 0ju= u�
b

FLR(u, xCoM)=FRR(u, xCoM)= 0ju= u�
b

(
ð21Þ

This condition corresponds to the trivial 908 equilibrium

for bound.

5.1.2. Trotting analysis. For the trotting gait, the set of

contacting legs S alternates between the two diagonal pairs

of legs, LF,RR and RF, LR, and the equilibrium criterion

in Equation (16) can be specified as

To =

FLF(u, xCoM)yLF(u)+FRR(u, xCoM)yRR(u)ju= u�t
= 0,

0ł t\T=2
FRF(u, xCoM)yRF(u)+FLR(u, xCoM)yLR(u)ju= u�t

= 0,

T=2ł t\T

8>><
>>:

ð22Þ

A sufficient condition for u�t to satisfy Equation (22)

arises when the two synchronized legs (LF,RR and

RF, LR) that located symmetrically on both sides of the

CoM in lateral direction (Equation (23)) select the same

amount of obstacle disturbance forces (Equation (24)):

yLF(u)= � yRR(u)ju= u�t
yRF(u)= � yLR(u)ju= u�t

�
ð23Þ

FLF(u, xCoM)=FRR(u, xCoM)ju= u�t
FRF(u, xCoM)=FLR(u, xCoM)ju= u�t

�
ð24Þ
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and therefore cancel out the total torque on the CoM.

Using Equation (1) we can further simplify Equation

(24) to the following:

�xLF(u, xCoM)=�xRR(u, xCoM)ju= u�t
�xRF(u, xCoM)=�xLR(u, xCoM)ju= u�t

ð25Þ

In Section 5.2 we demonstrate how to use this criterion

to calculate the equilibrium orientation of trotting gait, u�t ,
for different obstacle spacing and robot aspect ratio.

Similar to the bounding analysis, another sufficient con-

dition that satisfies Equation (22) would be

FLF(u, xCoM)=FRR(u, xCoM)= 0ju= u�t
FRF(u, xCoM)=FLR(u, xCoM)= 0ju= u�t

�
ð26Þ

which corresponds to the trivial 908 equilibrium for trot.

5.2. Analytically calculating equilibrium

orientations based on the steady-state mechanism

The derived equilibrium criteria (Equation (20) for bound,

and Equation (25) for trot) in Section 5.1 provide a suffi-

cient condition to maintain a steady-state orientation under

repeated obstacle perturbation, which is to let the synchro-

nously activated two legs always select the opposite obsta-

cle disturbance torques. In this section, we show that this

condition allows us to theoretically predict steady-state

orientation positions observed from our experiments

(Section 2) and simulation (Section 4.3) without numerical

simulations.

In our experimental setup, the obstacle spatial distribu-

tion is periodic, and therefore the robot did not need to

actively adapt its gait pattern to select the same �xi on the

obstacle. Instead, with an appropriate orientation, u�, it
would be able to maintain the same �xi for the synchro-

nized pair of legs with a fixed gait, as long as u� satisfies

the following conditions for the bounding gait:

xLF(u, xCoM)� xRF(u, xCoM)ju= u�
b
=m(P+D)

xLR(u, xCoM)� xRR(u, xCoM)ju= u�
b
= n(P+D)

m and n are any constant integers. The condition for trot-

ting gait are then

xLF(u, xCoM)� xRR(u, xCoM)ju= u�t
=m(P+D)

xRF(u, xCoM)� xLR(u, xCoM)ju= u�t
= n(P+D)

These two equations provide the constraining condi-

tions to calculate equilibrium orientation angles for peri-

odic gaits like bounding and trotting. We interpret such

constraints as solving a ‘‘spatial period matching’’

constraint.

The spatial period of a periodic robot gait, Ti, j, is

defined as the x-direction distance between each synchro-

nized pair of legs, i, j 2 H :

Ti, j = xi � xj

For the bounding gait, there are two pairs of synchro-

nized legs, LF,RF and LR,RR, and therefore the two spa-

tial periods can be calculated from Equations (7)–(10):

TLF,RF = xLF � xRF = � 2W sin (u)
TLR,RR= xLR � xRR= � 2W sin (u)

�

Similarly, for the trotting gait, the two spatial periods

can be calculated as the x-direction distances of the pairs

of synchronized legs, LF,RR and RF, LR:

TLF,RR= xLF � xRR= 2L cos (u)� 2W sin (u)
TRF, LR= xRF � xLR = 2L cos (u)+ 2W sin (u)

�

At u�, all robot spatial periods (e.g., TLF,RF and TRF,RR
for a bounding gait, or TLF,RR and TRF, LR for a trotting

gait) ‘‘match’’ the environment spatial period (i.e., span-

ning integer numbers of environmental spatial period

P+D); the two synchronized legs are always contacting

the obstacles at the same relative positions (Figures 8

and 9), and therefore exposed to the same amount of

obstacle disturbance force, resulting in zero rotational per-

turbation and allowing the robot to maintain its current

orientation, u�.
Therefore, the equilibrium orientation can be calculated

by solving the spatial period matching constraints, which

can be written for bounding as

TLF,RF(u)ju= u�
b
=m(P+D)

TLR,RR(u)ju= u�
b
= n(P+D)

ð27Þ

and for trotting as

TLF,RR(u)ju= u�t
=m(P+D)

TRF, LR(u)ju= u�t
= n(P+D)

ð28Þ

The leg–obstacle contact positions observed from both

experiments (Figures 4 and 5, Extensions 1 and 2) and

numerical simulation (Figure 10, Extensions 3 and 4) are

qualitatively consistent with the criteria described by

Equations (27) and (28).

The spatial period matching criterion enabled theoreti-

cal prediction of obstacle-modulated robot equilibrium

states, and predictions of the dependence of the equili-

brium angles on robot and environment parameters. Figure

11 shows the analytical prediction of equilibrium orienta-

tions for different obstacle spacings and robot aspect

ratios. The model prediction agrees well with numerical

simulation results and measurements from experiments.

Going forward, this stabilizing mechanism begins to

suggest a novel gait control method to stabilize robot

orientation under repeated obstacle collisions and distur-

bances. In Section 6, we discuss how multi-legged robots

can use the ODS framework to actively adjust gait
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Fig. 8. Mechanism for a bounding robot to stabilize at 08 equilibrium orientation under repeated obstacle perturbation. (b)

demonstrates the mechanism allowing a robot that starts at the equilibrium orientation u� to stay at u�. Since the two synchronous

legs always select the same amount of obstacle disturbance force, the obstacle disturbance torques cancel each other out. (a) and (c)

demonstrate an existing mechanism that allows a robot starting in the neighbourhood of the equilibrium to generate restoring torque

towards the equilibrium orientation u�. i) Starting orientation of the robot. Solid circles represent activated pair of legs. Empty

circles represent legs in the air. The length of straight arrows on solid circles represents qualitatively the amount of obstacle

disturbance force (Fi, Figure 6C). Curved arrows represent the direction of total torque and resulting direction of robot yaw. ii)

Subsequent orientation of the robot towards convergence to equilibrium orientation. iii) final orientation at the equilibrium u�.
Marker conventions in (ii) and (iii) are the same as (i). Note that the lateral position of diagrams (i), (ii) and (iii) does not indicate

the robot’s direction of movement.

Fig. 9. Mechanism for a trotting robot to stabilize at 258 equilibrium orientation under repeated obstacle perturbation. (b) The

mechanism allowing a robot that starts at the equilibrium orientation u� to stay at u�. Since the two synchronous legs always select

the same amount of obstacle disturbance force, the obstacle disturbance torques cancel each other out. (a) and (c) An existing

mechanism that allows a robot starting in the neighbourhood of the equilibrium to generate restoring torque towards the equilibrium

orientation u�. (i) Starting orientation of the robot. Solid circles represent activated pair of legs. Empty circles represent legs in the

air. The length of straight arrows on solid circles represents qualitatively the amount of obstacle disturbance force (Fi, Figure 6C).

Curved arrows represent the direction of total torque and resulting direction of robot yaw. (ii) Subsequent orientation of the robot

towards convergence to equilibrium orientation. (iii) Final orientation at the equilibrium u�. Marker conventions in (ii) and (iii) are

the same as (i). Note that the lateral position of diagrams (i), (ii), and (iii) does not indicate the robot’s direction of movement.
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sequence to robustly move through randomly cluttered

environments.

6. Broader applicability of the ODS

framework

Section 5 reveals that the mechanism of the equilibrium

robot orientation under repeated obstacle collisions is due

to synchronized robot legs selecting cancelling obstacle

disturbances and therefore neutralizing the total perturba-

tion experienced by the CoM. For the structured environ-

ment studied in this article, periodic robot gaits passively

generate such disturbance cancellation at the equilibrium

orientations.

For non-structured environments, periodic gaits will no

longer lead to equilibrium orientations. However, with the

ODS representation (Section 3.1), a robot can plan a non-

periodic gait to actively select cancelling obstacle distur-

bance torques and to reduce the perturbation in its orienta-

tion. Similarly, a robot might plan its gait to actively

regulate total obstacle disturbance forces to maintain a

constant speed.

In addition to stabilization, a robot can also use the

ODS framework to actively exploit obstacle disturbances

to achieve faster speed in translation or rotation. For

example, to obtain a boost in the speed at each step, a

robot might adjust the timing or position of obstacle

interaction to always engage the obstacle on the negative

Fig. 10. Sequence of images from simulation showing a bounding robot’s orientation locked to 08 under periodic obstacle

modulation, whereas a trotting robot’s orientation locked to �258 under the same obstacle modulation.

Fig. 11. Prediction of trotting robot equilibrium orientation

angles as a function of log spacing for different robot aspect

ratios. Red error bars represent average final orientation angles

measured from trotting experiments (Figure 3C and D) with a

robot body width of 2W = 25:4cm (’71% body length). Circles

represent final orientations of equilibrium states computed from

numerical simulation (Equations (14) and (15)). Dashed lines

represent predictions using the spatial period matching

constraints (by numerically solving Equations (27) and (28)).

For simulation markers and model curves, color represents

different robot half body widths (i.e., different aspect ratios).
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(i.e., downhill) slopes. To exploit obstacles to turn

clockwise, a robot can simply have all the right-hand

side legs begin stance phase on positive (i.e., uphill)

obstacle slopes and all the left-hand side legs begin

stance phase on negative (i.e., downhill) slopes. Future

work will investigate sensing options to implement these

applications.

7. Conclusion

In this article, we propose a novel ODS framework that

allows investigating and predicting robot dynamics under

repeated obstacle disturbances. The ODS framework pro-

vides a novel representation of both physical environ-

ments and robot gait patterns, which allows systematic

analysis of complex interactions between multi-legged

platforms and obstacles, and suggests an approach to for-

mal reasoning about how a locomotor could use the gait

space affordances to actively exploit disturbances and

collisions.

The ODS framework represents the cluttered environ-

ments as sources of obstacle disturbance force fields. This

representation significantly simplifies the complexity of

the contacts between high-DoF robot legs and high-DoF

physical obstacles, and for the first time allow the assess-

ment of opportunities for a robot to exploit its interaction

with the environment as a source of locomotion affor-

dances (Gibson, 1979) derived from locally-sensible phys-

ical properties such as shape and size.

The ODS framework represents robot legs or body seg-

ments as a collection of ‘‘disturbance force selectors’’

leveraged to adjust actual total environment perturbation

that affects CoM dynamics. With sufficient knowledge of

the environment, we envision that a multi-legged robot

can use the ODF framework to adjust the timing or contact

position of leg–obstacle interactions to actively select

available disturbances and generate desired interaction

dynamics for an ‘‘obstacle-aided’’ locomotion and naviga-

tion in cluttered environments.

We note that this study is the first step towards a more

complete connection between gait space and environment

affordances. Future work such as extension of the

horizontal-plane model to three dimensions, and further

investigation of coupling between non-periodic gaits with

less-structured environments, will allow creation of more

general and complete versions of the disturbance selection

framework. We envision such development will aid con-

trol and planning strategies for future robots to move

through complex environments.
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Notes

1. In this article we are mainly concerned about the horizontal

plane dynamics and robot yaw angles, and we refer to pitch

and roll in a colloquial sense without a rigorous definition.

2. The mechanism and dynamics of the limit cycles are beyond

the scope of this article and are therefore only included here

for observation completeness and will not be discussed fur-

ther in the rest of the article. Here we qualitatively use the

term limit cycle behavior to refer the periodic oscillation

observed in the horizontal-plane CoM trajectories.

3. Here P denotes the powerset.

4. Simulation data suggested that obstacle-modulated robot

steady states were insensitive to small variations in function

forms used to represent the SLSO ODF. Future work should

systematically investigate the exact form.

5. Here mod(A,B) denotes the fractional portion of A=B.
6. As a result, the model only calculates the orientation but not

the translational direction of the robot.

7. This threshold was arbitrarily selected as an epsilon value to

serve as the a qualitative estimation of the noise floor.
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Appendix A. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Experimental bounding gait
2 Video Experimental trotting gait
3 Video Simulation bounding gait
4 Video Simulation trotting gait
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Appendix B. List of symbols

L Robot half body length
W Robot half body width
P Obstacle spacing
D Obstacle diameter
b Surface inclination angle
m Mass of the robot
I Moment of inertia of the robot
q Robot CoM state on horizontal plane
u Robot orientation
xCoM Position of robot CoM along the x axis (fore–aft

direction in the world frame)
yCoM Position of robot CoM along the y axis (lateral

direction in the world frame)
xi Position of leg i along the x axis (fore–aft direction

in the world frame)
yi Position of leg i along the y axis (lateral direction in

the world frame)
H Set of all legs
S Set of contacting legs
T Stride period
O Region on the horizontal plane that is occupied by

obstacles
G Region on the horizontal plane that is not occupied

by obstacles
Ti, j Spatial period of a periodic gait
�x Relative contact position on the obstacle
f Obstacle disturbance force from a single obstacle
Fi Obstacle disturbance force field
Fo Total obstacle disturbance force on robot CoM
Fth Thrust force
Fd Damping force
cF Thrust force constant
cx Linear damping coefficient
Td Damping torque
cu Angular damping coefficient
To Total obstacle disturbance torque on robot CoM
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