
Supporting Code Comprehension via Annotations:
Right Information at the Right Time and Place

Marjan Adeli∗, Nicholas Nelson∗, Souti Chattopadhyay∗, Hayden Coffey†, Austin Z. Henley†, and Anita Sarma∗
∗ Oregon State University,

Corvallis, OR, USA
{adelima, nelsonni, chattops, anita.sarma}@oregonstate.edu

† University of Tennessee-Knoxville,
Knoxville, TN, USA

hcoffey1@vols.utk.edu, azh@utk.edu

Abstract—Code comprehension, especially understanding rela-
tionships across project elements (code, documentation, etc.), is
non-trivial when information is spread across different interfaces
and tools. Bringing the right amount of information, to the
place where it is relevant and when it is needed can help
reduce the costs of seeking information and creating mental
models of the code relationships. While non-traditional IDEs have
tried to mitigate these costs by allowing users to spatially place
relevant information together, thus far, no study has examined
the effects of these non-traditional interactions on code com-
prehension. Here, we present an empirical study to investigate
how the right information at the right time and right place
allows users—especially newcomers—to reduce the costs of code
comprehension. We use a non-traditional IDE, called Synectic,
and implement link-able annotations which provide affordances
for the accuracy, time, and space dimensions. We conducted a
between-subjects user study of 22 newcomers performing code
comprehension tasks using either Synectic or a traditional IDE,
Eclipse. We found that having the right information at the right
time and place leads to increased accuracy and reduced cognitive
load during code comprehension tasks, without sacrificing the
usability of developer tools.

Index Terms—Code comprehension, annotation, information
foraging, Integrated development environment (IDE), user study

I. INTRODUCTION

Code comprehension is essential to software developement
and comprises a large portion of developers’ activities. For
example, in a field study, Xia et al. found that software profes-
sionals spent 58% of their development efforts on code com-
prehension [1]. Given the large role that code comprehension
plays, research has sought to map the processes through which
developers understand a code base. For instance, Sillito et al.
identified four categories of questions developers ask during
maintenance tasks [2], which map to the code comprehension
processes of: find an initial focus point, expand understanding
around that point, and understand the concepts that connect
related code entities, and build a mental model of multiple
groups of related entities.

A common thread through each of these steps is that
developers “forage” for relevant information in order to create
a mental model of the system and the relationships between
its various components. In fact, prior research has shown that

foraging accounts for up to 35% of a developer’s time during
maintenance tasks [3], [4].

However, foraging for information is not easy. One study
found that 50% of navigation (when foraging) yielded less
information than developers expected and 40% of navigation
required more effort than the developer predicted [5]. This cost
is likely considerably higher for newcomers to a project, who
haven’t yet formed a mental model of the feature set and the
different relationships between code elements.

Newcomers rely on tools to come up-to-speed on large,
varied sources of relevant project information. However, the
way traditional IDEs are set up limits direct management of
relevant information [6], [7], which in turn creates barriers in
understanding the relationship between software features [8].
For example, to fully understand the codebase, developers may
refer to other artifacts such as documentation, issue reports,
sample code, and design rationale [9]. Traditional IDEs treat
code as the primary artifact, often relegating other artifacts
out of scope for direct support. Additionally, the primary
mechanism for managing multiple code documents in tradi-
tional IDEs is a combination of single-purpose window panes,
un-ordered tabs, and one-off dialog boxes. These “bento-
box” style interfaces partition relevant information without
providing affordances for understanding the relationships be-
tween them. This increases navigational overhead and inhibits
developers from organizing information to fit their current task
(or mental model) [10], [11], [12], [13].

We focus on three aspects that can ease code comprehen-
sion: (A1) allowing interaction with artifacts that are more than
just code, (A2) placing relevant information closer together
(either spatially or in groups), and (A3) externalizing and
recording relationships between artifacts. Past work on non-
traditional IDEs—using a canvas or ribbon-based approach—
have sought to ease navigation and understanding of project
structure [14], [15], [16], [17], [18]. These studies have
addressed aspect (A1) to an extent (e.g. via augmenting code
with debugger output inline [16]) and aspect (A2) based
primarily on syntactic linking (e.g. bubbles containing code
linked together by call graph relationships [14]), but none have
directly addressed aspect (A3), which is an important element
of code comprehension.

Further, no in-depth studied investigate how these aspects
facilitate code comprehension among developers. Without
an understanding of the effects of these aspects, we miss978-1-7281-6901-9/20/$31.00 ©2020 IEEE

out on valuable insights to design processes and tools that
intend to improve code comprehension. To address this gap
in knowledge, we conducted a user study to compare the
effects of a traditional IDE (Eclipse) with a canvas-based
IDE (Synectic) that facilitates these three aspects (A1–A3) of
code comprehension through annotations. Annotations allow
developers to gather documentation relevant to the code (A1),
juxtapose these code and documentation on a canvas (A2),
and link the code artifacts with the relevant documentations
(or other code artifacts) (A3) to capture and annotate the
relationship between artifacts.

In our between-subject study of 22 participants, we analyzed
how project newcomers used annotations to complete a set of
four code comprehension tasks. We focused on newcomers as
they haven’t yet built a mental model of the codebase and
need significant effort to comprehend it [19], [20].

To understand participants’ code comprehension activities,
we analyzed the accuracy, time, and cognitive load of each
participant and examined the results through two lenses.
First, we used an Information Foraging Theory lens [21] to
analyze how participants “foraged” for the right information
to complete each comprehension task. Second, we investigated
how annotations helped participants comprehend code using
the four categories of comprehension questions described by
Sillito et al. (i.e., finding focus points, expanding understand-
ing around that focus point, connecting related elements, and
contextualizing the information to the larger codebase) [2].

The results of our study show that the current “bento-
box” style arrangement of code in traditional IDEs create
hurdles to foraging for the right information. Conversely,
annotations helped participants in finding and arranging the
right information at the right place.

II. BACKGROUND & RELATED WORK

A. Code Comprehension Questions

Developers decide on the value of particular patches of
information during foraging, and in particular they must read
and comprehend the underlying code in order to evaluate
whether it is relevant to their specific task. This comprehension
process requires that developers formulate and ask questions
about the underlying information (which is primarily code in
the case of software development).

Several studies have examined the types of information that
developers seek during development tasks [6], [2], [22], [23],
[24], [25]. In particular, we use the four categories of code
comprehension questions identified by Sillito et al. [2]. These
categories represent a model for understanding how developers
explore and understand code during change tasks, and consist
of: (1) Questions related to locating an initial focus point, (2)
questions that examine how this initial focus point relates to
other entities, (3) questions that explore the combined behavior
of related entities, and (4) contextual questions that build upon
knowledge spanning multiple groups of related entities.

These questions enable developers to build mental models
of the underlying code and facilitate the ability to confidently
make changes to that code [10]. We use comprehension

questions that span these four categories in order to capture the
complete code comprehension process of newcomers building
understanding within a codebase.

B. Information Foraging Theory

Information Foraging Theory (IFT) explains and predicts
how humans seek information within information-rich envi-
ronments. This provides a theoretical foundation to investigate
why some software engineering tools fail, or succeed, at
supporting software developers’ work. IFT [21] explains how
humans seeking information is analogous to how animals
forage for prey in the wild. Originally applied to user-web
interactions, researchers expanded IFT to suitably explain
human behavior during software development [3], [26], [4],
[27], [28]. IFT has also been applied to design tools supporting
development activities [4], [29], [3].

IFT describes a human seeking information as akin to a
predator (person seeking information) pursuing prey (valuable
sources of information) through a collection of patches of
information in an informational environment. Patches are
connected by traversable links that can lead to other patches
of information. Each patch contains information features that
the predator can process.

The information features have value, as well as cost (in
the form of time for the human to read and process them).
Traversing a link also has a cost (time to go from one patch
to the other). The central proposition of IFT is that a predator
tries to maximize the value of information gained from a
patch over the cost of traversing to the patch and processing
the information [5]. However, predators cannot accurately
determine a patch’s value and cost prior to processing, so
they make choices based on their expectations of value and
cost. These expectations are based on the previously processed
information patches, and perceived potential for future patches.

We use an IFT lens to examine the navigational aspects
of comprehending code within an IDE, since the scale of
information available within such tools requires “foraging” in
order to locate and comprehend relevant information.

C. Alternative user interfaces in IDEs

Traditional file-based IDEs use individual code files as
the core component that all interactions and interfaces are
designed around. This model creates barriers to effortless
coding. Prior literature has shown that developers working in
traditional IDEs spend considerable time foraging for relevant
information [30], navigating code [31], [32], and managing
context when switching tasks and environments [33].

Alternative IDEs attempt to tackle some of these deficien-
cies through novel user interfaces that allow related infor-
mation to be clustered in bubbles [14], that span infinitely
expandable canvases [15], and maintain relevant information
in close proximity [16]. These visual metaphors have also
spawned efforts to constrain the amount of information into
ribbons of sequentially related code snippets [18].

All of these alternative IDEs have sought to reduce the costs
of context switching when navigating to relevant code, and

lower the cognitive load required to understand and operate
on that code. However, improvements in these dimensions are
still possible and further work can help developers using both
traditional and alternative IDEs; since features developed in
alternative IDEs are not exclusive to those IDEs.

III. ANNOTATIONS IN SYNECTIC

Fig. 1: Synectic provides a canvas-based environment containing
spatially arranged cards of relevant information (code, webpages,
etc.), along with annotations that link information to individual cards
and between related cards. This example groups cards and annotations
related to implementing CRUD operations on the product page in
Vaadin Bakery App (task T4).

Synectic is an IDE designed as a canvas-based environment,
similar to Code Bubbles [14] and Moldable Debugger [17],
with spatial interactions as the central interaction paradigm.
Synectic provides a spatially-oriented interface that mimics
cards on a canvas in order to allow contextually relevant
information to be arranged and grouped according to the needs
of the user. Cards can be of many types; e.g. code cards, web
browser cards, etc.

To further capture the relationships between these cards, we
also include an annotation overlay that includes annotations
and links that can be attached to one or more cards placed
on the canvas. Figure 1 presents a snapshot of the Synectic
interface, including three cards containing code and a browser
card (displaying API documentation in this example), as well
as annotations (shown as yellow boxes) with links between
cards and annotations (shown as black lines). These annota-
tions can contain arbitrary text, including a mix of code and
documentation, and exist as long as the linked card(s) exist on
the canvas. Sharing annotations among developers on the same
project can be accomplished through backup files that record

the state of the canvas within Synectic. The annotation overlay
is provided in order to capture and express the previously
hidden relationships that developers intuitively create in their
minds [10], [34].

A. Support for Foraging

The annotations within Synectic provide a system for ex-
posing and archiving navigation pathways of developers. This
ensures that revisiting information for similar tasks does not
incur the same costs as the first foraging session [21], [26], [5].
All subsequent foraging sessions can benefit from the presence
of annotations that indicate the value of information features,
and navigation pathways for particular cards.

B. Support for Understanding

Developers use IDEs (and code editors) to solve problems
that expand beyond a monolithic model of code. This requires
developers to deal with different versions of files, information
stored in a variety of formats, and layers of abstractions
(e.g. hierarchical, syntactic, semantic) that reduce cohesion
between IDEs and other software systems (e.g. compilers,
build systems, testing, etc.) [35].

The conventional bento-box design for dealing with multi-
dimensional relationships in IDEs has been to add tabbed or
multi-pane user interfaces that individually represent a lens
under which we examine code (e.g. a debugger pane for
examining run-time state, a version control pane for recon-
ciling different versions of code files, and tabs of editors for
operating across multiple code files). However, these interfaces
limit the ability to visually describe relationships between
different entities. The relationship between different tabs of
code is not immediately understandable by looking at the
arrangement of tabs, and often conveys no information beyond
the order in which they were opened [5].

Synectic attempts to expose these interdependent relation-
ships through cards that can be rearranged and grouped
according to the specific lens under which the developer is
examining the code. For example, a developer attempting to
locate and resolve a bug can open a series of related code files
into individual cards. The developer can then create a group of
syntactically-related cards that contain code involved directly
in the bug, and another group of semantically-related code
cards that provide further context when developing a fix for
the bug. Additionally, annotations within Synectic allow the
developer to add notes that specifically call out the relevant
information found in each card (or group of cards).

C. Support for Maintaining

Mental models are constructed representations of real world
that mirror a working understanding of observed phenom-
ena [36]. Within software development, mental models contain
a developers’ knowledge and insights into both code and
external constraints on the use of that code [10], [37]. Synectic
provides direct representation of these mental models through
spatially arranged cards of information, annotated between

and within sources, that allow the intrinsic knowledge of
developers to be extrinsically archived in their IDE.

Research has shown that maintaining mental models incurs
a cognitive cost on developers [10]. This cost affects locating
relevant information (see Section III-A), and sorting through
that information to create a mental model that is relevant to the
current task (see Section III-B). After incurring these costs,
developers try to reduce or remove these costs from future
work by saving the relevant information in code, comments,
and documentation that maintains as much of the mental model
as possible.

During maintenance tasks, developers often seek to under-
stand (or remember) different aspects of individual entities
(known as information features in IFT), building understand-
ing of concepts that span multiple entities, and expanding
to the larger context of concepts that encompass groups of
entities [2], [4]. These relationships are often valuable for
a variety of maintenance tasks, but left to each individual
developer to explore and build their mental model through
direct experience with reading and manipulating the code.
The annotation features within Synectic provide a simplified
method for capturing and storing this information so that future
developers (or the same developer working on future tasks) can
quickly recover their mental model; leveraging it to potentially
reduce maintenance time and effort.

We further examine the benefits of annotations for code
comprehension through user studies described in the Study
Design and Results sections below.

IV. STUDY DESIGN

To understand the effects of annotations on code com-
prehension, we conducted a controlled lab study comparing
annotations in Synectic to the notes functionality included in
Eclipse–a traditional IDE. We specifically aim to answer the
following research questions:
RQ1: How do annotations affect code comprehension among

newcomers?
a: Do annotations increase the accuracy of responses?
b: Do annotations reduce the time to task completion?
c: Do annotations reduce cognitive load?

RQ2: How usable are annotations for newcomers?
Participants were randomly assigned to either Synectic or

Eclipse and asked to complete four program comprehension
tasks using the assigned IDE. Between tasks, participants were
assessed for perceived cognitive load. Finally, at the conclusion
of all four tasks, participants were asked to complete a brief
questionnaire on the perceived usability of their assigned IDE.

A. Participants and Treatments:

Our participants comprised graduate-level computer science
students recruited through convenience and snowball sam-
pling [38]. These participants represented our target population
of project newcomers and allowed us to assess the appropri-
ateness of annotation features in onboarding tasks.

We recruited 22 participants using university mailing lists.
Table I illustrates the demographic distribution of participants

(13 men, 8 women, and one participant preferred not to
disclose gender). The median level of programming experience
among all participants was 5 years (mean = 7.4 yrs, S.Dev. =
5.5 yrs for Eclipse group; mean = 7.0 yrs, S.Dev. = 5.0 yrs
for Synectic group).

Ptc.i Gnd.ii Exp.iii Ptc.i Gnd.ii Exp.iii

E1 M 15 S1 M 16
E2 M 8 S2 W 3
E3 M 3 S3 M 5
E4 M 2 S4 M 5
E5 W 3 S5 M 3
E6 M 19 S6 M 12
E7 W 8 S7 W 8
E8 W 5 S8 W 2
E9 M 10 S9 P 4

E10 M 5 S10 M 15
E11 W 3 S11 W 4

TABLE I: Study Participant Demographics
i Participant (E for Eclipse, S for Synectic) ii Gender (M for Man, W for

Woman, P for Prefer not to disclose) iii Years of soft. dev. experience

We assigned 11 participants to each treatment group using
a stratified sampling [39] based on participants’ programming
experience; pairing similarly experienced participants and as-
signing one participant to each treatment. All participants in
the Eclipse group reported some degree of familiarity with
Eclipse, and none of the participants in the Synectic group
reported familiarity with Synectic.

Each study session was time-boxed to two hours. First, we
obtained participant’s consent and provided a walk-through
of the assigned IDE, the target project for the study, and
the study protocol. Participants were asked to think aloud
during the study, which was captured using audio recordings
and screen capture software. Prior to starting the study tasks,
participants were asked to complete a brief warm-up task
in order to become comfortable with the study protocol.
After the study tasks, participants were asked to complete a
usability questionnaire related to the annotation/notes features
within the assigned IDE. Participants were offered US$20 in
compensation at the conclusion of each session.

B. Project and Tasks:

The tasks focused on maintenance tasked within the Vaadin
Bakery App1, which is an open-source Java project (LOC ≈
5000) designed for bakery shop sales and orders management.
The project includes functionality to keep track of product
inventory, customers, employees, and a visual dashboard to
summarize all transactions.

A senior developer on the project provided documentation
and information that would typically be conveyed to newcom-
ers attempting to understand the codebase. For Synectic, he
laid out the cards and added onboarding documentation as
annotations. For Eclipse, he created an onboarding document
file and linked to the code. The documentation information in
both treatments were identical.

1https://vaadin.com/start/latest/full-stack-spring

Task Part Prompt/Question

A
Name the class(es) and method(s) in which we put
the ”product” menu item in the list of system
menus.

T1
B

To add a menu item in the body of configure
method, an instance of AppLayoutMenuItem
has been created. Which parameters are needed to
create an AppLayoutMenuItem for the
“product” menu item? Explain what each parameter
means.

A Which class(es) have “product” validations (e.g. not
blank, acceptable format for a field,...) been added?

T2

B
How did we limit the maximum price of a product?
How does the system limit the maximum price of a
product?

A Which class(es) do we add the code to get the user
access to the “Product” pages?

T3
B

We want only the user with role “Manager” be able
to have access to the “product” page. What changes
would you apply?

A Which class(es) are responsible for implementing a
”product”-related search?

T4
B

We want to be able to search the products by
product name and price. What changes would
you apply?

TABLE II: User study tasks; each task is divided into a navigation
prompt (Part A) and a comprehension question (Part B).

We gave participants four comprehension tasks, which we
created. These tasks were designed to be representative of
common problems that newcomers experience when onboard-
ing [40]. The senior developer then verified these tasks were
typical onboarding tasks, and the ordering (in terms of com-
plexity) was appropriate for newcomers to attempt.

For each task, we asked participants to first locate elements
in the codebase that are relevant to a particular feature (Part
A), and then ask them to answer comprehension questions that
require in-depth understanding of that portion of the codebase
(Part B); see Table II for the specific prompts and questions
given to participants in the study prompt.

After each task, participants reported their perceived cog-
nitive load for the task by completing a one-question survey
that asked “how mentally demanding was the task?” (using a
balanced Likert-scale response, where 1 is very low and 7 is
very high) [41]. After completing all four tasks, participants
provided overall usability ratings for the annotations/notes
features of the assigned IDE by completing a questionnaire
based on the System Usability Scale [42].

C. Measurements and Constructs:

To answer our research questions, we measured time and
evaluated the accuracy of responses for each question. We
provide definitions of all relevant constructs used in our results
and discussions below:
Accuracy (A): Accuracy of a response is dependent on the
completeness and correctness of individual elements within
that response. Therefore, we use the balanced Sørensen–Dice
coefficient (F1-score) [43] to calculate accuracy:

A =
2T P

2T P + FP + FN

Where True Positive (TP) is the number of elements (e.g.
class, method, etc.) correctly identified in an individual re-
sponse, False Positive (FP) is the number of elements in-
correctly identified in the response, and False Negative (FN)
is the number of elements missing from the response. Since
each task is comprised of two parts, we calculate and report
the mean of accuracy scores for each task.
Time: The time between when a participant switched to the
IDE from the question to when they pressed the next button
on the task prompt.
Cognitive Load: The perceived cognitive load was reported
by participants after each task using a seven-point Likert scale
(where 1 is very-low, and 7 is very-high).
Usability: The perceived usability of the onboarding docu-
ment/annotations were reported by participants at the end of
the study using a seven-point Likert scale (where 1 is strongly-
agree, and 7 is strongly-disagree) and standardized System
Usability Scale (SUS) prompts [42].

D. Analysis:

Our study design is factorial. Each participant was assigned
to a treatment (Eclipse or Synectic)—the between-subject
factor—and performed four tasks T1 to T4 (in order)—the
within-subject factor. This constitutes an F1-LD-F1 design, an
instance of Fx-LD-Fy family of designs, where x refers to
the number of between-subjects factor (i.e. treatment) and y
are the number of within-subjects factors within each x (i.e.
tasks) [44], [45], [46], [47].

This design gave us 88 observations across all participants,
treatments, and tasks (11 × 2 × 4). Our analysis is bounded
by two constraints: measures from each task are not inde-
pendent across participants, and sample sizes per measure-
ment are small. Therefore, we chose a rank-based (RB) non-
parametric ANOVA (NP). Thus, we compare the the accuracy,
time-to-completion, and cognitive load measurements between
treatments using the Rank Based Non-Parametric (RBNP)
ANOVA-type tests [48], [49].

We use RTE [44] to explain the magnitude of differences
between treatments since calculating effect size (a mean-based
analysis) is not appropriate for Rank-based ANOVA. RTE
provides the probability of one group having a higher observed
value than the other. For example, an RTE value of 60% for
Group A (for accuracy), means that in a random sampled
observation from each group, there is 60% probability that
Group A observations has a higher accuracy than Group B.

We evaluate usability by comparing the normalized SUS
score of the participants (sum of the scores across all four tasks
transformed to a 0−100 scale) using the Wilcoxon Rank-Sum
test [50].

V. RESULTS

Here we present the descriptive statistics and results of the
statistical tests comparing the effect of annotations on the
following constructs:

Fig. 2: Boxplots with error bars for each task T1–T4 grouped by treatment (Synectic or Eclipse) and included for each measured dimension:
accuracy of participant task responses as a percentage (left); time to task completion in seconds (center); participant perceptions of cognitive
load on a 1–7 scale, where 1 is very-low and 7 is very-high (right)

A. RQ1a: Accuracy

The RBNP ANOVA-type test showed that accuracy of par-
ticipants were significantly different across the two treatments
(p-value < 0.001, statistic = 19.46488). The RTE statistics
showed that Synectic (RTE = 64.80%) has a higher effect
on the accuracy of the responses compared to Eclipse (RTE
= 35.20%). Figure 2 (left) shows that Synectic participants
had a higher median accuracy for all four tasks.

B. RQ1b: Time

The mean and median of time taken by Synectic group
(mean = 575, Mdn = 440 seconds) was smaller than that of
Eclipse group (mean = 517, Mdn =607 seconds), however the
RBNP ANOVA-type test failed to show a significant difference
across the two treatments in the time to complete a task
(p-value = 0.22, statistic = 1.607723). Figure 2 shows the
distribution of time taken for all four tasks.

C. RQ1c: Cognitive Load

The RBNP ANOVA-type test showed that the cognitive load
perceived by participants were significantly different across
the two treatments (p-value = 0.003, statistic = 11.52591).
The RTE statistics shows that Synectic (RTE = 38.75%)
has a lower effect on the cognitive load of the participants
compared to Eclipse (RTE = 61.25%). Figure 2 shows that
Synectic participants had lower median cognitive load than
Eclipse participants for tasks T2 and T4, but similar median
cognitive load for tasks T1 and T3.

D. RQ2: Usability

The average usability score reported by Synectic partic-
ipants (73.74) was higher than the average usability score
reported by Eclipse participants (53.79). Figure 3 shows the
boxplot distribution of usability scores reported by partici-
pants in each treatment group. Also, a Wilcoxon rank-sum
test showed that the groups differ in median usability score
(W=22, p-value < 0.0123, two-sided Wilcoxon rank-sum test).
The difference in median usability scores between Synectic
participants (median: 72.22) and Eclipse participants (median:
52.78) was also shown to be statistically large (Cliff’s Delta
δ = 0.64).

Fig. 3: Boxplot of System Usability Scale (SUS) percentages grouped
by treatment; 72.22% median for Synectic, 52.78% for Eclipse

VI. DISCUSSION

Overall, the quantitative results show that annotations
helped participants answer comprehension questions more
accurately and with significantly less cognitive load. Although
the Synectic group took less time overall, the differences were
not statistically significant. To delve deeper into participants’
performance in the code comprehension tasks, we qualitatively
analyzed the data to investigate: (1) where and how partici-
pants faced problems in completing their tasks through an IFT
lens [51], and (2) how participants used IDEs to perform the
comprehension steps identified by Sillito et al. [2].

A. Using IFT to understand navigation and foraging behavior

Navigating to the right place to get the right information was
difficult for Eclipse participants. Before discussing participant
behavior through an IFT lens, we first describe the IFT con-
structs in the context of our study. In Eclipse, we considered
methods in the code as well as different Eclipse views (e.g.
code editor window, the package explorer) as patches. The
text in the patches (e.g., file names in the package explorer)
were information features. In the case of Synectic, each card
(containing code or any other type of artifact) was a patch and
the text inside was the information feature.

Recall that participants were provided onboarding docu-
ments; in Eclipse this was displayed as a text document
(within the IDE) and in Synectic this was presented via a
set of annotations (Section IV). For the Eclipse group, each
paragraph in the document was a patch as each was a separate
logical unit, and the onboarding document was a collection of
sequentially arranged patches. For the Synectic group, each
annotation was a patch, and when these were arranged patches
next to relevant code it created a relational topology.

Using these IFT constructs, we now analyze how partic-
ipants navigated to the right information using the assigned
IDE for each treatment group.

1) Foraging in the document: Participants in the Eclipse
group had to forage for the right prey by navigating across
sequentially arranged patches (paragraphs) in the onboarding
document. Eclipse participants followed two strategies to avoid
having to read the entire document; a visual skimming of the
document and searching for keywords within the document.
While sometimes these strategies proved successful, partici-
pants often faced unforeseen difficulties.

When skimming, Eclipse participants often overlooked the
patch containing the intended prey and had to spend additional
time and effort skimming back and forth. For example, E11
initially skimmed from bottom to top of the document looking
for information related to code to control items in the system
menu (for task T1). However, after failing to locate the relevant
information, she spent 1.5 minutes scrolling up and down
before finally locating the intended patch.

When searching using keywords, Eclipse participants were
occasionally stymied from locating the desired prey within the
document. This was typically caused by the use of incorrect
keywords (or synonyms of relevant keywords), which would
return either irrelevant patches or no patches. Furnas et al. [52]
mention that people use a surprisingly large variety of words
to refer to the same thing, and new users often use the wrong
words. This disparity of keywords causes newcomers to fail
more often in achieving the actions or information they want,
which is known as the vocabulary problem.

For example, during task T4, E2 used “search” as a keyword
for locating information related to updating the search func-
tionality in the product page. Since the documentation used
the term “find” instead of “search”, in this case, E2’s searches
returned only irrelevant patches. Other Eclipse participants, E4
and E5, had similar struggles with the vocabulary problem.

However, information foraging was less of a challenge for
Synectic participants. This was likely because each card was
a patch of information that linked directly to the related code.
This proximity of related information reduced the foraging
costs, as participants could quickly skim groups of information
to identify if they were relevant. For example, even when
the documentation used different words than what participants
expected, because of the proximity of the annotations and
cards they were able to get to the right information.

2) Foraging across code and document: Navigating to the
correct patch in the onboarding document was only the first
step. After finding the right information in the document
patch, Eclipse participants had to refer to the appropriate code
patches in order to comprehend the code. Navigating between
these patches imposed additional costs on foraging, which
were not observed among Synectic participants.

Foraging within the large code base had its associated costs.
Code is hierarchical in nature (i.e. a method patch is contained
inside a class patch, which is further contained in package or
component patches). A relevant piece of code required for a
task could be at any level of this hierarchy.

Eclipse participants relied on the Project Explorer view in
order to navigate to potentially relevant code patches. The
Project Explorer itself is a patch, providing cues about existing
classes and packages as well as the hierarchical structure of
code (e.g. the structure of classes contained in packages). Well-
established projects can have many hierarchical levels, and
require developers to forage for prey buried deep within the
project hierarchy. The hierarchy of the project used in our
study was 6-levels deep, which made foraging strategies non-
trivial and cost-prohibitive.

For example, E6 believed that the relevant piece of code
(prey) for T1 was in a patch that discussed the user interface.
However, the prey (Mainview.java) was actually six levels
deeper than the file that E6 was examining. He had to guess
which path to further drill down into, and at some point
E6 complained, “why is this folder structure so deep? It’s
horrible!” This process of drilling down was made more
difficult by the lack of cues indicating which paths were more
likely to yield the desired prey.

Foraging costs get higher when prey is scattered across
hierarchy (e.g. relevant classes were spread across different
packages). Eclipse participants had to navigate across different
levels of the hierarchical structure several times for each prey.
This imposed high cognitive loads and reduced their focus.

Moreover, switching between different types of artifacts–
code and document patches–that have different type and struc-
ture of content incurred additional cognitive load [53]. As the
tasks’ complexity increased, the increase in cognitive load was
noticeable; participants had to consume complex information
from a patch (document) and switch to another patch (code)
to apply the information.

In Synectic, however, documentation patches were adjacent
to the relevant code patches and connected through annota-
tions and links. This combination created a unified source of
information that required less attention splitting [53] and led
to substantially reduced foraging costs and cognitive load.

B. Using Sillito’s four stages of questions to understand code
comprehension behavior

Annotations helped participants perform better in the Synec-
tic group. We use the four stages of code comprehension
described by Sillito et al. [2] to understand how participants
used annotations. The tasks in the study, because of their
nature, spanned multiple code comprehension stages. Here we
use the example of participant S5 in task T4 (see Table II for
task description) to describe how participants completed each
of the four code comprehension stages.

During T4, participants needed to understand the “search”
functionality and modify the search based on the product
name and price fields to that search functionality.

(1) Finding an initial focus point suggests that developers
start comprehension by finding points/entities that are relevant
to the task. In Synectic, annotations provided cues that helped
participants narrow down the search space to a reduced set of
patches potentially containing the initial focus point.

For example, S5 started this process by inspecting anno-
tations that might lead to information about the task (i.e.
“product-related search”). During this inspection, S5 found
an annotation connected to a group of cards titled product,
which explained “how to add a [CRUD] page using product
page as an example”. He expanded the group to hunt for
other annotations, which gave him a clue to product search
and directed him to the ProductRepository.java card.
This set of annotations and cards formed his initial focus point
for further exploration.

(2) Building on those focus points is done by exploring other
patches of information related to the focus point. Synectic,
through the use of annotations, helps make the relationships
between cards explicit.

Continuing the example of S5 in T4, after locating the
ProductRepository class, S5 said, “[card] contains a
find method which seems to be interesting.” He there-
fore decided to explore other code locations that called the
find method, which he did by following the annotation
link from the ProductRepository.java to another card
(ProductService.java). From there, he continued fol-
lowing the annotations to other related cards further expanding
the focus points.

(3) Understanding the concepts between related entities can
be gained when developers ask questions about concepts in the
code that involve multiple entities. In Synectic, annotations
linked sets of related cards (or groups of cards), which
provided an overview of concepts and relationships between
these entities.

Continuing with our example, S5 wanted to understand how
the ProductService and ProductRepository classes
interacted with each other to provide search functionality,
which he easily did by reading the annotation connecting
the respective cards. S5 was able to quickly determine that a
method in the ProductService class calls a find method
in the ProductRepository class. Thus, this annotation
link allowed him to expand his conceptual understanding of
entities related to the search functionality.

(4) Understanding concepts across multiple groups of re-
lated entities can be achieved when developers ask contextual
questions about groups of patches located at all levels of the
codebase, or even outside the project itself.

The information within Synectic’s annotations, along with
links between groups of cards, helps to relate concepts from
individual groups in order to build a contextual understanding
of the overall codebase. Considering our example, after S5
read and comprehended the annotations and cards linked to the
ProductService and ProductRepository classes,
he found additional documentation for using Spring Data’s
JparRepository library to make custom queries by
method name. The web browser card containing this docu-
mentation (along with the rest of the context) provided S5
with enough understanding to be able to accomplish task T4,
despite his previous unfamiliarity with the target Java project
or the JparRepository library.

Typical IDEs (e.g. Eclipse) provide limited capabilities for

expressing relationships at the conceptual levels (phases 3 and
4 from Sillito et al. [2]). Synectic, on the other hand provides
annotations and groupings that point toward good initial focus
points, groupings that highlight important related entities, and
annotated links that explain the relationships between these
entities and even the larger context within a software project.
With these features, Synectic facilitated all four phases of code
comprehension questions described in Sillito et al. [2].

VII. THREATS TO VALIDITY

Our user study has several limitations inherent to laboratory
studies of programmers. Our participants were graduate stu-
dents and may not be representative of professional developers.
However, all participants had at least two years of software
development experience, and would likely be considered new-
comers to any software projects they contribute to now or in
the near future. Further, counterbalancing to remove learning
effects was not appropriate as the tasks were ordered to allow
newcomers to gradually familiarize with the project (which
is similar to an onboarding process). Additionally, we did not
ask participants to implement new features or change the code
directly, which is actually a common practice for newcomers
that are just beginning to learn about a project [54].

As with any empirical research involving participant obser-
vation, responses could have been affected by the Hawthorne
effect [55]. To mitigate biases in participant responses, we
were careful not to disclose the comparisons we were mak-
ing during the study. Additionally, participants might have
previous experience using Eclipse, but none had previously
used Synectic. Participants could have been aware of advanced
features in Eclipse that are not present in Synectic, which
would reduce some of the navigational costs. However, even
with this potential disadvantage, we observed participants
using Synectic generally performed better than participants
using Eclipse.

VIII. CONCLUSION

In this paper, we evaluated the effects of annotations that
support foraging for information and code comprehension
through linking relevant information and code on a canvas-
based IDE. To validate annotations in Synectic, we conducted
a user study comparing newcomer task support for foraging
and comprehension within a traditional IDE (Eclipse) and our
canvas-based IDE.

The results of our user study show that providing the
right information at the right place and time helps newcom-
ers answer comprehension questions with significantly more
accuracy, in less time. Tool support for both foraging and
comprehension also significantly reduced the cognitive load on
participants. Participants also found annotations in Synectic to
be more usable than traditional IDEs like Eclipse. Annotations
provided contextually-relevant information adjacent to the
code that participants sought to comprehend, which allowed
participants to quickly forage to the relevant information and
build accurate mental models of the codebase.

ACKNOWLEDGMENT

We thank our participants for their time, and the reviewers
for their feedback. This work was supported by the National
Science Foundation under Grants No. 1560526 and 1815486.

REFERENCES

[1] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, 2017.

[2] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, 2008.

[3] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Using information
scent to model the dynamic foraging behavior of programmers in main-
tenance tasks,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2008, pp. 1323–1332.

[4] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,
J. Lawrance, and I. Kwan, “An information foraging theory perspective
on tools for debugging, refactoring, and reuse tasks,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 22, no. 2,
p. 14, 2013.

[5] D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi,
and M. Burnett, “Foraging and navigations, fundamentally: developers’
predictions of value and cost,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2016, pp. 97–108.

[6] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on software
engineering, no. 12, pp. 971–987, 2006.

[7] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective develop-
ers investigate source code: An exploratory study,” IEEE Transactions
on software engineering, vol. 30, no. 12, pp. 889–903, 2004.

[8] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the elipse ide?” IEEE software, vol. 23, no. 4, pp.
76–83, 2006.

[9] D. Čubranić and G. C. Murphy, “Hipikat: Recommending pertinent
software development artifacts,” in Proceedings of the 25th international
Conference on Software Engineering. IEEE Computer Society, 2003,
pp. 408–418.

[10] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 492–501.

[11] V. M. González and G. Mark, “” constant, constant, multi-tasking
craziness” managing multiple working spheres,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, 2004, pp.
113–120.

[12] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and
T. Fritz, “The work life of developers: Activities, switches and perceived
productivity,” IEEE Transactions on Software Engineering, vol. 43,
no. 12, pp. 1178–1193, 2017.

[13] S. Chattopadhyay, N. Nelson, Y. R. Gonzalez, A. A. Leon,
R. Pandita, and A. Sarma, “Latent patterns in activities: A field
study of how developers manage context,” in Proceedings of
the 41st International Conference on Software Engineering, ser.
ICSE ’19. IEEE Press, 2019, p. 373–383. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00051

[14] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola Jr, “Code bubbles: a
working set-based interface for code understanding and maintenance,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2010, pp. 2503–2512.

[15] R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 2, 2010, pp.
207–210.

[16] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger canvas: industrial experience with the code bubbles paradigm,”
in 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 1064–1073.

[17] A. Chiş, M. Denker, T. Gı̂rba, and O. Nierstrasz, “Practical domain-
specific debuggers using the moldable debugger framework,” Computer
Languages, Systems & Structures, vol. 44, pp. 89–113, 2015.

[18] A. Z. Henley and S. D. Fleming, “The patchworks code editor: toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2014, pp. 2511–2520.

[19] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. Redmiles,
“The hard life of open source software project newcomers,” in
Proceedings of the 7th International Workshop on Cooperative and
Human Aspects of Software Engineering, ser. CHASE 2014. New
York, NY, USA: Association for Computing Machinery, 2014, p.
72–78. [Online]. Available: https://doi.org/10.1145/2593702.2593704

[20] R. Yates, N. Power, and J. Buckley, “Characterizing the transfer of pro-
gram comprehension in onboarding: an information-push perspective,”
Empirical Software Engineering, vol. 25, no. 1, pp. 940–995, 2020.

[21] P. Pirolli and S. Card, “Information foraging.” Psychological review, vol.
106, no. 4, p. 643, 1999.

[22] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in 2012 34th International Confer-
ence on Software Engineering (ICSE). IEEE, 2012, pp. 255–265.

[23] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering-Volume 1, 2010, pp. 185–194.

[24] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-
hension of program comprehension,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, no. 4, p. 31, 2014.

[25] J. Starke, C. Luce, and J. Sillito, “Searching and skimming: An ex-
ploratory study,” in 2009 IEEE International Conference on Software
Maintenance. IEEE, 2009, pp. 157–166.

[26] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, 2010.

[27] D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan,
A. Z. Henley, J. Macbeth, C. Hill, and A. Horvath, “To fix or to
learn? how production bias affects developers’ information foraging
during debugging,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep. 2015, pp. 11–20.

[28] D. Piorkowski, S. Penney, A. Z. Henley, M. Pistoia, M. Burnett,
O. Tripp, and P. Ferrara, “Foraging goes mobile: Foraging while debug-
ging on mobile devices,” in 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), Oct 2017, pp. 9–17.

[29] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John,
R. Bellamy, and C. Swart, “Reactive information foraging: An empirical
investigation of theory-based recommender systems for programmers,”
in Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, 2012, pp. 1471–1480.

[30] D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2013, pp. 3063–3072.

[31] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective
maintenance tasks,” in Proceedings of the 27th international conference
on Software engineering, 2005, pp. 126–135.

[32] M. J. Coblenz, A. J. Ko, and B. A. Myers, “Jasper: an eclipse plug-in
to facilitate software maintenance tasks,” in Proceedings of the 2006
OOPSLA workshop on eclipse technology eXchange, 2006, pp. 65–69.

[33] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, 2006,
pp. 1–11.

[34] X. Chen and B. Plimmer, “Codeannotator: digital ink annotation
within eclipse,” in Proceedings of the 19th Australasian conference on
Computer-Human Interaction: Entertaining User Interfaces, 2007, pp.
211–214.

[35] N. Nelson, A. Sarma, and A. van der Hoek, “Towards an IDE to
Support Programming as Problem-Solving,” in Proceedings of the 2017
Psychology of Programming Interest Group (PPIG), 2017, p. 15.

[36] P. N. Johnson-Laird, Mental models: Towards a cognitive science of
language, inference, and consciousness. Harvard University Press,
1983, no. 6.

[37] M.-A. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” Journal of Systems and Software, vol. 44, no. 3, pp. 171–
185, 1999.

[38] L. A. Goodman, “Snowball sampling,” The Annals of Mathematical
Statistics, pp. 148–170, 1961.

[39] E. Tipton, L. Hedges, M. Vaden-Kiernan, G. Borman, K. Sullivan,
and S. Caverly, “Sample selection in randomized experiments: A new
method using propensity score stratified sampling,” Journal of Research
on Educational Effectiveness, vol. 7, no. 1, pp. 114–135, 2014.

[40] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A. Gerosa,
“Newcomers’ barriers... is that all? an analysis of mentors’ and newcom-
ers’ barriers in oss projects,” Computer Supported Cooperative Work
(CSCW), vol. 27, no. 3-6, pp. 679–714, 2018.

[41] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. Van Gerven, “Cogni-
tive load measurement as a means to advance cognitive load theory,”
Educational psychologist, vol. 38, no. 1, pp. 63–71, 2003.

[42] J. Brooke et al., “SUS-A quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[43] T. Sørensen, “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application
to analyses of the vegetation on danish commons,” Kongelige Danske
Videnskabernes Selskab, vol. 5, no. 4, pp. 1–34, 1948.

[44] E. Brunner and M. L. Puri, “Nonparametric methods in factorial de-
signs,” Statistical papers, vol. 42, no. 1, pp. 1–52, 2001.

[45] E. Brunner and F. Langer, “Nonparametric analysis of ordered categor-
ical data in designs with longitudinal observations and small sample
sizes,” Biometrical Journal, vol. 42, pp. 663 – 675, 10 2000.

[46] E. Brunner and M. L. Puri, “19 nonparametric methods in design and
analysis of experiments,” Handbook of statistics, vol. 13, pp. 631–703,
1996.

[47] S. Domhof and F. Langer, Nonparametric analysis of longitudinal data
in factorial experiments. Wiley-Interscience, 2002, vol. 406.

[48] E. Brunner and M. L. Puri, “A class of rank-score tests in
factorial designs,” Journal of Statistical Planning and Inference,
vol. 103, no. 1, pp. 331 – 360, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378375801002300

[49] J. Feys, “New nonparametric rank tests for interactions in factorial
designs with repeated measures,” Journal of Modern Applied Statistical
Methods, vol. 15, no. 1, p. 6, 2016.

[50] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[51] P. L. T. Pirolli, Information Foraging Theory: Adaptive Interaction with
Information, 1st ed. New York, NY, USA: Oxford University Press,
Inc., 2007.

[52] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais, “The
vocabulary problem in human-system communication,” Communications
of the ACM, vol. 30, no. 11, pp. 964–971, 1987.

[53] J. Sweller, P. Chandler, P. Tierney, and M. Cooper, “Cognitive load as a
factor in the structuring of technical material.” Journal of experimental
psychology: general, vol. 119, no. 2, p. 176, 1990.

[54] S. E. Sim and R. C. Holt, “The ramp-up problem in software projects:
A case study of how software immigrants naturalize,” in Proceedings
of the 20th international conference on Software engineering. IEEE,
1998, pp. 361–370.

[55] R. McCarney, J. Warner, S. Iliffe, R. Van Haselen, M. Griffin, and
P. Fisher, “The hawthorne effect: a randomised, controlled trial,” BMC
medical research methodology, vol. 7, no. 1, p. 30, 2007.

