Towards an Empirically-Based IDE: An Analysis
of Code Size and Screen Space

Adam C. Short, Austin Z. Henley
University of Tennessee
Knoxville, Tennessee

{ashort11, azh} @utk.edu

Abstract—Integrated development environments (IDEs) are
ubiquitous in software development. Despite their popularity,
much of their designs are not based on empirical findings
and have been virtually unchanged since their inception. More
recently, researchers have proposed alternative IDE designs based
on observational studies of developers and found promising
benefits. However, many design decisions are still unsupported
by empirical evidence. Towards designing an empirically-driven
IDE, we performed an analysis on code size and screen space.
First, we analyzed the size of code from 95 projects in 4
programming languages. Second, we calculated how much code
can fit onscreen using various document arrangements in VS
Code with common screen resolutions. We found (1) the length
of code depends on the programming language, while the width
of code is similar across languages and (2) the amount of code
onscreen can be substantially increased by properly configuring
the IDE and by using a high-resolution monitor.

I. INTRODUCTION

Modern integrated development environments (IDEs) are
ubiquitous in software development. These IDEs provide af-
fordances for editing, debugging, and testing code in a single,
configurable editor. For example, one such IDE, VS Code [10],
has over 2 million monthly active users [11] while JetBrains
has over 6 million developers using their family of IDEs [4].
Other popular IDEs include Eclipse [2], Visual Studio [9],
Atom [1], IntelliJ IDEA [3], PyCharm [5], and Xcode [12].

However, much of the design of IDEs has been the same
since their inception decades ago, and may not be based on
empirical evidence [38]. For example, many IDEs still display
entire code files in tabbed documents that the user can use to
switch between open code documents. However, many studies
have found tabs in IDEs to be problematic [15], [19], [20],
[24], [29], [31], [34], [35], [37].

In an attempt to overcome the shortcomings of IDEs,
researchers have proposed alternative IDE designs based
on empirical studies of developers. These designs include
JASPER [18], Code Bubbles [16], [17], Code Canvas [21],
and Patchworks [24], [25], which each provide an alternative
to the traditional tab-document metaphor used by other IDEs.
These tools were based directly on findings that developers
often navigate to irrelevant code or get lost in the code [19],
[29], [30], [32].

Further studies in this area could have a huge impact on the
design of IDEs and other developer tools. For example, tools
that enable you to compare versions of code (e.g., Azurite [39]

978-1-7281-0810-0/19/$31.00 (©2019 IEEE

and Yestercode [23]), are dependent on displaying multiple
code fragments in an effective way. Moreover, code reviewing
tools (e.g., Gerrit [13], CFar [26], and Phabricator [14])
display a considerable amount of information to the developer.
However, there has been little research in understanding the
ideal amount of information to display without overwhelming
the developer or even how much can fit on a developer’s
screen.

In this work, we analyze code size and screen resolution to
better understand how IDEs should display and layout code.
To do so, we mined 95 GitHub repositories across 4 different
programming languages to calculate the length and width of
code functions. Using these results, we simulated how much
code can fit on screen with typical screen resolutions using
a popular IDE, Visual Studio Code (VS Code). Based on the
findings of our analysis we also discuss implications for the
design of future IDEs.

In this work, we aim to answer the following research
questions:

« RQI1: What is the typical size of code functions (length and
width)?

« RQ2: How much code can fit on screen with a typical IDE
and common screen resolution?

II. RELATED WORK & BACKGROUND
A. Problems with Modern IDEs

While using IDEs, developers spend considerable time and
effort navigating code. For example, one study of Java devel-
opers using Eclipse found they spent approximately 35% of
their time on the mechanics of navigating code [29]. Another
study found that developers spent roughly 50% of their time
foraging for information using Eclipse [36]. Furthermore,
a recent study found that 50% of navigations yielded less
information than developers expected and 40% of navigations
required more effort than predicted [35].

One reason for all of this time spent navigating is that
IDEs display entire code files even when a developer may
only be interested in a small subset of code within that
file. Because of this, developers have been observed scrolling
through irrelevant code to navigate back and forth between
code that is of interest [24], [29]. To circumvent the need for
scrolling, developers have expressed their desire to place code

Fig. 1. The Visual Studio Code IDE with 4 code documents juxtaposed in a
2x2 grid (yellow lines for emphasis).

documents side by side [15], [24], [25]. However, it requires
tedious window management-like actions to do so and in one
study a participant compared it to a “jigsaw puzzle” [15]. In
fact, four studies of developer behavior found that 40-90%
of navigations are to recently visited code [22], [25], [33],
[34], which could make side by side arrangements of code
particularly beneficial.

Another potential issue with IDEs are the document tabs,
which provide a means of switching between code files.
Numerous studies have observed developers “losing” tabs
during development tasks where the developer is unable to
locate a specific open code document [19], [24], [25], [29],
[31], [37]. In some situations, the developers just closed all
of the open documents, resulting in even more time taken to
get back to relevant code. Tabs may be easy to lose due to
their name not being representative of their contents (i.e., the
filename may not be descriptive of the contained code) or
because they are spatially unstable (i.e., the tab’s location on
screen changes when another tab is opened or closed).

B. Empirically-Based IDE Designs

To address the problems with traditional IDEs, researchers
have proposed new design concepts based on empirical find-
ings. For example, JASPER [18], Code Bubbles [16], [17],
Code Canvas [21], and Patchworks [24], [27] change the
typical way that code is displayed on screen. These editors
are characterized by features that allow efficiently arranging
multiple pieces of code onscreen without tabs.

Code Bubbles enables developers to open code into “bub-
bles” on a large two-dimensional canvas and arrange them
freely. These bubbles may contain a function, a class, or
an entire code file. The canvas is far larger than the visible
screen area, so the developer can move the viewable area in
both dimensions. Patchworks takes a different approach, by
providing a fixed grid of “patches”, which may also contain
a function, class, or entire file. Once the grid is full, it can
be shifted to the left or right on a virtually endless ribbon to
reveal more patches.

III. STUDY METHODOLOGIES

To address our research questions, we analyzed code repos-
itories from GitHub and then simulated different code ar-

rangements in an IDE. First, we mined 95 repositories from
GitHub to measure the size of code for different programming
languages. For our second question, we measured the space
available for code on a popular text editor and determined how
much code could fit for 9 different document arrangements.

A. Mining GitHub Repositories

We selected the 25 most popular GitHub repositories for
C++, Java, JavaScript, and Python, as of March 12th, 2019,
for a total of 100 repositories !. These programming languages
were picked due to their popularity [8]. We removed 5
repositories from our analyses since they did not include any
code (e.g., one was a list of libraries and resources outside of
the repository). We analyzed 524,547 code functions from the
remaining 95 repositories. For each function, we calculated the
length of each function in lines and the width in characters.
The width is the max number of characters on a single line
within the function. Additionally, we excluded any function
that contained over 1,000 characters on a single line. These
were “minified” JavaScript files, which contain no newlines
or whitespace, and are not meant to be read or modified by
developers.

B. Typical Screen Resolution

To know the typical screen resolutions of monitors that
developers use, we contacted 7 professional software de-
velopers from two large technology companies. We asked
what their company’s standard practice was for providing
monitors to newly hired developers in terms of the screen
size and resolution. One company provides developers the
option of either two 24-inch monitors or one 30-inch. The
other company gives developers two 27-inch monitors. The
resolutions of these displays are 1920x1080 or 2560x1440.
Similarly, Stack Overflow’s 2018 Developer Survey reported
that 51% of developers use two monitors and 32% use one
monitor (though the resolutions are not reported) [6].

C. Simulating Development Environments

Using the results from both III-A and III-B, we simulated
how much code can fit on screen at one time. We performed
this simulation using VS Code with the default settings. VS
Code is the most popular IDE as reported by developers on
the 2018 and 2019 Stack Overflow Developer Surveys [6], [7],
with 51% of the 87,317 respondents using VS Code. Using
two common screen resolutions, we determined how many
functions of code can fit on the screen, for each of the 4
programming languages, using the average width and height
described in the previous subsection.

We simulated several different arrangements of code doc-
uments in VS Code in an effort to explore possible config-
urations that a developer might use. In particular, we used
9 arrangements, starting with one document onscreen, two
documents side by side, and continued this pattern up to
a 3x3 grid of code documents. Most IDEs support these
arrangements by dragging a tab document across the screen,

Thttps://github.com/utk-se/CodeSize

1,000,000
C++
100, 000 A Java
10,000 \ JavaScript
e Pyt hON
1,000
100
10
1
0 10 30 40 50

20
Length (lines)

Fig. 2. Frequency distributions of lengths of code functions per language.

100,000
10,000 A
' S and . |
1,000
100
10 Java
/ JavaScript
e PythoN
1
0 30 0 120

60
Width (characters)
Fig. 3. Frequency distributions of widths of code functions per language.

TABLE I
NUMBER OF CODE FUNCTIONS VISIBLE ONSCREEN WITH A 1920x1080
MONITOR (HIGHLIGHTING INDICATES HIGHTEST/LOWEST VALUES).

C++ Java JS Python

g x1 257 5.64 2.31 3.21
S 2 | 24 541 221 307
£ 13 | 231 507 208 288
é 2x1 5.14 11.28 462 6.42
5 x 492 10.82 442 6.14
g’) 23 262 10.14 416 5.76
g 3x1 5.57 13.48 584 7.40
(%: 3x2 5.52 12.94 561 7.1

3x3 5.18 1213 5.26 6.66

which will split the adjacent editor in half. You can repeat
this process to juxtapose more documents. For example, Fig. 1
shows VS Code with a 2x2 arrangement of code documents.

TABLE II
NUMBER OF CODE FUNCTIONS VISIBLE ONSCREEN WITH A 2560x1440
MONITOR (HIGHLIGHTING INDICATES HIGHTEST/LOWEST VALUES).

C++ Java JS Python
s ™M 3.90 8.57 351 4.87
é 1x2 3.80 8.34 341 4.74
é 1x3 369 8.12 332 462
\—é 2x1 7.80 17.14 7.02 9.74
E 2x2 7.60 16.68 6.82 9.48
E.J, 2x3 7.38 16.24 6.64 9.24
§ 3x1 11.70 25.71 10.53 14.61
3 3x2 11.40 25.02 10.23 14.22
© 3x3 11.07 24.36 9.96 13.86

IV. EVALUATION RESULTS
A. RQI Results: Size of Code

Recall that we calculated the length and width of 524,547
functions from popular code projects on GitHub. Fig. 2 shows
the frequency distribution of function lengths for each of the
4 programming languages that we investigated. The overall
distributions appear similar, with a large number of functions
being around 5 lines of code, regardless of language, although
the proportions do differ. In fact, the average length of func-
tions per programming language is considerably different: the
average for Java is 8.87 lines (SD = 2.80), C++ is 19.48
lines (SD = 6.29), Python is 15.60 lines (SD = 6.86), and
JavaScript is 21.68 lines (SD = 9.90).

Fig. 3 shows the frequency distributions for function width
per language. Recall that we measured a function’s width
by the max number of characters on a single line within
the function. The figure shows that after 80 characters, all
languages with the exception of Java, have a steep drop off.
The average widths for Java is 70.27 characters (SD = 11.68),
C++ is 74.96 characters (SD = 14.90), Python is 72.75
(SD = 14.26), and JavaScript is 66.32 characters (SD =
14.63) . Overall, the languages have an average function width
of 71.01 characters (SD = 3.70).

B. RQ2 Results: Code on Screen

Using the results from RQ1, we simulated how many func-
tions can be opened in VS Code using different arrangements
(e.g., two documents side by side). Table I and Table II show
how many functions can be visible onscreen for 1920x1080
and 2560x1440, respectively. The results vary considerably
given the arrangement of onscreen. For example, with C++ you
can see 2.57 to 5.57 functions with a 1920x1080 resolution
monitor. With 2560x1440, the range for C++ is 3.90 to 11.70
functions. For most of these arrangements, the limitation is
vertical space. However, for 1920x1080 using 3 columns of
documents requires more horizontal space.

V. DISCUSSION

The results indicate that the length of code depends on the
programming language, while the width is similar across pro-
gramming languages. The results also suggest that juxtaposing
multiple panes would increase the amount of code able to
be viewed simultaneously, though an optimal amount of code
differs by screen resolution and programming language.

A. Code Size

The average length varies considerably from language to
language. Java had the shortest average length of 8.87 lines,
which we believe is due to it being an explicitly object-oriented
programming language, and it have many small functions
called getters and setters. Additionally, developers often follow
the philosophy that functions are responsible for only one
thing. Fig. 2 shows that most languages have an increase of
functions of length 3 to 4 lines; however, Java has many more
functions in this range, which gives evidence of more, smaller
functions.

All four of the languages we investigated tend to have an
average width of 71 characters, with little deviation. A possible
rationale for this is that terminals have historically had 80
character limitations (and before that, punch cards had 80
columns). Some code editors will suggest breaking a line into
multiple lines after crossing this threshold.

B. How much code can fit on screen?

The results of RQ2 depends both on the screen resolution as
well as what programming language is used. For 2560x1440
monitors, the optimal way to view code is with 3 columns
and 1 row of code documents. This allowed for the most
code to completely fit on the screen without the developer
having to scroll horizontally. Adding additional rows, such as
a 3x2 or 3x3 configuration, would require a minor amount of
vertical scrolling. For all layouts with more than 3 columns
on 2560x1440 monitors, the developer would need to scroll
horizontally to be able to see the full function. Similarly, all
layouts with more than 2 columns on 1920x1080 monitors the
developer would need to scroll horizontally see all the code.
Additionally, this all depends on functions being separated
without additional whitespace or comments (e.g., Javadoc).

An important assumption that these results depend on is
that relevant functions are adjacent to one another within the
code file. If this assumption does not hold, then this number of
onscreen functions is drastically overestimated. To overcome
this, the developer would need to open additional documents
and arrange them appropriately.

C. Implications for Design

The results of our analyses reveal several implications for
the design of IDEs. For example, it further motivates the need
for IDEs such as Code Bubbles [17], Code Canvas [21], and
Patchworks [24]. However, our results could lead to features
in these IDEs that allow developers to efficiently arrange
the onscreen code documents. For example, Code Bubbles

could align bubbles into a grid and Patchworks could provide
arrangement configurations other than 3x2.

Another feature for IDEs could be to automatically config-
ure the document panes based on the developer’s behavior,
the programming language, and the available screen space.
For example, if the developer frequently revisits a small set of
code locations (as they often do [22], [25], [29], [31]), then
the IDE would suggest placing those code documents side by
side and would do so automatically with a single click. The
IDE would also be able to take into account the specific size
of those functions, as well as other panes that the developer
is using for their task. In fact, Johnson et al. declared the
need for bespoke tools, that adapt to an individual developer’s
needs [28].

D. Limitations

Our analyses have several limitations that should be ad-
dressed in future work. First, we only analyzed code from 95
public repositories using 4 different languages. It is possible
that these projects do not make for a representative sample.
Second, we only simulated opening and arranging the code
documents using one code editor, VS Code, and chose the
default settings. Changing the settings, such as what panes
are visible or the font size, would have a considerable effect
on the results. Third, we only considered two possible screen
resolutions. However, in an attempt to mitigate each of these
limitations, we selected the repositories, languages, screen
resolutions, and editor all based on popularity.

VI. CONCLUSION

In this paper, we analyzed the size of over 500,000 code
functions and simulated opening code with various arrange-
ments to better understand how IDEs should display and layout
code. The analyses yielded the following findings:

e RQL1 (size of code): The length of code depends on the
programming language that is used, while the width of code
is similar across languages.

e RQ2 (code on screen): The amount of code on screen can
be substantially increased by properly configuring the IDE
and by using a higher resolution monitor.

We hope that the findings of this empirical investigation
are transformative to the future of IDE designs and ultimately
lead to more productive developers. The future work of this
direction include further studies on developers’ habits of
arranging code onscreen and designing an IDE that reac-
tively adjusts the arrangement of code documents based on
the developer’s behavior, screen resolution, and programming
language. This work should be another substantial step towards
an empirically-based integrated development environment.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1850027.

[1]
[2]
[3]
[4]

[5]
[6]

[7]
[8]

(10]
[11]

[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

“Atom,” https://atom.io/, accessed: 2019-05-04.

“Eclipse,” https://www.eclipse.org/, accessed: 2019-05-04.

“Intellij idea,” https://www.jetbrains.com/idea/, accessed: 2019-05-04.
“Jetbrains 2018 annual report,” https://www.jetbrains.com/annualreport/
2018/tools/, accessed: 2019-05-04.

“Pycharm,” https://www.jetbrains.com/pycharm/, accessed: 2019-05-04.
“Stack overflow developer survey 2018,” https://insights.stackoverflow.
com/survey/2018, accessed: 2019-05-04.

“Stack overflow developer survey 2019,” https://insights.stackoverflow.
com/survey/2019, accessed: 2019-05-04.

“Tiobe index for may 2019, https://www.tiobe.com/tiobe-index/, ac-
cessed: 2019-05-04.

“Visual studio,” https://visualstudio.microsoft.com/, accessed: 2019-05-
04.

“Visual studio code,” https://code.visualstudio.com/, accessed: 2019-05-
04.

“Visual studio code at connect 2017,” https://code.visualstudio.com/
blogs/2017/11/16/connect, accessed: 2019-05-04.

“Xcode,” https://developer.apple.com/xcode/, accessed: 2019-05-04.
Gerrit, Accessed Jan 2019, https://www.gerritcodereview.com/.
Phabricator, Accessed Jan 2019, https://www.phacility.com/.

A. Bragdon, “Creating simultaneous views of source code in contem-
porary IDEs using tab panes and MDI child windows: A pilot study,”
Brown Univ., Tech. Rep. CS-09-09, 2009.

A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Ka-
plan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles:
Rethinking the user interface paradigm of integrated development envi-
ronments,” in Proc. 32nd ACM/IEEE Int’l Conf. Software Engineering
- Volume 1, ser. ICSE 10, 2010, pp. 455-464.

A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: A
working set-based interface for code understanding and maintenance,”
in Proc. SIGCHI Conf. Human Factors in Computing Systems, ser. CHI
’10, 2010, pp. 2503-2512.

M. J. Coblenz, A. J. Ko, and B. A. Myers, “Jasper: An eclipse plug-in to
facilitate software maintenance tasks,” in Proc. 2006 OOPSLA Workshop
on Eclipse Technology eXchange, ser. ETX *06, 2006, pp. 65-69.

R. DeLine, M. Czerwinski, and G. Robertson, “Easing program compre-
hension by sharing navigation data,” in Proc. 2005 IEEE Symp. Visual
Languages and Human-Centric Computing, ser. VL/HCC °05, 2005, pp.
241-248.

R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, “Towards
understanding programs through wear-based filtering,” in Proc. 2005
ACM Symp. Software Visualization, ser. SoftVis *05, 2005, pp. 183-192.
R. DeLine and K. Rowan, “Code canvas: Zooming towards better devel-
opment environments,” in Proc. 32nd ACM/IEEE Int’l Conf. Software
Engineering - Volume 2, ser. ICSE 10, 2010, pp. 207-210.

T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Briunlich,
“Developers’ code context models for change tasks,” in Proc. 22nd
ACM SIGSOFT Int’l Symp. Foundations of Software Engineering, ser.
FSE ’14, 2014, pp. 7-18.

A. Z. Henley and S. D. Fleming, “Yestercode: Improving code-change
support in visual dataflow programming environments,” in 2016 IEEE
Symp. Visual Languages and Human-Centric Computing (VL/HCC ’16),
Sept 2016, pp. 106-114.

A. Z. Henley and S. D. Fleming, “The patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proc. SIGCHI Conf. Human Factors in Computing Systems,
ser. CHI ’14, 2014, pp. 2511-2520.

A. Z. Henley, S. D. Fleming, and M. V. Luong, “Toward principles
for the design of navigation affordances in code editors: An empirical
investigation,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ser. CHI 17. New York, NY, USA:
ACM, 2017, pp. 5690-5702.

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

A. Z. Henley, K. Muglu, M. Christakis, S. D. Fleming, and C. Bird,
“Cfar: A tool to increase communication, productivity, and review
quality in collaborative code reviews,” in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, ser. CHI
’18. New York, NY, USA: ACM, 2018, pp. 157:1-157:13. [Online].
Available: http://doi.acm.org/10.1145/3173574.3173731

A. Z. Henley, A. Singh, S. D. Fleming, and M. V. Luong, “Helping
programmers navigate code faster with patchworks: A simulation study,”
in Proc. 2014 IEEE Symp. Visual Languages and Human-Centric
Computing, ser. VL/HCC 14, July 2014, pp. 77-80.

B. Johnson, R. Pandita, E. Murphy-Hill, and S. Heckman, “Bespoke
tools: Adapted to the concepts developers know,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 878-881.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2803197

A.J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented ides: A detailed study of corrective and perfective
maintenance tasks,” in Proc. 27th Int’l Conf. Software Engineering, ser.
ICSE °05, 2005, pp. 126-135.

A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971-987, Dec. 2006.

C. Parnin and C. Gorg, “Building usage contexts during program com-
prehension,” in Proc. 14th IEEE Int’l Conf. Program Comprehension,
ser. ICPC ’06, 2006, pp. 13-22.

C. Parnin, C. Gorg, and S. Rugaber, “Codepad: Interactive spaces for
maintaining concentration in programming environments,” in Proc. 5th
Int’l Symp. Software Visualization, ser. SOFTVIS 10, 2010, pp. 15-24.
D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John,
R. Bellamy, and C. Swart, “Reactive information foraging: An empirical
investigation of theory-based recommender systems for programmers,”
in Proc. ACM SIGCHI Conf. Human Factors in Computing Systems, ser.
CHI ’12, 2012, pp. 1471-1480.

D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan,
A. Z. Henley, J. Macbeth, C. Hill, and A. Horvath, “To fix or to
learn? how production bias affects developers’ information foraging
during debugging,” in 31st IEEE Int’l Conf. Software Maintenance and
Evolution, ser. ICSME ’15, 2015.

D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi,
and M. Burnett, “Foraging and navigations, fundamentally: Developers’
predictions of value and cost,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016, pp. 97—
108. [Online]. Available: http://doi.acm.org/10.1145/2950290.2950302
D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proc. SIGCHI Conf. Human Factors in Computing
Systems, ser. CHI *13, 2013, pp. 3063-3072.

J. Singer, R. Elves, and M. D. Storey, “Navtracks: Supporting
navigation in software maintenance,” in 2Ist IEEE International
Conference on Software Maintenance (ICSM 2005), 25-30 September
2005, Budapest, Hungary, 2005, pp. 325-334. [Online]. Available:
https://doi.org/10.1109/ICSM.2005.66

A. Walenstein, “Cognitive support in software engineering tools: A
distributed cognition framework,” Ph.D. dissertation, Simon Fraser Uni-
versity, 2002.

Y. Yoon and B. A. Myers, “Supporting selective undo in a code editor,”
in Proc. 37th Int’l Conf. Software Engineering (ICSE '15), 2015, pp.
223-233.

