Adaptive IDEs to Support Information Foraging
for Novice Programmers

Adam C. Short
University of Tennessee
Knoxville, Tennessee 37996-2250
ashortl 1 @utk.edu

I. INTRODUCTION

There is an abundance of information on the Internet to
help programmers and yet, novices may not have the expertise
to utilize it. Stack Overflow, documentation for programming
languages, man pages, and plenty of other resources exist
that aim to help answer the questions of programmers. Stack
Overflow itself has over 17 million questions that have been
asked. For novice programmers, however, these resources
might not be as helpful. For those who are just learning how
to program, learning syntax and semantics is hard enough on
its own. Foraging through multitudes of resources only adds
another layer to master, and with everything else to learn, will
only add more difficulties for the novices.

Programmers spend a considerable amount of timing nav-
igating for information, both in and outside their IDE. One
study has shown that programmers spend 50% of their time
foraging for information [7]. Another study showed that 51%
of the participants’ navigations ended in some sort of disap-
pointment in the information they received [6]. Not only do
programmers spend a considerable amount of time searching
for information, whether it be in code or through resources
on the Internet, but almost half the navigations aren’t helpful.
Information foraging is particularly difficult, even more so for
novices. This could be due to the fact that the information
simply isn’t helpful, or it is just hard to make sense of.

Despite all the tools and resources that are available, it
seems programming novices still have difficulties using them.
How can using the resources that are already available be made
easier for these novices? How can novices more easily master
foraging for information? In my work, I plan to explore how
novices currently use these tools and resources, what advances
could be made, and how to apply these changes in a setting
apt for novice programers that will aid in foraging for external
information.

II. BACKGROUND

Much research has been done recently into how IDEs
are laid out and their overall design [4]. Code Bubbles [1],
for instance, changes the conventional tab-based editor into
a canvas-based one where code is show as bubbles. Simi-
larly, Patchworks [3] follows a similar concept except uses
6 “patches” to display code. Both these editors help foraging
for information inside of the code itself; however, they do

978-1-7281-0810-0/19/$31.00 (©2019 IEEE

not research foraging for information outside of the IDE.
Additionally, two other studies show that (1) a majority
of a programmer’s time is spent navigating [7], and (2)
a programmer’s navigations may not lead to the expected
information [6]. The primary focus of these studies, however,
has been to study the interactions and navigations that happen
within the IDE. They still offer key concepts and ideals of
how programmers have and want to navigate in their IDE that
could tie into my future work.

Additional research has been done into extending the In-
formation Foraging Theory [9]. Notably, one study [8] has
explored foraging as a collective group. This study suggests
that using some resource populated with information from a
group increases the collective discovery. Resources like Stack
Overflow use a collective to answer questions, so this should
lead to an increase in discovery overall.

Lastly, another paper similarly matches the tool that I
have planned to develop. StackInTheFlow [2] suggests Stack
Overflow posts based off of errors that develop in runtime of
their program; however, this tool ties only into the IntelliJ
Java IDEs. This tool had a significant amount of “manual
queries”, but the “suggested queries” were often ignored. This
paper closely models what I want the tool to do for my future
research for building a tool for novice programmers to use.

III. PRELIMINARY WORK

My first step was to analyze the size of code and the
amount of screen space it requires in an IDE [10]. The
size was measured by analyzing the width and length of a
typical function for four programming languages. The amount
of space required to show the code was calculated for two
different screen resolutions, 1920x1080 and 2560x1440. This
research has shown that for both resolutions, there is plenty
of horizontal screen space available while viewing a single
code file on average, regardless of the programming language.
Since programmers don’t typically view more than one file at
a time [1], [5], this space could be utilized in other ways than
displaying code.

IV. RESEARCH PLAN

a) Formative Study on Novices Foraging: Firstly, I will
research how current novice programmers, such as students



main()

for( i=0; 1< max; i++)

if(i < max)
max++;

out << "1 = " << i <« std::endl;

Fig. 1. Example Code Segment Identified as Having Issues by the Tool.

in early level computer science courses, search and use infor-
mation across the Internet. I will do this by running a user
study with participants from my university’s introduction to
computer science class and other beginner courses. I will then
ask them to complete a series of trivial tasks that will require
the participants to use outside resources, such as the Internet.
I then shall record multiple factors such as what resource the
participant uses, how the participant uses the information they
find, whether or not the information was relevant, and how
long it takes to find useful information. The actions will be
recorded on the computer itself, and a person will also be
present to record any additional notes that are relevant.

b) Tool Design & Development: 1 will then develop a
tool that will aim to help novices find and make use of
meaningful information through suggestions without leaving
their IDE. This tool will make use of the available screen
space that most programmers do not utilize [1], [10]. It will
pull information from commonly used resources, such as
Stack Overflow and any other commonly accessed resources
from the first user study, and present the information to the
programmer. The information will be pulled in one of two
ways: the first being that the programmer requests it, and
the second by suggesting information that would be useful
to the programmer pertaining to certain pieces of code. An
example of information being suggested on a piece of code
that is troubling the programmer is shown in Fig. 1 If the
programmer hovers a section surrounded by the yellow box,
it will give them an option to show a Stack Overflow post,
or a similar resource, that relates to their problem in the IDE
adjacent to their code.

¢) Evaluation: 1 will lastly run a case study where I let
novice programmers use the tool that I have built. The novice
programmers will consist of a similar grouping of students as
the first study from an introductory computer science course.
I shall collect data on the amount of information presented,
whether the information was considered, and the usefulness of
the information. This information shall be recorded similarly
to the first study.

d) Comparison of Results: For the final step, I will
analyze the data that I have collected from both studies. I
will compare the results from the first and second study to

determine whether or not any improvements where made.
Furthermore, depending on the success of this study, I would
like to release this tool in a “real-world” setting to determine
its effectiveness across different environments.

V. CONCLUSION

I have summarized some of my initial research and work
into providing an easier method for novices to forage for
information across the Internet and laid forth my plan of how
to proceed. As I continue this work, my major concern is not
only if the tool itself is useful, but the information provided
is useful. Will this tool actually help novice programmers by
offering useful information, or will it be a distraction? Will the
tool help educate, or will it detract and become a clutch that
novices rely on? I will continue to research these questions,
as well as building a tool that allows me assess the results for
these questions and allow easier foraging of information for
novices.

REFERENCES

[11 A.Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: A
working set-based interface for code understanding and maintenance,”
in Proc. SIGCHI Conf. Human Factors in Computing Systems, ser. CHI
’10, 2010, pp. 2503-2512.

[2] C. Greco, T. Haden, and K. Damevski, “Stackintheflow: Behavior-driven
recommendation system for stack overflow posts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings, ser. ICSE *18. New York, NY, USA: ACM, 2018, pp.
5-8. [Online]. Available: http://doi.acm.org/10.1145/3183440.3183477

[3] A.Z. Henley and S. D. Fleming, “The patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proc. SIGCHI Conf. Human Factors in Computing Systems,
ser. CHI ’14, 2014, pp. 2511-2520.

[4] A. Z. Henley, S. D. Fleming, and M. V. Luong, “Toward principles
for the design of navigation affordances in code editors: An empirical
investigation,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ser. CHI "17.  New York, NY, USA:
ACM, 2017, pp. 5690-5702.

[51 A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971-987, Dec. 2006.

[6] D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi,
and M. Burnett, “Foraging and navigations, fundamentally: Developers’
predictions of value and cost,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: ACM, 2016, pp. 97—
108. [Online]. Available: http://doi.acm.org/10.1145/2950290.2950302

[7]1 D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proc. SIGCHI Conf. Human Factors in Computing
Systems, ser. CHI *13, 2013, pp. 3063-3072.

[8] P. Pirolli, “An elementary social information foraging model,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI *09. New York, NY, USA: ACM, 2009, pp. 605-614.
[Online]. Available: http://doi.acm.org/10.1145/1518701.1518795

[9] P. Pirolli and S. Card, “Information foraging in information access
environments,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI "95. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1995, pp. 51-58. [Online].
Available: http://dx.doi.org/10.1145/223904.223911

[10] A.C. Short and A. Z. Henley, “Towards an Empirically-Based IDE: An
Analysis of Code Size and Screen Space,” in 2019 IEEE Symp. Visual
Languages and Human-Centric Computing (VL/HCC ’19), October
2019.



