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A B S T R A C T

Effective and safe human-robot collaboration in assembly requires accurate prediction of human motion tra-
jectory, given a sequence of past observations such that a robot can proactively provide assistance to improve
operation efficiency while avoiding collision. This paper presents a deep learning-based method to parse
visual observations of human actions in an assembly setting, and forecast the human operator’s future motion
trajectory for online robot action planning and execution. The method is built upon a recurrent neural net-
work (RNN) that can learn the time-dependent mechanisms underlying the human motions. The effective-
ness of the developed method is demonstrated for an engine assembly.

© 2020 CIRP. Published by Elsevier Ltd. All rights reserved.
Keywords:
Assembly

Motion
Machine learning
Fig. 1. Elements of HRC, robot image from [9].
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1. Introduction

Humans have long been the sources of flexibility and versatility in
manufacturing, performing varied tasks under the dynamic condi-
tions based on contextual understandings. While robots entered the
workforce nearly 40 years ago, they are primarily pre-programmed
to perform both the routine and ergonomically challenging tasks. As
such, robots are not intended for use in operations that require deci-
sion-making and adjustment using the real-time input from the tar-
get process. As the 4th industrial revolution transforms the factory
into a more dynamic and smart production space, there is an increas-
ing need for breaking the barrier between the human and the robot,
and allowing the joint activity in a shared workspace in order to
accomplish a set of given tasks more effectively and efficiently
through a highly integrated human-robot collaboration (HRC) [1,2].

Effective HRC consists of four basic elements: human motion per-
ception, recognition, trajectory prediction and robot action [2], as
shown in Fig. 1. Recent advances in sensing and machine learning
algorithms have improved the state of research in human motion rec-
ognition, providing the basis for human motion prediction. In [3], a
hidden Markov model (HMM) has been investigated to analyze the
human motion during assembly and recognize the incorrect actions.
In [4], a deep convolutional neural network has been developed to
detect the human action-related motion pattern. Deep learning has
also shown to help the robot to improve the recognition accuracy of
actions from the human worker by analyzing the body motion [5].

Adaptive robot control has been another active research field in
HRC, which allows the robots to adaptively maneuver in the work-
space, avoid collision and execute manufacturing tasks [2]. Real-time
sensor-driven and model-based robot control have shown to reduce
the communication traffic and significantly improve the robot con-
trollability [6]. In [7], a depth sensor-based system has been devel-
oped to enable the robot to detect potential collision with a human
worker and respond accordingly. Behavior control in cognitive
robotic disassembly has been developed in [8], which permit robots
to learn to become fully autonomous after several iterations of disas-
sembling the same product models.

In comparison, human motion prediction, which provides the
information on where a human worker will likely move to in the
future, has not been widely reported in the published literature.
Accurate and robust prediction of human motion trajectory provides
the guidance for a robot to act proactively to accommodate human
action, thereby enhancing the robot’s flexibility, efficiency and safety
in manufacturing [2]. As a deep learning architecture specialized in
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Fig. 3. Enhanced RNN for improved accuracy in motion prediction (three functional
units shown: arm, spine and arm-spine).
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sequential pattern analysis [10], RNN has demonstrated effectiveness
in a variety of manufacturing applications, such as prognosis of struc-
tural defect propagation based on vibration data [11]. For human tra-
jectory prediction, an encoder-decoder RNN structure has been
reported [12], where the encoder analyzes the past trajectory and the
decoder progressively predicts the future path. The structure was fur-
ther enhanced [13] with residual connections that exploit the first-
order derivatives to minimize jump in the predicted trajectory. One
limitation of the prior studies is that the interactive patterns among
the body parts that can potentially help improve the prediction accu-
racy, have not been exploited. Another limitation is that uncertainty
associated with human workers in trajectory prediction was not
accounted for, which however is critical to ensure reliability and
safety in HRC. Leveraging the abilities of deep learning, this paper
presents an RNN-based model for human motion trajectory predic-
tion. The developed RNN model accounts for the interactions among
human body parts, and provides an uncertainty estimation for robust
trajectory prediction. The developed model is experimentally evalu-
ated using the collaborative assembly of an automotive engine, and
good results have been demonstrated.

2. RNN for motion trajectory prediction

The key to accurate motion trajectory prediction is to capture
characteristics of the evolution patterns of the human poses when
performing actions that are represented by body joints. RNNs provide
the technical foundation for analyzing such patterns.

2.1. RNN for HRC in assembly

RNNs capture the motion evolution patterns by analyzing the
influence of the motion state at each of the time steps on the state at
the subsequent step. Motion state can be considered a high-level fea-
ture of the motion pattern condensed from the raw observation of
the human poses.

The state at time step n, hn, depends on both the associated obser-
vation xn and the preceding state hn�1, expressed as:

hn ¼ ’ Wh�hhn�1 þWx�hxn þ bð Þ ð1Þ
where Wh�h denotes the weights representing the influence of the
preceding state on the current state,Wx�h represents the weights con-
necting the observation to the state, b is the bias, and ’ is a nonlinear
function. As hn�1 also depends on its preceding state, the generation
of hn makes use of all the available observations up to time n, as
shown in Fig. 2. The motion evolution pattern is captured through
the network weights.

The standard RNN structure can be ineffective in motion predic-
Fig. 2. Overview of RNN for motion prediction.
tion due to the interaction among different body parts (e.g. arm, leg,
and spine). As a solution, two types of functional units have been
added to the network structure: component and coordination. The
component unit analyzes the trajectory of a specific body part associ-
ated with a certain human pose, and the coordination unit analyzes
the interaction among the body parts. A total of five component (for
two arms, two legs and one spine) and four coordination (for arm-
arm, arm-spine, leg-leg, leg-spine) units were added to model a com-
plete human body.

The network structure of each functional unit is based on the RNN
structure in Fig. 2, where the input to each component unit is the
sequence of the past observations of the related body joints locations
in the x�y�z coordinates. For example, for the “arm” unit, the related
body joints are wrist, elbow and shoulder. In addition, the output
from the coordination units that are associated with the correspond-
ing body parts is also used as the input to the component unit. For
example, the “arm” unit takes as the input the output from the “arm-
arm” and “arm-spine” units. Similarly, the input to each coordination
unit is the concatenation of body joints locations associated with the
interacting body parts. As an example, the input to the “arm-spine”
unit is the concatenation of the information on the joints from both
the arm and the spine. The RNN structure with functional units is
trained in a collective manner by the Backpropagation algorithm. In
Fig. 3, a sample structure of the enhanced RNN is illustrated.

Such an enhanced network structure allows for a more accurate
prediction of the human motion trajectory in the context of both its
own history and the interaction among the various body parts, result-
ing in reduced prediction error. Specifically, the mean deviation
between the predicted and actual body joints locations has been
reduced by nearly 40% when compared to the RNN structure without
the functional units.
2.2. Monte-Carlo dropout for uncertainty estimation

Human motion exhibits uncertainties. For examples, when a
worker moves an arm slightly, it is difficult for the prediction algo-
rithm to determine whether the person intends to extend the arm, or
it is just the natural movement while maintaining a pose. On the
other hand, if the arm moves further away, it becomes less uncertain
that his intention must be to extend the arm. To account for the
uncertainty, probabilistic inference has been incorporated into the
motion prediction algorithm, which is formulated as determining the
conditional probability distribution p(y|Xn), where Xn ¼ x1; x2; . . . ; xn
represents the evolving human pose up to time n, and y is the future
human pose.

To enable the varying weights selection for estimating p(y|Xn)
after network training, the method of Monte-Carlo (MC) dropout
has been investigated where the network weights were selected
randomly by using the Bernoulli distribution [14]. Accordingly, p
(y|Xn) is approximated by performing multiple predictions and
averaging the result to arrive at the expected future human
pose:

Ep yjXnð Þ yð Þ � 1
K

XK
k¼1

by Xn; W dropout
� � ð2Þ

where by represents the individual predictions, and the network
weights after dropout is expressed as:

Wdropout ¼ W ¢diag z½ �ð Þ; z » Bernoulli qð Þ ð3Þ



Fig. 6. Transition graph among handover, standing and installation.
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where q represents the dropout rate. Statistically, such a probabilistic
approach to obtaining p(y|Xn) has the advantage of improving the
accuracy in human pose prediction and reducing the uncertainty-
induced mis-triggering of the robot action.

3. Experimental evaluation

To evaluate the performance of the developed method, human-
robot collaborative assembly of a car engine was conducted. Assem-
bly often involves repeated actions that are ergonomically challeng-
ing, such as moving large and heavy parts, and therefore has been
identified as the main area to benefit from HRC [2]. The engine
assembly (Fig. 4) consists of a large cover, a cover cap, two wire col-
lectors, four plugs, a screwdriver, and eleven screws. The assembly
workspace is shown in Fig. 5, where the engine is placed to the right
of the worker and an UR-5 robot is installed on a workstation to his
left. Parts and tools are sorted in color-coded containers. The human
pose is tracked by a Kinect sensor at 30 Hz, serving as the basis for
real-time human motion trajectory prediction. The collaboration
between the human and the robot is presented by the robot respond-
ing to the predicted human motion trajectory, following in real time
the human hand as it extends for handover and picking up the rele-
vant part/tool during installation.
Fig. 4. Engine assembly parts and tools.

Fig. 5. Elements in engine assembly workspace.

Fig. 7. Comparison of prediction error of different network structures.
The objective of predictive modeling of human motion trajectory
is to: (1) predict the end location of a motion trajectory at each time
step, and (2) evaluate the transition probability to determine if a tran-
sition is to occur such that the robot’s proactive motion should be
triggered. Three pose nodes have been defined: handover (n1), stand-
ing (n2) and installation (n3). The entire engine assembly sequence
can be represented as a transition graph (Fig. 6), where the motion
trajectories start from and end at one of the nodes. For example,
when the worker completes handover by taking the screwdriver from
the robot, he may briefly pause by standing or move directly to instal-
lation. For flexibility, the duration of stay at each node is unspecified
(i.e. worker can stay in any node for as long as needed) and is imple-
mented by the “self-transition”.
To train the RNN network, motion trajectories of the worker from
ten assembly operations were recorded by a Kinect sensor. Relative
coordinates are used to account for the variations in the human posi-
tion relative to the Kinect. For a tracked joint (e.g. wrist), its x�y�z
coordinates are evaluated relative to its parent joint (e.g. elbow). The
network input length (i.e. number of previous time steps to analyze
at each frame) is set to 30 frames, corresponding to 1 s of motion. The
network output, which represent the trajectory’s end location, is sam-
pled from all the poses during the incoming stay at that pose node.
For example, when the worker is moving from handover to installa-
tion, the network output is sampled from all the poses during the
incoming installation. This strategy allows the network to explore
more possible locations and enhance its robustness. The dataset con-
sists of 8206 training samples and are randomly split into the training
and validation sets, with a ratio of 7:3. The mean squared error (MSE)
is used as the loss function to quantify the mean deviation between
the predicted and actual human body joints locations. The network
parameters are determined through cross validation.

The benefit of the enhanced RNN structure with two types of
additional functional units is comparatively evaluated against an
RNN without the functional units and a multi-layer perceptron
(MLP). As shown in Fig. 7, the enhanced RNN has the lowest error of
16.5mm for motion trajectory end location prediction. This corre-
sponds to an error reduction of 44% and 63% from the RNN without
the functional units and the MLP, respectively.
The trained network is evaluated in real-time assembly opera-
tions, where the model continuously predicts the end location of the
human body, as soon as new data from the Kinect sensor is provided.
Through MC dropout, the distribution of predicted future locations of
the individual body joint is obtained, and the mean value serves as
the final predicted location. The transition probability, denoted as p
(nijnj), i, j = 1,2,3 and shown in Fig. 6, determines if a transition is
starting to occur or not. To minimize robot mis-triggering and ensure
reliable HRC, the transition is determined to start only when the con-
dition of p(nijnj) = 1 is met to trigger the robot. Physically, this means
that the worker will start, with 100% certainty, the transition from
the action node ni (e.g., installing) to the action node nj (e.g., hand-
over). A total of five predictions were made at each time step using
MC dropout. The node transition probability is evaluated as the ratio
of the number of predictions that belong to the target node to the
total number of predictions (i.e., five). The transition is predicted to
take place only if all the five results are consistent (i.e., 100% transi-
tion probability). Part/tool pickup is triggered when the actual human
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pose is in the installation node, and handover is triggered when the
transition to the handover node occurs from the installation or stand-
ing node. As the arm moves and prediction of the human hand’s end
location is updated, the robot adjusts the target location of its end-
effector accordingly.

4. Results discussion

The collaborative assembly based on motion trajectory prediction
is illustrated in Fig. 8, using the pickup and handover of a screwdriver
as an example. The actual human pose tracked by Kinect is shown in
red and its predicted end location in cyan, with the worker’s left arm
highlighted in thicker lines. The actual and target locations of the
robot are in pink and yellow, respectively.
Fig. 8. Sample frames from HRC assembly sequence.
At step ①, the robot is triggered to pick up the screwdriver when
the worker is detected as installing the large cover. As the worker
completes the installation and starts to extend the left arm in ②, the
prediction changes to the handover node. The robot is triggered, and
its first target location for handover is generated. As more trajectory
information is provided to the network, prediction accuracy
improves, as seen in the reduced distance between the prediction
and the actual hand’s end location until the arm stops for handover
in ③. In ④ the worker returns to the engine and the robot is trig-
gered to pick up the next part.

The effectiveness of uncertainty handling in motion prediction is
further evaluated. Fig. 9 illustrates three nearby time steps around
the transition from installation to handover. All the five predicted sce-
narios of the worker’s left arm using MC dropout are shown. In ⓐ,
the worker is installing a plug and all predictions indicate that he will
continue with the installation. In ⓑ, one of the predictions indicates
that the worker is moving to handover. With remaining predictions
indicating a standing pose, the uncertainty is large (as the transition
probability is only 20%), therefore the robot is not triggered. In ⓒ, all
predictions show that the worker is moving for handover, thus the
robot will be triggered. It is noted that these results are consistent
with the human judgement. For example, in ⓑ, the worker is retriev-
ing the arm from the engine. At this moment, it is difficult to deter-
mine whether the movement to handover will indeed happen or the
worker will stop at standing position. Correspondingly, large uncer-
tainty is given by the model. As the arm moves further away in ⓒ,
the ambiguity is reduced.
Fig. 9. Uncertainty estimation during a transition sequence.
The MC dropout provides an effective measure for uncertainty
handling and mis-trigger prevention, allowing for robust HRC. In
comparison, if only one prediction is made at each frame without MC
dropout, the robot has shown to be mis-triggered one out of four
times.
Adding the two types of functional units to the RNN structure
makes the execution of the Algorithm 2 and 3 times long to finish
one prediction cycle, from 0.01 s to 0.02�0.03 s. This however does
not affect the real-time capability when using a Kinect with 30 Hz
framerate (or 0.033 s processing time).

The developed method is extendable beyond the current experi-
mental setup, since the RNN structure with additional functional
units is independent of the experimental conditions. Regardless of
the assembly actions, the input will be the sequential observations of
the body joints locations. Furthermore, using body joints locations as
the input makes the algorithm insensitive to variations in the appear-
ance of the worker and the workspace.

For real assembly lines, additional factors should be considered to
ensure robustness of the developed method. For example, multiple
cameras should be deployed to track the worker’s motion continually
and avoid occultation in the workspace. In addition, parallel comput-
ing methods should be leveraged to enable the simultaneous trajec-
tory prediction of multiple workers.

5. Conclusions

An RNN-based method has been developed for predicting human
motion trajectory, with the aim of bridging the gap between human
motion recognition and corresponding robot action in order to realize
true HRC. A novel feature of the developed method is that it introdu-
ces two types of functional units into the RNN structure to parse the
evolutionary motion pattern of the human body parts as well as their
coordination for improved prediction accuracy. Furthermore, proba-
bilistic inference based on Monte-Carlo dropout has been investi-
gated to minimize the uncertainty-induced robot mis-trigger and
enhance the reliability in interpreting the human motion. A 40%
reduction in the prediction error is demonstrated with the enhanced
RNN structure as compared to standard RNN. Future effort will be
directed to predictive modeling that is capable of handling variations
during assembly order to further advance HRC for broad acceptance
and production-level implementation.
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