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1 Introduction

A partial order on groups of contact diffeomorphisms was introduced in [13]
as a contact analog of Hofer’s geometry for groups of Hamiltonian diffeo-
morphisms of symplectic manifolds. In this paper we begin studying the
remnants of this order on the conjugacy classes of contactomorphisms. Our
main interest in this paper are non-compact contact manifolds, and more
specifically a special class of non-compact contact manifolds which we call
convex at infinity, see Section 1.3 below. While orderability problems for
closed manifolds have obvious answers on the level of Lie algebra of contact
vector fields, the situation for non-compact manifolds is quite subtle already
on the Lie algebra level. Problems of this kind naturally arisen in connection
with constructions of contact structures in [1]. The goal of the paper is to
illustrate the arising phenomena on a restricted class of examples, leaving
a more general study, both in the Lie algebra and the group cases, to our
forthcoming paper [5].

1.1 Groups of contactomorphisms and their Lie alge-
bras

Let (U, &) be a coorientable noncompact contact manifold. We fix a contact
form « for ¢ and denote by R its Reeb vector field. Let

G := Diff, (U, ¢)

be the identity component of the group of contactomorphisms of (U, £) with
compact support. The Lie algebra g of G, which consists of compactly
supported contact vector fields, can be identified with the space C°(U) of
smooth functions with compact support by associating to each function K
its contact vector field

Yy =KR+ Zg, ZK€€, (dK+zZKda)|§:O



Note that
dK(Zk) =0, Ly,a =dK(R)a.

Conversely, given a contact vector field Y its contact Hamiltonian is defined
by the formula K(z) = a(Y(x)), x € U. Let us stress the point that to
identify the Lie algebra g with the function space C°(U) one needs to fix a
contact form.

The adjoint action of ¥ € G on K € g computes to
AdyK = (cyK) o™, (1)

where ¢, : U — R is the positive function satisfying ¥*a = cyo. The Lie
bracket on g is given by

{H,K} = dK(Xy) — KdH(R).

The Lie algebra carries a canonical partial order defined by H < K if H(z) <
K(z) for all x € M, which is Ad-invariant by equation (1).

1.2 Dominating positive cones

Denote by g=° the cone in the Lie algebra g = C>°(U) consisting of nonneg-
ative functions.

Definition 1. A subcone ¢ C g=°\ 0 is called a dominating (positive) cone if
the following hold:

(i) ¢ is Ad-invariant;
(ii) ¢ is relatively open in g="\ {0};

)

)
(iii) for each H € g there exists K € ¢ with H < K;
(iv) forall H € g, K € ¢ there exist ¢t > 0 and ¢g € G such that tAd,H < K;
)

(v) for each H € g=°\ {0} there exist gi,...,gr € G such that Ad, H +
4 Ady H €«

Remark 1.1. Property (v) is not needed in this paper, but will become rele-
vant for the discussion of partial orders on contactomorphism groups in [5].

Clearly, if the manifold U is closed then the only dominating cone in g is the
cone g~ consisting of everywhere positive functions. If U is not closed, then
a dominating cone in general need not exist. For instance, S! x R? with the



contact form dt + %(xdy — ydx) does not admit any dominating cone because
if supp(H) D S* x Dg and supp(K) C S* x D, with r < R, then there is no
contactomorphism g C G such that g(supp(H)) C supp(K), see [8].

However, there is an important class of noncompact contact manifolds, called
convez at infinity, for which a dominating cone always exists. We discuss this
class in the next subsection.

1.3 Contact manifolds convex at infinity

A noncompact contact manifold (U,¢) is called convezr at infinity if there
exists a contact embedding o : U — U which is contactly isotopic to the
identity such that o(U) € U, i.e ¢(U) has a compact closure in U. The
space of all embeddings ¢ with this property will be denoted by

£=EU¢).

Note that by cutting off a contact isotopy, the restriction ok to any com-

pact set K C U can be extended to a contactomorphism in the group
G = Diff (U, €).

The notion of contact convexity for hypersurfaces in a contact manifolds
was introduced in [11] and studied in detail in [16]. Let us recall that a
hypersurface in a contact manifold is called convez if it admits a transverse
contact vector field. The coorientation of this vector field is irrelevant because
if Y is contact then —Y is contact as well.

Ezample 1.2. (i) A major class of contact manifolds convex at infinity is
provided by interiors of compact manifolds with convex boundary. Indeed,
as the required embedding o one can take the flow for small positive time of
an inward pointing contact vector field transverse to the boundary.

(ii) More generally, suppose a contact manifold (U,§) admits a (not nec-
essarily complete) contact vector field Y without zeroes at infinity, which
outside a compact set is gradient-like for an exhausting function ¢ : U — R.
Then (U, &) is convex at infinity. Indeed, first use [10, Lemma 2.6] to con-
clude that for a sufficiently large ¢ the end ({¢ > c},§) is contactomor-
phic to (X x [0, oo),g) such that the vector field % is contact. Here we set
Y :={¢ = ¢} and denoted by s the coordinate corresponding to the second
factor. There is a contact isotopy hs : (X X [0,00),&) = ( x [0,00),8),
t € [0,1], such that that hy = id, h; = id near ¥ x 0 for all ¢ € [0, 1] and
h(Exn) =Yx™2L n=1,..., which implies that h;(¥x[0,00)) = £x[0,1).

(iii) In a 3-dimensional contact manifold a generic surface is convez, see [16],
hence the interior of a generic connected compact contact manifold with
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non-empty boundary is convex at infinity. If the boundary components of a
3-manifold are 2-spheres and the manifold is tight near the boundary, then
it is convex at infinity, even when the boundary components are not convex,
see [9].

(iv) On the other hand, the contact manifold S x R? = (R/Z) x R? with
the tight contact form dt + %(x dy — ydx) is not convex at infinity, see [8].

Now we will introduce our main example. Let Ay = %Z(xidyi — yidx;) be
1

the standard Liouville form on R?" with its Liouville vector field

Z = %;(%% +yi8iy,~)’

and let ag, = Ag|g2n-1 be the standard contact form on the unit sphere
S?n=1 C R?™. Let us order coordinates in R*" as (xq,...,%n, Y1, .,¥Yn) and
denote by I, a k-dimensional coordinate subspace of R?" which is spanned
by the last k vectors of the basis. For instance, II; is the y,-coordinate axis,
while Ilg,_; is the hyperplane {z; = 0}. Note that Il is isotropic when
k < n, and coisotropic otherwise. We denote by IIi the orthogonal subspace
spanned by the first 2n — k basic vectors.

Lemma 1.3. (a) For each k = 1,...,2n — 1 the contact manifold (S*"~'\
[y, &) is convex at infinity. Moreover, it can be contracted by an element of
E to an arbitrarily small neighborhood of the equatorial sphere S*™ 1 NTI;.
(b) For k > n the manifold (S*"~\Ily, &) is contactomorphic to J1(S**=1)x
RQk—2n = T* (SQn—kz—l % Rk—n) % R.

Proof. Recall that r = |z|> + |y|*> induces the canonical isomorphism (R?" \
{0}, Ast) = (Ry x S?" ! rag) under which the Liouville vector field Z corre-
sponds to r%. Thus contact vector fields on S?"~! are in one-to-one corre-
spondence with Hamiltonian vector fields on R**\ {0} which commute with
Z. Note that each linear vector field on R*" automatically commutes with
Z.

(a) First consider the case k < n. The linear vector field
- " 9, 0
Y, = (—x-——i—y-—)
jnz—;—l-l 0z Ty,

is the Hamiltonian vector field of the function ZZ_ p1 TjY;- It commutes with
7, so it descends to a contact vector field Yy to S?"~1. On R?"\ (1T, UTIE) the
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~ n 2
field Y}, is gradient-like for the Z-invariant function — In (1 — %) , hence

on S?"~1\ (I U II;) the field Y; has no zeroes and is gradient-like for the

n 2

nemi1 Y; > Now convexity at infinity follows

exhausting function — In (1 >

from Example 1.2(ii), and the flow of Y} for very negative times contracts
any compact set S?"1\ I} to a neighborhood of S?"~1 NTI; .

The case k > n follows from part (b) and Example 1.2(ii).

(b) For k > n let
2n—k

= 0 0
Zk = (l’j— — y]—>
; ij 8?/]
2n—k
be the Hamiltonian vector field of the function — ) x;y;. It descends to a
T
complete contact vector field Z;, on S?"~!. The flow of Z, contracts every
compact set in S?"~1\TI}, to a neighborhood of the isotropic sphere S~ 1ML
and the field —Z,, is gradient like for the function (327 42 +>5,_, 4 23) on
S?=1\ TI;,. By Weinstein-Darboux theorem contact structures on S#*~+\ I}
and J1(S?"~*~1) x RE=" are isomorphic on tubular neighborhoods of isotropic
sphere S?"7F=1 = §2n=1NTLL and the O-section S*"~*~1 x 0 C J}(S?F-1) x
R2?¢=2n_ This isomorphism then extends to a contactomorphism between
S2=1\ I, and J'(S?"*-1) x R*~2" by matching the corresponding tra-
jectories of the contact vector field —Z; with trajectories of the canonical
contact vector field on J!(S2"7k~1) x R%*~2" contracting this manifold to its

0-section.
O

1.4 The maximal dominating cone g+

Let (U, &) be a contact manifold convex at infinity.

Lemma 1.4. For (U,&) connected and convez at infinity the cone
g":={H € g™ | Hlyw) >0 for someo € E(U,E)}.

is dominating and mazimal, (i.e., all other dominating cones are subcones of
g")
Proof. Properties (i), (ii) and (iii) in Definition 1 are clear.

For (iv), consider H € g, K € g". Then C := supp(H) is compact and K
is positive on o(U) for some o € E(U,§). By cutting off the contact isotopy
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from the identity to o outside C' we find ¢ € G with g|¢ = o|c. Then
supp(AdyH) = g(supp(H)) = o(C) C o(U). Since K|,y > 0, it follows
that tAd,H < K for ¢ sufficiently small.

For (v), let H € g=°\ {0} be strictly positive on some open set V C U.
Pick any o € £(U,€). Since the group G acts transitively on U and o(U)
is relatively compact, there exist gq,...,gr € G such that o(U) C ¢1(V) U
-+-Ugg(V). Then Ad,, H is nonnegative and strictly positive on ¢;(V'), hence
Ady, H + -+ + Ady, H is strictly positive on o(U) and therefore belongs to
g".

To prove maximality of g*, let ¢ be any other dominating cone. Take any
H € cand F € g*. Then by Definition 1 there exists K € ¢ such that
F < K, and there exist g € G and ¢t > 0 such that tAd,K < H. It follows
that tAd,F" < H. Since F' € g*, this implies that H is positive on o(U) for
some o € £, and therefore H € g™. O

Lemma 1.5 (Examples of maximal dominating cones).
(i) For the standard contact structure on R* ™ we have g™ = g=°\ 0.

(ii) For the 1-jet space U = J*(M) of a closed manifold M endowed with its
standard contact structure, the mazimal dominating cone g* consists of all
nonnegative functions whose support contains a neighborhood of a Legendrian
submanifold isotopic to the zero section.

(iii) For (S*~1\ I, &) as in Ezample (i1) in Section 1.3, the cone g
consists of all nonnegative functions which are positive on an image of the
equatorial sphere S* ' NIIi under a contactomorphism isotopic to the iden-
tity.

(iv) In the special case (S® \ Iy, &), which is the same as R\ 0 with the
standard contact structure inherited from R3, the cone g* can also be char-
acterized as consisting of all nonnegative functions whose support contains a
neighborhood homologically non-trivial 2-sphere.

Proof. Both contact manifolds in (i) and (ii) admit complete contact vector
fields which contract every compact subset to an arbitrarily small neighbor-
hood of the origin in case (i), and to an arbitrarily small neighborhood of

n—1
the zero section in case (ii). For (R*~! dt + > (z;dy; — y;dx;)) this is the
1

n—1

vector field —22 — ; <$ja%j + yja%), and for (J'(M),dz + pdq) this is the

vector field —% — pﬁﬁ. But the group G acts transitively on points and on
p
Legendrian submanifolds isotopic to the zero section, respectively. In (iii),



according to Lemma 1.3 the space S?"~1\II}, can be contracted by an element
in £ to a neighborhood of the equatorial sphere S?"~! N II{. For (iv), we
note in addition that any two smoothly isotopic 2-spheres in a tight contact
manifold can be CY-approximated by spheres which are contactly isotopic,
see [9]. O

Remark 1.6. If U contains a compact subset which is not contractible in U,
then the cone g™ never coincides with g=°\ {0}. To see this, pick H, K € g=%\
{0} such that supp(H) is noncontractible in U and supp(K) is contractible
in U. Suppose there exists ¢ € G and t > 0 with tAdjd < K. Then
we must have g(supp(H)) C supp(K), which is impossible if supp(H) is
noncontractible and supp(K) is contractible in U.

1.5 Partial order on g up to conjugation

Let us denote by © := gt/ ~ the quotient space of g* by the adjoint action
of G on g. The partial order H < K on g* descends to a possibly degenerate
partial order < on © defined on h, k € © by

h < k :<=> there exists H € h, K € k such that H < K.

Lemma 1.7. The following are equivalent:
(a) there exists H € g+ and g € G such that Ad,H < sH for some(0 < s < 1;
(b) for all K1, Ky € gt there exists h € G such that Ad, K; < K.

Proof. Clearly (b) implies (a). Conversely, suppose that (a) holds for ele-
ments H, g and let K1, Ky € gt be given. By Definition 1 there exist ¢; > 0
and h; € G such that

1
t1Ady, K1 < H <L t—Adthg.
2
Applying Adév for some N € N to these inequalities, we obtain
N
HAdY Ay, Ky < AdYH < sVH < -Ady, Ko,
2

Applying Ad,;1 to both sides and dividing by ¢;, we obtain

N
—1 4 4N S
Ady, Adg Ady, K < EKQ.
Hence Ad,K; < Ky with h := h;lgNhl, provided that N is chosen so large
that sV < t;ts. O



We call the positive cone g™ non-orderable up to conjugation if the equivalent
conditions in Lemma 1.7 hold, and orderable up to conjugation otherwise.
Thus to prove orderability up to conjugation of g*, it suffices to find some
pair Ky, K, € g* for which there exists no h € G with Ad, K; < K.

Remark 1.8. a) Even if g* is orderable up to conjugation this does not imply
that the induced binary relation on © is a genuine order. However, we do not
know any counterexamples to this implication. We will discuss the arising
structures in more detail in Section 4 below.

b) If the manifold U is closed then the cone g* is always orderable up to
conjugation for the following trivial reason: the volume integral

e () nal)”

U

satisfies I(Ad,H) = I(H) for all g € G, so one can never have AdgH < sH
for some 0 < s < 1. Note that the strict order H > G does descend in
the case of a closed U to a genuine order on O, as it follows from the same
preservation of volume argument.

Proposition 1.9. (a) If (U,§) is the standard contact R*"™ or JY(M), as
in Lemma 1.5 (i) and (ii), then g* is non-orderable up to conjugation.

(b) More generally, let (V,\) be the completion of a Liouville domain (see
[4]). Then for its contactization (U = V x R ker(\ + dt)) the mazimal
dominating cone gt (U, &) is non-orderable up to conjugation.

Proof. Since (a) follows from (b), it suffices to prove (b). The Liouville
flow ¢5 on V induces a contact diffeotopy s(z,t) = (¢ps(z),e’t) of V x R
satisfying ¢X(\ + dt) = e*(A + dt). Let C C V x R be the attractor of the
flow 1, when s — —oco. Take K, Ky, € g", K; > K,. By the definition of
the cone g* there exists a contacomorphism h € G such that supp(Ad,K>)
contains a neighborhood of C. The flow 15 when s — —oo moves supp(K7)
into an arbitrarily small neighborhood of C', and hence for sufficiently large
—s we have supp(Ady, (K1) = supp(K; o ;') C supp(Ad,Ks). Therefore,
(Ady, K,)(z) = e Ky (1p; ' (x)) < AdyKy(x) for for sufficiently large —s, or
(Adp-10yh, K1) (z) < Ks(x), which means that g* satisfies condition (b) in
Lemma 1.7. [

Proposition 1.9(b) combined with Lemma 1.3(b) yields

Corollary 1.10. If k > n, then for (S*" '\ I, &) from Section 1.3 the
cone gt is non-orderable up to conjugation. O
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By contrast, we will show below in Section 2.2

Theorem 1.11. If k < n, then for (S* 1\ I, &) the cone g™ is orderable
up to conjugation: there exist H, K € g for which there is no g € G with
Ad,H < K. More precisely, there exists a surjective map w : g* — (0, 00)
such that w(Ad,H) = w(H) for g € G, w(sH) = s ?w(H) for any s > 0
and such that H < K implies w(H) > w(K).

2 Orderability and symplectic non-squeezing

In this section we will rephrase Theorem 1.11 as a non-squeezing result for
suitable unbounded domains in the standard symplectic space (R*,w =
> Tdx; Adyj). Throughout this section we fix k£ with 1 < k& < n and denote

U = gl \Hk, Gy = Diffc(Ukafst)‘

2.1 The class ¢, of unbounded domains in R*"
Introduce “polar coordinates”, r = |z|* + |y|*> € R, 0 = r~/%(x,y) € S*1,
so that the standard Liouville form Ay can be written as

1
Ast = = Z(xjdyj —y;dx;) = rog,
1

n

2

where o is the standard contact form on the unit sphere S?"~! which defines
the standard contact structure & = ker ay. The coordinates (r,6) identify
(R?™ \ 0, \st) with the symplectization (R, x S?"~! rag) of the standard
contact structure on S**~1. Thus the symplectization of U, = S?"~!\ I,
gets identified with R?" \ TI,.

Note that any contactomorphism ¢ of (S?"7! &) defines a symplectomor-
phism S¢ : R — R?", singular at the origin, by the formula

S9(r,0) = (—7:9)).

where ¢* o = ¢4(6) gt

Lemma 2.1. If ¢ is contactly isotopic to the identity, then there exists a
constant K, > 1 such that for any € > 0 there exists a smooth symplec-
tomorphism S-¢ of R*™ which equals the identity on the £-ball around the
origin and which coincides with S¢ outside the (Kue)-ball. Moreover, if ¢ as
well as its isotopy to the identity equal the identity near some compact subset
C C S then S.¢ can be chosen equal to the identity on the cone over C.
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Proof. Let ¢y, t € [0 ] be a contact isotopy of (S?"71, &) connecting ¢ = id
to ¢ = ¢ with ¢; =id on C. Let S¢, : C"\ 0 — C™\ 0 be its symplectization.
Set

M = =
trél[(z]mli] max(cg, ), m tren[érh min(cg,)

and note that m <1 < M. Then for any § > 0,¢ € [0, 1] we have

{TS%} C Sou({r <o}) C {rS%}-

Therefore, we can extend the Hamiltonian isotopy S¢¢|{>s) to a Hamiltonian
isotopy g; : C* — C" such that gy = id and for all ¢ € [0, 1]

gt|{r§ﬁ}u{eem = id, gt|{7«2273} = S¢y.

Then for 6 = 2Me the symplectomorphism S.¢ := ¢; satisfies the required
conditions with Ky = 41, O

Given a nonnegative compactly supported contact Hamiltonian H : U, — R
we extend it by 0 to $?"~! and will keep the notation H for this extension.
Recall that according to Lemma 1.5 the cone g™ = g+ (Uy) consists of all
functions satisfying the conditions

(i) H=0near S* NI, =8*""'"Nn{zr =0,y =+ =y, = 0};

i is positive on the image ¢(5*" " N of the equator under a con-
i) H i iti the i SZ=1N1I;) of th t d
tactomorphism g € Gy.

We now define a class €, of domains in R?" which, in particular (see Lemma
2.2 below), contains all the domains of the form

V(H):={(r,0) e Ry x S*™ 1| rH() < 1}, H € gt (Uy).
First, we add to € all hyperboloids
1 n n—k 1 n
Ve = {? (fo—l—ny) - Y i< 1}, a,b > 0.
1 1 n—k+1

Let DZ’b denote the identity component of the group of Hamiltonian diffeo-
morphisms of R?" supported away from Vk“’b and set



It follows from Lemma 2.1 above that for any contactomorphism ¢ € Gy the
smoothed symplectomorphism S.¢ : R?* — R?" belongs to D’ if a and 4 are

small enough. Moreover, S.¢ agrees with S¢ outside Vk“/’b/ for any & > 0 and
a’ > Kye, where Ky is the constant from Lemma 2.1. Thus, although the

smoothing S.¢ is not canonical, its action on domains which contain V,f/’b/
with o’ > Kye is independent of the choice of the smoothing.

Now we are ready to give the general definition of the domains which form
the class €.

Definition 2. A connected open domain V' € R?*" belongs to € if there exist
ai, by, as, by > 0 and a symplectomorphism ® € D, such that

VeV e(vn),

The group Dy, and hence the group Gy, acts on €, by symplectomorphisms.
Lemma 2.2. (i) For H € g*(Uy) we have V(H) € €.

(it) For H € g™ (Uy), ¢ € Gy and € sufficiently small we have

(ii1) If H, K € g*(Uy) satisfy H > K, then V(H) C V(K).

Proof. Claims (ii) and (iii) are straightforward. To prove (i) we first observe
that, since the class € is invariant under the action of the group Dy, we can
replace H by Ad,(H) for any g € Gj. Hence we can assume without loss of
generality that H|32n—1mné. > 0. For (x,y) € R*" we denote

TL—kJ n v
w=laf +3uf vi= Y wf r=utv=lf P =
1 n—k+1

Then p = tan®«, where « is the angle between the vector (z,y) € R*" and
the subspace II;-. We can view p as a function on S?"~1. Take H € g" and
set M := max(H). Then H|,>, = 0 for a sufficiently large p;, and for a

sufficiently small p, we have m := rgin(H ) > 0. Figure 1 shows that
P<po

1 1
OV(H) CQ:= {vSpm,u—ka M}\{v<p0u,u+v> E}
Consider the hyperboloids
ab u v a' b U v
Vi _{?_b_z<1}7 Vi _{(a’)z_(b’)2<1}.
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Figure 1: Squeezing V(H) between two hyperboloids

An elementary geometric argument illustrated by Figure 1 ! shows that

Q C ‘/;cal,bl \ ‘/;ca,b,

provided that
b 2 ,01T
2 o -1
a®<T:=(MQ1+p))", (5) >
and )
(;) < po, (@)* > e

We thank V. Stojisavljevi¢ for preparing this figure.
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These inequalities express the condition that the dotted lines # — # =1

and @E T e 1, representing the boundaries of the domains Vka’b and

Vk“/’b/, do not intersect the shaded region representing 2. Thus, this choice
of a,b,d’, b guarantees that V** ¢ V(H) C V,f/’b/, hence V(H) € €. O

2.2 Capacity-like function on ¢, and proof of Theo-
rem 1.11

The following theorem will be proved in Section 3.4 below.

Theorem 2.3 (Capacity). There exists a capacity-like function w : € —
(0, 00) with the following properties:

(i) w(¥(V)) =w(V) for all ¥ € Dy and V € &;
(i1) V- C V" implies w(V') < w(V') for all V,V' € &;
(iii) w(sV) = s?w(V) for all s > 0;

(iv) w(V;"") = ma? for all a,b > 0.

Corollary 2.4. For any domain V € € and s > 1 there is no ¥ € Dy, such
that U(sV) C V.

Proof. By Theorem 2.3(iii) we have
w(sV) = s*w(V) > w(V),
and the result follows from Theorem 2.3(i) and (ii). O

Proof of Theorem 1.11. We define the required function w : g*© — R by the
formula w(K) := w(V(K)). For g € Gj, we have V(Ady(K)) = Sy6(V(K)),
so Theorem 2.3(i) implies that the function w is constant on orbits of the ad-
joint action. We have V(sK) = s 2V (K), hence w(sK) = s ?w(K) in view
of Theorem 2.3(iii). This also yields surjectivity of w, and Theorem 2.3(ii)
implies that if w(H) < w(K) then there is no contactomorphism g € G such
that Ad,H < K. O
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3 Invariants of domains from ¢,

3.1 Floer-Hofer symplectic homology of bounded do-
mains in R?*"

Filtered symplectic homology SH(®"(U) of a bounded open set U in the
standard symplectic R?*" was introduced by A. Floer and H. Hofer in [14]
as a far-reaching generalization of earlier symplectic invariants, such as Gro-
mov’s symplectic width [17], and later symplectic capacities, see [18]. Since
then the invariant has been greatly generalized and expanded, but for the
purposes of this paper we will use the original Floer-Hofer version up to the
following slight modification. Instead of taking as in [14] a direct limit over
Hamiltonians which are negative on U and equal a positive definite quadratic
form at infinity, we will take an inverse limit over nonpositive Hamiltonians
with compact support in U. This version enjoys the same functorial proper-
ties as the one in [14] but will be more convenient for the computations below.
For domains with smooth boundary of restricted contact type, our version
of symplectic homology differs from the one in [14] only by a degree shift of
—1 (this follows e.g. from the duality results in [7]). We use Z/2-coefficients
and grade all groups by Conley-Zehnder index.

Let D denote the group of (not necessarily compactly supported) Hamilto-
nian diffeomorphisms of R?". The following proposition summarizes some
relevant properties of symplectic homology, see [14, 15].

Theorem 3.1 (Floer-Hofer). Filtered symplectic homology assigns to each
bounded open subset U C R?" and numbers 0 < a < b < oo a Z-graded
7./ 2-vector space SH P (U) with the following properties.

(Functoriality) Each ¥ € D induces isomorphisms
U, : SHEeD(U) =5 SHEY (W(U)).
(Transfer map) Each inclusion v : U < V induces a homomorphism
u: SHEOY (V) = SHEY(U)

It follows that for W € D with W(U) C V, the inclusion v : V(U) — V
together with U induces a homomorphism

V=0t ou s SHEO(V) = SHO(U).

(Isotopy invariance) For a smooth family W € D with V*(U) C V' for all
s € [0,1], the maps V§ : SH@) (V) — SH@Y)(U) are independent of s.
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(Window increasing homomorphism) For 0 < a < b and 0 < o’ < V' with
a<a and b <b we have natural homomorphisms

SH @Y (U) — SH@Y)(1)).

(Symplectic homology of a ball) The symplectic homology in the action win-
dow (0, c) of the ball B> of radius a in R*" is given by
7)2, c¢>ma® and j = n,
0,c n\ ~v - C
SH]( (B = {7Z/2, ¢> na? cmdyzn(ZLmj—o -1,

0, otherwise.

3.2 Symplectic homology for domains from €;

We extend the definition of symplectic homology to unbounded open domains
V C R? by
SH (V) = lim SH*Y(U),
P

where the inverse limit is taken over all bounded open subsets U C V. We
also define symplectic homology in the infinite action window (a,c0) as

SH @) (V) := lim SH®) (V).

Cc— 00

The extended symplectic homology still satisfies the properties in Theo-
rem 3.1. However, the invariants one can extract from these general proper-
ties are not sufficient for our purposes. Instead, we will concentrate on the
special class €, of unbounded domains introduced in Section 2 above and
study their invariants under the smaller group D, which preserves this class.

We begin with the computation of symplectic homology of the hyperboloids
Va,b
e
Proposition 3.2. Let 1 <k <n and 0 < c < oco. Then:
(a) For a,b > 0 we have

7)2, c¢>ma® andj=n—k,
7)2, c> ma? andjz(n—k)(QL#J—l)—l,

0, otherwise.

I

SHJ(O,C) (Vka,b)

ISHISN

(b) Fora>a, 2 <% and ¢ > na® the transfer map
Z/2 = SHYL(G) = SHES (V) = 2)2
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s an isomorphism.

(c) For ¢ > ma* the window increasing homomorphism
0,c a,b 0,00 a,b
Zj2 = SHY(VE') = SHYD (Vi) = 22
s an isomorphism.

Heuristically, this result is easy to understand: All closed characteristics on

the boundary of Vka’b satisfy 2z, p4y1 = --+ = 2, = 0, so they agree with

the closed characteristics on the boundary of the ball B2 of radius a

in R2"=*) whose symplectic homology is given in Theorem 3.1. The actual
proof of Proposition 3.2 will be given in Section 3.5 below.

Corollary 3.3. For any domain V € & there exists ¢y such that for each
¢ > co and for all a,b with Vk‘“b C V., the composition

ave: SHY (V) = SH) (veby - sHO=) (veby = 7,/2

n—

(where the first map is the transfer map and the second one the window
increasing homomorphism) is surjective.

Proof. Let V € € and V" € V. By definition, there exist ay, by, ag, by > 0
and ® € Dy, such that V""" € V € (V). We choose a; so small that

Vit c vt c Vo oVt

and &, = id on Vk‘“’b1 for all s € [0,1], where &, is the isotopy in Dy
from the identity to ®; = ®. Set ¢y := ma3 and consider ¢ > ¢;. Then
OV = et ¢ VP2 5o by isotopy invariance the map

(@512 2/2 = SHY) (V) — SHO) (vert) = 7/2

is independent of s € [0, 1], hence an isomorphism by Proposition 3.2(b). It
follows that the composition of the obvious maps

z/2 = SH) (V") = SHO) (@(V)) — SH(V)
= SHUVE) = SH2VE") =22

is an isomorphism. This implies that SHS&?(V;’b) = Z/2 and the map
SHS)_’Z)(V) — SH&?(Vk‘L’b) is surjective, which combined with Proposi-
tion 3.2(c) proves the corollary. O
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3.3 A capacity for domains from ¢,
For any ¢ > 0 and V' € € we define the augmentation

ave: SHY (V) = SH (veb) = 7/2

as in Corollary 3.3, where Vka’b C V. For another hyperboloid Vka,’b/ CcV we
find a hyperboloid Vk‘”’b1 C Vka’b N V,f/’b/, and the commuting diagram

SH") (V) SH" @ (yety = 7/2

n

| -

z/2 = SH, ) (Vi) SH, (V™) =2/2

IR

shows that ay,. does not depend on the choice of a,b. Corollary 3.3 shows
that ay,. is trivial for sufficiently small ¢ and surjective for sufficiently large c.
The following corollary now is immediate from the properties of symplectic
homology in Theorem 3.1.

Corollary 3.4. (i) For U € Dy, and a,b such that ¥ = id on V" we have
the commutative diagram

ay,c

SHY)(V) SHYD (Ve = 2/2

e ¥

SHYS (w(v) SO H (W) = viet) =22

(i1) For an inclusion v : V < V' we have the commuting diagram

aV’,c

SH") (V") 7.2
lﬂl \id
SH")(v) — 2= 7)2 .

3.4 Proof of Theorem 2.3

As in [15], we define the capacity-like function w : €, — (0,00] on V € €
by
w(V) :=inf{c | ay, : SH&‘,?(V) — 7Z/2 is surjective}.
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Let us verify that the function w has all the properties in Theorem 2.3.
Properties (i) and (ii) follow from the commuting diagrams in Corollary 3.4,
and (iv) follows from Proposition 3.2. Property (iii) follows as in [15], noting
that the conformal rescaling z — sz on R*" preserves the class of domains
¢, and multiplies actions by s2.

3.5 Proof of Proposition 3.2

To compute symplectic homology of the unbounded domain V = Vk(a’b), we
first need to choose an increasing family Vo C V' of bounded subdomains
exhausting V. By definition of the inverse limit it is up to us which sequence
to choose, and we do it carefully to control the dynamics of the arising
Hamiltonian vector fields.

For C' > 0 set go(t) := max(—t* 3t> — 4C%) and let go : R — R be a
smoothing of the function go. We do the smoothing such that for small

e>0
~ (t) - _t27 |t| S C— g,
IO =312 a2, |t > C +¢,

and gc has minima at the points +C' with the minimal value go(C) = —C?+
e. Moreover, we can choose gc such that

%@’C(t) > Ge(t) forall t € R. (2)

Consider the function He(x,y) := z—z + gcb—gy) on R?, thus

22 2 ‘
a2 v y’§0_57
HC xZ, = @ b2 <
() {—‘2%2—#2—24—%2, ly| > C +e.

The critical points of Hs are a saddle point at the origin and two minimza
2

at (0,+C) with the minimal value #2. Note that He(z,y) > % — &,
Moreover, condition (2) implies

® yge(y)

1 (xaHC 8HC>

2\ oz Ty Ay

Lemma 3.5. The Hamiltonian system of He on the plane (R? dx A dy) has
the folowing properties:

(i) all its trajectories except the two homoclinic orbits at the origin are
closed;
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(i1) for every closed trajectory v we have f,y xdy > 0;

11) for every nonconstant closed trajector with Hely > —0—22 we have
Y ] Yy v 4
fw xdy > C?A,y, with a constant A,y depending only on a and b.

Proof. The zero level set of Ho forms a figure eight consisting of the two
homoclinic orbits at the origin and enclosing the two minima. Assertions (i)
and (ii) follow from this picture. For (iii), consider the closed trajectories v
of value Hel,, = i’; enclosing the points (0,+C). Let Vi be the region
bounded by 7+. Then Vo N{ty > C +¢e} = ENn{ty > C + ¢} for the
ellipse £ = {i—; + 3by2 < 1;1’,)02 }, and rescaling by C' shows that the area of
Vin{xy > C + ¢} equals C? Agup with a constant A,; depending only on

a and b. This proves fw xdy > C?A,y, and the area of each nonconstant

—%22 is larger than this one. O

closed trajectory v with Hely > —3

Define now the open domain
Vo i={G <1} c R™"

with the Hamiltonian

G(x1, - Ty Y1y Yn) Z J
1

n

+ > Helwj,y)).

n—k+1

Lemma 3.6. V; is a bounded domain contained in Vka’b with smooth re-
stricted contact type boundary OVe. The closed characteristics on OV fall
mnto two groups:

(i) closed characteristics on the sphere S of radius a in the subspace R2(n=F)
R?", of actions kra® for k € N;

(ii) all other closed characteristics have actions > C?B,y, with a constact
B, depending only on a and b.

Proof. Vi is a bounded because G is exhausting, and Vi C V,f’b follows from
22 2 . . .

He(z,y) > % — %. Its boundary is of restricted contact type because it
is transverse to the Liouville vector field Z = 1 37 (z;2- + yia%), which in
turn follows from (3) by computation at points of 0V = {G = 1}:

n—k 2 2 n

rs+ys 1 OHc OHc
7.6=N"2"7% ( )
; a? i Z 8x TGy 0y,

n—k+1

B " 1/ OHc (’)HC
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Let us study the periodic orbits on 0V. First, we observe that the corre-
sponding Hamiltonian system with the Hamiltonian G is completely inte-
grable and has integrals

oo (5 it
e He(zjyj), j=n—k+1,...,n.

Hence the simple periodic orbits are given by equations G, = ¢; for j =

1,...,n, with > ¢; = 1.
1

Let us make an accounting of periodic orbits. First of all we have orbits
{Tnks1 =VYnbt1 = ... Tp =Yy, =0, G, =¢; > 0,7 =1,...,n — k} with

n—k
>~ ¢; = 1 which foliate the sphere S of radius a in the subspace R2(=k)
1

R?". These orbits and their multiples correspond to group (i) in the lemma
and their actions are kmwa? for k € N.

Consider now a simple periodic orbit v which is not in group (i). Note that
7 is a product of periodic orbits v; for the Hamiltonians G, and each ~; has
nonnegative action by Lemma 3.5(ii). By assumption, at least one of the
orbits 7y;, j =n —k+1,...,n, is not the constant orbit at the origin.

If at least one of the constants ¢j, j = n —k 4+ 1,...,n is positive, then
the action of the orbit ;, and hence of v, is > C?4,; by Lemma 3.5(iii).

n n—~k
Otherwise, set  :== — >  ¢; > 0. Then ) ¢; = 1+ 6, and therefore
n—k+1 1

n—=k
> fv_xjdyj = 7(l + §)a* If§ > %, then the action of the orbit ~ is
1 J

> 7r(1 + %)az. Otherwise, all the constants ¢; for j =n—k+1,...,n

satisfy ¢; > —%. By assumption, at least one of the corresponding orbits

7; is nonconstant, so by Lemma 3.5(iii) the action of this v;, and hence of ~,
is > C?A, . This proves Lemma 3.6. O

Deformation to a split Hamiltonian

We write G = I + F, with the Hamiltonians

n—=k n
Fi=> G ROPSR Fi= > G :R*5R
1

n—k+1

Recall that F, F, have the following properties:
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Fy and F} are exhausting with Fy > —(n — k)CZje and I, > 0;

Z; - F; > F; for the respective Liouville fields Z;;
all periodic orbits of F; have action > 0;

all periods of nonconstant periodic orbits of F; are bounded below by
some ¢ > 0;

(v) all second partial derivatives of F; are uniformly bounded,

(vi) the (non-Hamiltonian) action of each k-fold covered periodic orbit z,
of Fy satisfies A(29) = mka®Fy(22) > ma*Fy(zy).

Consider a family of Hamiltonians H, : R*® — R, s € R, of the form

Hy(21,22) = hs (Fl(Zl), Fz(zz))

with a smooth family of function h, : R? — R satisfying the following prop-
erties:

(i) hs is locally constant in s outside a compact subset of R;

(ii) outside a compact subset of R? we have 0 < g—?{ <dor0< g%; <0

(or both);

(iii) all second partial derivatives of the function R® — R, (s, Fy, Fy) —
hs(F}, F») are uniformly bounded.

Lemma 3.7. For H, as above all 1-periodic orbits are contained in a compact
set, and for each ¢ > 0 the Floer homology FH(O’C)(HS) is well-defined and
independent of s.

Proof. For each s the 1-periodic orbits of H, are of the form z = (z1, 22),
where the z; satisfy %, = 2% Xp(2). Hence Fy, F, are constant along z

OF;
and z;(t) = %(gf;; > for periodic orbits 7; of X of period g}}’;?. Therefore,

conditions (iv) on F; and (ii) on h, imply that all 1-periodic orbits of Xy,
are contained in a compact set.
Next, let u : R x S* — R?" be a Floer cylinder connecting 1-periodic orbits.
It satisfies

us + tuy + VHg(u) =0,

where ug, u; denotes the partial derivatives with respect to the coordinates
(s,t) € R x S1. The bounds on the second derivatives of F; and h yield
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uniform bounds |D?H,| < A on the Hessian of H, and |Vd,H,(u)| < Blul
on the gradient of the s-derivative 0;H,. Using this, a standard computation
shows that the function p(s,t) := |u(s,t)|? satisfies the estimate

Ap = |ug|* 4 |w]* + (u, iD*H (u)u, — D*H (u)ug + VO, Hy(u))

1
> Juo|? + |uaf? = Alul(fus| + ) = Blul® > —(54° + B) .

By an argument in [3], this estimate implies that Floer cylinders for the
s-dependent Hamiltonian H; remain in a compact set, hence the Floer ho-
mology of Hy is well-defined and independent of s. m

Pick a nondecreasing function ¢ : R — R satisfying ¢(t) = 0t/2 for t > 0
and ¢(t) = —m for ¢ < ¢ with some large constant m. For s € [0, 1] consider
the Hamiltonian

HS = hs(F17F2) = (]_ — 8)¢(F1 =+ F2 — 1) + S¢<F1) -+ S¢(F2 — ].)

Lemma 3.8. For ¢ as above with m > ¢ each 1-periodic orbit (z1, z2) of H
with action in the interval (0, c) satisfies z1 =0, and zy is a 1-periodic orbit
of ¢(Fy — 1) of action ma’k for k=1,...,[-5].

Proof. Consider a 1-periodic orbit z = (21, 22) of Hs with action in the in-
terval (0, c). Its components satisfies the equations

b= ((1 — )G (Fi+ Fy— 1) + 8¢’(F1)>XF1(21),
by = ((1 — )G (F + Fy — 1) + s¢9 (Fy — 1)>XF2(22).

We distinguish three cases.

Case 1: z; is not constant. Then by Lemma 3.5, for the action to be below ¢,
2 .

each nonconstant component of z; must have value Ho < —4%. Since each

constant component has value < 0 and at least one component is noncon-

stant, we deduce

It follows that ¢(F)) = —m and ¢'(F;) = 0, so z; satisfies the equation
Z = (1—9)¢(Fy + Fy — 1)Xp, (21). Since 2z, # 0, we must have s < 1 and
Fi+ Fy—1 > —6. Together with the preceding displayed equation this yields

Fo(ze) >1—=0—Fi(z) > 11—+ %, which in view of property (vi) of F;

implies A(az) > ma? (1 -0+ %) > ¢. So Case 1 cannot occur.
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Case 2: z; is constant but not all its component are zero. We rule this out
by distinguishing several cases.

(i) If Xp, =0, then each components of z; is a critical point of H¢, with at
least one of them being nonzero. Since Hx(0) = 0 and He = at the minima

we conclude Fi(z;) < —% < —%, which is ruled out as in Case 1.

(ii) If Xp, #0and 0 < s < 1, then we must have ¢/ (Fy+Fy—1) = ¢/(Fy) =0,
hence ¢p(F1+Fy—1) = ¢(Fy) = —m. Then z; satisfies 2y = s¢/(Fo—1) X p, (22),
so by the choice of ¢ it can only be l-periodic if ¢(Fy — 1) < 0. Thus
Hy(z) < —m and the Hamiltonian action of z satisfies Ag, (z) > m > c.

(iii) If Xp, # 0 and s = 0, then ¢'(Fy + F5, — 1) = 0, hence Hy(z) =
¢(F1 + 5 — 1) = —m and again Ag,(z) > m > c.

(iv) If Xp, # 0 and s = 1, then ¢/(Fy) = 0, hence ¢(F;) = —m. Then
2y = ¢ (Fy — 1) Xp,(22) implies ¢(Fy — 1) < 0, thus Hi(z) < —m and again
A, (2) >m > c.

Case 3: z; = 0. Then Fi(z1) = 0 and 25 is of the form described in the
lemma. [l

Proof of Proposition 3.2. Lemma 3.7 and Lemma 3.8 together imply (after
replacing Hy by H,) for a nondecreasing function o : R — [0,1] which
equals 0 for s < 0 and 1 for s > 1) that the Floer homology FH(QC)(HS) is
independent of s € [0, 1]. By definition, the Hamiltonian Hy(z) = ¢(G(2)—1)
computes the symplectic homology of Vi,

FHO)(Hy) = SHOI (V).
The Hamiltonian

Hl(Zl, Zg) = ¢(F1(Zl>) + ¢<F2(22> — 1)

is split, as well as the corresponding Floer equation. It follows that all
its Floer cylinders are contained in the subspace R? ™% so H; computes
the symplectic homology of the ball B2"™ of radius a in R2™%). This
symplectic homology is computed in [15], up to an index shift by 1 due to
our different conventions, to be

Zy, c¢>ma?and j=n—k,
SH](-O’C)(BZ("_k)) ~ {7y, c>ma? and j = (n—k) <2L @l - 1) -1

Ta?

0, otherwise.

This proves part (a) of Proposition 3.2. Parts (b) and (c) follow by similar
arguments. ]
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4 Geometry of the dominating positive cone

Let g* be the maximal dominating cone of an open contact manifold (U, €).
The group Ry acts on © := g*/ ~ by multiplication. We assume that g* is
orderable up to conjugation and consider the binary relation < on © from
Section 1.5. For a pair of classes f, h € © define

p(f,h) =inf{s > 0| f < sh}. (4)

The fact that g* is dominating implies that the set on the right hand side is
nonempty, and orderability up to conjugation means that there exist a,b € ©
such that p(a,b) # 0. Furthermore, clearly we have sub-multiplicativity

p(f,h) < p(f,9)p(g,h) forall f,g,hc©. (5)

Observe that p(h,h) > 1 for all h € © by Lemma 1.7 (a). On the other hand,
obviously p(h,h) <1 and hence p(h,h) = 1.

We claim that p(f,g) # 0 for all f,g € ©. Indeed, take a,b with p(a,b) # 0
and write, by sub-multiplicativity,

0 < p(a,b) < p(a, fp(f,9)p(g,b) ,

yielding p(f, g) # 0. The claim follows.
Define now a function d: © x © — R by

d(g, h) = max(|log p(g, )], [log p(h, g)|) - (6)

The above discussion shows that d is a pseudo-metric on ©: it is symmetric,
nonnegative and satisfies the triangle inequality. It is unknown whether d
is a genuine distance on © (and sounds unlikely that it is). Introduce the
equivalence relation ~ on © by f ~ g whenever d(f,g) = 0. This relation
measures the deviation of d from a genuine metric. Interestingly enough, it
also measures the deviation of the binary relation < from a genuine partial
order. Indeed, if f < g and g < f, then we have p(f,g) <1 and p(g, f) < 1.
By (5),
L=p(f, f) < p(f.9)r(9, ),
and hence
p(f.9) =plg, f)=1.

This yields d(f,g) = 0 and hence f =~ g. Denote = := ©/ =, and note that
the pseudo-metric d descends to = as a genuine metric D. What about the
partial order? Define a relation < on = as follows: p < ¢ if there exist
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f,g € © and a sequence of positive numbers ¢; — 0 so that p = [f], ¢ = [g]
and f < (1 +¢;)g for all i. (The &; > 0 are needed because of the infimum
in (4)). Note that this is a transitive and reflexive relation. We claim that
< is a genwine partial order. Indeed if p < ¢ and ¢ < p, then D(p,q) =0
and hence p = ¢. It would be interesting to explore the geometry of = with
respect to D.

Remark 4.1. The quantity p and the pseudo-metric d has cousins in the earlier
literature. On the one hand, they can be considered Lie algebra counterparts
of the relative growth between positive contactomorphisms, and the corre-
sponding pseudo-metric, respectively, studied in [13]. On the other hand,
each compactly supported non-negative function H on U defines a “contact
form” o/H on U, where the quotation marks stand for the fact that this
form could be infinite and certainly is infinite outside a compact set. With
this language, the adjoint action of contactomorphisms on functions corre-
sponds to the action of contactomorphisms on contact forms, and the metric
d is an analogue, for open manifolds, of the contact Banach-Mazur distance
introduced by Yaron Ostrover and the third-named author and discussed in
[19, 20] in the context of closed contact manifolds.

Example 4.2. Consider (5?1 \ II;, &) as above with k < n. The function
w: gt — (0,00) from Theorem 1.11 descends to a function w : © — (0, 00)
with the following properties:

(i) h = f=w(h) > w(f);
(i) w(sh) = s 2w(h) forall s >0,h €O .

These properties readily yield the following inequality:

Lo w(/f)

d(f>h)25’10gm|- (7)
For instance, this shows that d(g, sg) = |log s|, and in particular the restric-
tion of the pseudo-metric d to each orbit of the R -action on O is isometric
to the Euclidean line. It would be interesting to explore whether © admits
a quasi-isometric embedding of the Euclidean RY for N > 2. Let us men-
tion also that the above conclusions continue to hold verbatim for the metric
space (2, D).
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