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1 Introduction

A partial order on groups of contact diffeomorphisms was introduced in [13]
as a contact analog of Hofer’s geometry for groups of Hamiltonian diffeo-
morphisms of symplectic manifolds. In this paper we begin studying the
remnants of this order on the conjugacy classes of contactomorphisms. Our
main interest in this paper are non-compact contact manifolds, and more
specifically a special class of non-compact contact manifolds which we call
convex at infinity, see Section 1.3 below. While orderability problems for
closed manifolds have obvious answers on the level of Lie algebra of contact
vector fields, the situation for non-compact manifolds is quite subtle already
on the Lie algebra level. Problems of this kind naturally arisen in connection
with constructions of contact structures in [1]. The goal of the paper is to
illustrate the arising phenomena on a restricted class of examples, leaving
a more general study, both in the Lie algebra and the group cases, to our
forthcoming paper [5].

1.1 Groups of contactomorphisms and their Lie alge-

bras

Let (U, ξ) be a coorientable noncompact contact manifold. We fix a contact
form α for ξ and denote by R its Reeb vector field. Let

G := Diffc(U, ξ)

be the identity component of the group of contactomorphisms of (U, ξ) with
compact support. The Lie algebra g of G, which consists of compactly
supported contact vector fields, can be identified with the space C∞c (U) of
smooth functions with compact support by associating to each function K
its contact vector field

YK = KR + ZK , ZK ∈ ξ, (dK + iZK
dα)|ξ = 0.
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Note that
dK(ZK) = 0, LYKα = dK(R)α.

Conversely, given a contact vector field Y its contact Hamiltonian is defined
by the formula K(x) = α(Y (x)), x ∈ U . Let us stress the point that to
identify the Lie algebra g with the function space C∞c (U) one needs to fix a
contact form.

The adjoint action of ψ ∈ G on K ∈ g computes to

AdψK = (cψK) ◦ ψ−1, (1)

where cψ : U → R is the positive function satisfying ψ∗α = cψα. The Lie
bracket on g is given by

{H,K} = dK(XH)−KdH(R).

The Lie algebra carries a canonical partial order defined by H ≤ K if H(x) ≤
K(x) for all x ∈M , which is Ad-invariant by equation (1).

1.2 Dominating positive cones

Denote by g≥0 the cone in the Lie algebra g ∼= C∞c (U) consisting of nonneg-
ative functions.

Definition 1. A subcone c ⊂ g≥0 \ 0 is called a dominating (positive) cone if
the following hold:

(i) c is Ad-invariant;

(ii) c is relatively open in g≥0 \ {0};

(iii) for each H ∈ g there exists K ∈ c with H ≤ K;

(iv) for all H ∈ g, K ∈ c there exist t > 0 and g ∈ G such that tAdgH ≤ K;

(v) for each H ∈ g≥0 \ {0} there exist g1, . . . , gk ∈ G such that Adg1H +
· · ·+AdgkH ∈ c.

Remark 1.1. Property (v) is not needed in this paper, but will become rele-
vant for the discussion of partial orders on contactomorphism groups in [5].

Clearly, if the manifold U is closed then the only dominating cone in g is the
cone g>0 consisting of everywhere positive functions. If U is not closed, then
a dominating cone in general need not exist. For instance, S1 ×R

2 with the
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contact form dt+ 1
2
(xdy−ydx) does not admit any dominating cone because

if supp(H) ⊃ S1 ×DR and supp(K) ⊂ S1 ×Dr with r < R, then there is no
contactomorphism g ⊂ G such that g(supp(H)) ⊂ supp(K), see [8].

However, there is an important class of noncompact contact manifolds, called
convex at infinity, for which a dominating cone always exists. We discuss this
class in the next subsection.

1.3 Contact manifolds convex at infinity

A noncompact contact manifold (U, ξ) is called convex at infinity if there
exists a contact embedding σ : U ↪→ U which is contactly isotopic to the
identity such that σ(U) b U , i.e σ(U) has a compact closure in U . The
space of all embeddings σ with this property will be denoted by

E = E(U, ξ).

Note that by cutting off a contact isotopy, the restriction σ|K to any com-
pact set K ⊂ U can be extended to a contactomorphism in the group
G = Diffc(U, ξ).

The notion of contact convexity for hypersurfaces in a contact manifolds
was introduced in [11] and studied in detail in [16]. Let us recall that a
hypersurface in a contact manifold is called convex if it admits a transverse
contact vector field. The coorientation of this vector field is irrelevant because
if Y is contact then −Y is contact as well.

Example 1.2. (i) A major class of contact manifolds convex at infinity is
provided by interiors of compact manifolds with convex boundary. Indeed,
as the required embedding σ one can take the flow for small positive time of
an inward pointing contact vector field transverse to the boundary.

(ii) More generally, suppose a contact manifold (U, ξ) admits a (not nec-
essarily complete) contact vector field Y without zeroes at infinity, which
outside a compact set is gradient-like for an exhausting function φ : U → R.
Then (U, ξ) is convex at infinity. Indeed, first use [10, Lemma 2.6] to con-
clude that for a sufficiently large c the end ({φ ≥ c}, ξ) is contactomor-

phic to (Σ × [0,∞), ξ̂) such that the vector field ∂
∂s

is contact. Here we set
Σ := {φ = c} and denoted by s the coordinate corresponding to the second

factor. There is a contact isotopy ht : (Σ × [0,∞), ξ̂) → (Σ × [0,∞), ξ̂),
t ∈ [0, 1], such that that h0 = id, ht = id near Σ × 0 for all t ∈ [0, 1] and
h1(Σ×n) = Σ× n−1

n
, n = 1, . . . , which implies that h1(Σ×[0,∞)) = Σ×[0, 1).

(iii) In a 3-dimensional contact manifold a generic surface is convex, see [16],
hence the interior of a generic connected compact contact manifold with
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non-empty boundary is convex at infinity. If the boundary components of a
3-manifold are 2-spheres and the manifold is tight near the boundary, then
it is convex at infinity, even when the boundary components are not convex,
see [9].

(iv) On the other hand, the contact manifold S1 × R
2 = (R/Z) × R

2 with
the tight contact form dt+ 1

2
(x dy − y dx) is not convex at infinity, see [8].

Now we will introduce our main example. Let λst =
1
2

n∑
1

(xidyi − yidxi) be

the standard Liouville form on R
2n with its Liouville vector field

Z =
1

2

n∑

1

(
xi

∂

∂xi
+ yi

∂

∂yi

)
,

and let αst = λst|S2n−1 be the standard contact form on the unit sphere
S2n−1 ⊂ R

2n. Let us order coordinates in R
2n as (x1, . . . , xn, y1, . . . , yn) and

denote by Πk a k-dimensional coordinate subspace of R2n which is spanned
by the last k vectors of the basis. For instance, Π1 is the yn-coordinate axis,
while Π2n−1 is the hyperplane {x1 = 0}. Note that Πk is isotropic when
k ≤ n, and coisotropic otherwise. We denote by Π⊥k the orthogonal subspace
spanned by the first 2n− k basic vectors.

Lemma 1.3. (a) For each k = 1, . . . , 2n − 1 the contact manifold (S2n−1 \
Πk, ξst) is convex at infinity. Moreover, it can be contracted by an element of
E to an arbitrarily small neighborhood of the equatorial sphere S2n−1 ∩ Π⊥k .

(b) For k ≥ n the manifold (S2n−1\Πk, ξst) is contactomorphic to J1(S2n−k−1)×
R

2k−2n = T ∗(S2n−k−1 × R
k−n)× R.

Proof. Recall that r = |x|2 + |y|2 induces the canonical isomorphism (R2n \
{0}, λst) ∼= (R+ ×S2n−1, rαst) under which the Liouville vector field Z corre-
sponds to r ∂

∂r
. Thus contact vector fields on S2n−1 are in one-to-one corre-

spondence with Hamiltonian vector fields on R
2n \ {0} which commute with

Z. Note that each linear vector field on R
2n automatically commutes with

Z.

(a) First consider the case k ≤ n. The linear vector field

Ŷk :=
n∑

j=n−k+1

(
−xj

∂

∂xj
+ yj

∂

∂yj

)

is the Hamiltonian vector field of the function
∑n

n−k+1 xjyj. It commutes with
Z, so it descends to a contact vector field Yk to S

2n−1. On R
2n\(Πk∪Π⊥k ) the
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field Ŷk is gradient-like for the Z-invariant function− ln
(
1−

∑n
n−k+1 y

2
j

|x|2+|y|2

)
, hence

on S2n−1 \ (Πk ∪ Π⊥k ) the field Yk has no zeroes and is gradient-like for the

exhausting function − ln
(
1−
∑n

n−m+1 y
2
j

)
. Now convexity at infinity follows

from Example 1.2(ii), and the flow of Yk for very negative times contracts
any compact set S2n−1 \ Πk to a neighborhood of S2n−1 ∩ Π⊥k .

The case k > n follows from part (b) and Example 1.2(ii).

(b) For k ≥ n let

Ẑk :=
2n−k∑

j=1

(
xj

∂

∂xj
− yj

∂

∂yj

)

be the Hamiltonian vector field of the function −
2n−k∑

1

xjyj. It descends to a

complete contact vector field Zk on S2n−1. The flow of Zk contracts every
compact set in S2n−1\Πk to a neighborhood of the isotropic sphere S2k−1∩Π⊥k
and the field −Zk is gradient like for the function

(∑n
1 y

2
j +

∑n
2n−k+1 x

2
j

)
on

S2n−1 \Πk. By Weinstein-Darboux theorem contact structures on S2n−1 \Πk

and J1(S2n−k−1)×R
k−n are isomorphic on tubular neighborhoods of isotropic

sphere S2n−k−1 = S2n−1∩Π⊥k and the 0-section S2n−k−1× 0 ⊂ J1(S2n−k−1)×
R

2k−2n. This isomorphism then extends to a contactomorphism between
S2n−1 \ Πk and J1(S2n−k−1) × R

2k−2n by matching the corresponding tra-
jectories of the contact vector field −Zk with trajectories of the canonical
contact vector field on J1(S2n−k−1)×R

2k−2n contracting this manifold to its
0-section.

1.4 The maximal dominating cone g+

Let (U, ξ) be a contact manifold convex at infinity.

Lemma 1.4. For (U, ξ) connected and convex at infinity the cone

g+ := {H ∈ g≥0 | H|σ(U) > 0 for some σ ∈ E(U, ξ)}.

is dominating and maximal, (i.e., all other dominating cones are subcones of
g+).

Proof. Properties (i), (ii) and (iii) in Definition 1 are clear.

For (iv), consider H ∈ g, K ∈ g+. Then C := supp(H) is compact and K
is positive on σ(U) for some σ ∈ E(U, ξ). By cutting off the contact isotopy
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from the identity to σ outside C we find g ∈ G with g|C = σ|C . Then
supp(AdgH) = g(supp(H)) = σ(C) ⊂ σ(U). Since K|σ(U) > 0, it follows
that tAdgH ≤ K for t sufficiently small.

For (v), let H ∈ g≥0 \ {0} be strictly positive on some open set V ⊂ U .
Pick any σ ∈ E(U, ξ). Since the group G acts transitively on U and σ(U)
is relatively compact, there exist g1, . . . , gk ∈ G such that σ(U) ⊂ g1(V ) ∪
· · ·∪gk(V ). Then AdgiH is nonnegative and strictly positive on gi(V ), hence
Adg1H + · · · + AdgkH is strictly positive on σ(U) and therefore belongs to
g+.

To prove maximality of g+, let c be any other dominating cone. Take any
H ∈ c and F ∈ g+. Then by Definition 1 there exists K ∈ c such that
F ≤ K, and there exist g ∈ G and t > 0 such that tAdgK ≤ H. It follows
that tAdgF ≤ H. Since F ∈ g+, this implies that H is positive on σ(U) for
some σ ∈ E , and therefore H ∈ g+.

Lemma 1.5 (Examples of maximal dominating cones).

(i) For the standard contact structure on R
2n+1 we have g+ = g≥0 \ 0.

(ii) For the 1-jet space U = J1(M) of a closed manifold M endowed with its
standard contact structure, the maximal dominating cone g+ consists of all
nonnegative functions whose support contains a neighborhood of a Legendrian
submanifold isotopic to the zero section.

(iii) For (S2n−1 \ Πk, ξst) as in Example (iii) in Section 1.3, the cone g+

consists of all nonnegative functions which are positive on an image of the
equatorial sphere S2n−1∩Π⊥k under a contactomorphism isotopic to the iden-
tity.

(iv) In the special case (S3 \ Π1, ξst), which is the same as R
3 \ 0 with the

standard contact structure inherited from R
3, the cone g+ can also be char-

acterized as consisting of all nonnegative functions whose support contains a
neighborhood homologically non-trivial 2-sphere.

Proof. Both contact manifolds in (i) and (ii) admit complete contact vector
fields which contract every compact subset to an arbitrarily small neighbor-
hood of the origin in case (i), and to an arbitrarily small neighborhood of

the zero section in case (ii). For (R2n−1, dt +
n−1∑
1

(xjdyj − yjdxj)) this is the

vector field −2 ∂
∂t
−

n−1∑
1

(
xj

∂
∂xj

+ yj
∂
∂yj

)
, and for (J1(M), dz+ pdq) this is the

vector field − ∂
∂z

− p ∂
∂p
. But the group G acts transitively on points and on

Legendrian submanifolds isotopic to the zero section, respectively. In (iii),
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according to Lemma 1.3 the space S2n−1\Πk can be contracted by an element
in E to a neighborhood of the equatorial sphere S2n−1 ∩ Π⊥k . For (iv), we
note in addition that any two smoothly isotopic 2-spheres in a tight contact
manifold can be C0-approximated by spheres which are contactly isotopic,
see [9].

Remark 1.6. If U contains a compact subset which is not contractible in U ,
then the cone g+ never coincides with g≥0\{0}. To see this, pickH,K ∈ g≥0\
{0} such that supp(H) is noncontractible in U and supp(K) is contractible
in U . Suppose there exists g ∈ G and t > 0 with tAdgH ≤ K. Then
we must have g(supp(H)) ⊂ supp(K), which is impossible if supp(H) is
noncontractible and supp(K) is contractible in U .

1.5 Partial order on g+ up to conjugation

Let us denote by Θ := g+/ ∼ the quotient space of g+ by the adjoint action
of G on g. The partial order H ≤ K on g+ descends to a possibly degenerate
partial order � on Θ defined on h, k ∈ Θ by

h � k :⇐⇒ there exists H ∈ h,K ∈ k such that H ≤ K.

Lemma 1.7. The following are equivalent:

(a) there exists H ∈ g+ and g ∈ G such that AdgH ≤ sH for some 0 < s < 1;

(b) for all K1, K2 ∈ g+ there exists h ∈ G such that AdhK1 ≤ K2.

Proof. Clearly (b) implies (a). Conversely, suppose that (a) holds for ele-
ments H, g and let K1, K2 ∈ g+ be given. By Definition 1 there exist ti > 0
and hi ∈ G such that

t1Adh1K1 ≤ H ≤
1

t2
Adh2K2.

Applying AdNg for some N ∈ N to these inequalities, we obtain

t1Ad
N
g Adh1K1 ≤ AdNg H ≤ sNH ≤

sN

t2
Adh2K2.

Applying Ad−1h2 to both sides and dividing by t1, we obtain

Ad−1h2 Ad
N
g Adh1K1 ≤

sN

t1t2
K2.

Hence AdhK1 ≤ K2 with h := h−12 gNh1, provided that N is chosen so large
that sN ≤ t1t2.
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We call the positive cone g+ non-orderable up to conjugation if the equivalent
conditions in Lemma 1.7 hold, and orderable up to conjugation otherwise.
Thus to prove orderability up to conjugation of g+, it suffices to find some
pair K1, K2 ∈ g+ for which there exists no h ∈ G with AdhK1 ≤ K2.

Remark 1.8. a) Even if g+ is orderable up to conjugation this does not imply
that the induced binary relation on Θ is a genuine order. However, we do not
know any counterexamples to this implication. We will discuss the arising
structures in more detail in Section 4 below.

b) If the manifold U is closed then the cone g+ is always orderable up to
conjugation for the following trivial reason: the volume integral

I(H) :=

∫

U

( α
H

)
∧ d
( α
H

)n−1

satisfies I(AdgH) = I(H) for all g ∈ G, so one can never have AdgH ≤ sH
for some 0 < s < 1. Note that the strict order H > G does descend in
the case of a closed U to a genuine order on Θ, as it follows from the same
preservation of volume argument.

Proposition 1.9. (a) If (U, ξ) is the standard contact R2n+1 or J1(M), as
in Lemma 1.5 (i) and (ii), then g+ is non-orderable up to conjugation.

(b) More generally, let (V, λ) be the completion of a Liouville domain (see
[4]). Then for its contactization

(
U = V × R, ker(λ + dt)

)
the maximal

dominating cone g+(U, ξ) is non-orderable up to conjugation.

Proof. Since (a) follows from (b), it suffices to prove (b). The Liouville
flow φs on V induces a contact diffeotopy ψs(x, t) = (φs(x), e

st) of V × R

satisfying ψ∗s(λ + dt) = es(λ + dt). Let C ⊂ V × R be the attractor of the
flow ψs when s → −∞. Take K1, K2 ∈ g+, K1 ≥ K2. By the definition of
the cone g+ there exists a contacomorphism h ∈ G such that supp(AdhK2)
contains a neighborhood of C. The flow ψs when s → −∞ moves supp(K1)
into an arbitrarily small neighborhood of C, and hence for sufficiently large
−s we have supp(Adψs

(K1) = supp(K1 ◦ ψ
−1
s ) ⊂ supp(AdhK2). Therefore,

(Adψs
K̃1)(x) = esK1(ψ

−1
s (x)) ≤ AdhK2(x) for for sufficiently large −s, or

(Adh−1◦ψs
K1)(x) ≤ K2(x), which means that g+ satisfies condition (b) in

Lemma 1.7.

Proposition 1.9(b) combined with Lemma 1.3(b) yields

Corollary 1.10. If k ≥ n, then for (S2n−1 \ Πk, ξst) from Section 1.3 the
cone g+ is non-orderable up to conjugation. �
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By contrast, we will show below in Section 2.2

Theorem 1.11. If k < n, then for (S2n−1 \Πk, ξst) the cone g+ is orderable
up to conjugation: there exist H,K ∈ g+ for which there is no g ∈ G with
AdgH ≤ K. More precisely, there exists a surjective map w : g+ → (0,∞)
such that w(AdgH) = w(H) for g ∈ G, w(sH) = s−2w(H) for any s > 0
and such that H ≤ K implies w(H) ≥ w(K).

2 Orderability and symplectic non-squeezing

In this section we will rephrase Theorem 1.11 as a non-squeezing result for
suitable unbounded domains in the standard symplectic space (R2n, ω =∑n

1 dxj ∧ dyj). Throughout this section we fix k with 1 ≤ k ≤ n and denote

Uk := S2n−1 \ Πk, Gk := Diffc(Uk, ξst).

2.1 The class Ck of unbounded domains in R
2n

Introduce “polar coordinates”, r = |x|2 + |y|2 ∈ R, θ = r−1/2(x, y) ∈ S2n−1,
so that the standard Liouville form λst can be written as

λst =
1

2

n∑

1

(xjdyj − yjdxj) = rαst,

where αst is the standard contact form on the unit sphere S2n−1 which defines
the standard contact structure ξst = kerαst. The coordinates (r, θ) identify
(R2n \ 0, λst) with the symplectization (R+ × S2n−1, rαst) of the standard
contact structure on S2n−1. Thus the symplectization of Uk = S2n−1 \ Πk

gets identified with R
2n \ Πk.

Note that any contactomorphism φ of (S2n−1, ξst) defines a symplectomor-
phism Sφ : R2n → R

2n, singular at the origin, by the formula

Sφ(r, θ) :=
( r

cφ(θ)
, φ(θ)

)
,

where φ∗αst = cφ(θ)αst.

Lemma 2.1. If φ is contactly isotopic to the identity, then there exists a
constant Kφ > 1 such that for any ε > 0 there exists a smooth symplec-
tomorphism Sεφ of R2n which equals the identity on the ε-ball around the
origin and which coincides with Sφ outside the (Kφε)-ball. Moreover, if φ as
well as its isotopy to the identity equal the identity near some compact subset
C ⊂ S2n−1, then Sεφ can be chosen equal to the identity on the cone over C.
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Proof. Let φt, t ∈ [0, 1] be a contact isotopy of (S2n−1, ξst) connecting φ0 = id
to φ1 = φ with φi = id on C. Let Sφt : C

n\0 → C
n\0 be its symplectization.

Set
M := max

t∈[0,1]
max(cφt), m := min

t∈[0,1]
min(cφt)

and note that m ≤ 1 ≤M . Then for any δ > 0, t ∈ [0, 1] we have
{
r ≤

δ

M

}
⊂ Sφt({r ≤ δ}) ⊂

{
r ≤

δ

m

}
.

Therefore, we can extend the Hamiltonian isotopy Sφt|{r≥δ} to a Hamiltonian
isotopy gt : C

n → C
n such that g0 = id and for all t ∈ [0, 1]

gt|{r≤ δ
2M }∪{θ∈K} = id, gt|{r≥ 2δ

m}
= Sφt.

Then for δ = 2Mε the symplectomorphism Sεφ := g1 satisfies the required
conditions with Kφ =

4M
m
.

Given a nonnegative compactly supported contact Hamiltonian H : Uk → R

we extend it by 0 to S2n−1 and will keep the notation H for this extension.
Recall that according to Lemma 1.5 the cone g+ = g+(Uk) consists of all
functions satisfying the conditions

(i) H = 0 near S2n−1 ∩ Πk = S2n−1 ∩ {x = 0, y1 = · · · = yn−k = 0};

(ii) H is positive on the image g(S2n−1 ∩ Π⊥k ) of the equator under a con-
tactomorphism g ∈ Gk.

We now define a class Ck of domains in R
2n which, in particular (see Lemma

2.2 below), contains all the domains of the form

V (H) := {(r, θ) ∈ R+ × S2n−1 | rH(θ) < 1}, H ∈ g+(Uk).

First, we add to Ck all hyperboloids

V a,b
k :=

{
1

a2

(
n∑

1

x2i +
n−k∑

1

y2i

)
−

1

b2

n∑

n−k+1

y2i < 1

}
, a, b > 0.

Let Da,b
k denote the identity component of the group of Hamiltonian diffeo-

morphisms of R2n supported away from V a,b
k and set

Dk :=
⋃

a,b>0

Da,b
k .
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It follows from Lemma 2.1 above that for any contactomorphism φ ∈ Gk the
smoothed symplectomorphism Sεφ : R2n → R

2n belongs to Da,b
k if a and a

b
are

small enough. Moreover, Sεφ agrees with Sφ outside V a′,b′

k for any b′ > 0 and
a′ > Kφε, where Kφ is the constant from Lemma 2.1. Thus, although the

smoothing Sεφ is not canonical, its action on domains which contain V a′,b′

k

with a′ > Kφε is independent of the choice of the smoothing.

Now we are ready to give the general definition of the domains which form
the class Ck.

Definition 2. A connected open domain V ∈ R
2n belongs to Ck if there exist

a1, b1, a2, b2 > 0 and a symplectomorphism Φ ∈ Dk such that

V a1,b1
k ⊂ V ⊂ Φ(V a2,b2

k ).

The group Dk, and hence the group Gk, acts on Ck by symplectomorphisms.

Lemma 2.2. (i) For H ∈ g+(Uk) we have V (H) ∈ Ck.

(ii) For H ∈ g+(Uk), φ ∈ Gk and ε sufficiently small we have

Sεφ
(
V (H)

)
= V (AdφH).

(iii) If H,K ∈ g+(Uk) satisfy H ≥ K, then V (H) ⊂ V (K).

Proof. Claims (ii) and (iii) are straightforward. To prove (i) we first observe
that, since the class Ck is invariant under the action of the group Dk, we can
replace H by Adg(H) for any g ∈ Gk. Hence we can assume without loss of
generality that H|S2n−1∩Π⊥

k
> 0. For (x, y) ∈ R

2n we denote

u := |x|2 +
n−k∑

1

y2j , v :=
n∑

n−k+1

y2j , r = u+ v = |x|2 + |y|2, ρ :=
v

u
.

Then ρ = tan2 α, where α is the angle between the vector (x, y) ∈ R
2n and

the subspace Π⊥k . We can view ρ as a function on S2n−1. Take H ∈ g+ and
set M := max(H). Then H|ρ≥ρ1 = 0 for a sufficiently large ρ1, and for a
sufficiently small ρ0 we have m := min

ρ≤ρ0
(H) > 0. Figure 1 shows that

∂V (H) ⊂ Ω :=

{
v ≤ ρ1u, u+ v ≥

1

M

}
\

{
v < ρ0u, u+ v >

1

m

}
.

Consider the hyperboloids

V a,b
k =

{ u
a2

−
v

b2
< 1
}
, V a′,b′

k =

{
u

(a′)2
−

v

(b′)2
< 1

}
.
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Ω

u

a2
−

v

b2
= 1

u

(a0)2 −
v

(b0)2 = 1

v = ρ1u

v = ρ0u

(a0)21
m

1
m

1
M

1
M

a
2

u

v

Figure 1: Squeezing V (H) between two hyperboloids

An elementary geometric argument illustrated by Figure 1 1 shows that

Ω ⊂ V a′,b′

k \ V a,b
k ,

provided that

a2 < T := (M(1 + ρ1))
−1,

(
b

a

)2

>
ρ1T

T − a2

and (
b′

a′

)2

< ρ0, (a′)2 >
1

m
.

1We thank V. Stojisavljević for preparing this figure.
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These inequalities express the condition that the dotted lines u
(a)2

− v
(b)2

= 1

and u
(a′)2

− v
(b′)2

= 1, representing the boundaries of the domains V a,b
k and

V a′,b′

k , do not intersect the shaded region representing Ω. Thus, this choice

of a, b, a′, b′ guarantees that V a,b
k ⊂ V (H) ⊂ V a′,b′

k , hence V (H) ∈ Ck.

2.2 Capacity-like function on Ck and proof of Theo-

rem 1.11

The following theorem will be proved in Section 3.4 below.

Theorem 2.3 (Capacity). There exists a capacity-like function w : Ck →
(0,∞) with the following properties:

(i) w
(
Ψ(V )

)
= w(V ) for all Ψ ∈ Dk and V ∈ Ck;

(ii) V ⊂ V ′ implies w(V ) ≤ w(V ′) for all V, V ′ ∈ Ck;

(iii) w(sV ) = s2w(V ) for all s > 0;

(iv) w(V a,b
k ) = πa2 for all a, b > 0.

Corollary 2.4. For any domain V ∈ Ck and s > 1 there is no Ψ ∈ Dk such
that Ψ(sV ) ⊂ V .

Proof. By Theorem 2.3(iii) we have

w(sV ) = s2w(V ) > w(V ),

and the result follows from Theorem 2.3(i) and (ii).

Proof of Theorem 1.11. We define the required function w : g+ → R by the
formula w(K) := w

(
V (K)

)
. For g ∈ Gk we have V (Adg(K)) = Sgφ(V (K)),

so Theorem 2.3(i) implies that the function w is constant on orbits of the ad-
joint action. We have V (sK) = s−2V (K), hence w(sK) = s−2w(K) in view
of Theorem 2.3(iii). This also yields surjectivity of w, and Theorem 2.3(ii)
implies that if w(H) < w(K) then there is no contactomorphism g ∈ G such
that AdgH ≤ K.
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3 Invariants of domains from Ck

3.1 Floer-Hofer symplectic homology of bounded do-

mains in R
2n

Filtered symplectic homology SH(a,b)(U) of a bounded open set U in the
standard symplectic R

2n was introduced by A. Floer and H. Hofer in [14]
as a far-reaching generalization of earlier symplectic invariants, such as Gro-
mov’s symplectic width [17], and later symplectic capacities, see [18]. Since
then the invariant has been greatly generalized and expanded, but for the
purposes of this paper we will use the original Floer-Hofer version up to the
following slight modification. Instead of taking as in [14] a direct limit over
Hamiltonians which are negative on U and equal a positive definite quadratic
form at infinity, we will take an inverse limit over nonpositive Hamiltonians
with compact support in U . This version enjoys the same functorial proper-
ties as the one in [14] but will be more convenient for the computations below.
For domains with smooth boundary of restricted contact type, our version
of symplectic homology differs from the one in [14] only by a degree shift of
−1 (this follows e.g. from the duality results in [7]). We use Z/2-coefficients
and grade all groups by Conley-Zehnder index.

Let D denote the group of (not necessarily compactly supported) Hamilto-
nian diffeomorphisms of R2n. The following proposition summarizes some
relevant properties of symplectic homology, see [14, 15].

Theorem 3.1 (Floer-Hofer). Filtered symplectic homology assigns to each
bounded open subset U ⊂ R

2n and numbers 0 ≤ a < b < ∞ a Z-graded
Z/2-vector space SH(a,b)(U) with the following properties.

(Functoriality) Each Ψ ∈ D induces isomorphisms

Ψ∗ : SH
(a,b)(U)

∼=
−→ SH(a,b)

(
Ψ(U)

)
.

(Transfer map) Each inclusion ι : U ↪→ V induces a homomorphism

ι! : SH
(a,b)(V ) → SH(a,b)(U)

It follows that for Ψ ∈ D with Ψ(U) ⊂ V , the inclusion ι : Ψ(U) ↪→ V
together with Ψ induces a homomorphism

Ψ! := Ψ−1∗ ◦ ι! : SH
(a,b)(V ) → SH(a,b)(U).

(Isotopy invariance) For a smooth family Ψs ∈ D with Ψs(U) ⊂ V for all
s ∈ [0, 1], the maps Ψs

! : SH
(a,b)(V ) → SH(a,b)(U) are independent of s.
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(Window increasing homomorphism) For 0 ≤ a < b and 0 ≤ a′ < b′ with
a ≤ a′ and b ≤ b′ we have natural homomorphisms

SH(a,b)(U) → SH(a′,b′)(U).

(Symplectic homology of a ball) The symplectic homology in the action win-
dow (0, c) of the ball B2n

a of radius a in R
2n is given by

SH
(0,c)
j (B2n

a ) ∼=





Z/2, c > πa2 and j = n,

Z/2, c > πa2 and j = n
(
2b c

πa2
c − 1

)
− 1,

0, otherwise.

3.2 Symplectic homology for domains from Ck

We extend the definition of symplectic homology to unbounded open domains
V ⊂ R

2n by
SH(a,b)(V ) := lim

←−
SH(a,b)(U),

where the inverse limit is taken over all bounded open subsets U ⊂ V . We
also define symplectic homology in the infinite action window (a,∞) as

SH(a,∞)(V ) := lim
c→∞

SH(a,c)(V ).

The extended symplectic homology still satisfies the properties in Theo-
rem 3.1. However, the invariants one can extract from these general proper-
ties are not sufficient for our purposes. Instead, we will concentrate on the
special class Ck of unbounded domains introduced in Section 2 above and
study their invariants under the smaller group Dk which preserves this class.

We begin with the computation of symplectic homology of the hyperboloids
V a,b
k .

Proposition 3.2. Let 1 ≤ k < n and 0 < c <∞. Then:

(a) For a, b > 0 we have

SH
(0,c)
j (V a,b

k ) ∼=





Z/2, c > πa2 and j = n− k,

Z/2, c > πa2 and j = (n− k)
(
2b c

πa2
c − 1

)
− 1,

0, otherwise.

(b) For ã > a, b̃
ã
< b

a
and c > πã2 the transfer map

Z/2 = SH
(0,c)
n−k (V

ã,̃b
k ) → SH

(0,c)
n−k (V

a,b
k ) = Z/2
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is an isomorphism.

(c) For c > πa2 the window increasing homomorphism

Z/2 = SH
(0,c)
n−k (V

a,b
k ) → SH

(0,∞)
n−k (V a,b

k ) = Z/2

is an isomorphism.

Heuristically, this result is easy to understand: All closed characteristics on
the boundary of V a,b

k satisfy zn−k+1 = · · · = zn = 0, so they agree with

the closed characteristics on the boundary of the ball B
2(n−k)
a of radius a

in R
2(n−k) whose symplectic homology is given in Theorem 3.1. The actual

proof of Proposition 3.2 will be given in Section 3.5 below.

Corollary 3.3. For any domain V ∈ Ck there exists c0 such that for each
c ≥ c0 and for all a, b with V a,b

k ⊂ V , the composition

αV,c : SH
(0,c)
n−k (V ) → SH

(0,c)
n−k (V

a,b
k ) → SH

(0,∞)
n−k (V a,b

k ) = Z/2

(where the first map is the transfer map and the second one the window
increasing homomorphism) is surjective.

Proof. Let V ∈ Ck and V a,b
k ⊂ V . By definition, there exist a1, b1, a2, b2 > 0

and Φ ∈ Dk such that V a1,b1
k ⊂ V ⊂ Φ(V a2,b2

k ). We choose a1 so small that

V a1,b1
k ⊂ V a,b

k ⊂ V ⊂ Φ(V a2,b2
k )

and Φs = id on V a1,b1
k for all s ∈ [0, 1], where Φs is the isotopy in Dk

from the identity to Φ1 = Φ. Set c0 := πa22 and consider c > c0. Then
Φ−1s (V a1,b1

k ) = V a1,b1
k ⊂ V a2,b2

k , so by isotopy invariance the map

(Φ−1s )! : Z/2 = SH
(0,c)
n−k (V

a1,b1
k ) → SH

(0,c)
n−k (V

a2,b2
k ) = Z/2

is independent of s ∈ [0, 1], hence an isomorphism by Proposition 3.2(b). It
follows that the composition of the obvious maps

Z/2 = SH
(0,c)
n−k (V

a2,b2
k ) ∼= SH

(0,c)
n−k

(
Φ(V a2,b2

k )
)
→ SH

(0,c)
n−k (V )

→ SH
(0,c)
n−k (V

a,b
k ) → SH

(0,c)
n−k (V

a1,b1
k ) = Z/2

is an isomorphism. This implies that SH
(0,c)
n−k (V

a,b
k ) = Z/2 and the map

SH
(0,c)
n−k (V ) → SH

(0,c)
n−k (V

a,b
k ) is surjective, which combined with Proposi-

tion 3.2(c) proves the corollary.
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3.3 A capacity for domains from Ck

For any c > 0 and V ∈ Ck we define the augmentation

αV,c : SH
(0,c)
n−k (V ) → SH

(0,∞)
n−k (V a,b

k ) = Z/2

as in Corollary 3.3, where V a,b
k ⊂ V . For another hyperboloid V a′,b′

k ⊂ V we

find a hyperboloid V a1,b1
k ⊂ V a,b

k ∩ V a′,b′

k , and the commuting diagram

SH
(0,c)
n−k (V ) //

��

SH
(0,∞)
n−k (V a,b

k ) = Z/2

∼=
��

Z/2 = SH
(0,c)
n−k (V

a′,b′

k )
∼=

// SH
(0,∞)
n−k (V a1,b1

k ) = Z/2

.

shows that αV,c does not depend on the choice of a, b. Corollary 3.3 shows
that aV,c is trivial for sufficiently small c and surjective for sufficiently large c.
The following corollary now is immediate from the properties of symplectic
homology in Theorem 3.1.

Corollary 3.4. (i) For Ψ ∈ Dk and a, b such that Ψ = id on V a,b
k we have

the commutative diagram

SH
(0,c)
n−k (V )

aV,c
//

Ψ∗

��

SH
(0,∞)
n−k (V a,b

k ) = Z/2

id
��

SH
(0,c)
n−k

(
Ψ(V )

)
aΨ(V ),c

// SH
(0,∞)
n−k

(
Ψ(V a,b

k ) = V a,b
k

)
= Z/2 .

(ii) For an inclusion ι : V ↪→ V ′ we have the commuting diagram

SH
(0,c)
n−k (V

′)
aV ′,c

//

ι!
��

Z/2

id

��

SH
(0,c)
n−k (V )

aV,c
// Z/2 .

3.4 Proof of Theorem 2.3

As in [15], we define the capacity-like function w : Ck → (0,∞] on V ∈ Ck

by
w(V ) := inf{c | aV,c : SH

(0,c)
n−k (V ) → Z/2 is surjective}.
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Let us verify that the function w has all the properties in Theorem 2.3.
Properties (i) and (ii) follow from the commuting diagrams in Corollary 3.4,
and (iv) follows from Proposition 3.2. Property (iii) follows as in [15], noting
that the conformal rescaling z 7→ sz on R

2n preserves the class of domains
Ck and multiplies actions by s2.

3.5 Proof of Proposition 3.2

To compute symplectic homology of the unbounded domain V = V
(a,b)
k , we

first need to choose an increasing family VC ⊂ V of bounded subdomains
exhausting V . By definition of the inverse limit it is up to us which sequence
to choose, and we do it carefully to control the dynamics of the arising
Hamiltonian vector fields.

For C > 0 set gC(t) := max(−t2, 3t2 − 4C2) and let g̃C : R → R be a
smoothing of the function gC . We do the smoothing such that for small
ε > 0

g̃C(t) =

{
−t2, |t| ≤ C − ε,

3t2 − 4C2, |t| ≥ C + ε,

and g̃C has minima at the points ±C with the minimal value gC(C) = −C2+
ε. Moreover, we can choose g̃C such that

t

2
g̃C(t) ≥ g̃C(t) for all t ∈ R. (2)

Consider the function HC(x, y) :=
x2

a2
+ g̃C(y)

b2
on R

2, thus

HC(x, y) =

{
x2

a2
− y2

b2
, |y| ≤ C − ε,

−4C2

b2
+ x2

a2
+ 3y2

b2
, |y| ≥ C + ε.

The critical points of HC are a saddle point at the origin and two minima
at (0,±C) with the minimal value C2+ε

b2
. Note that HC(x, y) ≥ x2

a2
− y2

b2
.

Moreover, condition (2) implies

1

2

(
x
∂HC

∂x
+ y

∂HC

∂y

)
=
x2

a2
+
yg̃′C(y)

2b2
≥ HC(x, y). (3)

Lemma 3.5. The Hamiltonian system of HC on the plane (R2, dx∧ dy) has
the folowing properties:

(i) all its trajectories except the two homoclinic orbits at the origin are
closed;
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(ii) for every closed trajectory γ we have
∫
γ
xdy ≥ 0;

(iii) for every nonconstant closed trajectory γ with HC |γ ≥ − C2

4b2
we have∫

γ
xdy ≥ C2Aa,b, with a constant Aa,b depending only on a and b.

Proof. The zero level set of HC forms a figure eight consisting of the two
homoclinic orbits at the origin and enclosing the two minima. Assertions (i)
and (ii) follow from this picture. For (iii), consider the closed trajectories γ±
of value HC |γ± = − C2

4b2
enclosing the points (0,±C). Let V± be the region

bounded by γ±. Then V± ∩ {±y ≥ C + ε} = E ∩ {±y ≥ C + ε} for the

ellipse E = {x
2

a2
+ 3y2

b2
≤ 15C2

4b2
}, and rescaling by C shows that the area of

V± ∩ {±y ≥ C + ε} equals C2Aa,b with a constant Aa,b depending only on
a and b. This proves

∫
γ±
xdy ≥ C2Aa,b, and the area of each nonconstant

closed trajectory γ with HC |γ > − C2

4b2
is larger than this one.

Define now the open domain

VC := {G < 1} ⊂ R
2n

with the Hamiltonian

G(x1, . . . , xn, y1, . . . , yn) :=
n−k∑

1

x2j + y2j
a2

+
n∑

n−k+1

HC(xj, yj).

Lemma 3.6. VC is a bounded domain contained in V a,b
k with smooth re-

stricted contact type boundary ∂VC. The closed characteristics on ∂VC fall
into two groups:

(i) closed characteristics on the sphere S of radius a in the subspace R2(n−k) ⊂
R

2n, of actions kπa2 for k ∈ N;

(ii) all other closed characteristics have actions ≥ C2Ba,b, with a constact
Ba,b depending only on a and b.

Proof. VC is a bounded because G is exhausting, and VC ⊂ V a,b
k follows from

HC(x, y) ≥ x2

a2
− y2

b2
. Its boundary is of restricted contact type because it

is transverse to the Liouville vector field Z = 1
2

∑n
1 (xi

∂
∂xi

+ yi
∂
∂yi

), which in

turn follows from (3) by computation at points of ∂VC = {G = 1}:

Z ·G =
n−k∑

1

x2j + y2j
a2

+
n∑

n−k+1

1

2

(
xj
∂HC

∂xj
+ yj

∂HC

∂yj

)

= 1 +
n∑

n−k+1

(
1

2

(
xj
∂HC

∂xj
+ yj

∂HC

∂yj

)
−HC(xj, yj)

)
≥ 1.
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Let us study the periodic orbits on ∂VC . First, we observe that the corre-
sponding Hamiltonian system with the Hamiltonian G is completely inte-
grable and has integrals

Gj(x, y) :=

{
x2j+y

2
j

a2
, j = 1, . . . , n− k,

HC(xj, yj), j = n− k + 1, . . . , n.

Hence the simple periodic orbits are given by equations Gj = cj for j =

1, . . . , n, with
n∑
1

cj = 1.

Let us make an accounting of periodic orbits. First of all we have orbits
{xn−k+1 = yn−k+1 = . . . xn = yn = 0, Gj = cj ≥ 0, j = 1, . . . , n − k} with
n−k∑
1

cj = 1 which foliate the sphere S of radius a in the subspace R
2(n−k) ⊂

R
2n. These orbits and their multiples correspond to group (i) in the lemma

and their actions are kπa2 for k ∈ N.

Consider now a simple periodic orbit γ which is not in group (i). Note that
γ is a product of periodic orbits γj for the Hamiltonians Gj, and each γj has
nonnegative action by Lemma 3.5(ii). By assumption, at least one of the
orbits γj, j = n− k + 1, . . . , n, is not the constant orbit at the origin.

If at least one of the constants cj, j = n − k + 1, . . . , n is positive, then
the action of the orbit γj, and hence of γ, is ≥ C2Aa,b by Lemma 3.5(iii).

Otherwise, set δ := −
n∑

n−k+1

cj > 0. Then
n−k∑
1

cj = 1 + δ, and therefore

n−k∑
1

∫
γj
xjdyj = π(1 + δ)a2. If δ > C2

4b2
, then the action of the orbit γ is

> π
(
1 + C2

4b2

)
a2. Otherwise, all the constants cj for j = n − k + 1, . . . , n

satisfy cj ≥ − C2

4b2
. By assumption, at least one of the corresponding orbits

γj is nonconstant, so by Lemma 3.5(iii) the action of this γj, and hence of γ,
is ≥ C2Aa,b. This proves Lemma 3.6.

Deformation to a split Hamiltonian

We write G = F1 + F2 with the Hamiltonians

F1 :=
n−k∑

1

Gj : R
2(n−k) → R, F2 :=

n∑

n−k+1

Gj : R
2k → R.

Recall that F1, F2 have the following properties:
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(i) F1 and F2 are exhausting with F1 ≥ −(n− k)C
2+ε
b2

and F2 ≥ 0;

(ii) Zi · Fi ≥ Fi for the respective Liouville fields Zi;

(iii) all periodic orbits of Fi have action ≥ 0;

(iv) all periods of nonconstant periodic orbits of Fi are bounded below by
some δ > 0;

(v) all second partial derivatives of Fi are uniformly bounded;

(vi) the (non-Hamiltonian) action of each k-fold covered periodic orbit z2
of F2 satisfies A(z2) = πka2F2(z2) ≥ πa2F2(z2).

Consider a family of Hamiltonians Hs : R
2n → R, s ∈ R, of the form

Hs(z1, z2) = hs
(
F1(z1), F2(z2)

)

with a smooth family of function hs : R
2 → R satisfying the following prop-

erties:

(i) hs is locally constant in s outside a compact subset of R;

(ii) outside a compact subset of R2 we have 0 < ∂hs
∂F1

< δ or 0 < ∂hs
∂F2

< δ
(or both);

(iii) all second partial derivatives of the function R
3 → R, (s, F1, F2) 7→

hs(F1, F2) are uniformly bounded.

Lemma 3.7. For Hs as above all 1-periodic orbits are contained in a compact
set, and for each c > 0 the Floer homology FH(0,c)(Hs) is well-defined and
independent of s.

Proof. For each s the 1-periodic orbits of Hs are of the form z = (z1, z2),
where the zi satisfy żi = ∂hs

∂Fi
XFi

(zi). Hence F1, F2 are constant along z

and zi(t) = γi

(
∂hs
∂Fi
t
)
for periodic orbits γi of XFi

of period ∂hs
∂Fi

. Therefore,

conditions (iv) on Fi and (ii) on hs imply that all 1-periodic orbits of XHs

are contained in a compact set.

Next, let u : R× S1 → R
2n be a Floer cylinder connecting 1-periodic orbits.

It satisfies
us + iut +∇Hs(u) = 0,

where us, ut denotes the partial derivatives with respect to the coordinates
(s, t) ∈ R × S1. The bounds on the second derivatives of Fi and h yield
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uniform bounds |D2Hs| ≤ A on the Hessian of Hs and |∇∂sHs(u)| ≤ B|u|
on the gradient of the s-derivative ∂sHs. Using this, a standard computation
shows that the function ρ(s, t) := |u(s, t)|2 satisfies the estimate

∆ρ = |us|
2 + |ut|

2 + 〈u, iD2H(u)ut −D2H(u)us +∇∂sHs(u)〉

≥ |us|
2 + |ut|

2 − A|u|(|us|+ |ut|)− B|u|2 ≥ −
(1
2
A2 +B

)
ρ.

By an argument in [3], this estimate implies that Floer cylinders for the
s-dependent Hamiltonian Hs remain in a compact set, hence the Floer ho-
mology of Hs is well-defined and independent of s.

Pick a nondecreasing function φ : R → R satisfying φ(t) = δt/2 for t ≥ 0
and φ(t) ≡ −m for t ≤ δ with some large constant m. For s ∈ [0, 1] consider
the Hamiltonian

Hs = hs(F1, F2) := (1− s)φ(F1 + F2 − 1) + sφ(F1) + sφ(F2 − 1).

Lemma 3.8. For φ as above with m > c each 1-periodic orbit (z1, z2) of Hs

with action in the interval (0, c) satisfies z1 ≡ 0, and z2 is a 1-periodic orbit
of φ(F2 − 1) of action πa2k for k = 1, . . . , b c

πa2
c.

Proof. Consider a 1-periodic orbit z = (z1, z2) of Hs with action in the in-
terval (0, c). Its components satisfies the equations

ż1 =
(
(1− s)φ′(F1 + F2 − 1) + sφ′(F1)

)
XF1(z1),

ż2 =
(
(1− s)φ′(F1 + F2 − 1) + sφ′(F2 − 1)

)
XF2(z2).

We distinguish three cases.

Case 1: z1 is not constant. Then by Lemma 3.5, for the action to be below c,
each nonconstant component of z1 must have value HC ≤ − C2

4b2
. Since each

constant component has value ≤ 0 and at least one component is noncon-
stant, we deduce

F1(z1) ≤ −
C2

4b2
.

It follows that φ(F1) = −m and φ′(F1) = 0, so z1 satisfies the equation
ż1 = (1 − s)φ′(F1 + F2 − 1)XF1(z1). Since ż1 6= 0, we must have s < 1 and
F1+F2−1 > −δ. Together with the preceding displayed equation this yields
F2(z2) > 1 − δ − F1(z1) ≥ 1 − δ + C2

4b2
, which in view of property (vi) of F2

implies A(a2) > πa2
(
1− δ + C2

4b2

)
> c. So Case 1 cannot occur.
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Case 2: z1 is constant but not all its component are zero. We rule this out
by distinguishing several cases.

(i) If XF1 = 0, then each components of z1 is a critical point of HC , with at
least one of them being nonzero. Since HC(0) = 0 and HC = at the minima
we conclude F1(z1) ≤ −C2+ε

b2
≤ − C2

4b2
, which is ruled out as in Case 1.

(ii) If XF1 6= 0 and 0 < s < 1, then we must have φ′(F1+F2−1) = φ′(F1) = 0,
hence φ(F1+F2−1) = φ(F1) = −m. Then z2 satisfies ż2 = sφ′(F2−1)XF2(z2),
so by the choice of φ it can only be 1-periodic if φ(F2 − 1) ≤ 0. Thus
Hs(z) ≤ −m and the Hamiltonian action of z satisfies AHs

(z) ≥ m > c.

(iii) If XF1 6= 0 and s = 0, then φ′(F1 + F2 − 1) = 0, hence H0(z) =
φ(F1 + F2 − 1) = −m and again AH0(z) ≥ m > c.

(iv) If XF1 6= 0 and s = 1, then φ′(F1) = 0, hence φ(F1) = −m. Then
ż2 = φ′(F2 − 1)XF2(z2) implies φ(F2 − 1) ≤ 0, thus H1(z) ≤ −m and again
AH1(z) ≥ m > c.

Case 3: z1 ≡ 0. Then F1(z1) = 0 and z2 is of the form described in the
lemma.

Proof of Proposition 3.2. Lemma 3.7 and Lemma 3.8 together imply (after
replacing Hs by Hσ(s) for a nondecreasing function σ : R → [0, 1] which
equals 0 for s ≤ 0 and 1 for s ≥ 1) that the Floer homology FH(0,c)(Hs) is
independent of s ∈ [0, 1]. By definition, the HamiltonianH0(z) = φ

(
G(z)−1

)

computes the symplectic homology of VC ,

FH(0,c)(H0) ∼= SH(0,c)(VC).

The Hamiltonian

H1(z1, z2) = φ
(
F1(z1)

)
+ φ
(
F2(z2)− 1

)

is split, as well as the corresponding Floer equation. It follows that all
its Floer cylinders are contained in the subspace R

2(n−k), so H1 computes
the symplectic homology of the ball B

2(n−k)
a of radius a in R

2(n−k). This
symplectic homology is computed in [15], up to an index shift by 1 due to
our different conventions, to be

SH
(0,c)
j (B2(n−k)

a ) ∼=





Z2, c > πa2 and j = n− k,

Z2, c > πa2 and j = (n− k)
(
2b c

πa2
c − 1

)
− 1,

0, otherwise.

This proves part (a) of Proposition 3.2. Parts (b) and (c) follow by similar
arguments.
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4 Geometry of the dominating positive cone

Let g+ be the maximal dominating cone of an open contact manifold (U, ξ).
The group R+ acts on Θ := g+/ ∼ by multiplication. We assume that g+ is
orderable up to conjugation and consider the binary relation � on Θ from
Section 1.5. For a pair of classes f, h ∈ Θ define

ρ(f, h) := inf{s > 0 | f � sh} . (4)

The fact that g+ is dominating implies that the set on the right hand side is
nonempty, and orderability up to conjugation means that there exist a, b ∈ Θ
such that ρ(a, b) 6= 0. Furthermore, clearly we have sub-multiplicativity

ρ(f, h) ≤ ρ(f, g)ρ(g, h) for all f, g, h ∈ Θ . (5)

Observe that ρ(h, h) ≥ 1 for all h ∈ Θ by Lemma 1.7 (a). On the other hand,
obviously ρ(h, h) ≤ 1 and hence ρ(h, h) = 1.

We claim that ρ(f, g) 6= 0 for all f, g ∈ Θ. Indeed, take a, b with ρ(a, b) 6= 0
and write, by sub-multiplicativity,

0 < ρ(a, b) ≤ ρ(a, f)ρ(f, g)ρ(g, b) ,

yielding ρ(f, g) 6= 0. The claim follows.

Define now a function d : Θ×Θ → R by

d(g, h) = max(| log ρ(g, h)|, | log ρ(h, g)|) . (6)

The above discussion shows that d is a pseudo-metric on Θ: it is symmetric,
nonnegative and satisfies the triangle inequality. It is unknown whether d
is a genuine distance on Θ (and sounds unlikely that it is). Introduce the
equivalence relation ≈ on Θ by f ≈ g whenever d(f, g) = 0. This relation
measures the deviation of d from a genuine metric. Interestingly enough, it
also measures the deviation of the binary relation � from a genuine partial
order. Indeed, if f � g and g � f , then we have ρ(f, g) ≤ 1 and ρ(g, f) ≤ 1.
By (5),

1 = ρ(f, f) ≤ ρ(f, g)ρ(g, f) ,

and hence
ρ(f, g) = ρ(g, f) = 1 .

This yields d(f, g) = 0 and hence f ≈ g. Denote Ξ := Θ/ ≈, and note that
the pseudo-metric d descends to Ξ as a genuine metric D. What about the
partial order? Define a relation � on Ξ as follows: p � q if there exist
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f, g ∈ Θ and a sequence of positive numbers εi → 0 so that p = [f ], q = [g]
and f � (1 + εi)g for all i. (The εi > 0 are needed because of the infimum
in (4)). Note that this is a transitive and reflexive relation. We claim that
� is a genuine partial order. Indeed if p � q and q � p, then D(p, q) = 0
and hence p = q. It would be interesting to explore the geometry of Ξ with
respect to D.

Remark 4.1. The quantity ρ and the pseudo-metric d has cousins in the earlier
literature. On the one hand, they can be considered Lie algebra counterparts
of the relative growth between positive contactomorphisms, and the corre-
sponding pseudo-metric, respectively, studied in [13]. On the other hand,
each compactly supported non-negative function H on U defines a “contact
form” α/H on U , where the quotation marks stand for the fact that this
form could be infinite and certainly is infinite outside a compact set. With
this language, the adjoint action of contactomorphisms on functions corre-
sponds to the action of contactomorphisms on contact forms, and the metric
d is an analogue, for open manifolds, of the contact Banach-Mazur distance
introduced by Yaron Ostrover and the third-named author and discussed in
[19, 20] in the context of closed contact manifolds.

Example 4.2. Consider (S2n−1 \ Πk, ξst) as above with k < n. The function
w : g+ → (0,∞) from Theorem 1.11 descends to a function w̃ : Θ → (0,∞)
with the following properties:

(i) h � f ⇒ w̃(h) ≥ w̃(f);

(ii) w̃(sh) = s−2w̃(h) for all s > 0, h ∈ Θ .

These properties readily yield the following inequality:

d(f, h) ≥
1

2

∣∣ log w̃(f)
w̃(h)

∣∣ . (7)

For instance, this shows that d(g, sg) = | log s|, and in particular the restric-
tion of the pseudo-metric d to each orbit of the R+-action on Θ is isometric
to the Euclidean line. It would be interesting to explore whether Θ admits
a quasi-isometric embedding of the Euclidean R

N for N ≥ 2. Let us men-
tion also that the above conclusions continue to hold verbatim for the metric
space (Ξ, D).
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