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ARTICLE INFO ABSTRACT

Human-Robot Collaboration (HRC), which enables a workspace where human and robot can dynamically and
safely collaborate for improved operational efficiency, has been identified as a key element in smart manu-
facturing. Human action recognition plays a key role in the realization of HRC, as it helps identify current human
action and provides the basis for future action prediction and robot planning. While Deep Learning (DL) has
demonstrated great potential in advancing human action recognition, effectively leveraging the temporal in-
formation of human motions to improve the accuracy and robustness of action recognition has remained as a
challenge. Furthermore, it is often difficult to obtain a large volume of data for DL network training and opti-
mization, due to operational constraints in a realistic manufacturing setting. This paper presents an integrated
method to address these two challenges, based on the optical flow and convolutional neural network (CNN)-
based transfer learning. Specifically, optical flow images, which encode the temporal information of human
motion, are extracted and serve as the input to a two-stream CNN structure for simultaneous parsing of spatial-
temporal information of human motion. Subsequently, transfer learning is investigated to transfer the feature
extraction capability of a pretrained CNN to manufacturing scenarios. Evaluation using engine block assembly
confirmed the effectiveness of the developed method.
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1. Introduction and dynamic decision-making beyond pre-programmed instructions

[4].

Traditionally, robots in manufacturing are pre-programmed to do
repetitive tasks, and are strictly separated from human workers due to
safety concerns. As the modern manufacturing is transforming into the
era of Industry 4.0, which is characterized by ubiquitous sensing, em-
bedded intelligence, and the seamless integration of the cyber and
physical worlds to further enhance productivity, efficiency, and agility
while maintaining operation safety, robots are increasingly required to
achieve a higher level of communication and cooperation with the
human workers beyond simple co-existence [1,2].

In recent years, human-robot collaboration (HRC) has emerged as a
key component for flexible and intelligent manufacturing [2]. Instead
of strict separation between human and robot, HRC allows them to
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An HRC system consists of four basic elements: perception, re-
cognition, prediction and action [2], as shown in Fig. 1. Perception
leverages sensor data to monitor the manufacturing workspace. Various
sensing technologies have been developed, such as vision systems [5]
and wearable devices [6]. They provide critical information regarding
the state of the human worker in the workspace, allowing on-going
human actions to be recognized [7]. The sequential patterns embedded
within the human actions are then analyzed and serve as the basis for
predicting future human actions [8,9]. The predicted future actions
answer the question: “what will the worker do next?” and enable the
robot to assist the worker in a pro-active, collaborative manner [9]. As
the first step after acquiring the sensing data, human action recognition

i Al R e M i e e L e L

IS, ST NIIIPITE. o, [SNPRVCL PN SRR G o p 1 g SNSRI (AR



Q. Xiong, et al.
Recognized Predicted
action action
=
o
=
=
o
8
7]
o
Sensor Robot
data assistance

Fig. 1. Fundamental building blocks for realizing HRC.

image, which has been the predominant sensing modality in HRC re-
search.

Human action recognition has traditionally involved two steps:
feature extraction and action classification. Feature extraction refers to
distilling essential information that is associated with human actions
from raw sensing data. For video images, features are commonly ex-
tracted based on the distinct pixel intensity variations that encode the
information for different image elements, such as curves and shapes.
One of the most widely used methods is Scale Invariant Feature
Transform (SIFT) [10], in which a series of local feature vectors are
generated from captured images to characterize human action. These
local features are invariant to transformations such as rotation and
shift, and therefore are robust to image variations. Various enhance-
ments to SIFT, such as Speeded Up Robust Features (SURF) and Or-
iented FAST and rotated BRIEF (ORB), have been developed [11,12].
Alternatively, contour of human poses has been investigated for feature
extraction through comparison with pre-constructed models. For ex-
ample, Belongie et al. introduced a shape context descriptor, which is
able to detect shape contours that are similar to the reference models
[13]. Skeleton model provides another method for human action
characterization, where the information of human pose is reduced to
the position and orientation of key body joints [14].

Once human action-related features are obtained, classifiers are
deployed for action recognition. Among various classifiers, Hidden
Markov Model (HMM) [15] has been widely investigated, which takes
into account the transition probability among the atomic movements in
human actions and uncertainties in sensing observations. In [16], HMM
has been used to analyze the 3D depth information and the developed
model is able to characterize both human motion and human-object
interactions. Support Vector Machine (SVM) is another commonly used
technique for classification. The basic idea of SVM is to find a hyper-
plane that effectively separates image feature-related to different
human actions with the largest margin of separation [17].

One common limitation associated with these traditional techniques
is that prior knowledge is required for feature extraction, which can be
subjective. Recently, DL has emerged as a new paradigm to overcome
these limitations as it is capable of learning features from data auto-
matically in a supervised manner [18]. Successful applications of DL for
various manufacturing-related tasks, such as machine fault diagnosis
[19] and additive manufacturing process monitoring [20] have been
reported, and convolutional neural networks (CNN) has shown to be a
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serve as input to the CNN.

Despite the progress made in human action recognition, multiple
limitations remain. First, the conventional, single-stream CNN structure
that only receives one type of input cannot simultaneously parse both
spatial-temporal information of human actions. Although this problem
can be alleviated by using frame stacks as the network input, it has been
shown that this method is inferior to those that use hand-crafted fea-
tures. The second limitation is that the DL-based method requires a
large amount of training data for network weights optimization.
However, training data is often difficult to obtain in the manufacturing
environment, due to constraints such as continuous production sche-
duling. Consequently, only a small amount of data is typically accessed.

To tackle these limitations, a transferable two-stream CNN archi-
tecture consisting of spatial and temporal streams is proposed in this
study. First, the method of optical flow [24] is investigated to extract
temporal information from video images of human actions to comple-
ment spatial information embedded in the video images. The extracted
spatial and temporal information are simultaneously parsed by a two-
stream CNN structure for improved accuracy in human action re-
cognition. Second, transfer learning, a technique that allows the
transfer of a model learned within a source domain to be applied to a
different target domain [25-27], is investigated. Specifically, the two-
stream CNN is first pretrained on a large-scale open source dataset
which consists of non-manufacturing specific human actions, which
allows the network weights to be optimized and the feature extraction
capability to be established. Subsequently, the pretrained model is
transferred to recognize human actions in the target domain of as-
sembly task where the training samples are limited. Prior studies have
shown effectiveness of transfer learning in bearing condition mon-
itoring and fault diagnosis with insufficient faulty data in the target
domain [28]. Lastly, t-Distributed Stochastic Neighbor Embedding (t-
SNE) [29] is investigated to evaluate the performance of the developed
method, by visualizing the separation of the extracted features corre-
sponding to different human actions.

The rest of the paper is organized as follows. Section 2 presents the
theoretical foundation for the developed method, whereas Section 3
describes the experimental evaluation and results discussion, using
engine assembly as a representative manufacturing scenario. Conclu-
sions are drawn in Section 4.

2. Theoretical foundation

In this section, the theoretical background of the techniques in-
vestigated in this research is presented. First, Section 2.1 presents the
basics of optical flow, followed by the design of the two-stream CNN
structure in Section 2.2. Section 2.3 introduces the mechanism of
transfer learning, and its integration with t-SNE for performance eva-
luation is described in Section 2.4.

2.1. Optical flow

Video images consist of a large amount of information in the form of
spatial-temporal pixel intensity variations. In general, it is not
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(a)

The optical flow algorithm calculates the pixel displacement vectors
between two consecutive frames that are taken At apart. The corre-
sponding pixels in two consecutive frames (before and after the dis-
placement) have the same intensity, and their locations are denoted as
(x, y) and (x + Ax, y + Ay), respectively. Mathematically, this Brightness
Constancy Constraint (BCC) is expressed as:

Ix,y,t) =1(x+ Ax,y + Ay, t + At) 1)

Assuming both the time interval At and movement Ax, Ay are small,
this constraint can be represented by the Taylor Series as:

T(x+ Ax,y+ Ay, t + At) = I(x,y,t)+a—]Ax+ ﬂAy+a—]m+s
ox dy ot
(2)

where ¢ is a small number defined as the remainder of the series. Based
on Egs. (1) and (2), the following equation can be derived:

al ar ar

—Ax+ —Ay+ —Af =0

dx ay ot 3)
By denoting %, j—;, % as I, I, I, Eq. (3) is rewritten as:

LAx + I,Ay = =LAt )

In general, pixels in the immediate neighbourhood of a pixel can be
assumed to move at the same velocity. As a result, the 3 x 3 region
around the target pixel can be assumed to have the same displacement
between the two consecutive frames. Therefore, by writing Eq. (4) for
each pixel in the 3 x 3 region, the following set of equations can be
obtained:
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Fig. 2. Sample still frame (a) and optical flow (b) [24].
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Eq. (5) can be solved using the least square method. By solving Eq.
(5) for all 3 x 3 regions in two consecutive frames, optical flow images
can be obtained.

2.2. Two-stream CNN

Two-stream CNN was first proposed by Simonyan et al. [32] in
which each stream consists of a series of hierarchically arranged con-
volutional layers for image feature extraction. Specifically, the feature
extraction step is achieved through sequential convolution between the
kernels at each layer and the feature maps produced in the preceding
layer. For the I™ layer with M input feature maps and N kernels, the j©
output feature map xJ’- is calculated as:

M
R OERTT FETA
i-1 (6)

where x/~! represents the i™ input feature map, kij- denotes the j™ kernel
to convolve with the i input feature map, bj’ is the bias term, f denotes a
non-linear function, and * denotes the convolution operation.

After the convolution operation, a pooling layer is often im-
plemented as a sub-sampling operation [33]. Max pooling and average
pooling are the two most common types of the pooling operation. Max
pooling selects the maximum feature value from each local region and
discarding the rest, while average pooling computes the mean feature
value within each local region. Both methods can reduce the

4
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Fig. 4. Structure of two-stream Convolutional Neural Network [32].

dimensionality of the extracted features and thus improving the com-
putational efficiency. Furthermore, they have also shown to reduce the
sensitivity of features to small variations, such as pixel intensity change,
to improve feature robustness [33]. Mathematically, the output feature
maps of the I™" layer after pooling can be computed as:

x| =f(,8;down(x}*1) +0)j=1, .M )

where down () is the sub-sampling function.

Through sequential operations of convolution and pooling, image
features are gradually distilled to reflect the most relevant information
to the specific task (e.g., human action recognition) [33].

In the context of human action recognition, the two-stream CNN
consists of the spatial stream and temporal stream, as shown in Fig. 4.
The spatial stream contains the spatial information from the still video
frames, such as the static appearance of the workspace and human pose.
The static appearance and human pose can provide useful clue for the
action recognition. For example, the specific position of the human
body in the workspace may strongly be more associated with certain
actions than others, while the specific human pose may indicate the
object the worker is handling. The architecture of the spatial stream is
essentially a static image classifier, which is pretrained using a static
image dataset in the presented research.

The temporal stream consists of a stack of consecutive optical flow
frames describing a series of movements during a time period of fixed
duration. By observing changes in the movement, temporal information
can be extracted to complement the spatial information for more ac-
curate human action recognition. In the presented research, the tem-
poral stream is pretrained using an optical flow dataset processed from
human action videos.

To determine relevant network parameters of the two-stream CNN,
a parameter grid search is performed. Tables 1 and 2 respectively il-
lustrate the selected combinations of network parameters for each of
the two streams, which is obtained by comparing the classification
accuracy of the tasks described later in Section 3. The dimensionality of
the fused feature is 30 x 40 x 64 (i.e., concatenation of two
30 x 40 x 32 features). The structures of the two streams are illu-
strated in Figs. 5 and 6, respectively.

Table 2

Structure of the temporal Stream.
Layer Kernel Size Stride Output size
Convl (ReLU) 9 x 9(64) i 120 x 160 x 64
Max Pool - 2 60 x 80 x 64
Conv2 (ReLU) 5 x 5(64) 1 60 x 80 x 64
Conv3 (ReLU) 3 x 3(64) 1 60 x 80 x 64
Conv4 (ReLU) 3 x 3(32) il 60 x 80 x 32
Average Pool - 2 30 x 40 x 32

under the assumption that the collected training data are sufficient to
optimize the large amount of network parameters (e.g., weights).
However, it is generally difficult in manufacturing settings to acquire
sufficient data that contain information on the defects related to the
machines or the processes, due to the fact that defect-involved opera-
tions, once detected, will be terminated to avoid damage to the ma-
chines and products.

Transfer learning refers to the technique that is capable of trans-
ferring the learned knowledge from a source domain to a related target
domain [26]. If applied properly, it can alleviate the need for collecting
a large amount of training data in the target domain and building a new
model from scratch [26].

In this research, the transfer of feature extraction by CNN is ex-
plored. It is known that the working mechanism of CNN is to first ex-
tract low-level image features (such as edge and curve) by convolu-
tional layers close to the input of the network and then assemble these
features into high-level patterns in fully-connected layers at the output
stage of the network, for purpose of classification. This implies that the
initial layers in a CNN have a more generic feature extraction capability
that can potentially be generalized across different application do-
mains. In the developed transfer learning framework, the weights of the
initial layers in the pretrained CNN are frozen and transferred (i.e., two
convolutional layers and two pooling layers in the spatial stream, and
four convolutional layers and two pooling layers in the temporal
stream, respectively).

To realize human action recognition in the target domain (i.e.,
manufacturine). the fused features throueh the transferred lavers are
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Fig. 5. Illustration of the spatial stream.
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Fig. 6. Illustration of the temporal stream.

to visualize directly. To facilitate performance evaluation of the de-
veloped method in terms of the separability among features corre-
sponding to different human actions, the method of t-SNE for visua-
lizing data in a high-dimensional space is investigated [29].

t-SNE is an improved version of Stochastic Neighbor Embedding
(SNE). The basic idea of SNE is to find a low-dimensional space re-
presentation of the complex data structure that is typically represented
in the high-dimensional space for ease of visualization. The technique is
based on the pair-wise data similarity between corresponding data
points in the low and high dimensional space. To represent the simi-
larities between data points x; and x; in a high-dimensional space, the
conditional probabilities is computed as:

—llx-% |2
eXP( 20"»2 E )
— Il i — xi |12
Zk#i exp( ;,iz ) ®

where g; is the variance of the Gaussian distribution centered on x;. In
the low-dimensional space, the counterparts of x; and x;, namely y; and
Y, are randomly assigned initially. The corresponding conditional
probabilities can be expressed in a similar manner:

Dji =

o exp(=lly = 1P
M T eIy~ wlP) ©

To allow the data points y’s in the low-dimensional space to capture

Convolutional layers

the structure of data points x’s in the high-dimensional space, the dif-
ference between P and i needs to be minimized. The cost function
representing the difference between p,; and g;; can be expressed as the
summation of Kullback-Leibler (KL) divergence over all data points:

Pyi
C=> KLEIQ) = >, 3 p;log—"
2 Q) =2, 25, s (10)

t-SNE utilizes student t-distribution instead of Gaussian distribution
when computing the conditional probabilities. The advantage of using
t-distribution is that it alleviates issues such as points clustering in SNE
and facilitates the optimization of the loss function [29].

3. Experimental evaluation and discussion

The developed method is experimentally evaluated using engine
assembly as a manufacturing scenario.

3.1. Experimental setup

The developed transferable two-stream CNN model is comprised of
three parts: spatial stream, temporal stream, and classifier. The spatial
stream and temporal stream, which consist of convolutional and
pooling layers, work as feature extractors. Features extracted by both
streams are fused before fed into the classifier, which consists of fully-
connected layers and a softmax layer for classification. Specifically, still
frames and optical flow images are extracted from open source human
action videos to build the pretraining dataset (source domain), which
are then utilized to pretrain the spatial and temporal stream of CNN.
Then, the convolutional and pooling layers in the pretrained model are
transferred to capture features from the assembly dataset (target do-
main). Finally, the weights in the fully-connected layers are fine-tuned
for action recognition in the target domain. The process is illustrated in
Fig. 7.

Fully-connected

Source Lo 1 SillFrame “‘{ @?{iﬂ ]ﬁ[ @ ’—>| Softmax || Classifcaton
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Fig. 10. Image data for engine block assembly [36].
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Table 3
Accuracy of pretraining dataset.
Mean Std. Dev.
Spatial Stream 83.06 % 419 x 102
Temporal Stream 66.37 % 4.48 x 102
Two Stream 88.31 % 3.27 x 1072
Table 4
Accuracy of assembly dataset.
Mean Std. Dev.
Spatial Stream 99.95 % 0
Temporal Stream 72.88 % 4.48 x 102
Two Stream 100.00 % 0

3.1.2. Pretraining

The objective of pretraining is to develop a model that can recognize
human actions by classifying the related images. Two CNNs, one for the
spatial stream and another for the temporal stream, have been con-
structed to classify the images into ten different categories. The spatial
stream is pretrained using individual still frames while the temporal
stream is pretrained using stacks of optical flow images. Details on the
CNN structures of the two streams are illustrated in Figs. 5 and 6 re-
spectively. The pretraining dataset has been randomly split into two
sub-datasets for the purpose of training and testing, respectively. A total
of 85 % of the samples in the pretraining dataset are used as the training
set, and the remaining 15 % are used as the testing set.

To avoid overfitting, which is reflected in the significantly lower
performance in network testing than network training, which results
from the network parameters (e.g., weights) being over-sensitive to
small variations in the training data (e.g., due to noise) and thus fail to
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Fig. 11. t-SNE results of pretraining dataset among spatial stream, temporal stream and two-stream network models.
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Fig. 12. t-SNE results of assembly dataset among spatial stream, temporal
stream and two-stream network models.

accuracy when using the spatial stream alone (83.06 %). It is also
considerably higher than the accuracy using only the temporal stream
(88.31 % vs. 66.37 %). This confirms the importance of using both the
spatial and temporal information for improved action recognition per-
formance. In addition, the standard deviation of two-stream model re-
sults (0.0327) is lower than those from the two single-stream models
(0.0419 and 0.0448), respectively, suggesting that the two-stream
model is more robust to data variations.

In Table 4, it is seen that the mean classification accuracy of the
two-stream model has reached 100 %, indicating that the transferred
model has effectively captured the action-related image patterns from
the assembly dataset, even though the feature extraction capability is
obtained from the pretraining dataset, which is not specific to the as-
sembly task. This suggests that the low-level feature extraction me-
chanism in the CNN is indeed generic and can be effectively generalized
among different action recognition tasks. It is also seen that the two-
stream model has the best performance as compared to the two single-
stream models after transfer, although the spatial stream also achieved
good recognition accuracy (99.95 %).

To evaluate the performance of the models beyond classification
accuracy, t-SNE is deployed to map the extracted high-dimensional
features into a two-dimensional space to visualize the feature separ-
ability. The larger the separation, the better the effectiveness of the
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Fig. 13. Cleaning with (a) lying engine block; (b) standing engine block.
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Table 5
Accuracy of assembly dataset under different noise densities.
Noise Density = Sample Images (Cleaning) PSNR (dB) Mean Std. Dev.
0 - 100.00% O
0.2 15.45 100.00% 0
0.4 12.41 100.00% O
0.6 10.55 99.66 % 4.6 x 107
0.8 9.20 97.12 % 1.4 x10°2

temporal stream, as shown by the two clusters with a clearly defined
border. This separation is the most obvious in the two-stream model, as
the two clusters are completely separated. As another example, the
temporal stream model has failed to distinguish “boxing” from “ar-
chery” as both actions are finished with the movement of the arm.
However, by considering the additional spatial information, “boxing”
and “archery” are successfully separated in the two-stream models.

Fig. 12 shows the visualization of features of the assembly dataset. It
is seen the performance of the two-stream model is better than either
the spatial stream model or the temporal stream model in terms of
clearly separating the clusters of different human assembly actions. The
separation in the spatial stream model is less obvious. Quantitatively,
the mean pair-wise distance between the centroids among different
clusters for the two-stream model is about 4 times longer than that of
the spatial stream model. Because of the unsatisfactory clustering se-
paration in the temporal stream model, its mean pair-wise centroid
distance is not computed.

the room light conditions, noise with different densities is progressively
added into the raw images of all the seven assembly actions. As a
quantification measure, noise density is used, which refers to the ratio
of the number of affected image pixels (by randomly setting their values
to either 0 or 255, thereby removing their contribution to image re-
cognition) to the total number of pixels. As an example, a noise density
of 0.6 means that 60 % of the pixels are affected by noise.

Digital cameras are generally able to adapt to the dimming light
condition by increasing the “brightness level”, which however gen-
erates image noise as a trade-off. By progressively adding noise levels,
as reflected in the increased noise density values, the effect of varying
light conditions can be investigated. Furthermore, the peak signal-to-
noise ratio (PSNR) values of the images with different noise densities
are calculated. PSNR is expressed as the ratio of the maximum possible
value of a signal to the power of distorting noise that affects the quality
of its representation [37], and is computed as:

Ho__ 2
(2 1))

PSNR =10 x 1
°80( " rop (11)

where MSE is the deviation of the noise image from the raw image
computed as mean square error, and n is determined by the image
datatype (e.g., for uint8, n is 8).

Table 5 shows the sample images ("cleaning" operation) with dif-
ferent noise densities and the classification results under the corre-
sponding noise contaminations based on 25 random experiment tests. It
is seen that the developed method has been able to correctly identify all
seven human assembly actions until the noise density has increased to
0.6 when the mean classification accuracy has dropped to 99.66 %.
With a noise density of 0.8, the two-stream CNN has still achieved a
classification rate of 97.12 %. These observations indicate that the
developed method is robust to the image noise and consequently, the
varying light conditions.

4. Conclusion

To improve the accuracy in human action recognition for reliable
human-robot collaboration, a hybrid method that integrates optical
flow with transferable two-stream CNN has been developed. This
method enables the utilization of temporal information embedded in
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utilizing spatial and temporal information alone, by up to 27 %.
Visualization of the extracted features has indicated that the spatial
and temporal information complement each other when de-
termining different human actions. Furthermore, despite the similar
recognition accuracy achieved by both the spatial CNN and two-
stream CNN, the features obtained from the two-stream CNN are
four times more separated as compared to the spatial CNN.
Transfer learning is effective in adapting the feature extraction
capability of the network from a source domain to the target do-
main, as reflected by the 100 % action recognition accuracy in the
engine assembly evaluation.

The developed method has shown to be robust under variations in
the assembly configuration and noisy video footage, as reflected in
the 97.12 % recognition accuracy under the noise density level of
0.8.

Future work will address the theoretical bound of data transfer-

ability and expand the developed method as a trustworthy technique in
HRC for broader applications.
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