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Artificial Intelligence in Advanced
Manufacturing: Current Status
and Future Outlook
Today’s manufacturing systems are becoming increasingly complex, dynamic, and con-
nected. The factory operations face challenges of highly nonlinear and stochastic activity
due to the countless uncertainties and interdependencies that exist. Recent developments
in artificial intelligence (AI), especially Machine Learning (ML) have shown great potential
to transform the manufacturing domain through advanced analytics tools for processing the
vast amounts of manufacturing data generated, known as Big Data. The focus of this paper
is threefold: (1) review the state-of-the-art applications of AI to representative manufactur-
ing problems, (2) provide a systematic view for analyzing data and process dependencies at
multiple levels that AI must comprehend, and (3) identify challenges and opportunities to
not only further leverage AI for manufacturing, but also influence the future development
of AI to better meet the needs of manufacturing. To satisfy these objectives, the paper
adopts the hierarchical organization widely practiced in manufacturing plants in examining
the interdependencies from the overall system level to the more detailed granular level of
incoming material process streams. In doing so, the paper considers a wide range of
topics from throughput and quality, supervisory control in human–robotic collaboration,
process monitoring, diagnosis, and prognosis, finally to advances in materials engineering
to achieve desired material property in process modeling and control.
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1 Introduction
Manufacturing is entering a period of substantial innovation and

change driven by the increased integration of sensors and the
Internet-of-things (IoT), increased data availability, and advances
in robotics and automaton. This leads to pervasive digitalization
of the factory and challenges manufacturing enterprises to recon-
sider, reexamine, and reevaluate their present operations and
future strategic directions in the new era known as Smart Manufac-
turing and Industry 4.0 [1]. These innovations representing a future
vision of manufacturing motivate the central theme of this paper,
namely to examine how artificial intelligence (AI) can play a vital
role in realizing these opportunities to advance the manufacturing
industry in a profound new manner. To date, the implementation
of AI in modern manufacturing has been built on the progressive
development of a series of techniques over many decades, such as
machine learning (ML) [2]. Recent advances in computational hard-
ware as well as in sensing technology for the collection of critical
process/machine data have made the application of these AI tech-
niques feasible in a practical sense and led to a great interest in
the capabilities and benefits that they offer. Further, a review of
state-of-the-art AI applications helps to identify some unique man-
ufacturing problems where AI techniques might provide solutions
and thus significantly improve productivity, quality, flexibility,
safety, and cost. Such knowledge and understanding are of great
benefit to the practical implementation of AI in today’s highly
complex industrial environments that each has its own individual
requirements and context.

1.1 Evolution of Artificial Intelligence. AI can be defined as
the “ability of computers to perform cognitive functions associated
with human minds, such as perceiving, reasoning, learning, and
problem solving” [3]. The term “AI” dates back to the 1950s
with the invention in 1956 of the perceptron, a neural network
(NN) structure designed to simulate a human neural system by uti-
lizing a weighted sum of inputs [2,4]. Despite its roots in human
learning mechanisms and widespread anticipation that human-like
cognitive AI was well within reach, the development of perceptron
was hampered by its inability to process even the simplest logic
and intractable computational complexity [4]. This quickly led to
reduced enthusiasm for supporting AI-related research and resulted
in the beginning of the first AI winter. The recovery from the first
AI winter was enabled by expert systems that correspondingly
needed handcrafting by experts culminating in extensive series of
“if-then” rules. This prevailing wisdom caused many to believe
that expert knowledge was the best means to create AI.
However, the era of knowledge-based AI turned out to be rather
short-lived, as the expert systems became prohibitive in the
design and maintenance of inherently complex logic, consequently
leading to the second AI winter. ML contributed to the recovery of
AI from the second winter, especially the invention of deep learn-
ing (DL), along with the advances in sensing and computational
infrastructure that have allowed ML/DL models to be established
[4,5]. These techniques are based upon generalization, meaning
that they infer the general description of a class by observing the
behavior of individuals in that class [4,5]. The expectation of AI
has also been realigned to the more focused perspective of
enabling analytics, whereby AI tools are a complement to the
domain knowledge of human experts in the factory rather than
their replacement [6–13].
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1.2 Opportunities for Artificial Intelligence in
Manufacturing. The main driving factors and requirements in
most daily manufacturing operations across industries are those of
meeting throughput, quality, and cost objectives while ensure a
safe working environment for all. However, meeting these goals
has become increasingly difficult with the multitude of demands
stemming from growing product and process complexity, higher
variability in customer demand and preferences, along with relent-
less competitive pressures from others in the marketplace to remain
profitable. Seen from a positive perspective, this tough operating
climate facing the majority of manufacturers provides an opportu-
nity for the unique capabilities of AI over conventional tools and
approaches. In particular, the commonplace activity of problem-
solving which involves looking for root causes lends itself well to
AI tools capable of identifying and classifying multivariate, nonlin-
ear patterns in operational and performance data that are hidden to
the plant engineer. Nowadays, huge amounts of continuously gen-
erated data are produced by machines, ambient sensors, controllers,
and labor records, etc. The data could be categorized as follows:
(1) environmental data collected from ambient sensors, e.g., room
temperature and humidity, (2) process data collected from sensors
on process machines or stations, e.g., machining and grinding
coolant temperatures, power, and heat treat temperature/energy,
(3) production operation data recorded in controller systems, e.g.,
timestamps or elapsed time of each part in each operation station,
machine downtime, starvation/blockage, idle time, and shift
scheduling, (4) measurement or check data from product quality
inspections, e.g., product diameter, form, and balance. Embedded
in all this big data are unprecedented opportunities for pattern dis-
covery that can contain important clues to solve tough problems
while offering a complementary understanding of the physical
meaning of parameters to other physical characteristics of a
system or process. Coupled with the ability to comprehend high
dimensional data, AI provides the ability to transform large
amounts of complex manufacturing data, which has become com-
monplace in today’s factory, into actionable and insightful informa-
tion [9–13].

1.3 Hierarchical Approach to Manufacturing Systems. The
topic of AI in manufacturing has attracted much attention in the
scientific community with the number of publications steadily
growing over the past 40 years, as shown in Fig. 1. Recently,
several review publications have also been published on this
topic. In Refs. [7,8], a high-level, general framework and key ele-
ments in smart manufacturing systems and governmental initia-
tives around the globe are presented. The constituent technologies
such as IoT, cyber-physical systems (CPS), cloud computing, big
data analytics, and information and communications technology
(ICT) and their interrelationships are discussed. A review of the
ML and DL techniques and their applications in manufacturing is
found in Refs. [9,10], respectively. In these publications, the
focus was on the survey of the techniques themselves instead
of the requirements derived from the manufacturing system.
Several other review papers have focused on specific aspects in

manufacturing, providing analysis at a more granular level with
support from more detailed examples. For example, Refs. [11,12]
discussed AI for machine condition monitoring and fault diagnosis,
while Ref. [13] provides a comprehensive review of AI in the
emerging field of human–robot collaboration (HRC).
Furthermore, since the topic of AI in manufacturing has wit-

nessed this rapid growth in the amount of published research, to
write a review paper such as this requires an organizing construct
as a framework to help assess, review, and synthesize the vast liter-
ature in this field of ongoing research, development, and industrial
implementation. Therefore, the review presented herein aims to
strike a balance between a high-level overview of the advanced
manufacturing systems and the specific AI techniques as represen-
tative examples. The uniqueness of this paper is that it follows a
hierarchical view to classifying plant systems and processes since
this is how plants are commonly organized, both physically and
functionally, as illustrated in Fig. 2. This hierarchical view as an
organizational construct is thus a valuable concept from the per-
spective of system requirements when reviewing the suitability of
any AI technology to ensure global goals are met and sub-
optimization is avoided. The hierarchical, three-level decomposi-
tion of the manufacturing system (system-process-material) also
draws parallels from the ISA-95 framework that defines from the
low-level physical processes (for which modeling of the material
property plays an important role), to the mid-level sensing/monitor-
ing of the processes (the foundation of maintenance and prognostics
and health management, or PHM) and finally, the top-level manag-
ing manufacturing operation (the system-level modeling and perfor-
mance analysis).1

Given that the field of AI as described above is very broad with a
long history and theoretical underpinnings in statistics, optimiza-
tion, and computer science, there is an overwhelming amount of lit-
erature to survey, and therefore, this paper has been scoped with
three major objectives: (1) review the state-of-the-art applications
of AI to important manufacturing problems, (2) provide and use a
system-level view with which to understand data and process
dependencies at the multiple levels that AI must comprehend, and
(3) identify challenges and opportunities to not only further lever-
age AI, but to influence the future development of AI to better
meet the needs of manufacturing.
With these goals in mind, this paper is organized following the

hierarchical logic of Fig. 2. First, beginning from the overall
system level, we examine AI in areas such as throughput and
quality optimization in Sec. 2. Next, we look at a specific
example of system control, namely that of human supervisory
control in the context of HRC in Sec. 3. Following this, we
proceed to the process level in Sec. 4, in which the analysis of
signals from machines and processes provides new opportunities
to advance the field of diagnosis and prognosis. Section 5 considers
the opportunities provided by AI to improve material processing
and characterization which are the fundamental building blocks
for reducing the uncertainty of incoming material streams. Future
challenges and opportunities are then summarized in Sec. 6, and
overall conclusions are drawn at the end.

2 Artificial Intelligence for Manufacturing System
Optimization
A manufacturing system can mean many things, depending on

the viewpoint taken. In this paper, manufacturing systems comprise
machines, robots, conveyors, and supporting activities such as
maintenance and material handling arranged to produce the
desired product, as shown in Fig. 3. Factory operations are highly
nonlinear and stochastic due to countless uncertainties and interde-
pendencies [14,15]. The performance (hence the global competi-
tiveness) of such modern manufacturing systems is critically

Fig. 1 Growing scientific publications for AI in manufacturing 1isa-95.com/
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dependent on the “optimal control” of material flow through the
work cells. This section aims to review the recent advancement in
AI approaches as it applies to manufacturing systems including
system modeling and performance analysis, and optimal system-
level control and decision-making.

2.1 Modeling and Performance Analysis. Production system
performance evaluation, diagnosis, and prognosis in terms of
productivity, quality, and efficiency are of great importance.
However, unreliable machines and finite buffers make the material
flow in manufacturing systems difficult to model and analyze since
the former makes it stochastic and the latter nonlinear.

2.1.1 Throughput Evaluation. Throughput analysis is aimed
at evaluating long-term or short-term productivity of manufactur-
ing systems, which could facilitate system design, performance
improvement, and daily operation of production systems. Sub-
stantial amounts of research have been devoted to the analysis
of manufacturing system dynamics and performance [15–19].

However, the traditional analytical modeling methods based on
queuing theory and Markov Chains [17,18,20,21] suffer from
two considerable disadvantages. The adoption of data analytics
and ML techniques offer great potential to compensate for these
shortcomings.
First, the analytical methods for estimating throughput, either

exact or approximate, are limited to simple system structures
under strict assumptions. For more complex systems, simulation
turns out to be the only feasible approach to evaluate long-term
system performance. ML methods can be applied to generalize
the results from simulations, to avoid repetitive simulation runs
when the production system parameters are changed. In Ref. [22],
the gray model and neural network are combined to predict
system throughput for a multi-product production line considering
rework loops. In Ref. [23], a single hidden layer neural network
is trained to predict makespan and throughput for multi-product
manufacturing systems considering stochastic cycle times.
Second, conventional throughput improvement approaches focus

mainly on long-term steady-state performance analysis, which are
not applicable to real-time throughput prediction and production

Fig. 2 Hierarchical plant organization

Fig. 3 Schematic of a modern manufacturing system
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control. Further, they are unable to take full advantage of today’s
vastly superior sensor readings. Short-term system performance,
inferred from buffer states and machine status, has proven to be
useful in real-time control for complex production systems
[24,25]. Improving production system throughput is an important
task of production line management and control. In practice, it is
often accomplished by identifying the bottleneck machine and
improving its operation. Data-driven methods in identifying
throughput bottlenecks have been extensively studied. Earlier
works [15,18] develop an indirect index to identify production bot-
tlenecks. In Ref. [26], an event-based method is discussed to evalu-
ate permanent production loss in batterymanufacturing. In Ref. [27],
a data-driven model is developed using available sensor data, and a
system diagnostic method is proposed to identify real-time produc-
tion constraints and bottlenecks. In Ref. [28], a recency-weighted
stochastic learning method is proposed to predict the system produc-
tion losses of serial production lines in a small look-ahead window.

2.1.2 Quality Analysis. The complex interactions among dif-
ferent processes in multistage manufacturing systems have pre-
sented significant challenges for quality analysis in the system
level. Classical statistics-based approaches, e.g., control charts and
run charts, which mainly focus on process-level quality assurance,
might not be applicable to system-level analysis, since the quality
deviation in a particular stage is not only determined by that stage
but also by upstream stages or sub-assemblies. Model-based
methods for quality analysis, e.g., the stream-of-variation model
[29], provide an analytical approach to examine quality issues
through modeling the generation and propagation of quality varia-
tions. However, model-based methods often require substantial
domain knowledge that is not always readily available. ML-based
quality analysis is well suited to situations where there is limited if
any, domain knowledge regarding the process physics and system
dynamics. These analysis approaches have been found to achieve
one or more of the following objectives by applying the AI/
ML-based methods.

(1) Early detection of quality defects. For multistage manufac-
turing systems, undesirable quality deviations might propa-
gate along stages and result in defects of final products. It
is of great benefit to detect quality deviations in earlier
stages, which would save production resources and reduce
the overall cost by promptly reworking defective parts. Con-
ventionally, statistical process control (SPC) is commonly
used to monitor the quality of work-in-process parts by
inspecting several important variables according to given
specification ranges. Despite its widespread usage, SPC has
its drawbacks in that, for example, the data are assumed to
be unimodal, which is not always true. More importantly,
SPC is dependent on clear, known relationships between
inspected variables and final product quality. With the vast
amounts of time-series data, some ML-based approaches
[30–35] are proposed to effectively overcome some of the
deficiencies in conventional process control methods. In
Ref. [34], a case study is presented on the quality control
of work-in-progress products in the powder metallurgy
process based on autoencoders and recurrent neural networks
(RNNs). In Ref. [35], a combination of cluster analysis and
support vector machines (SVM) is introduced to achieve
the goal of improved quality monitoring. Compared with
quality prediction, the early detection of quality defects is
more challenging since the latter needs to discover the rela-
tionship between incomplete observations up to specific
stages and quality characteristics of the final product with
time-series data.

(2) Root cause diagnosis of quality issues. In multistage manu-
facturing, one defective product might result from one or
multiple imperfect quality stages. Identifying the root cause
for quality issues is of great practical value in industries
since corrective actions can be taken promptly to improve

product quality. However, due to the fact that system-level
quality diagnosis requires intensive expert knowledge, the
applications of pure ML methods in this context are
limited. Bayesian networks are one of the methods that can
be used to conduct root cause diagnosis of quality issues as
it is convenient to infer fault causes from observed quality
deviations. In Ref. [36], a new method of Bayesian
network construction is proposed, using a framework
designed for root cause diagnosis in an automotive body
assembly process. The proposed method can work with
small data sets and medium-level noise in measurements.
In Ref. [37], a distributed diagnostic framework based on a
multi-agent Bayesian approach is proposed and implemented
in a lab-based modular assembly system.

2.2 Manufacturing System Decision-Making and Control.
Manufacturing system control is concerned with decision-making
and controlling of the physical activities in a factory in order to
improve productivity, quality, and overall efficiency. Algorithms
at the system level are used to decide what and how much to
produce, when production is to be finished, how and when to use
the resources or make them available, when to release jobs
and which jobs to release, job routing, and job/operation sequencing
[38]. The approaches can be categorized into centralized or hierar-
chical control approaches and distributed multi-agent-based
control approaches. Traditional centralized manufacturing control
approaches and software packages are developed and adapted case
by case and lack flexibility, expandability, agility, and reconfigur-
ability [38]. On the other hand, multi-agent-based control
approaches derived from distributed AI techniques provide several
important benefits such as robustness, reconfigurability, and respon-
siveness [39].
Smart manufacturing seeks to increase factory productivity and

the efficient utilization of resources in real-time [40]. To achieve
these objectives, manufacturing systems need to transform large
amounts of data into manufacturing knowledge and useful actions
in order to become more responsive to market changes and
random disruption events. It is crucial to consider adaptive plan-
ning, scheduling, and control for dynamic manufacturing environ-
ments as key research issues in smart manufacturing management.

2.2.1 Job Dispatching and Scheduling. In flexible manufactur-
ing systems, the job dispatching problem arises when there are mul-
tiple product orders awaiting processing during the same time
window. It is critical to determine which order should be prioritized
and which machine should undertake the job. In this context, the job
dispatching problem seeks to find the optimal job sequences and job
routes considering various internal factors, e.g., machine capability
and availability, and external factors, e.g., order due dates, such that
one or more of the following minimizing objectives can be
achieved: mean tardiness, mean stay time, and energy consumption.
Over the past few decades, the job dispatching problem has been
widely studied in the literature with many different reported
approaches. Exact approaches, e.g., branch-and-bound (B&B) and
integer programming, are feasible for small-scale job dispatching
problems, while heuristic-based methods, e.g., simulated annealing
and genetic algorithm, might deliver dispatching rules that lack
adaptiveness to system dynamics [41]. To cope with the increasing
complexity of manufacturing systems, ML-based methods, includ-
ing both supervised learning and reinforcement learning (RL), have
been extensively applied in this area.
Supervised learning involves learning from labeled examples

provided by an expert with domain or application knowledge.
Moreover, supervised ML is frequently used due to the data-rich
but knowledge-sparse nature of problems in the manufacturing
environment. Conventionally, simple heuristic dispatching rules
are used in production scheduling, such as SPT (shortest process
time), COVERT (cost over time), EDD (earliest due date), and
FIFO (first in, first out) [42]. However, adhering to a single dis-
patching rule does not necessarily deliver better performance than
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dynamically switching dispatching rules according to system states.
Inspired by observation, classification problems are formulated by
taking the relevant system dynamic variables as inputs, and
simple dispatching rules as outputs. Commonly used ML algo-
rithms in this context include Decision Tree [43–45], Neural
Network [46–48], SVM [41,49,50], and ensemble learning
methods [41]. Despite the ML algorithms, the authenticity of train-
ing data is the prerequisite to reliable production scheduling.
Although simulation (e.g., Refs. [41,46–49]) is a typical source
for training data, it suffers from the disadvantage that data might
be biased if the simulation is incapable of representing real opera-
tions. Therefore, researchers in Refs. [43,44,50] attempt to avoid
such bias by aggregating multiple data sources, including simula-
tion, historical data, and expert knowledge. In Ref. [45], a real-time,
big data framework is established to collect, process, and store
actual data from the shop floor upon which a real-time production
scheduling and rescheduling method are implemented.
RL is suitable for a model-free problem with delayed conse-

quences, inwhich themodel dynamics are unknown andmust be esti-
mated through interactions of agents with the environment. The
applications of RL methods in job dispatching problems are not
new since job dispatching is a sequential decision-making problem
in dynamic environments. Extensive RL-based research, including
Refs. [51–54], has been reported for distinct applicable scenarios.
In Ref. [51], by adopting the decentralized Markov decision
process (DEC-MDP) framework, processing machines are modeled
asdistributedRLagents and apolicygradient algorithm is used todis-
cover near-optimal dispatching rules. In Ref. [52], a relational RL
approach is proposed to obtain policies for efficiently rescheduling
production plans, which is able to handle abnormal and unplanned
events such as inserting an arriving order. In Ref. [53], a scheduling
method based on variable neighborhood search (VNS) is proposed to
obtain job dispatching decisions considering random job arrivals and
machine randomfailures, inwhichRL is used toobtainproper param-
eter for VNS at a rescheduling decision point. There are dozens of
RL-based research approaches tackling the job dispatching
problem where slightly over 80% of this work adopts the tabular
Q-learning algorithm, a powerful, but hard to scale, off-policy RL
algorithm. With the rapid advancement of RL in recent years, a
great deal of novel algorithms have emerged, including the deep
Q-network (DQN) [55], which is able to solve large-scale RL prob-
lems by integrating deep neural networks (DNN). In Ref. [54], the
DQNis applied to solving a large-scale schedulingproblem in a semi-
conductor manufacturing system. The novel RL algorithms like
DQN, which have largely enhanced learning efficiency and scalabil-
ity, are expected to help solve more sophisticated and practical pro-
duction scheduling problems in the future.
Maintenance activities aim to keep machines in desirable reliabil-

ity levels or to quickly recover them from random failures. As main-
tenance work orders can be modeled as a sequential decision-
making problem given machine states and system states, RL has
also been used in Refs. [56–60] to obtain near-optimal maintenance
policies for manufacturing systems. Many studies [57,58,60] inte-
grate multi-agent-based learning and control in their methods,
helping dismantle complex structural and operational dependencies
among components. Compared to traditional maintenance policies
[61], e.g., periodic policy and age-dependent policy, the RL-based
maintenance policies are more adaptive to the manufacturing
system dynamics and therefore yield better system performance.
The adaptiveness of the RL-based maintenance policies provides a
great opportunity to build real-time maintenance decision-making
systems by making full use of real-time data analytics on the plant
floor. In Ref. [62], a conceptual framework for maintenance sched-
uling is proposed to schedule condition-based maintenance in
smart manufacturing systems.

2.2.2 Resource Allocation. In a manufacturing system,
resource allocation is the process of assigning manufacturing
resources for specific time periods to the set of manufacturing pro-
cesses, where resources include but are not limited to robots,

human operators, and machines. Resource allocation is an optimiza-
tion process whereby limited manufacturing resources are allocated
over time among parallel and sequential activities in order to achieve
a desirable system performance. Resource allocation problems may
arise in both the design stage and daily operation. A typical resource
allocation problem in the design stage is the buffer allocation
problem [63], i.e., allocating buffer spaces to a production line
given the total available spaces. In Ref. [64], a decision support
system is proposed for buffer allocation, where a neural network is
trained to quickly predict system throughput given system design
parameters. The resource allocation problems in daily operations
are further complicated by the highly uncertain and fast-evolving
factory environments, compared with that in the design stage. In
daily operations, resource allocation is often coupled with task
assignments. RL has been widely applied to tackle problems in
this area. In Ref. [65], an RL-based method is proposed for dispatch-
ingmaterial handling dolly trains in a general assembly line, wherein
the dolly train delivers materials to workstations and carries multiple
types of parts at a time. In Ref. [66], a gantry assignment problem in
production lines is also formulated as an RL problem and solved by
the Q-learning algorithm. In both studies, random factors, such as
machine failures in Ref. [66] and product queue lengths in
Ref. [65], drive the transition of the system states, which are difficult
to obtain the complete state transition models. RL fits such sequen-
tial decision-making problems well and can solve them in a model-
free way with various algorithms. Nonetheless, RL problem formu-
lation needs careful analysis and a thorough understanding of the
system dynamics. In Ref. [67], a comprehensive simulation study
is conducted on the same gantry assignment problem presented in
Ref. [66] with a focus on comparing different reward settings,
which demonstrates that the knowledge-guided reward setting out-
performed all other four heuristic-based reward settings.
With the advancement of industrial IoT, AI and specifically ML

will see increasing utilization penetrating the entire manufacturing
system. ML algorithms potentially provide powerful tools to
reduce cycle time and scrap, improve quality, and improve resource
utilization in certain NP-hard manufacturing problems [68].

3 Artificial Intelligence for Manufacturing
Applications of Human–Robot Collaboration
This section specifically examines the utilization of AI in the

context of HRC. Consistent with this paper’s use of a hierarchical
framework to structure and organize the review of AI in manufactur-
ing systems, the topic of HRC is one that uniquely straddles both the
system and machine/process layers. HRC may be defined [13] as “a
state in which a purposely designed robot system and an operator
work on simultaneous tasks within a collaborative workspace, i.e.,
where the robot system and a human can perform tasks concurrently
or even jointly.”The impact ofAI onHRC is particularly important to
review given the continually increasing diversity and quantity of
robotic applications in manufacturing. Traditionally, the objective
of applying robotics inmanufacturing has been to leverage the advan-
tages robots have over humans such as repeatability, endurance,
strength, ability to operate in hazardous environments, etc. Industry
has long recognized that utilizing robots to perform these types of
tasks frees humanoperators tomore efficiently focus on their inherent
natural advantages, namely, those related to cognition, adaptability,
ambiguity, and flexibility. However, with the advent of increasingly
more powerful and capable AI/ML tools, this relative balance of
skills, functionality, and types of capabilities is continuously shifting
and becoming less clear as the sophistication and computational
power and application domain of these technologies increase.
Correspondingly, the body of work in HRC is a very broad set of

industrial research areas that drives an equally diverse set of poten-
tially applicable robot-related AI technologies. Reviewing such a
resulting breadth and depth of literature is challenging without a
roadmap that can offer guidance as to what has been developed,
what is state of the art, and what important problem areas remain
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to be solved. While there can be no definitive or absolute categori-
zation of such a vast field of work, as we have done for the overall
paper, we also propose a framework adapted from human supervi-
sory control theory and combine it with a classification scheme for
describing the characteristics of HRC. In this manner, the resulting
descriptive framework is used to cross-reference AI-based technol-
ogies with key aspects of HRC and therefore highlight foundational
work and the problem domain for which AI/ML is either already
being deployed, or in the future may be well suited to solving
other more difficult problems.

3.1 Overview of Human–Robot Collaboration. Over the
decades since robots were first introduced into industrial environ-
ments, manufacturers have sought to gain ever more efficiencies
and capabilities from these significant capital investments. Simulta-
neously, the role of the human operators and the nature of the inter-
action with robots and robotic systems have evolved in conjunction
with the increasing functionality and application space where they
have been installed. However, with recent developments in many
robot capabilities such as sensing, perception, control, teaching,
and learning the very nature of the human–robot relationship is
being examined with a focus toward attaining greater productivity,
flexibility, and adaptability [69,70]. These benefits are driving man-
ufacturing firms to move their human–robotic systems from one of
coexistence toward collaboration.
However, despite the attraction of the potential benefits that HRC

promises, there are still key technical challenges and requirements
that need to be addressed and overcome before improvements in
productivity can be realized. Chief among these are the industrial
safety requirements that prohibit human operators and robots
from sharing a common workspace, and as such is an ongoing
area of research [71–73]. Other challenges concern how robots
understand and interpret the uncertainty in the behavior, actions,
and intentions of the human(s) that comprise an HRC system
[74]. Nevertheless, advances are being made by some robot manu-
facturers to develop commercial robotic solutions that can begin to
meet some of these challenges such as in industries having
light-duty, low-powered, or low-payload applications. Though
firms are developing innovative solutions to solve practical indus-
trial problems, HRC still represents a large area of ongoing research
before industry-wide adoption can occur. However, advances in AI
technologies may enable and accelerate the development and imple-
mentation of HRC into the industry.

3.2 Characterizing the Human–Robot Relationship. When
reviewing the literature, the type of AI techniques that have been
developed and implemented for HRC depending on the specific
details of the HRC manufacturing application such as the complex-
ity and type of an assembly operation and on the nature of the
human–robot relationship. The latter is particularly important as
it governs how a manufacturing operation is executed jointly by
the human and robot and warrants further examination. In this
regard, four types of HRC have been defined [75] wherein the
degree of collaboration is classified according to how closely
humans and robots work together on a specific manufacturing oper-
ation comprised of processes and workpieces. These range from (i)
complete independence of different processes and workpieces, (ii)
synchronization of different processes with a common workpiece,
(iii) simultaneous different processes and common workpiece,
and (iv) simultaneous collaboration on common process and
workpiece.
Further work [76] classifies various human–robot relationships

from the perspective of sharing within five types of situations or
scenarios, namely that of workspace, direct contact, work task,
simultaneous process, and sequential process. These scenarios are
then mapped to four different types of human–robot relationships:
coexistence, interaction, cooperation, and collaboration. This
tabular construct then permits a rich and comprehensive description

of human–robot relationships that maybe used to describe particular
human–robot operational environments.

3.3 Human Supervisory Control at the Intersection of
Human–Robot Collaboration. Sheridan [77,78] defines a para-
digm composed of human supervisory control functions wherein
a human supervises a generalized machine whether it be an entire
automation system, a robot, a computer, or any other physical
device capable of receiving commands and carrying out actions cor-
respondingly. The specific functions consist of planning, teaching,
monitoring, intervening, and learning. However, in our paper, we
augment these five functions with a sixth function, that of operating
a system to explicitly call out task execution activities by both the
human and robot in HRC systems. Though this section discusses
a collaboration between a human and a robot, there is no loss in gen-
erality by considering the human as a supervisor in this collabora-
tive setting since Sheridan’s paradigm allows for varying degrees
of supervision between humans and automation. Each of these six
functions is potential area for the application of a wide variety of
AI/ML tools since they are all fundamentally performed by a
human supervisor. In this regard, Sheridan’s classical paradigm of
human supervisory control provides a suitable perspective
through which to analyze human-collaborative robotic systems in
manufacturing that seek to leverage recent advances in AI/ML.
Given this well-established foundation, we reexamine the paradigm
in light of today’s advances in robotics to consider these six func-
tions extended into the robotic domain as described in greater
detail in Sec. 3.4.

3.4 Integrated Perspective for Surveying Human–Robot
Collaboration and Artificial Intelligence Manufacturing
Literature. Using the above foundation, we make use of Fig. 4
as an organizing framework to map AI/ML technologies to existing
and potential industrial HRC applications and find common themes
across problem types and corresponding AI/ML solutions.

3.4.1 Plan. Planning [77,78] comprises three elements and
activities: system modeling, setting and meeting objectives, and for-
mulating strategies. In an example of planning from an assembly
application [79], Bayesian sequential decision-making is investi-
gated to determine the optimal allocation of sensing modes
between purely autonomous and manual states. A shared vision
system is considered wherein a combination of observational
modes exists ranging from solely human-based, mixed human–
robot based, and solely robot based with the goal being to determine
the optimal allocation decision among these three modes. In the
development of “intelligent agents” [80], vision technology and
planning activities are examined for how AI can integrate these
two areas. Another facet of HRC planning [81], considers the
assignment of roles and allocating tasks among the humans and
robots in a collaborative system. Under the Sheridan supervisory
control paradigm, it is given that the balance between roles and
tasks is specified in the original system design. In Ref. [81], a frame-
work is proposed for lab-based experiments of a human and
robot collaborative system to assemble a basic household item of
furniture that enables reasoning to make such types of decisions.
This reasoning framework utilizes partially observable Markov
decision processes (POMDP) capable of performing in uncertain
environments thus providing the ability to plan adaptively. In
other work [82], an “anticipatory control” method is developed to
proactively plan robot actions based on anticipation of the human
operator’s intention during task performance. Here, the AI tech-
nique employed is that of an SVM to predict gaze patterns of the
operator and in turn predict task intentions.

3.4.2 Teach. Secondly, teaching or training, involves commu-
nicating commands to a robot(s) execute specific actions. In an
HRC assembly application [83], a machine learning framework is
proposed to identify successful snap-fit assembly operations and
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transfer them from human to robotic operations. This framework
utilizes force profile features to identify types of snap-fits based
on data sets generated via HRC having high variability enabling
machine learning, in this case, an SVM classifier was trained.
This is an example of where HRC is used for training to develop
autonomous robotic operations. In Ref. [84], a system based on
natural language is proposed to improve the teaching and robot pro-
gramming task. The system is built on a semantic network as the
basis for a natural language processing system comprised of auto-
matic speech recognition, visual simulation environment, and rea-
soning. Human voice commands are inputs to the reasoning
system which also takes inputs from the natural language processor
to search for a reasonable set of robotic actions. In this work, the
semantic hierarchical network improves system robustness by pre-
venting incorrect or irrelevant robotic tasks from occurring such as a
robot picking up a worktable instead of a workpiece thus yielding
faster object referencing.

3.4.3 Operate. Operation concerns the required active steps,
processes, tasks that are completed independently, sequentially,
or simultaneously by the human(s) and the robot(s) in HRC
systems to achieve planned objectives. Depending on the type of
application and system, these operational steps or processes may
or may not be pre-planned which will accordingly drive the
requirements of a given AI technique chosen to improve opera-
tional efficiencies. Moreover, the lack or inability to pre-plan
HRC operations notwithstanding, an even greater challenge
facing HRC is the inherent uncertainty and variability in human
task performance times. Though it may be argued that such vari-
ability is the cost of flexibility provided by human operators, this
characteristic of HRC nonetheless requires the development of
approaches to ensure productivity is maintained. An online AI
technique [85] developed for automatic and unsupervised cluster-
ing of basic HRC operational steps uses real-time force/torque
data to address the challenge in human cycle time variability.
The specific AI method developed and experimentally tested
uses dynamically trained one-class support vector machines
(OCSVMs) to discover states of manufacturing process steps.
This type of online algorithm demonstrates the ability to realize
real-time performance without the penalty of requiring labeled
data from training phases.

3.4.4 Monitor. Next, monitoring requires the human operator
or supervisor to continuously observe and evaluate the execution

of the robots’ actions and progress toward completion of all tasks
and respond to any anomalous events that may arise during opera-
tion. Observing or monitoring includes analysis of the robot system
data frommany data sources and types while considering the overall
system state as part of maintaining situational awareness. Consider-
ing robotic monitoring capabilities, the term “Internet of Robot
Things” (IoRT) [86] describes intelligent devices that can monitor
events, fuse sensor data from a variety of sources, use local and dis-
tributed intelligence to determine the best course of action. A
system architecture that enables monitoring [87] can integrate
observational factors such as work patterns during operation (dis-
cussed previously). RL is used in the estimation of factors such
as human kinematics via a recursive least-square (RLS) algorithm.
In a more comprehensive use of AI in monitoring [88], a deep
learning-based multimodal fusion architecture is developed for
the robust operation of an HRC manufacturing system. Three
modes of communication between humans and robots are consid-
ered in this work: voice, hand motion, and body motion. These par-
ticular modalities for monitoring provide an intuitive approach for
human supervisors or operators to interact with robots. Further,
an architecture integrating these modes provides a more flexible
alternative to the more prescriptive approaches of Refs. [81,89]
and more closely represents the uncertain, stochastic nature of mon-
itoring human performance interacting with robotic systems. More-
over, each of these individual modalities is addressed by a unique
AI approach before multimodal fusion is carried out. Voice
command recognition is formulated as a CNN, hand motions as
an LSTM (RNN), and body motion makes use of MLP transfer
learning.

3.4.5 Intervene. The fifth element of HRC relates to the inter-
vention of operations and considers what alternative steps or correc-
tive actions must be pursued if, in the course of monitoring, the
human or robot observes the occurrence of a fault or anomaly. In
human–robotic systems with limited interaction, a human supervi-
sor will need to alter the system operation by overriding with
manual controls or by stopping and re-teaching the system to
prevent reoccurrence of the fault. An important aspect of interven-
tion in the control of the HRC system is the capability for real-time
decision-making. In complex and ambiguous situations, human
operators have a relative advantage compared to robots owing to
human cognitive abilities by virtue of experience. The requirement
for complex event processing on the robotic side of the collabora-
tion is an opportunity that AI can enhance. For example,

Fig. 4 Illustrative sets of actions, functions, requirements, characteristics, and behaviors for
human operators and robots which are candidates for application of AI/ML approaches
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Ref. [90] presents a layered architecture for HRC connected to
higher-level global plant functions and supporting the use of AI
tools. This framework allows for data collected at the level of an
HRC work cell to train for unknown/unplanned scenarios that can
be detected during operation via supervised learning algorithms
that detect known categories of failure scenarios.

3.4.6 Learn. Finally, the sixth is that of learning which Sheri-
dan [77] considers broadly to be the human cognitive activity of
gaining knowledge from observing the results of the system’s per-
formance. Other investigators [74] have also similarly observed that
as humans and robots work more collaboratively in industrial
systems, a convergence and need emerges for improved teaming
and integration of human actions with robot training and learning.
In the telerobotic paradigm [77], teaching and learning are directed
from the human supervisor to the robot. In contrast, a robot teaming
model [74] is integrated with a human operator mental model by
means of a Markov decision process (MDP). This work highlights
how learning can extend across the collaboration space and can be
bi-directional in nature. An example [89], of integrating planning,
teaching, and learning into robot functions alleviates the human
from these supervisory functions. In this work, a learning approach
is developed based on symbolic AI (inductive logic programming,
or ILP) for task execution in cognitive robots. ILP enables planning,
execution, and learning framework where a set of hypotheses are
constructed, updated, or discarded as the robot gains new knowl-
edge in the form of further observations. Specifically, experiential
physical learning is combined with an adaptive planning strategy
so that feedback is provided to a mobile robot (in lab environment)
to improve future task performance thereby robustness. Another
key need in advancing HRC is being able to understand and learn
the wide range of activities performed by the human operator.
This ability involves being able to infer human intentions along
with the myriad of complexities that this objective entails. In a
very focused study [91], an algorithm is developed to model nonlin-
ear human motions using an artificial neural network (ANN) based
on position and velocity data with online learning. In Ref. [92], an
RNN-based human motion trajectory predictive model parses the
interaction among human body parts for more accurate trajectory
prediction. Further, Monte-Carlo dropout was investigated to
measure the prediction uncertainty and improve the model robust-
ness. A broader approach [93] is developed whereby a three-
pronged, integrated teaching, learning, operating strategy is
adopted. This approach consists of the human first teaching the
robot via natural language instructions, and thereafter, the robot
learns from human assembly demonstrations via an RL algorithm.
Once the teaching-learning phase is completed, this learned knowl-
edge is used during the operation to actively assist during collabo-
rative assembly tasks.

4 Artificial Intelligence For Process Monitoring,
Diagnostics, Prognostics
The history of manufacturing is closely associated with the

history of improving the reliability of machine equipment to
reduce unexpected downtime. Research on machine condition mon-
itoring, defect root cause diagnosis, and remaining useful life (RUL)
prognosis establishes the core competence for maintenance and
PHM. The goal is to enable timely detection and isolation of the pre-
cursors or incipient faults of components, predict their progression,
and support rational decision-making. The significance of the main-
tenance and PHM system in manufacturing lies in revealing the
health state of individual machines and/or the production system
in real-time, providing a diagnosis of anomalies’ root cause, and
preventing the occurrence of a failure, all to ultimately achieve near-
zero downtime [94]. Research on PHM started to take shape in the
20th century [95], with the initial focus on the physics-based under-
standing of the working mechanisms of machines and processes.
The shift from manual to automated production in the third

industrial revolution witnessed the expansion of data collection
and the adoption of AI methods [95]. These methods, especially
ML, can inductively learn useful data patterns and relate to process-
ing condition and performance, with the underlying concept that
data are the reflection of the physical machine characteristics. As
the complexity of manufacturing processes and data continues to
grow, it became evident that the traditional ML techniques, which
rely on high-quality feature engineering that is subjective by
nature, are inherently limited. Data in modern manufacturing,
such as images for surface defect detection and sequences that
underlie machine degradation, are increasingly requiring progres-
sive, hierarchical representation which can decompose the com-
plexity into small pieces for more effective handling [5]. The
current wave of the fourth industrial revolution sees the ML land-
scape transformed into deep learning (DL), which leverages
advanced computational infrastructure, such as cloud computing
[96,97], and cascade of network layers that corresponds to different
levels of abstraction of machine condition-related patterns [5],
thereby improving the effectiveness of defect diagnosis and RUL
estimation [11]. The classification of diagnosis and prognosis
methods is illustrated in Fig. 5. The objective of this section is to
present a summary of major AI techniques that have advanced
the state of monitoring, diagnosis, and prognosis, which are of crit-
ical value to modern manufacturing.

4.1 Artificial Intelligence for Condition-Based Maintenance.
Manufacturing systems are subject to faults caused by a broad
range of causes, from heat generation to corrosion and fatigue.
Fault diagnosis is intended to pinpoint the source of fault generation
and provide an estimate of the severity of the fault, which forms the
basis for condition-based maintenance. The idea of AI-based diag-
nosis is to formulate the task as classification and associate the
information embedded in data to the fault types and severity
levels. Related research works are presented in this section.

4.1.1 Associating Features With Faults. ML-based fault diag-
nosis represents the earliest adoption of AI in manufacturing indus-
try [98], and the success of the ML techniques is largely attributed
to the good understanding of certain machine and process based on
which the physics-informed features from data, such as those in
time, frequency, and time-frequency domain, can be effectively
extracted [11]. With good quality features, ML has demonstrated
its capability in effective fault diagnosis, as reviewed in this
section. The most common research area for ML-based diagnosis
is rotating machinery [11].
In Ref. [99], the performance of different ML algorithms, includ-

ing SVM, k-nearest neighbor (KNN), and random forest (RF), has
been comparatively studied for induction motor fault diagnosis.
Four different sensing signals were evaluated as input: vibration,

Fig. 5 Classification of diagnosis and prognosis methods: D,
diagnosis and P, prognosis.
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current, voltage, and flux. Features were extracted from time and fre-
quency domain as well as the parameters from a statistical regression
model. The results have shown that RF has the most robust perfor-
mance across different types of sensing signals while SVM has the
best overall fault detection accuracy. Authors in Ref. [100] reviewed
Naive Bayes, KNN, and SVM for induction motor fault diagnosis
based on the current sensor signal. Differing from prior work,
current envelope analysis has been carried out first to reveal the
amplitude-modulated nature of the motor current signal to generate
candidate features. Then, the minimum redundancy maximum rele-
vancy (mRMR) method selected the most “dominant” feature subset
as input. It was shown that each technique has a different level of
sensitivity to different features. The authors also confirmed that
the best performance is achieved by SVM.
In Ref. [101], a novel method for bearing fault diagnosis based on

visual words and sparse classifiers has been developed. The wavelet
time-frequency spectra of vibration signals are first analyzed for
energy-related feature extraction. Then, each signal was encoded
by visual words or feature clusters, which were used as input to a
sparse classifier to determine bearing fault type. The sparse classi-
fier has also been investigated for gearbox fault severity level rec-
ognition [102]. The contribution of this work also includes a
novel multi-sensor fusion method based on the covariance matrix,
which allows pair-wise correlation among sensing signals to be esti-
mated and incorporated into the analysis. In both works, the authors
reported that the diagnosis accuracy from a sparse classifier is com-
parable to an SVM with reduced computational time. Sparse classi-
fiers have also been investigated for wind turbine condition
monitoring and fault diagnosis [103].
Beyond rotating machinery, ML techniques also contributed to

improved fault recognition capability in other manufacturing equip-
ment. In Ref. [104], faulty tonnage in a stamping machine is
detected by SVM using vibration signal features extracted by a
recurrent plot (RP) method. In Ref. [105], a novel method for
detecting filament breakage and nozzle clogging in fused deposition
modeling (FDM) has been developed, with an SVM as the condi-
tion classifier. The contribution of the work is the Bayesian Dirich-
let method to effectively characterize the sensing signals.

4.1.2 Learning Features From Data. With increased process
and data complexity, manual feature extraction becomes difficult.
DNN-based ML, which allows automated learning of features spe-
cific to each task, has attracted increasing attention. Accordingly,
AI-based diagnosis has evolved in the sense that (1) tasks can be
increasingly customized to fit specific needs, such as simultaneous
identification of fault type and fault severity level, and (2) sensing
data are increasingly transformed into proper forms suitable for dif-
ferent NN architectures, leading to novel diagnosis concepts.
As sensing technology has continually evolved and adopted on

the factory floors, image data has been increasingly gathered and
analyzed for process monitoring and fault diagnosis. Compared to
time-series data that has been traditionally measured, images have
a higher information density and their use has been shown to be
advantageous in gaining insight into the objects being monitored.
How to effectively use image data has been the main research
focus of DL. One of the frontier applications of image analysis is
an additive manufacturing (AM), given the spatial information
that is inherently embedded during the layer-by-layer printing
process. Image analysis has shown to reveal critical information
associated with the quality of the printed part [106]. In
Ref. [107], a deep ANN model is reported to detect laser power
deviation based on melt-pool images in selective laser melting
(SLM). Due to the localization of the melt pool, the classification
model has shown to be capable of inferring the location of potential
microstructural defects of the printed part. In Ref. [108], a vision
system based on deep convolutional neural network (DCNN) has
been built for process fault detection in SLM. As surface textures
caused by various process faults may share similar local features,
higher-level abstractions are required to effectively distinguish dif-
ferent fault-related patterns. By using DCNN to analyze the surface

textures, it has shown that the process faults can be accurately
detected in a timely manner in order to avoid producing low-quality
products.
Beyond images captured by vision systems, DCNNs have been

increasingly extended to analyze signals that are in other forms
by nature. In Ref. [109], a diagnostic system has been built to deter-
mine the gearbox fault severity level. Specifically, the 1D vibration
signals were transformed into time-frequency images in order to
better leverage the DCNN architecture for fault-related pattern rec-
ognition. The flowchart of this research is shown in Fig. 6. In
Ref. [110], the authors reported a novel method for both bearing
fault type and severity level recognition. One-dimensional vibration
signals from the sensors were first converted to images using
wavelet packet transform. Then, they were analyzed by DCNN
for fault-related pattern recognition. Three fault types and four
severity levels were evaluated using the developed method, and a
near-perfect accuracy was achieved. A similar work has been
reported in Ref. [111]. In Ref. [112], a 1D DCNN-based method
for bearing fault diagnosis has been developed that takes advantage
of the shift-invariance of the convolution operation in order to elim-
inate the need for time-domain signal alignment. This allows the
DCNN to directly analyze the collected sensing signals, without
having to rely on feature extraction or transformation to the fre-
quency domain. More recently, researchers have begun to focus
on understanding DL mechanisms with the aim of facilitating the
broad acceptance of the technique. An early work has been reported
for DCNN-based motor diagnosis in which the layer-wise relevance
propagation (LRP) has been investigated to visualize the frequency
band that the DCNN is focused on when distinguishing different
motor structural faults [113].
Besides DCNNs, machine fault diagnosis based on deep belief

networks (DBN) has also been reported. The main idea of DBNs
is to first use the stack of restricted Boltzmann machines to progres-
sively improve the feature discriminability. Then, the obtained fea-
tures pass through a multi-layer perceptron for fault classification.
In Ref. [114], a DBN has been investigated to classify bearing
health conditions over the bearing lifecycle. The ant colony optimi-
zation (ACO) algorithm was investigated in order to find the
optimal DBN parameters that maximize the classification accuracy.

4.2 Artificial Intelligence-Based Prognosis for Predictive
Maintenance. Prognosis aims at predicting the temporal progres-
sion of machine performance degradation, from its current state to
final functional failure. Reliable RUL estimation contributes to
timely maintenance. In general, AI-based prognosis is part of the
data-driven method that relies on establishing a machine perfor-
mance evolution model to predict future machine performance
based on its current and past status. To estimate RUL,
one-step-ahead prediction is iteratively carried out until the pre-
dicted value passes a failure threshold [97]. In case that the

Fig. 6 DCNN-based gearbox fault severity level diagnosis
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machine performance is difficult to measure directly, an artificial
health index (HI) is often created from sensor data to represent
the machine performance [115]. The HI-based prognosis and
RUL estimation are illustrated in Fig. 7. Related works for
AI-based machine prognosis are presented in this section.

4.2.1 Recognizing Degradation Patterns. Common ML tech-
niques such as SVM and RF, although initially developed for the
task of classification, can be effectively formulated as regression.
By taking performance from current and past time steps as ML
input, they can be associated with the future performance at
output and therefore establishing the relationship underlying the
machine degradation. Out of all ML techniques, SVM has been
the most commonly used for machine prognosis.
In Ref. [116], SVM was investigated for bearing prognosis. The

vibration, temperature, and sound sensing signals were first trans-
formed by wavelet packet decomposition into features in the time-
frequency domain. Then, an isometric feature mapping reduction
technique was applied to fuse these features into HI, representing
the status of the bearing. Finally, the temporal pattern among HI
at different time steps was analyzed by SVM for future status pre-
diction and RUL estimation. In Ref. [117], an SVM-based
method for compressor degradation prognosis has been developed.
The HI of the compressor was quantified by vibration, temperature,
pressure, and moisture sensing signals, as well as the parameters of
an autoregressive moving-average (ARMA) model. The HI
sequence was then analyzed by SVM to predict future progression
of compressor performance. A similar work has been reported for
lithium-ion battery prognosis in which the loss of rated capacity
was used as the HI of battery, with SVM as the ML technique [118].
In contrast to the aforementioned works in which an evolution

model is first constructed to reveal the temporal relationship
among machine performance at different time steps and subse-
quently, leveraged to predict future performance and estimate
RUL, other researchers have investigated the method of directly
associating current/past performance to RUL. In Ref. [119], an
SVM has been investigated for direct RUL estimation of aircraft
engine based on sensing signal features from current and past
time steps and therefore, bypassing the steps of generating HI. In
Ref. [115], an ensemble RUL estimation method has been devel-
oped for induction motor prognosis. During the operation, 13 chan-
nels of signals from seven sensors were collected, representing
voltage, current, vibration, load, speed, temperature, and sound.
Five single-layer NNs with different initialization constitutes the
ensemble algorithms. A similar work based has been reported for
aircraft engine performance prognosis in Ref. [120], in which the
ensemble algorithms involve an SVM, a relevance vector
machine (RVM), an exponential model, and a quadratic model.
To adaptively weigh the contribution from each algorithm, an
optimization-based fusion method has been developed and shown
to be able to improve the estimation accuracy and robustness.

4.2.2 Analyzing Degradation Patterns. When the relationship
among degradation time steps becomes too complex to be character-
ized by a single regressionmodel, traditionalML techniques become

ineffective. In such scenarios, the NN architectures, especially RNN
and its variant long short-term memory (LSTM), offer several
advantages in comparison: (1) they can explicitly model the inner
relationship among machine performance at different time steps;
(2) they can decompose the complex temporal patterns into a
series of simple components which, individually, can be approxi-
mated by a single regression at each network layer, before being
assembled to fully describe the degradation trend. These advantages
have made RNN/LSTM an attractive option for machine prognosis.
The research highlights are presented as follows.
In Ref. [121], an RNN-based bearing prognosis method has been

developed. Vibration signals from a defective rolling bearing were
transformed using continuous wavelet transform. Statistical param-
eters computed from both the raw data and the pre-processed data
were then utilized as candidate inputs to an RNN. Analysis has
shown that the developed method is accurate in predicting
bearing defect progression. In Ref. [122], a bi-directional LSTM
for aircraft engine RUL estimation has been developed. The HI is
constructed by a single-layer NN which fuses the on-board
sensing signals to represent the engine performance. The
bi-directional LSTM allows the information to flow forward for pre-
diction and backward for disturbance smoothing. The developed
method has shown to improve RUL prediction accuracy as com-
pared to uni-directional LSTM and traditional ML techniques
such as SVM. A similar work has been reported in Ref. [123] in
which improved RUL estimation for the lithium-ion battery has
been achieved using the LSTM-based approach. Specifically, the
Monte Carlo method has been investigated to construct an ensemble
of LSTMs, in contrast to using one single LSTM. This approach
allows the RUL estimation to be displayed as a probability distribu-
tion, rather than a deterministic value. Furthermore, it has shown to
be more robust under noisy sensing signals. In addition to revealing
degradation patterns, LSTM has also been investigated to model the
relationship between sensing signals and machine performance for
HI construction. Related works have been reported in Ref. [124].
Recently, LSTMs have also been investigated in conjunction

with model-based techniques, such as particle filters (PF), in
order to alleviate the limitation of insufficient observations for
degradation model parameter estimation. PFs have been widely
studied for the prognosis of complex engineering systems such as
HVAC [125] and aircraft engines [126] in which the degradation
model can be continuously fine-tuned by the incoming sensing
observations based on Bayesian inference. In Ref. [127], an inte-
grated method has been developed for fuel cell RUL estimation.
For an on-going degradation sequence, an LSTM trained on histor-
ical data was leveraged to provide degradation path forecast,
beyond what has been observed from the actual fuel cell. These
additional forecast data help PFs more accurately estimate the
degradation model parameters, leading to improved estimation
accuracy.
As computational capability and infrastructure continue to

advance, it can be expected that advanced AI algorithms will con-
tinue to emerge in the era of the fourth Industrial Revolution.
Prior research in this area has established a solid foundation for
further advancement toward the realization of smart manufacturing.

Fig. 7 HI-based machine prognosis and RUL estimation
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5 Artificial Intelligence for Manufacturing Process
Control
This last section deals with the lower levels of the manufacturing

system hierarchy, namely, the machine/equipment level as it extends
into the material level domain.While the previous section treated the
condition and state of the machine/process as it relates to reducing
equipment failures, this section focuses on modeling and control
of the process to achieve desired process quality under the assump-
tion that equipment failures are not causing quality issues. Further-
more, this section specifically explores the role AI techniques can
provide to significantly increase understanding of the material-to-
process relationship as an important new opportunity for enhanced
process control, efficiency, quality, and productivity [128,129].
The impact of an improved understanding of this relationship
spans the classical manufacturing process control and materials pro-
cessing communities. The former is provided with newfound vari-
ables and means to better optimize process control and the latter
will be potentially dramatically changed in the context of designing
new materials and materials processing to more directly optimize
downstream manufacturing processes.

5.1 Artificial Intelligence for Modeling and Control of
Manufacturing Processes. To date, the initial AI techniques that
have been applied in manufacturing process control have been
focused on applications where there are limited formal or analytical
models due to their complexity or the resource-intensive computa-
tions required to develop tunable process controllers. However, as
with other areas in the factory, the increasing amount of instrumen-
tation and the ability to collect large amounts of data along with the
ability to extract necessary process signals and features will con-
tinue to facilitate these types of applications which do not require
an accurate mathematical model nor formal physics-based simula-
tion of the system [130–134]. A survey of traditional manufacturing
processes such as machining, joining, stamping, and molding indi-
cate this type of benefit may be obtained by using AI techniques
such as SVM, RF, DNN, and genetic algorithms [135–139].

5.1.1 Artificial Intelligence for Modeling and Optimization of
Manufacturing Processes. An overarching objective of implement-
ing an AI tool in manufacturing process control is to produce high-
quality parts cost-effectively [140]. The implication is that critical
process parameters need to be captured in the ML model. For
example, a laser manufacturing study [141] used an ANN with
parameters pertaining to laser power, cutting speed, and pulse fre-
quency which was critical model factors in determining process
success. In order to optimize these parameters, the ANN was devel-
oped to predict laser cutting quality expressed as explicit non-linear
functions. The results demonstrated that the ANN successfully
determined a set of parameters that best optimized the quality of
the cutting process and predicted outputs based on given inputs to
the laser.
In other applications of AI to metal cutting, specifically milling

process control [142,143], the use of predictive modeling is benefi-
cial in two ways. The first being the improvement of process effi-
ciencies [144]. This encompasses maintaining a real-time
knowledge of the current mill conditions and creating a stable envi-
ronment for the tool, thus increasing tool life. In conventional
milling processes, a major task is to ensure desired surface rough-
ness which is a parameter that normally degrades with increased
tool wear. Typically, routine tool schedules change worn cutting
inserts before a given surface quality threshold is exceeded [145].
A variety of ML tools have been used to model predictions in
surface roughness changes. In this manner, tool wear and supplier
power can be considered based on surface roughness deviations.
The other major improvement from ML practices is the prediction
of wear time. Process control via ML can then proactively adjust
the process parameters to increase its life span. Notably from the
data perspective, ML requires a large database to account for

different combinations of tooling parameters. This enables tool
life modeling using the ANN to accurately predict future wear
[144].

5.1.2 Artificial Intelligence for Online Control of
Manufacturing Processes. Manufacturing processes are generally
multivariable and time-varying by nature. As an example, grinding
is highly nonlinear and its multi-modal relationships are difficult to
be defined accurately via mathematical equations since output var-
iables are not only dependent on input variables but also dependent
on other output or intermediate variables. Furthermore, most exist-
ing analytical models for complex grinding processes are rather
limited and can only describe partial relationships between design
(control) variables and process (output) variables, while all the
parameters must be considered simultaneously for optimal opera-
tion of such processes. In such cases, online process control faces
a major challenge. Conventional feedback control or optimization
techniques encounter severe limitations in dealing with such prob-
lems. Because of these difficulties, when a new process must be
designed or an existing process must be controlled, an engineer
attempts to utilize all other available resources besides analytical
models, such as expert knowledge, experimental data, handbooks,
and vendor information. Even if pertinent information is available,
integrating all the heterogeneous information and designing an
optimal condition is not an easy task, often requiring a long lead
time and much trial-and-error experimentation. In view of the
complex nature of the grinding process and stringent finish, accu-
racy, and part surface integrity requirements, the current practice
of designing or controlling grinding processes leave an opportunity
for improvement using more robust approaches. This has led to
the development of an “intelligent” approach to online control of
the grinding processes [146,147] and other strategies that use
AI-based controllers based on grinding forces or other in process
data such as tooling deflection.

5.2 Modeling the Effect of Manufacturing Conditions on
Material Property. One of the challenges faced in manufacturing
processes is determining what parameters to adjust and what are the
levels to adjust. The selection of these parameters can be a major
contributing factor to the quality of the final manufactured parts.
The ability to collect a vast amount of data on these changes can
help in increasing efficiency and quality [148,149]. AI has been suc-
cessfully implemented when there is a large pool of data to be
trained on. When enough of these data points are collected, they
can be used as a data-driven way to predict properties and results
of experiments in a fraction of the time. AI’s applications can be
applied to both macroscopic and microscopic properties for predic-
tion, covering the whole spectrum of possibilities. For example, the
properties of materials, such as hardness, melting point, and molec-
ular atomization energy, can be classified and described at either the
macroscopic or microscopic level [150]. In most cases when the
macroscopic performance of materials is studied, the focal point
is geared toward the structure-performance relationship [151]. AI
applications in microscopic property prediction can concentrate
on several aspects, including and are not limited to the microstruc-
ture, the lattice constant, electron affinity, and molecular atomiza-
tion energy [150,152–155]. Material’s microstructure can be
characterized through image data such as scanning electron micro-
scope (SEM) as well as transmission electron microscope (TEM).

6 Challenges and Opportunities for Future Research
Factories are getting smarter as companies are increasingly able

to leverage AI to transform information from various aspects of
the manufacturing system into actionable insights. However,
many gaps still exist that should be addressed to ensure that AI
can be seamlessly integrated into factory operations. Five related
topics are summarized here as recommendations for future research.
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6.1 System-Level Analysis. ML has seen increasing utiliza-
tion across all levels of the manufacturing system hierarchy.
However, compared with the successes of ML in specific applica-
tions of process monitoring, optimization, and PHM, utilization is
limited at the system level of decision-making [68]. This is primar-
ily attributable to the stochastic and non-linear dynamical nature of
manufacturing systems and the complex multi-stage processes and
dependencies among vast amounts of heterogeneous data generated
therein. Furthermore, although the general advantages of ML lie in
its ability to handle NP-complete problems, typical of intelligent
optimization problems, the appropriate selection of techniques
and algorithms remains challenging. An in-depth understanding
of a problem, its causes, consequences, and desired solution state
must be known or well investigated to improve the likelihood of
effective AI tool selection and subsequent model building, data
analysis, and interpretation. These matters all deal with the need
to have adequate domain expertise during the problem definition
phase which is vital to ensure that all aspects of the problem are
well understood and no key data or assumption is overlooked.
Additionally, at the highest level in the manufacturing hierarchy,
there is a variety of interacting plant control systems that govern
overall plant performance. Though single ML approaches have
been developed, no single AI tool or even suite of tools have yet
to integrate and bridge all of the performance objectives of these
control systems. RL has been suggested as an approach.
However, practical difficulties to train an RL algorithm in a real
operating system where productivity cannot be jeopardized
remain a challenge.

6.2 Data Quality. The increasing availability of heteroge-
neous data in manufacturing systems presents new challenges.
First, the data can contain a high degree of irrelevant and redundant
information while the relevant part may be missing. These data cura-
tion issues present a challenge for the application of ML algorithms
as the availability and quality of the manufacturing data have a
strong influence on the performance and suitability of AI algorithms
relative to expected results. Second, the quality of any knowledge
generated from data analysis depends on the context developed
when collecting and managing the data itself. Given the variety of
viewpoints in production, it is critical that data collection and man-
agement approaches support multiple viewpoints for different appli-
cations by dynamically linking different data, information, and
models [156]. One future opportunity associated with improved
data quality is to converge local correlation-based predictions
(e.g., machine tool health status and individual process status) to
facilitate a causal understanding of the dynamic and complex man-
ufacturing operations in a factory. As described in Fig. 2, any
system-level decision-making and control can be traced to individ-
ual process-level control action, and any process-level optimization
or parameter changes can be examined for its real impact on the
entire connected system. Therefore, ensuring the quality of local
data is the key to enable a causal analysis of the manufacturing
system.

6.3 Transfer Learning and Data Synthesis. While various
AI techniques have demonstrated the capability to accurately
model and optimize system performance, interpret human motion
to realize human–robot collaboration, detect and classify defect
and predict future machine condition, research published so far
has been largely built upon the assumption that sufficient data are
available for model training and validation. However, in real appli-
cations, obtaining data from different operating conditions or man-
ufacturing configurations in a systematic fashion is often times
infeasible, since data collection that encompasses all possible sce-
narios is financially and operationally prohibitive. Furthermore,
data exchange/accessibility through public/private networks can
be restricted due to security concerns. Two approaches have been
investigated in the scientific community to overcome these chal-
lenges: transfer learning and data synthesis.

Transfer learning includes a series of techniques to adapt a model
that has been well established in a source domain in which training
data are sufficient, to a related, target domain in which data is
scarce. For condition monitoring and fault diagnosis/prognosis, the
most noted advantage of transfer learning is to allow experimental
data obtained from machines without faulty conditions for model
construction on real production lines when faculty conditions may
occur [157]. Reported research on this topic this field can be charac-
terized into three categories: (1) model transfer among different
working conditions [158,159], (2) model transfer among different
machines [160], and (3) model transfer among different fault loca-
tions or types [161]. Further examples of transfer learning include
human action recognition [162] for human–robot collaboration in
assembly. These examples illustrate that, through the proper transfor-
mation that corresponds to the specific manufacturing scenarios,
transfer learning can address model scalability, opening up the pos-
sibility of establishing a general rather than a limited solution to a
specific manufacturing aspect. On the other hand, it is noted that
transfer learning at the current stage is still limited to trial-and-error,
ad-hoc approaches. More rigorous theoretical research on the topics
such as transferability of data remains essential to facilitating the
broad applicability and acceptance of transfer learning-based
techniques.
Data synthesis refers to generating synthetic data that highly

resembles the real data by sufficiently learning data characteristics,
which allows us to bypass the limitation of data availability. Tradi-
tionally, data synthesis often relies on interpolation (e.g., Synthetic
Minority Over-sampling Technique or SMOTE), which cannot
capture complex data characteristics [163]. A major breakthrough
came with Generative Adversarial Networks (GAN) [164], a DL
method that is able to learn salient features and synthesize data
with high fidelity. The basic concept of GAN is a competition
between a generator, which analyzes real data to produce synthetic
ones, and a discriminator, which distinguishes the synthetic data
from real ones. These two are trained iteratively to improve the
capability of each. The final result is an equilibrium state, resulting
in a synthesis of the manufacturing data with high-fidelity. Early
works of GAN implementation have been reported. For example,
Ref. [165] investigated using synthetic vibration signals to establish
the gearbox fault diagnostic model. Spectral analysis has shown that
the synthetic data effectively captured the fault-related signal fea-
tures, such as the characteristic frequencies. As with other DL tech-
niques, a deeper analysis of the theories related to GAN remains
essential to fully establishing the technique as a viable solution to
the issue of data limitation.

6.4 Modeling Material-Processing-Property Relationships.
To ensure the desired performance of the final manufactured
parts, a comprehensive understanding of the material-processing-
property relationship is required. Conventional modeling and
control schemes have been developed and applied to achieve man-
ufacturing performance in the presence of variations in process
dynamics and unpredicted uncertainties. However, these controls
are usually difficult to design and computationally intensive when
the processes are highly nonlinear. In addition, automatically updat-
ing the necessary parameters from the modeled process remains a
challenge. Furthermore, a priori information on the structure of
the process dynamics and model uncertainty bounds is usually
unavailable. In such cases, AI techniques have the potential to
avoid the complexity of modeling the complete material-
processing-property relationship for improving prediction accuracy
and thus productivity in a variety of manufacturing processes.

6.5 Promoting Trust in Artificial Intelligence. As AI contin-
ues to evolve and advance, understanding and interpreting the
output of AI tools and related technical details become increasingly
exclusive to data scientists and similar professionals with special-
ized skills in this domain. Often times, this creates a knowledge
gap leaving plant managers and production engineers lacking this
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background with the ability to comprehend and appropriately inter-
pret the meaning of the results from AI models in a manner consis-
tent with the context of the problem area. This highlights a
significant challenge of AI in manufacturing, namely the impor-
tance of proper interpretation of AI analysis to decision-makers
who may not be experts in AI. Without a proper grasp of the anal-
ysis that relates to the fundamental physics, users would have no
basis to trust and accept the analysis results. Since manufacturing
operations are based on what is known physically, not on what
might probabilistically occur as indicated by AI models, more trans-
parent, physics-guided process models are required. This has given
rise to research into explainable AI models, commonly referred to as
XAI, which facilitates mental-support models to assist users of AI
technologies more readily adopt them as powerful tools to enable
“smart” manufacturing. As AI research continues to evolve, it can
be expected that the topic of trust in AI will assume an increasingly
important role and attract more intense research activities.

6.6 Practical Implementation of Artificial Intelligence in
Manufacturing. While the majority of the AI research in manufac-
turing has been conducted in a laboratory environment (such as
using test rigs), companies have begun to adapt and implement
the state-of-the-art into daily operations to improve production effi-
ciency, flexibility, and reduce cost. As an example, a technical
report published in 2018 [166] described the implementation of
DCNN as a machine vision solution to facilitate early detection
and classification of defects, such as epoxy staining and excursion
related to ball application, in a wafer production line. The system
consists of a classification inference cluster to support large-scale
production and a model-building unit that builds and refines the
DCNN model. During wafer production, when the DCNN result
does not meet the required confidence level, which is specified
per individual production stages, the wafer unit is transferred to
manual classification, which in turn allows to augment the existing
training data and continuously improves the DCNN accuracy and
robustness. It is reported that the system can now automatically
and accurately detect and classify any defect that would otherwise
require a manual procedure, and is able to reduce about 80% of
total workers’ time.
In Ref. [167], a novel vision-based system is developed for fabric

texture identification and implemented in a company that produces
automotive interior parts. In an industrial environment, the unstable
ambient illumination poses considerable challenges in applying
existing image classification techniques. The images captured in
unstable lighting conditions are pre-processed with Laws and
Sobel filters to extract features, which are then fed to an SVM clas-
sifier enhanced by pyramid analysis. The proposed technique
reaches a texture classification accuracy of 98% while satisfying
the computation time requirements in a massive production setting.
It is important to note that more effort is needed to promote AI

from the perspective of the industry and facilitate the broad accep-
tance of AI techniques.

7 Conclusions
In this work, we have broadly reviewed the current use of AI and

its potential for further opportunities in manufacturing systems and
processes across multiple hierarchical levels. The survey of the lit-
erature showed that a wide array of AI tools has already been imple-
mented to address a diverse set of problems throughout a plant
hierarchy. However, despite this widespread use, there have been
varying degrees of success and corresponding challenges that
have been identified in implementing these tools. For example,
supervised learning in manufacturing system control benefits from
the high richness of labeled data, yet the problem is knowledge-
sparse. Simulation of manufacturing systems is a path to knowledge
through the ease by which training data may be generated.
However, this is limited by the model’s ability to reflect reality
with a high fidelity. In the area of HRC, many AI technologies

are being used to successfully aid in the communication of intent
between human and robot, based on voice, gesture, gaze, and
explicit commands. On the other hand, a higher cognition level of
interactions focused on shared workpiece activities still requires
further research to develop robots with reliable mental models of
their human counterpart to dynamically generate the corresponding
motion-adaptive to human behavior.
In regard to process monitoring, diagnostics, and prognostics, the

deployment of AI tools has been more extensive owing to the rich
stream of data emanating from processes, sensors, and equipment.
Conventional ML methods rely on high-quality data to extract rel-
evant features. Thus, AI-based diagnosis has found popular usage to
formulate classifications and associate data to corresponding fault
types and severity levels.
This work also examined the research into the application of AI

to facilitate improved understanding of material properties as used
in manufacturing process monitoring and modeling. For example,
AI has been used to predict material properties and experimental
results in a fraction of the time that would otherwise be spent via
conventional methods. Such prediction of material properties
applies to both macro and micro levels wherein properties such as
hardness, the melting point can be represented through simulation,
providing valuable input to complex modeling of processes that use
highly time-dependent material properties.
The four domains summarized above also point to the new chal-

lenges and opportunities for future research, as identified in the area
of system-level analysis, data quality, model and knowledge trans-
fer, modeling material-processing-property relationships, and inter-
pretation of results based on AI techniques. Despite the varying
degrees of applicability and research gaps that exist and need to
be overcome in each of the four domains, the trend is undeniably
one of the increased implementation of AI-based analytical tools.
That there remain significant data, and problem formulation chal-
lenges to be solved does not limit the already demonstrated oppor-
tunity for AI to transform manufacturing as we know it today.
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