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ABSTRACT
Human-robot collaboration (HRC) is a challenging task in

modern industry and gesture communication in HRC has
attracted much interest. This paper proposes and demonstrates
a dynamic gesture recognition system based on Motion History
Image (MHI) and Convolutional Neural Networks (CNN).
Firstly, ten dynamic gestures are designed for a human worker
to communicate with an industrial robot. Secondly, the MHI
method is adopted to extract the gesture features from video
clips and generate static images of dynamic gestures as inputs
to CNN. Finally, a CNN model is constructed for gesture
recognition. The experimental results show very promising
classification accuracy using this method.

Keywords: Human-robot collaboration, Dynamic
gesture recognition, Motion History Image, Convolutional
Neural Networks

1. INTRODUCTION
With the development of industrial intelligence, robotic

systems are becoming an essential part of factory production.
Meanwhile, the concept of human-robot collaboration (HRC)
has attracted more and more interest in the industrial field.
Literature suggests that in the industry with a high degree of
automation, the HRC system can increase human-robot
collaboration efficiency and also provide more flexibility in the
work environment [1]. In 2012, Shi et al. [2] proposed different
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degrees of work-sharing. At the lowest level, the robot and the
human operator do not have any contact and they work in two
different spaces, but without any barriers between them. In
2014, Morato et al. [3] designed a framework to address safety
and efficiency during assembly operations involving humans
and robots. In 2019, Li et al. [4] proposed a method of
human-robot collaboration planning, which considered human
fatigue in assigning disassembly tasks to humans and robots.

Ideally, an HRC system should be similar to human-human
collaboration in the industry. However, in the application of
HRC, space-separation and time-separation of workers and
robots result in lower productivity. To improve this situation and
realize more efficient collaboration, different communication
channels between humans and robots should be established [5].
In the limited communication channels between human workers
and industrial robots, gesture recognition has been effectively
applied for use as an interface between humans and robots [6].
In 2010, Riek et al. [7] conducted a video-based lab experiment
to measure time for a human to cooperate with a robot using
gestures. Three gestures (beckon, give, shake hands) were
designed in that experiment. In 2015, Chen et al. [8] proposed
an approach for recognizing the gestures of a human worker
during an assembly task in the HRC. In 2016, Liu et al. [9]
established an interactive astronaut-robot system, which applied
wearable glove and American Sign Language in the
collaboration of the astronaut with a robot co-worker. In 2018,
Islam et al. [10] presented a set of robust gestures for a diver to
control an underwater robot in collaborative task execution.
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There are other prior works in gesture communication [11, 12],
but most of them focus on static gestures. It is because static
gestures mainly rely on the shape and poses of the fingers. But
in dynamic gestures, the hand position changes continuously,
and the message in a dynamic gesture is contained in the
temporal sequence [13]. Therefore, dynamic gestures require
more computational complexity than static gestures, and
recognition of dynamic gestures is more challenging than static
gestures. Besides, the number of hand poses is limited, which
means static gestures are limited on semantics. But dynamic
gestures can perform better in communication for their various
movements [14, 15]. So in this paper, we focus on the design
and recognition of a standardized dynamic gesture set.

To collaborate with human workers, robots need to
understand human gestures correctly. In this regard, deep
learning methods have demonstrated impressive performance in
the generalization ability. For example, convolutional neural
networks (CNN) have better performance in the action
recognition than traditional methods [16–18]. Unlike the
common feature extraction, which focuses on specific patterns,
the deep learning network is trained to obtain the most
discriminative features from given data. In 2018, Du et al. [19]
combined the skeletonization algorithm and CNN method to
realize the gesture recognition. In 2019, Wu [20] selected hand
images and the edge images of a hand to design a
double-channel CNN for the hand recognition task.

In this paper, a method of dynamic gesture recognition
based on the Motion History Image (MHI) approach and CNN
algorithm is proposed and demonstrated. This paper is
organized as follows. Section 2 describes ten dynamic sign
gestures and the corresponding robotic arm motions in our HRC
system. Section 3 combines an image preprocessing algorithm
and an MHI method to extract the features of dynamic gestures,
and the dynamic gesture videos are converted into static images.
Section 4 illustrates the construction of the CNN framework.
The experimental setups and results are described in Sections 5.
Section 6 provides the conclusion.

2. DESIGN OF DYNAMIC GESTURE SET
For the gestures used in the communication between human

workers and robots, they should be easy to sign and remember,
socially acceptable, and minimize the cognitive workload.
McNeil [21] proposed a classification scheme of gestures with
four categories: Iconic (gestures present images of concrete
entities and/or actions), Metaphoric (gestures are not limited to
depictions of concrete events), Deictic (the prototypical deictic
gesture is an extended ‘index’ finger, but almost any extensible
body part or held object can be used), and Beats (gestures use
hands to generate time beats). The Metaphoric gestures put
abstract ideas into a more literal and concrete form. It is not
straight-forward. The Beats gestures are just used to keep the

rhythm of speech, and they usually convey no semantic content
whatsoever. Therefore, we design gestures that are mainly
Iconic or Deictic for the HRC [22].

2.1. Gesture Set
Based on the real cases of human collaboration with a

six-degrees-of-freedom (6 DoF) robotic arm (with a gripper as
the end effector), we defined some essential commands to
communicate with the robot. It consists of a basic set of ten
gestures, which are shown in Fig. 1. All the gestures are
dynamic gestures. They are more natural than static gestures
and can be combined together to generate more commands.

In Fig. 1, the left image of each gesture illustrates the start
position: The person stands up with arms straight down. Hands
are in a natural pose and pinky fingers are to the back. Then,
the person can follow the direction of yellow arrows to carry out
the gestures with their hands and arms. The right image of each
gesture illustrates the end position. These various gestures can
be carried out as follows:
• Start: Fully clap in front of the chest.
• Stop: Raise the right arm until the hand reaches the

shoulder level and extend the arm with the palm facing the
front, like a ‘stop’ sign in the traffic direction gesture.
•U p: Extend the right arm straight up with the index finger

pointing up.
• Down: Bend the left hand and raise its wrist to the chest

level. Then extend the left hand straight down with the index
finger pointing down.
• Le f t: Swing the left arm straight out and up to the side

with the index finger extended until the arm reaches the shoulder
level.
• Right: Swing the right arm straight out and up to the side

with the index finger extended until the arm reaches the shoulder
level.
• Inward: Rotate the right forearm up around the right

elbow joint with the hand open, until the right hand reaches the
chest level and the palm faces back.
• Outward: Rotate the left forearm up around the left

elbow joint with the left hand open until the hand reaches the
chest level. Then rotate the left arm down around the left elbow
joint until the arm is straight with about 30 ◦ from the bodyline
and its palm faces back.
• Open gripper: Bend each of the two arms up against its

shoulder and the elbow until its fingers touch the same side of
shoulder and its pinky finger at the front.
• Close gripper: Bend the two arms and cross them in

front of the chest with the two hands on the different sides of
shoulders. The palms face backward and the fingers are open.

2 Copyright c© 2020 by ASME



(a) start (b) stop (c) up (d) down (e) left

(f) right (g) inward (h) outward (i) open gripper (j) close gripper

FIGURE 1: The ten dynamic gestures.

2.2. Robot Movement
The next step is to consider the corresponding robot

movement for each gesture above. The robot is a 6 DoF robot,
with six joints and a gripper as the end-effector. The six DoF is
needed in order to reach a volume of space from any orientation.
The robot is free to change position of its end-effector as
forward/backward (surge), up/down (heave), and left/right
(sway) translations in three orthogonal (x-y-z) axes, as well as
changing in the orientation of the end-effector, through rotation
about three perpendicular axes.

The position and orientation changes of the end-effector
within the robot’s workspace can be realized by converting the
end-effector position and orientation changes into the changes
in the linear and angular displacements of the six joints. This is
an inverse kinematics problem that can be readily solved for
most of industrial robots. In order to have more intuitive
human-robot interaction, the movement of the robot and the
movement of the human will have a mirrored relationship since
the human will face the robot in signing the gestures in
human-robot collaboration. Thus when the human signs the
robot to move right, the robot should move left and vice versa.
However, when the human signs the robot to move up, down,
inward, or outward, to start or stop, and to open gripper or close
gripper, the robot should move accordingly (i.e., no mirror
images on these commands).

3. FEATURE ACQUISITION BASED ON MOTION
HISTORY IMAGE

The Motion History Image (MHI) approach is adopted to
realize the feature extraction of human movements. This
approach is a view-based template method that records the
temporal history of a movement and converts it into static
images [23]. The MHI Hτ (x, y, t) can be obtained from an
update function Ψ (x, y, t) using the following formula:

Hτ (x,y, t) =

{
τ if Ψ(x,y, t) = 1

max(0,Hτ (x,y, t−1)−δ )) otherwise
(1)

where x and y are the image pixel coordinates and t is time. Ψ

(x, y, t) represents the movement of an object in the current video
frame, the duration τ denotes the temporal extent of a movement,
and δ is the decay parameter. This function Ψ (x, y, t) is called
for every new video frame analyzed in the sequence. The result
of this computation is a scalar-valued image where more recently
moving pixels are brighter and vice-versa.

Regarding the parameters in Eq. (1), an MHI with a τ

smaller than the number of frames will lose prior motion
information. When the value of τ is set too high, the brightness
changes (changes of pixel values) in the MHIs will be less clear.
So in the generation of MHIs, τ is set as the same as the number
of frames in the video clips. While loading the frames, if there
is no change (or no presence) of motion in a specific pixel where
earlier there was a motion, the value of pixels will be reduced by
δ [24]. In the basic MHI method , the dacay parameter δ is
replaced by 1 [25]. In our raw gesture videos, there is no extra
movements before the target gesture, so the dacay parameter δ

is set as 1.
Figs. 2 and 3 demonstrate the generation of the MHIs for

the gesture representing the le f t movement. Generally, an MHI
is obtained from binary images of the sequential frames in Fig. 2.
Note that only some sample frames are shown in this figure. The
binary images are generated using the frame subtraction:

Ψ(x,y, t) =

{
1 if D(x,y, t)≥ ξ

0 otherwise
(2)

where Ψ(x,y, t) represents the binarized image, and ξ is a
threshold. The threshold ξ is used to eliminate the background
noise in the MHIs. D(x,y, t) is defined as:
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FIGURE 2: Binary images of different frames.

FIGURE 3: The MHI of the le f t gesture.

D(x,y, t) =| I(x,y, t)− I(x,y, t−4) | (3)

where the I(x,y, t) is the intensity value of pixel location with the
coordinate (x, y) at the tth frame of the image sequence. 4 is the
temporal difference between two pixels at the same location but
at different times [26].

4. CONVOLUTIONAL NEURAL NETWORK MODEL
The overall architecture of our CNN model is shown in

Fig. 4. The input images are MHIs. The input MHIs are resized
to 32 × 32 (width × height). The CNN consists of two
convolution layers, each of which is followed by the
max-pooling layers. The sizes of the convolution kernels,
feature maps at each layer, and the pooling operators are all
shown in Fig. 4. A 5 × 5 × 40 feature map is obtained after the
second pooling. Next, it is flattened as a 1000 feature vector.
Then, a fully connected layer with 128 neurons is obtained. The
output of this network is a softmax layer, which produces the
class-membership probabilities for the 10 gestures. a function
that takes as input a vector of K real numbers, and normalizes it
into a probability distribution consisting of K probabilities
proportional to the exponentials of the input numbers.

In each convolution layer, the Recitified Linear Unit
(ReLU) is applied as the activation function [27]. The output of
the softmax layer is computed as:

P(C | x) = exp(zC)

∑
10
C=1 exp(zC)

(4)

where P(C | x) is the predicted probability of being class C for
sample x, zC is the weighted inputs of the softmax layer, and 10
is the number of gestures.

The dropout is carried out after the second pooling layer,
which randomly drops units from the neural network during
training. It has been proven to be a powerful regularization
technique used to avoid overfitting [28].

5. EXPERIMENT AND RESULT
5.1. Datasets and Parameter Selection

The raw dataset includes 10 dynamic gestures signed by 6
human subjects. After data collection, there are about 4570
gesture video samples and each gesture class has about
450∼460 samples. The dataset is splited into training dataset
(80%) and testing dataset (20%) randomly.

The threshold ξ in the Eq. (2) is depended by the validation
experiment. 1/8 of the training dataset (10% of the whole
dataset) are extracted as the test dataset in the validation and the
rest 7/8 data (70% of the whole dataset) are used as the training
dataset in the validation. In the validation experiments,
recognition accuracies of the ten gestures are calculated for each
threshold ξ , and the average value of them is obtained as the
final accuracy. Table 1 shows the validation results of different
threshold ξ . Note that the accuracy here only shows the ability
of different classifiers to classify a sample gesture x from a
certain class C as class C correctly.

TABLE 1: The metrics of classification evaluation.

Threshold ξ 10 50 90 130 170 210 250

Accuracy 1.000 0.993 0.987 0.909 0.344 0.100 0.100

Based on the validation results in Table 1, the threshold ξ

that results in highest accuracy should be 10. Fig. 5 shows the
some examples of MHIs for the ten gestures, from which we
can observe that MHIs successfully exhibit appearance
differences for different dynamic gestures. Fig. 6 shows the
gesture le f t MHIs of six human subjects. All arm pixels during
the movements are recorded in MHIs. The brightness of pixels
in MHIs is related to its timestamp in the gesture sequence.
More recently-moving pixels are brighter and vice-versa.

For deep learning, training data including a large number of
samples are necessary to achieve a good performance. To build
a powerful image classifier using limited training data, image
augmentation is applied to boost the performance of the
network model.
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FIGURE 4: The overall architecture of the CNN model. (The ‘Conv.’ and ‘Pool.’ denote the operations of convolution and pooling,
respectively).

(a) start (b) stop (c) up (d) down (e) left

(f) right (g) inward (h) outward (i) open gripper(j) close gripper

FIGURE 5: The MHIs of the ten dynamic gestures.

(a) (b) (c) (d) (e) (f)

FIGURE 6: The gesture le f t MHIs of the six human subjects.

Image augmentation artificially increases the variations of
images in training data by using flips, rotation, variations in
brightness and shifts, etc. [29]. In Fig. 5, it is obvious that the
gestures le f t and right are the same movements of the mirrored
direction with a different arm. Hence the flip and rotation
transformations will reduce the separability of these two
images. The flips and rotation are not adopted. The brightness
change and horizontal/vertical shifts are finally carried out to

enlarge the size of the training dataset to about 10000 images,
and there are about 1000 images in every gesture class. Fig. 7
shows some samples of the augmented images. The inputs are
the first images in both Fig. 7(a) and 7(b).

(a) brightness (b) shift

FIGURE 7: Samples of the augmented images.

5.2. Result and Discussion
First, we compute the confusion matrix of our

classification, as shown in Fig. 8. The confusion matrix is also
known as an error matrix. It realizes visualization of the
classification performance. Each column of the matrix
represents the instances in a predicted class while each row
represents the instances in a ground truth class.

Some commonly-used metrics are adopted to evaluate the
classification performance:

Accuracy =
T P+T N

T P+FN +FP+T N
(5)
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Precision =
T P

T P+FP
(6)

Recall =
T P

T P+FN
(7)

F− score = 2 · precision · recall
precision+ recall

(8)

where in Eq. (5), (6) and (7), the True Positive (TP) describes a
sample x from a certain class C that is correctly classified as C.
The True Negative (TN) means a sample x from a ‘not C’ class
is correctly classified as the ‘not C’ class. The False Positive
(FP) is defined as a sample x from a ‘not C’ class is incorrectly
classified as C. The False Negative (FN) describes a sample x of
class C is misclassified as other ‘not C’ classes. They are the four
basic combinations of actual data category and assigned category
in the classification [30, 31].

In Eq. (8), the F − score is a measure that considers both
the precision and the recall of the test. It represents the harmonic
mean of the precision and recall [32].

Table 2 shows the values of the metrics of the classification
results. Taking the start gesture as an example, in the first cell,
93 start gestures (ground truth label) are predicted as the start
(predicted label), so the TP is 93. In other diagonal cells in Fig. 8,
a total of 822 samples from ‘not start’ gestures are predicted
as ‘not start’ gestures, so the TN is 822. In the first column
of Fig. 8, there are 1 ‘not start’ gestures are predicted as start
gesture, so the FP is 1. In the first row of Fig. 8, 0 start gestures
is predicted as other gestures, so the FN is 0.

In the evaluation, the Precision describes the exactness or
quality of the method, whereas Recall can be seen as a measure
of completeness or quantity. The F-score can provide a more
comprehensive measure of a test’s performance by using both
Precision and Recall. From Fig. 8 and Table 2, it can be seen
that most gestures are recognized completely correctly. All the
metrics are higher than 97% and the values of Accuracy and
Precision are even higher than 99%, which shows how well the
trained model could recognize different gestures.

In order to further the performance of our gesture
recognition system, some possible remedies are as follows.
First, the attention mechanism will be adopted. Spatial attention
can find which regions in the image are more important, and
temporal attention can find which frames in the temporal
sequence are more important. Secondly, the gestures should be
captured from multiple views. After that, more features can be
obtained for each gesture and a fully view-independent
movement recognition can be achieved. Thirdly, we will

FIGURE 8: The confusion matrix of classification.

TABLE 2: The metrics of classification evaluation.

Classes TP TN FP FN Accuracy Precision Recall F-score

start 93 822 1 0 0.999 0.989 1.000 0.995

stop 102 813 1 0 0.999 0.990 1.000 0.995

up 93 822 0 1 0.999 1.000 0.989 0.995

down 92 823 0 1 0.999 1.000 0.989 0.995

left 88 827 0 0 1.000 1.000 1.000 1.000

right 90 825 0 0 1.000 1.000 1.000 1.000

inward 91 824 0 0 1.000 1.000 1.000 1.000

outward 90 825 0 2 0.998 1.000 0.978 0.989

open 88 827 0 0 1.000 1.000 1.000 1.000

close 88 827 2 0 0.998 0.978 1.000 0.989

improve instructions for signing all the gestures and will enlarge
the dataset for the extraction of more gesture features. Besides,
different network architectures can be investigated and
compared to improve the classification result.

6. CONCLUSION
In this paper, we design a new set of dynamic gestures for

human-robot collaboration and construct a Convolutional
Neural Network (CNN) model for dynamic gesture recognition.
Ten hand gestures are designed, each represents a different
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instruction to the robot. The Motion History Images (MHIs)
approach is applied to convert dynamic gestures in video clips
into a single image, and an image dataset is established from the
video-based dataset. The gesture dataset involves six subjects.
The developed CNN model is evaluated on the test dataset and
achieves a recognition accuracy of higher than 99%, which
shows that our method has very good practicability in
classification.

In the future, we will apply our dynamic gesture system to
real-time human collaboration with robots and design more
dynamic gestures to improve the performance of our HRC
system.
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