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Abstract

Archaeological records provide a unique source of direct data on long-term human-
environment interactions and samples of ecosystems affected by differing degrees of human
impact. Distributed long-term datasets from archaeological sites provide a significant
contribution to establish local, regional, and continental-scale environmental baselines and can
be used to understand the implications of human decision-making and its impacts on the
environment and the resources it provides for human use. Deeper temporal environmental
baselines are essential for resource and environmental managers to restore biodiversity and build
resilience in depleted ecosystems. Human actions are likely to have impacts that reorganize
ecosystem structures by reducing diversity through processes such as niche construction. This
makes data from archaeological sites key assets for the management of contemporary and future
climate change scenarios because they combine information about human behavior,
environmental baselines, and biological systems. Sites of this kind collectively form Distributed
Long-term Observing Networks of the Past (DONOP), allowing human behavior and
environmental impacts to be assessed over space and time. Behavioral perspectives are gained
from direct evidence of human actions in response to environmental opportunities and change.
Baseline perspectives are gained from data on species, landforms, and ecology over timescales
that long predate our typically recent datasets that only record systems already disturbed by
people. And biological perspectives can provide essential data for modern managers wanting to
understand and utilize past diversity (i.e., trophic and/or genetic) as a way of revealing, and

potentially correcting, weaknesses in our contemporary wild and domestic animal populations.

1. Introduction
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Archaeological data is a vital but underutilized resource for environmental managers and
policy makers. Archaeological sites are currently valued for preserving cultural heritage, tourism,
and place-based education for sustainability, but they can also generate very large, well-
documented collections of animal and human bone, shells, insects, and carbonized and
waterlogged botanical materials that span thousands of years. Advances in stable isotope, ancient
DNA (aDNA), and macrofossil analyses have improved the resolution of diverse organic
samples, improving key archives for understanding long-term biogeographical change (Hofman
et al., 2015), food web structure (Dunne et al., 2016), marine and terrestrial resource fluctuations
(McKetchnie et al., 2014, Moss et al., 2016), and the long-term impacts of climate and human
settlement on both individual species and whole ecosystems (Erlandson et al., 2008). Improved
archaeological and palaecoecological datasets have significant relevance to contemporary
researchers and resource managers who face the challenge of shifting baselines syndrome in
which each successive generation of natural resource managers falsely identify their
contemporary (and already heavily depleted) ecosystems as a pristine natural baseline (e.g.,
Jackson et al., 2001; Bolster et al., 2012). Identification of accurate environmental baselines has
an essential relevance to major challenges of our time, including food security through
overexploitation of marine and terrestrial ecosystems (Yletyinen et al., 2016), restoring
biodiversity in heavily degraded environments, and the preservation of sustainable resource-use
practices (Klein et al., 2007; Barthel et al., 2013). The relevance of long-term (century- to
millennial-scale) perspectives offered by archaeologists and the natural sciences are recognized
increasingly as key data sources for future sustainable resource use (Engelhard et al., 2015;
Laparidou et al,. 2015). The authors of this article are generally operating in a time scale that

encompasses the last millennium. Archaeology in the most general sense operates on two
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temporal scales. The last ten thousand years, meaning the period beginning with the Neolithic
and the appearance of plant and animal domestication, and then the last two million years,
meaning the period beginning with the emergence of our genus and the appearance of material
culture. The authors belong to the first group. In each case the matching of millennial and
century-scale to the lived experience of humans at the generational-scale is a central priority of
archaeology.

While many archaeologists have been aware of the potential of the growing global
assemblage of well-dated, well-excavated sites with comprehensive archives of ecological
material since the birth of our discipline, it can be challenging to communicate this potential to
scientists from other disciplines engaged in global change research or to a wider public whose
perceptions of archaeology are conditioned by images of Indiana Jones and Laura Croft. A
challenge for archaeologists has been to shrug-off the perception of archaeology as an
antiquarian pursuit focused on collecting high-value artifacts, rather than a science-based
discipline that, among other pursuits, provides unique datasets for understanding long-term
human interactions with changing environments. As highlighted in Kintigh and colleagues’
(2014, pp. 6) Grand Challenges for Archaeology, “archaeological data and interpretations have
entered political and public, as well as scholarly, debates on such topics as human response to
climate change, the eradication of poverty, and the effects of urbanization and globalization on
humanity.” Communicating the relevance of archaeological data to practitioners, such as
resource managers, using deep time perspectives illustrate not only the value of establishing
environmental baselines and understanding ecosystem structures, but also supply narratives
spanning multiple centuries to millennia of human resource-use and adaptation (Nelson et al.,

2016; Spielmann et al., 2016).
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At a 2013 meeting in Paris between the interim Future Earth management team
(http://www.futureearth.org) and representatives of the Integrated History and Future of People
on Earth (IHOPE) group (http://www.ihopenet.org), the IHOPE presenters (Carole Crumley,
Tom McGovern, Jago Cooper, Steven Hartman, Andy Dugmore) coined the phrase ‘distributed
observing network of the past’ (DONOP) to communicate the value of archaeological sites for
global change research (GCR), and adopt a vernacular more familiar to the wider scientific
community and help argue the case for better inclusion of archaeologically-derived data sets into
the Future Earth agenda. The DONOP concept resonates with the description of existing
instrumental observation networks that monitor the current impacts of human activities on
environmental change (Hari et al., 2016; Proenga et al., 2016; Theobald, 2016; Marzeion et al.,
2017). For examples, the Intergovernmental Panel on Climate Change (IPCC) occupies an
authoritative position monitoring the impacts of climate change on biophysical systems and
human societies. The International Oceanographic Commission (IOC) of UNESCO operates a
Global Ocean Observation System (GOOS) to monitor global changes to ocean temperature, its
ecosystems, and human communities reliant on the resources it provides. But long-term human
processes have been largely absent from many major monitoring efforts reports despite being in
a position to disseminate data relevant to GCR. This paper explores the relevance of DONOP
with a specific focus on work carried out in the North Atlantic region.

Archaeological sites are a core aspect of DONOP as they have the ability to both show
change through time as well as reveal local and regional dynamics. Ideally, the best DONOP
sites would be those that have deep temporal range and are parts of networks of sites that can
cover spatial scales from the local through the regional. Given the variety of sites and projects in

the Archaeological community such data can be relevant from the scale of the household (i.e.
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how a particular individual settlement interacted with its local environment) to regional scales of
varying size. The examples offered by this article show some of the spatial and temporal range of
the application of DONOP.
2. Archaeological Sites as Distributed Long-term Observing Networks of the Past

Through the analysis of archaeological datasets, we have the potential to access long-
term records of human interactions with natural systems at a wide variety of temporal and spatial
scales and thus both reconstruct past environmental conditions and reveal the human dimensions
of these processes. There is a rich record of research into the shifting relationship between
culture, climate, and landscape change using archaeological data (Brown et al., 2012; Golding et
al., 2015a; McGovern et al., 2007; Simpson et al., 2001a; Streeter et al., 2012; Thomson and
Simpson, 2006). This effort has intensified as the key role of people within ecological systems
and the wide spectrum of natural and anthropogenic environmental change have been recognized
(Crumley, 2016). Alongside this, there have been major developments in the quantity and quality
of paleoclimate reconstructions at multiple temporal and spatial scales that make possible
effective connections to human systems. The increasing availability of sophisticated climate data
sets whose scales match those of human societies and the human experience has made a
profound difference to the ways in which we can understand interactions of people and
environment (Hoggarth et al., 2016). The growing recognition in the scientific, global policy, and
political arenas of anthropogenic climate change and the levels of extreme disruption that this
will bring to contemporary societies have served as a final, and possibly most potent, influence
on current research agendas and raising new questions that can only be answered with long-term

perspectives of our interactions with the natural world (Anderson et al., 2013).
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The development of refined, high-precision chronologies has played a key role in the
translation of DONOP into a practical and very worthwhile reality. With tight chronological
controls, such as those provided by AMS radiocarbon dating using a Bayesian framework, data
from multiple sites can be combined with greater confidence. Thus, the extensive spatial
distribution of archaeological sites, each with variable temporal continuity, can be transformed
from a perceived weakness of DONOP to a real strength. Highly detailed but temporally-
inconsistent records can be combined to chart the waxing and waning interactions of people and
environment. An example of this is provided by the coastal middens that record long-term
human exploitation of marine ecosystems. This data illustrates the reality of ‘shifting baselines’
and the chronic limitations of short observational timescales in fisheries management, as
discussed in Bolster’s (2014) The Mortal Sea (see also Jackson et al., 2001). There is a clear
need for the effective integration of the longue durée with urgent issues of fisheries and marine
resource management (Moss et al., 1990; Holm, 1995; Ogilvie and Jonsdottir, 2000; Jackson et
al., 2001; Perdikaris and McGovern, 2009). A major EU-funded initiative, the Oceans Past
program (http://www.tcd.ie/history/opp), has begun to correct the effects of shifting baselines
that can result in fundamentally flawed decision making with historical and archaeological data
sets (Pinnegar and Engelhard, 2008).

Archaeological DONOP are our best (and for many regions and periods of time our only
realistic) source of information on the resilience of past cultures to natural hazards. Past cultures
provide a vast range of human interactions with different climatic and ecological conditions
(Cooper and Sheets, 2012). Contrasting outcomes illustrate the consequences of different social
organizations, alternative adaptive strategies, and contrasting approaches to resource use,

sustainability, and building resilience. Though the past cannot be used as a direct analogue to
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explain how present and future populations will deal with external environmental threats, it does
offer us significant opportunities to better understand processes of social interactions with
environmental change and to generate both data and new theory that can contribute to a wide
spectrum of managerial issues raised by contemporary anthropogenic climate change.

Distributed long-term observing networks have been (and can be) used to emphasize the
anthropogenic dimensions of data sourced from archaeological sites because the record is created
by people and extracted from the lived environment (Crumley, 2015). By aggregating in situ
evidence of human impacts on their local environments — through extirpation of local resources
and engineering of cultural landscapes (Smith, 2007) — to the regional and continental scale,
DONOP assimilate comparative interactions between humans and their environments with
chronological controls.

Firstly, the physical assemblages have been deposited as a direct result of human actions.
They will have specific biases created by diverse ways in which the environment has been
sampled and contrasts that reflect the beliefs, values, and knowledge of different social groups.
As such, DONOP provide comparative data reflecting different human behaviors. Secondly,
DONOP data is sourced from an environmental context that has been directly impacted and in
many cases directly formed through human actions. Whether the sample is from a wild species
that is subject to human predation or from an ecosystem that is shaped by the interaction of
human actions, ecosystem dynamics, Earth surface processes, and climate, this type of data holds
information about both natural and human processes.

Humans selectively sample the surrounding ecology and they collect specimens
(consciously and unconsciously) from across trophic webs, landscapes, and seascapes. Then,

given favorable post-depositional conditions, these samples are preserved in one place — the
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archaeological site. Wherever (and whenever) humans and our ancestors have lived, and when
conditions allow for survival and preservation, it is possible to find these sites. Some DONOP
records are scattered and of limited duration but can be linked together to create a coherent
regional picture of change through the rigorous application of both relative and absolute dating.
If these sites accumulate long-term records they can produce very deep cultural layers and thus
large accumulations of material for analysis. Very high temporal resolutions can be achieved
within such contexts due to the wide range of dating methods that can be applied to both organic
(e.g., dendrochronology or radiocarbon dating within a Bayesian framework) and inorganic
artifacts (e.g., ceramic seriation). In turn, these datasets contain the signatures of environmental,

climatic, and cultural dynamics (Figure 1). Additionally, archaeological survey and
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environmental analysis of landscapes dotted with small, ephemeral sites can reveal patterns in

GISP2 Ice Core Tephrochronology Pollen Core Multi-proxy human data
Global DONOP
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human data
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Figure 1- Observation records of natural and human processes in the past. DONOP is the aggregation of short sequences
within the archaeological and environmental record to build a multidimensional record of human-environmental interaction
and modification. Greenland Ice Sheet Project 2 (GISP2) data provides a local-to-regional scale proxy record of climate,
storm and sea ice conditions, but provides no direct evidence of influence on human processes in the past (Dugmore et al.,
2007). In regions with significant volcanic activity, such as Iceland, human impact on the environment and vegetation
change can be measured using the tephra profile as a chronological control (Streeter and Dugmore, 2013). At the individual
settlement scale, excavation data (for example: diet, artifacts, and architecture) can be aggregated to form regional and even
continental-scale networks of subsistence, trade, and environmental modification.

the timing and nature of past landscape occupations, ecosystem impacts and resource usage that
are important for understanding complex processes such as colonization, adaptation and
abandonment (e.g., Altschul and Rankin 2008) and engaging with other grand challenge agendas
for research that have relevance for contemporary debates (Kintigh et al., 2014; Jackson et al., in
review). All of these optimal conditions are dependent on a wide set of variables that span from
the effectiveness of the excavation strategy and methods, the local environmental conditions and
the potential for organic remains to survive in situ until excavation, and the availability of
continuous and deep chronological control. Yet such assemblages do exist and their number and

spatial and temporal resolution are increasing.
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There is a growing body of work focusing on archaeological data as a proxy for the
complex relationships between cause, response, and outcome in human ecodynamics (Hegmon et
al., 2008; Dugmore et al., 2013; Vésteinsson et al., 2014; Boivin et al., 2016; d’Alpoim Guedes et
al., 2016). DONOP provide detailed records of these completed long-term human ecodynamics
experiments of the past and the range of outcomes stemming from different pathways taken by
past cultures in the face of environmental change (Diamond and Robinson, 2010; Hegmon et al.,
2014). They can serve as examples of alternative choices and the pathways they create, and these
case studies can be used to assess contemporary ideas of how to build resilience and reduce
vulnerability in the face of both environmental and social stresses. They can provide both
inspiration and warnings.

The ideal of deep temporal and broad spatial data that is at the core of DONOP aligns it,
and reveals a debt to, attempts to conceptually break down the borders between the ideas of
nature and culture (Chakrabarty, 2009). For example the concepts of coupled natural and human
systems (CNH) and socio-environmental systems (SES) both inspire much of the following
scholarship (Zeder et al., 2014). When examined over the longue durée, the myriad
interconnections between human and natural systems becomes clearer and the idea of static and
pristine ecosystems that host humans but that see no anthropogenic impact becomes much harder
to support. The history of the impact of humans, and other organisms, on landscapes continues to
be pushed deeper in time through archaeological work. The dynamics behind these impacts is
being revealed as more nuanced and increasingly complex. Niche Construction Theory is
perhaps the best expression of these relationships and is relevant to all the projects presented in

this article (Boivin et al., 2016; Sullivan et al., 2017; Zeder, 2016).
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The utility of DONOP sites and the data they contain for contemporary global change
research can be explored from three perspectives: those that are 1) concerned with human
behaviors, 2) related to shifting baselines, and 3) addressing biology. The behavioral perspective
examines human action within intertwined social and natural systems. The shifting baselines
perspective emphasizes the contrasting implications of baseline data for species, landforms, and
ecology set before industrial expansion, commercial-scale resource exploitation, the ‘great
acceleration’ and other trends representing significant human impacts on their environments — all
in stark contrast to the typical temporally shallow modern data currently in use (Pinnegar and
Engelhard, 2008; Steffen et al., 2015a, 2015b). Finally, the biology perspective seeks to
understand and utilize past diversity (i.e., trophic and/or genetic) as recovered through
archaeological remains in order to develop tools and datasets that can be used to better manage
contemporary wild and domestic animal populations (Hofman et al., 2015; Boivin et al., 2016;
Zeder, 2015, 2016).

In the following section, we evaluate archaeological sites as DONOP within the
conceptual frameworks of human behavior, shifting baselines, and biological systems. We argue
that archaeological sites contain valuable, and at times unique, data that have the potential to
provide solutions to problems in the present and future. For this reason, there is a need to view
and value archaeological sites as ‘observable networks’ that capture the resourcefulness of the
past for understanding the impacts of human populations on their environments, establish
accurate environmental baselines, and learn from human adaptation to climate change over
century-to-millennial timescales. Furthermore, given the current and increasing threats to

archaeological sites from anthropogenic climate change, there is a pressing need to act quickly

12
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261  and decisively to collect critical archives before they are lost forever (Dawson, 2015; Hambrecht

262  and Rockman, 2017).

263
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© Biological
264

265  Figure 2. A map of the eastern North Atlantic region showing the locations of sites in the Faroe Islands, Iceland,
266  and Greenland that are discussed in this article.

267
268 2.1 Human Behavior and DONOP
269 Over the last thirty years, research in the North Atlantic by the North Atlantic Biocultural

270  Organization (NABO, http://www.nabohome.org) has, in part, been focused on comparing
271  datasets from separate geographical areas towards understanding the contrasting fates of Norse

272  medieval communities in the Faroe Islands, Iceland, and Norse Greenland (Figure 2; see Nelson
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et al., 2016). These settlements were established by Scandinavians over several centuries,
starting with: the Faroes (ca. 860 CE), Iceland (ca. 870 CE), and Greenland (ca. 985 CE). These
three areas were settled by people of a shared cultural and biological heritage (Jesch, 2015). Yet
the paths chosen by these communities and their long-term fates contrast starkly. The Faroes
survived centuries of relative economic isolation, limited natural resources, and numerous socio-
political challenges, enduring to this day as a small but resilient nation (Brewington, 2015).
Despite environmental, economic, and epidemiological challenges, Iceland was able to transform
its economy, and has since become a highly-developed society with among the highest living
standards and health care in the world (Karlsson, 2000). The Norse settlement in Greenland, by
contrast, came to an end in the late fifteenth century. The contrasting fates of Iceland and
Greenland have come to be discussed in popular discourses around ideas of ‘collapse’ (Diamond,
2005) and remain active subjects for international interdisciplinary research (Dugmore et al.,
2012, 2013; Streeter et al., 2012; Nelson et al., 2016).

Viewing these cases through the lens of DONOP distills the research down to a series of
narratives that have important implications for current debates. First, the simple ‘collapse’
narrative of why societies choose to fail through maladaptation is too simplistic and actively
misleading for these cases (Dugmore et al., 2009, 2012). DONOP-based long-term perspectives
of the Scandinavian communities of the Atlantic islands in general, and Iceland and Greenland in
particular, provide specific examples of human behavior that was environmentally-nuanced,
adaptive, and sustainable over multi-century time scales. This creates a picture that is far more
disturbing than the simple collapse thesis because it shows that societies may undertake entirely
rational, adaptive strategies in the face of unprecedented challenges and yet still undergo painful

transformational changes (Butzer, 2012; Dugmore et al., 2012).
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The example of Norse Greenland, which has often been used as a parable of human
inaction in the face of increasingly hazardous climates to the point of self-extinction, offers a
complex and bleak message (Diamond, 2005). A combination of new data acquisitions,
reinterpretation of established knowledge, and a somewhat different philosophical approach to
the question of collapse has revealed a society that was, in fact, flexible and adaptive in the face
of changing climates (Dugmore et al., 2012). Within the first generation of settlement in the late
tenth and early eleventh centuries CE, the Norse Greenlanders adjusted their diet to fit the
seasonal availability of local resources: fishing ceased and the large-scale exploitation of
migrating seals began (Ogilvie et al., 2009; Arneborg et al., 2012). The Norse went on to create
an effective economic network for communal provisioning and international trade (i.e., walrus
ivory). Provisioning networks consisted of imported domesticated species (sheep, goats, cattle,
horses, and pigs) supplemented with a broad set of wild resources (seals, caribou, seabirds, small
mammals, and some berries and herbs). Zooarchaeological and stable isotope data from DONOP
show that native caribou and non-migratory seal populations were managed sustainably over
multiple centuries (Arneborg et al., 2012; Dugmore et al., 2012; Ascough et al., 2014) .
Organization of economic networks emerged from the twelfth century, integrating domestic
subsistence systems with wild resource cycles, such as the spring harp seal migration, late-
summer bird collections, and walrus hunting (Ogilvie et al., 2009; Frei et al., 2015). In the mid-
to-late thirteenth century, further adjustment of lifeways and diet towards a deeper exploitation
of marine mammals in response to unprecedented climate change can be seen in the
zooarchaeological record as well as in stable isotope analysis of human burials (Arneborg et al.,
2012). The poignant and rather grim conclusion to this is that even with adaptive flexibility and,

in some cases, sustainable management systems, the Scandinavian settlement of Greenland still
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failed. This was not a collapse due to simple maladaptation but change driven by a variety of
factors: spatial, climatic, demographic, social, political, and economic (Dugmore et al., 2012).
While a full explanation of the current understanding of the nature of the Greenland Norse
collapse is outside of the remit of this article, a recent assessment of the North Atlantic by
Nelson and colleagues (2016) offers a good summary of current research.

On a more successful note, DONOP records of archaeofauna from the Myvatn region in
the north of Iceland documents a millennial-scale case of successful, community-level
management of migratory waterfowl beginning at first settlement (Landndm) and continuing to
the present day (McGovern et al., 2006; Hicks et al., 2016). Today, there is an annual collection
of eggs from nesting migratory waterfowl that does not adversely impact these species
(Gudmundsson, 1979). Nesting waterfowl are monitored and protected; only a few eggs per nest
are taken and adults are rarely hunted (Beck, 2013). Looking further back in time, the restricted
collection of waterfowl eggs is documented in mid-nineteenth century written records, such as
diaries, journals, and visitors accounts. Using DONOP we can create even longer time
perspectives; some terrestrial (non-waterfowl) bird hunting has happened alongside waterfowl
conservation and egg utilization since the Viking age; archaeofaunal assemblages are rich in
waterfowl eggshells while bones were mostly from ptarmigan (grouse), a non-aquatic terrestrial
species (McGovern et al., 2006, 2007). This suggests that a community-level avian management
system produced a valuable crop of eggs while maintaining adult waterfowl populations. This
management strategy was not only useful in conserving waterfowl populations over the long
term: there is also historical and archaeological evidence that careful use of wild resources
helped Myvatn inhabitants buffer themselves against starvation during hard times caused by

climate change (McGovern et al., 2013).
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Successful long-term resource management is also evident from DONOP records in the
Faroe Islands, where zooarchaeological (Brewington and McGovern, 2008; Brewington, 2011,
2014) and documentary (Baldwin 1994, 2005) evidence suggests that local seabird colonies have
been sustainably exploited for over a millennium. As in Myvatn, fowling in the Faroes has long
been carefully controlled by local communities (Nerrevang, 1986; Baldwin, 2005). This
community-level management regime employs a sophisticated body of local ecological
knowledge to gauge the relative vulnerability of individual bird species and nesting areas on a
year-by-year basis. Faroese resource managers (traditionally, landowners) are thus able to
determine sustainable harvest limits for birds and eggs each season (Williamson, 1970, pp. 153—
156; Nearrevang, 1986). Also of critical importance for the success of the system has been the
ability to effectively monitor and manage nesting sites, protecting this sensitive resource both
from overexploitation by people and from destructive domesticates such as pigs (Brewington et
al., 2015).

In terms of behavior, DONOP from the North Atlantic can be used to draw two key
lessons relevant to the present and future: sustainable millennial-scale management of natural
resources is an attainable goal and adaptability in the short- or even medium-term is no guarantee

of long-term survival.

2.2 Shifting Baselines and DONOP

Shifting baseline syndrome is a concept that describes situations in which communities
formulate natural resource management decisions on ideas about primal or pristine natural
resource populations that are inaccurate (Pauly, 1995; Pinnegar and Engelhard, 2008). Given that

decisions about the management of natural resources can often be based on a ‘baseline’ standard
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that is constructed around an idea of a minimally exploited population, then the assumptions
behind this baseline are very important. This can be a problem in conservation and resource
management if the baselines used to define sustainable exploitation of populations are based on
inaccurate, misleading data such as that from flawed human memory or temporally shallow data
sets (Papworth et al., 2009). Recent discussions of fishery management in the North Atlantic
have a distinct relevance to DONOP. The problem centers on what datasets people are using to
define a sustainable fish population. Pauly (1995) and others have described a phenomenon
where fishermen and fisheries managers use a combination of their own memory of the early
days of their fishing careers and catch data with a shallow time depth as baselines for what a
sustainable fish population should be. This concern runs deeper into environmental movements,
the media, and scientific works about rewilding (Monbiot, 2013). A specific example of this is
described by Bolster and colleagues (2012) in which they argue that the North Atlantic fisheries,
especially cod fisheries, have seen significant human impacts on fish populations from at least
the early nineteenth century. Yet consistent catch data on North Atlantic Cod (Gadus morhua) in
the North Atlantic has only been consistently collected since the beginning of the twentieth
century (Bolster et al., 2012). Thus, many of the assumptions about what baseline cod
populations and catch levels should be are based on populations that were already significantly
impacted by human exploitation. This situation can lead to a misperception of the level of human
impacts on a natural resource that can lead to much higher levels of stress on these populations
than anticipated. Zooarchaeology (the analysis of animal remains sourced from archaeological
sites) can help clarify if this is in fact a problem, especially when it utilizes recent advances in
the analysis of aDNA and stable isotopes of animal remains. Though there has been significant

and innovative research on shifting baselines in the North Atlantic that focuses on past ecological
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conditions and past landforms, this article, in the interest of brevity, will discuss examples that
are addressing the species level of analysis (i.e., Dugmore et al., 2000; Simpson et al., 2001;
Dugmore and Newton, 2012; Streeter and Dugmore, 2013, 2014; Golding et al., 2015).

In 2012, Atlantic cod (Gadus morhua) was ranked by the Food and Agriculture
Organization of the Union Nations (2014) as the 11™-most fished species in the world. In
addition to being an important contemporary marine resource, this species was also crucial in
both the medieval and early modern European colonial expansions. It was, and continues to be, a
key species for both subsistence and the economic well-being of communities across the Atlantic
from Maine to Norway.

The DONOP data represented by fish bones found in middens (refuse deposits from
which archaeologists often excavate organic remains) across the North Atlantic region have long
been of interest to zooarchaeologists focusing on the origins of the trade in dried cod and the
onset of intensified non-subsistence fishing in North West Europe (Barrett et al., 2004).
Zooarchaeological analysis charting the changing patterns of fish utilization has produced data
crucial to understanding Atlantic cod’s transformation from a subsistence good to an
internationally traded commodity (Perdikaris, 1999; Perdikaris et al., 2007). Stable isotope
analysis of fish bones is now revealing what regional populations of Atlantic cod are represented
in the archaeological record (Orton et al., 2014).

CodStory 1s a current project that examines demographic and ecological data of Atlantic
cod derived from archaeological excavations of DONOP fishing sites (Olafsdottir et al., 2014).
In 2011, a pilot project began to investigate the feasibility of using Atlantic cod vertebrae to
examine the historical genetic structure of Atlantic cod populations, and showed that this work is

both feasible and rewarding. DNA was successfully extracted from fish bones and the
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cytochrome B gene sequenced from a time series of zooarchaeological samples in western
Iceland dated from 1500-1910 CE. Further analysis of the genetic variation indicates a sharp
decline in effective population size of Atlantic cod in the fifteenth century, and further
population size fluctuations coinciding with recorded temperature changes (Olafsdéttir et al.,
2014). Although the concomitant loss of genetic variation in the sixteenth century does suggest a
severe bottleneck, estimates of the genetic structure of Atlantic cod may be complicated by shifts
in population structure distribution and changes in feeding migrations that occur as the cod seek
favorable temperatures and feeding grounds because the Icelandic cod stock comprises both
migratory and coastal elements (Hovgard and Buch, 1990; Rose, 1993; Vilhjdlmsson, 1997;
Pampoulie et al., 2006). To test these ideas, the CodStory project has continued by producing
higher resolution genetic data, stable isotopes assays, and shape analysis and growth
reconstruction based on otolith increments. The otolith analysis indicates a shift in the abundance
of migratory and coastal Atlantic cod populations in the historical catch and suggests that growth
conditions for the two Atlantic cod ecotypes changed in the early modern period (Olafsdottir et
al. 2017). Together, these results signal a disruption in the North Atlantic marine ecosystem
coinciding with a temperature minimum in the North Atlantic. Using archaeological samples, the
CodStory project is generating paleodemographic data on one of the most important maritime
resources of the North Atlantic while also investigating the effects of changing climate on these

fish populations at a high temporal resolution.

It is also possible to use DONOP archaeological data coupled with aDNA analysis to
understand the distribution of marine mammal populations before the commercial and industrial
exploitation of the Arctic oceans with potentially major implications for historical biogeography,

modern conservation biology, and marine management. A pilot project, completed in 2014,
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included 35 presumed marine mammal specimens from archaeological sites in Iceland,
Greenland, and the Faroes; six samples gave positive results for aDNA. Four specimens were
identified to the species level, including one blue whale (Balaenoptera musculus, AK-CESP-
001), two fin whales (Balaenoptera physalis, UJF-CESP-003 and HRH-CESP-002) and one
harbour porpoise (Phocoena phocoena, SGN.103-CESP-507). Two additional specimens (UJF-
CESP-001 and UJF-CESP-008) were identified as being species of right whales, but were not
isolated to unique species beyond Eubalena spp. In order to further test how universal the
primers were, DNA extracted from a 13,000 year old bowhead whale bone was included, and
two samples from the Swedish Museum of Natural History, one bone sample previously
identified as being a humpback whale and a sample from a sperm whale tooth. The primers
managed to amplify DNA confirming the species (Anderung et al., 2014). The successful results
of this pilot project mean that marine mammal bone from DONOP sites, which can be difficult
for zooarchaeologists to identify morphologically, can now be identified, providing a window
into species distributions in past seascapes. Future work will also use methods such as protein
analysis, ZooMS, which is proving to be cheaper and often more useful under a variety of

different taphonomic circumstances than aDNA analysis (Buckley, 2018).

Due in part to the success of this pilot project, a three year NSF-funded project (Assessing
the Distribution and Variability of Marine Mammals through Archaeology, Ancient DNA, and
History in the North Atlantic — NSF award #1503714 — PI Dr. Vicki Szabo) commenced in 2016.
This has explanded analysis to approximately 300 archaeological samples of whale, seal, and
walrus bones across the Norse North Atlantic. Species-level identification of DONOP
archaeological material will allow deeper historical access into the premodern Arctic, Subarctic,

and North Atlantic societies’ impacts on marine mammals, adding to recent groundbreaking
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studies of pre-modern North Atlantic walrus exploitation and biogeographies (McLeod et al.,
2014; Frei et al., 2015). Norse economies, hunting or scavenging strategies, commercial uses of
marine mammals, and subsistence will be reassessed. aDNA analysis will allow insights into
genetic diversity and drift, possibly paleodemographic data, identification of now-lost or
endangered species in certain regions, and provide historical depth to the management of species

under threat today.

These projects are pushing baseline data of key natural species back into the last
millennium. In both cases they are focusing on species that have seen predation by humans, at
varying levels of intensity since the Neolithic period. Each one is focusing on the medieval to
early modern transition and attempting to build demographic data that could radically alter
current ideas of what a ‘normal’ or sustainable population is and of the historical spatial ranges

of these species.

2.3 Biological Records and DONOP

Analysis of aDNA has revolutionized our understanding of the history of our species as
well as that of our commensals and domesticates (Magee et al., 2014; Orlando, 2015; Scheu et
al., 2015; Zeder, 2015). aDNA analysis from DONOP sites can also directly contribute to
understanding the results of modern day breeding programs; revealing vulnerabilities and
suggesting improvements (Fahrenkrug et al., 2010). Finally, aDNA, with the advent of gene
editing technology, has the potential to become a source for past genetic variation that could be
reintroduced into modern domestic animal populations, allowing us to restore some of the

variability lost to modern industrial breeding programs.
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A collaboration between the University of Maryland Zooarchaeology Laboratory,
Recombinetics LLC, and the aDNA Laboratory of the Catholic University of the Sacred Heart in
Piacenza, Italy is aligning the interests of the historical sciences with those of present-day animal
sciences. This project is beginning with an initial investigation focusing on aDNA analysis of
cattle bones from archaeological sites in Iceland. This will produce DNA sequence-based data
that sheds light on the interactions between humans, domestic animals, and a variety of
exogenous forces such as climate change, epidemics, trade, and ideology. In addition, the
sequence data provides an orthogonal element to the genetic record of livestock that shed insight
into decoding the genomes of contemporary domestic animals. The discovery of unique genetic
variation from the past could, for example, represent lost genetic variants effecting a wide
spectrum of phenotypes. Bioinformatic analyses will attempt to isolate unique genetic variants
underlying specific traits in pre-modern domestic animals that could be introduced back into
current domestic animal populations using genome editing technology. This project will attempt
to mine the genetic heritage of domestic animals that can be found within the faunal component
of archaeological sites to create resources that increase the resilience or reproductive capacity of
current populations of domestic animals. Given the stresses and hazards that anthropogenic
climate change will generate, this project is also attempting to utilize historical data as a tangible
resource for mitigation and adaptation to climate change threats and the improvement of animal
well-being. The sequence data and results from subsequent analyses that includes information
from the archaeological long-term observational networks will form the basis for direct and
tangible resources for mitigating against climate change threats to food animal production while

also producing key data for understanding the dynamics between social and ecological systems.
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This is, of course, a ‘brave new world’ for the potential uses of historical genetic
material. The most dramatic and potentially visible impacts that aDNA could have in the near
future are best demonstrated in the projects that are investigating the possibility of reviving
extinct species (Charo and Greely, 2015; Diehm, 2015; Edwards, 2015; Shapiro, 2015; Weaver,
2015). Such projects could not be possible without access to genetic material from either
museum or archaeological specimens. A vigorous debate is developing around the ethical and
practical ramifications of such approaches (Kristensen et al., 2015; Martinelli et al., 2014;
Oksanen, 2008; Oksanen and Siipi, 2014; Siipi, 2016). Yet what can be said without debate at
this point is that developing biotechnologies focusing on editing genomes will have a profound

impact on the way historical genetic material is perceived and utilized.

3. Discussion

The article presents just a few of the projects that illustrate how data from archaeological
sites can be mobilized for application to contemporary problems. This idea is at the core of the
concept of DONOP. Indeed, an important difference in perspective between traditional
archaeological research focused on the interpretation of specific sites and the DONOP concept is
the selective use of records from archaeological contexts to tackle specific ‘grand challenge’
research agendas of demonstrable importance beyond narrow disciplinary confines (Kintigh et
al., 2014; Armstrong et al., 2017; Jackson et al., in review). They represent research projects that
could form key contributors from the historical sciences towards navigating the future challenges
of global change. Cooperative scholarly organizations such as IHOPE are driving efforts to

increase engagement with GCR, while governmental and non-governmental organizations have
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recognized the potential of archaeological data, and threats to cultural heritage arising from
anthropogenic climate change.

The archive of DONOP sites and the behavioral, baseline, and biological data they
contain is unique. Yet this archive is threatened with destruction by the very global changes it
records; this is a modern equivalent to the burning Library of Alexandria. The rate of damage to
archaeological remains is continuing to accelerate as ground temperatures, moisture regimes, and
erosion patterns change (Rockman, 2015; Hollesen et al., 2016; Hambrecht and Rockman, 2017,
Hollesen et al., 2017). Without the mobilization of substantial international resources to
recognize, manage, and when needed, rescue these endangered archaeological archives,
irreplaceable records will be lost. DONOP sites are important not just because of the inherent
value of our shared human historical inheritance but also as a direct cultural archive of social-
ecological interaction over the longue durée.

Recognition of the importance and utility of DONOP has grown beyond direct
practitioners. The US National Park Service has taken the lead within the US government, setting
out federal policy and strategic guidance on the importance of addressing impacts of climate
change on cultural heritage (including archaeology) and using cultural heritage to inform both
research and the management of climate science, adaptation, mitigation, and communication
policies (National Park Service, 2014; Rockman, 2015; Rockman et al., 2017). In this approach,
it is recognized that cultural heritage is both affected by climate change and is a source of data on
how to address climate change (Harvey and Perry, 2015).

There are many other international, national, and local efforts addressing the interaction
of climate change with cultural heritage but there is a danger that a piecemeal approach will not

be the most effective. A global response to threatened archaeological sites focused on their utility
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as DONOP is likely to produce the most effective global outcomes. International funding
organizations such as the US National Science Foundation, the Belmont Forum, the EU Science
Commission, and Future Earth have the potential to create funding streams that are focused on
utilizing the past to better understand the present and navigate the future (Costanza et al., 2007,
2012). Many archaeological sites, especially in coastal, montane, and polar regions, are now at
critical risk of loss to climate change. Saving all threatened sites will not be possible. Many will
be irrevocably lost over the next century due to the impacts of climate change. Guided by a series
of focused research questions, it is essential that archaeologists identify, excavate, or at least
sample ‘at risk’ sites and, where possible, protect key archives under threat (Van de Noort,
2013). The issue is no longer one of just preserving archaeological sites so that they survive for
future generations, though that is important on its own terms. It is now an issue of protecting
and/or rescuing key data sources that will help us better face the future. On a local and regional
scale, past societies have experienced global changes that have dramatically altered the structure
of their spatially-limited worlds; the scale of future change is such that it is likely to have
unknown impacts on contemporary societies and their cultural, social, environmental, and
economic capital. Archaeological sites and heritage in general should be redefined to include
their utility towards addressing and recording anthropogenic global change. Funding
organizations and governments are recognizing the importance of archaeological data, but more

needs to be done to encourage engagement between archaeologists, GCR, and practitioners.
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