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ABSTRACT
With the development of industrial automation and

artificial intelligence, robotic systems are developing into an
essential part of factory production, and the human-robot
collaboration (HRC) becomes a new trend in the industrial field.
In our previous work, ten dynamic gestures have been designed
for communication between a human worker and a robot in
manufacturing scenarios, and a dynamic gesture recognition
model based on Convolutional Neural Networks (CNN) has
been developed. Based on the model, this study aims to design
and develop a new real-time HRC system based on
multi-threading method and the CNN. This system enables the
real-time interaction between a human worker and a robotic
arm based on dynamic gestures. Firstly, a multi-threading
architecture is constructed for high-speed operation and fast
response while schedule more than one task at the same time.
Next, A real-time dynamic gesture recognition algorithm is
developed, where a human worker’s behavior and motion are
continuously monitored and captured, and motion history
images (MHIs) are generated in real-time. The generation of the
MHIs and their identification using the classification model are
synchronously accomplished. If a designated dynamic gesture is
detected, it is immediately transmitted to the robotic arm to
conduct a real-time response. A Graphic User Interface (GUI)
for the integration of the proposed HRC system is developed for
the visualization of the real-time motion history and
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classification results of the gesture identification. A series of
actual collaboration experiments are carried out between a
human worker and a six-degree-of-freedom (6 DOF) Comau
industrial robot, and the experimental results show the
feasibility and robustness of the proposed system.

Keywords: Human-robot collaboration, Real-time
System, Motion History Image, Multiple Threads

1. INTRODUCTION
Human-robot collaboration (HRC) systems become one of

the promising solutions towards flexible automation in the
context of Industry 4.0. It has been shown that in the industry
with a high degree of automation, the HRC system can increase
production efficiency and also provide more flexibility in the
work environment. Collaborative human-robot workspaces,
which combine flexibilities of humans and productivities of
robots, are increasingly gathering attention in both
manufacturing industries and research communities [1–3].
Many theories, methodologies, and applications concerning
collaborative processes between human workers and robots
were designed and developed. In 2013, a finite state automaton
system for structuring the collaborative behavior of industrial
robots was designed for safety and productivity problems in the
HRC system [4]. In 2019, a study focusing on fluency in HRC
providing an analytical model for four objective metrics was
published [5]. There were also some other related research
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results for the HRC system, such as the hand-guidance [6],
vocal command controlling [7], task teaching [8], collision
avoidance [9], and task time optimization [10].

Ideally, an HRC system should work similarly to
human-human collaboration on the factory floor. However, it is
challenging to develop such HRC applications with desired
productivity because of the space-separation and the
time-discontinuity of workers and robots. In the limited
communication channels between human workers and industrial
robots, gesture communication has been effectively applied,
thus robots need to understand and respond to human gestures
correctly in order to collaborate with human workers
seamlessly. In the upper limbs of a human being, the shoulder
motion has three degree of freedoms (DOFs) (i.e.,
abduction/adduction, flexion/extension, and internal/external
rotation), the elbow joint allows two DOFs (i.e.,
flexion/extension and supination/pronation), the wrist joint has
two DOFs (i.e., flexion/extension and radial/ulnardeviation),
and each hand has twenty-one DOFs (i.e., flexion/extension and
abduction/adduction) [11]. All these together realize that the
human upper limb can conduct an infinite number of possible
paths even for a simple task, and this redundancy feature of the
DOF can be taken as a beneficial feature because it provides
more flexibility in the gesture-based HRC [12]. In 2011, a
designed gesture recognition system was constructed by T.
Ende, et al. [13]. It could gather their designed gestures for the
HRC system and the recognition rate was over 80 %. Later, In
2018, a set of robust gestures was designed by Islam et al.,
which could be used for a diver to control an underwater robot
in collaborative task execution [14]. Some studies attempted to
exploit the motion capture, recognition, and prediction. In 2014,
a novel gesture capture and recognition method was developed,
which segmented the palm and finger pixels and obtained
impressive performance in the recognition [15]. In 2018, a long
motion (16 s) prediction technique was created by V. Unhelkar
et al., and this method could realize motion recognition with a
prediction time horizon up to six seconds [16].

To obtain a better extraction of features and a higher
accuracy of recognition, many researchers focus on the
applications of deep learning methods on identification tasks.
For example, the convolutional neural network (CNN) is applied
in diagnostics to make health management decisions [17].
In [18], the authors adopted CNN for rotating machinery
condition monitoring. A discrete Fourier Transform of the two
accelerometers was calculated as the input to the network.
Similarly, another deep learning model was designed in 2017
for the bearing fault diagnosis, in which the wavelet packet
energy images were generated as inputs [19].

This paper presents a real-time human-robot collaboration
system with the ability to detect and recognize designed
dynamic gestures of a human worker in real time and control a
robotic arm based on gesture recognition results automatically.

FIGURE 1: SYSTEM OVERVIEW.

An overview of the overall system is shown in Fig. 1. This
system is based on the construction of multi-threading, which
can realize the execution of multiple threads (the graphic user
interface (GUI) running, the real-time Motion History Image
(MHI) generation, the simultaneous gesture recognition, and the
data transmission) concurrently. The first thread is constructed
for a designed GUI, which realizes the straightforward control
and operation of the other three threads and related systemic
activities. For the system input, the second thread is designed to
capture movements of a human worker by a camera and
generate the extract features of the movements constantly. A
real-time frame-based MHI method is developed for the
dynamic feature extraction, which can update a new MHI when
a new frame is input. Meanwhile, the third thread utilizes the
MHIs as inputs of a deep learning model to carry out dynamic
gesture recognition. Besides, the fourth thread is started at the
same time to construct a real-time updating queue of
recognition results and transform it into a robotic arm. The
robotic arm can response with corresponding movements. The
main contribution of this paper is design of the real-time MHI
algorithm, construction of the multi-threading framework, and
integration of the new HRC system.

This paper is organized as follows. In section 2, our
previously designed work for this HRC system is presented,
including ten designed dynamic HRC gestures and a deep
learning model for gesture recognition. Section 3 provides an
overview of the multi-threading construction and details of the
real-time system strategy. Section 4 demonstrates a
six-degrees-of-freedom (6 DoF) robotic arm of the system.
Section 5 conducts the system integration and shows the system
applications on the robotic arm. Finally, in section 6 provides
the conclusions.

2. PREVIOUS WORK
In the previous work [20], a deep learning model of a set of

designed dynamic HRC gestures was built based on CNN for
gesture recognition. Ten arm-based dynamic gestures are
designed based on Iconic and Deictic rules [21]. Fig. 2 gives the
gesture le f t as an example of these dynamic gesture. The
yellow shows the gesture trajectory, which is swinging the left
arm straight out and up to the side with the index finger
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FIGURE 2: THE DYNAMIC GESTURE LEFT .

extended until the arm reaches the shoulder level. The
recognition accuracy based on the pre-trained CNN model is
higher than 99.8%.

To extract features of dynamic gestures and construct the
dataset for the CNN model, The MHI approach is adopted to
transform a gesture video clip into a static scalar-valued image
where more recently moving pixels are brighter and vice-versa.
A video-based MHI Hτ (x, y, t) can be obtained from an update
function Ψ (x, y, t) using the following formula:

Hτ (x,y, t) =

{
τ if Ψ(x,y, t) = 1

max(0,Hτ (x,y, t−1)−δ )) otherwise
(1)

where x and y are the image pixel coordinates and t is time. Ψ

(x, y, t) represents the movement of an object in the current video
frame, the duration τ denotes the temporal extent of a movement,
and δ is the decay parameter. Fig. 3 shows the process of a video-
based MHI generation. It can be seen that an MHI is obtained
from binary images of the sequential frames of the input video.
The binary images are generated using the frame subtraction:

Ψ(x,y, t) =

{
1 if | I(x,y, t)− I(x,y, t−4) |≥ ξ

0 otherwise
(2)

where the Ψ(x,y, t) represents the binary image, and ξ is a
threshold. The threshold ξ is used to eliminate the background
noise in the MHIs. The I(x,y, t) is the intensity value of pixel
location with the coordinate (x, y) at the tth frame of the image
sequence. 4 is the temporal difference between two pixels at
the same location but at different times [22].

3. MULTI-THREADING CONSTRUCTION
For a real-time system, it should be designed with the

abilities of high-speed operation and fast response while can
schedule more than one task and manage limited resources at
the same time. All the functions and algorithms in the real-time
operation should be isolated and free of interference from

FIGURE 3: THE GENERATION PROGRESS OF A VIDEO-
BASED MHI.

others [23]. The multi-threading is one solution for this issue,
which is the process of executing multiple threads
simultaneously with one central processing unit (CPU). A
thread is the smallest execution sequence of programmed
instructions that can be managed independently by a
schedule [24]. In this section, the multi-threading model
designed in building the real-time HRC system is illustrated.
Fig. 4 shows the structure and function of the multi-threading
model of this system. In this model, four threads are built for
different parallel tasks, including GUI operation (GUI thread),
real-time MHI generation (MHI thread), real-time gesture
recognition (recognition thread), and data transmission
(transmission thread). To satisfy the requirements of the
real-time system operation, all these four threads can carry out
their own designed tasks constantly and concurrently.
Meanwhile, these threads can utilize outputs of other threads
saved in a queue, which is a linear data structure that stores
items in the First In First Out (FIFO) manner [25].

As shown in Fig. 4, when the system is started, the GUI
thread always stays active and waits for the operation of users.
For the recognition thread and the transmission thread, only
when the MHI thread generates at least one image, they are
activated. Otherwise, these two threads stay waiting with empty
queues (the Queue1 and Queue2), which are constructed for
constantly ordered inputs. Once the MHI thread is triggered by
the start button of the GUI thread. The recognition thread is
called up firstly, and the transmission thread would follow it
closely, and then all four threads are in the operation mode at
the same time. The MHI thread reads the input frames of the
camera, and each new frame triggers a new MHI. The newest
MHI is shown on the display window of the GUI with the
current frame and also be saved in an image queue (Queue 1)
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FIGURE 4: THE MULTI-THREADING MODEL OF THE
REAL-TIME HRC SYSTEM.

for the recognition thread. At the same time, The recognition
thread reads the data in the image queue (Queue 1) and call the
pre-trained CNN model to recognize the gesture and output the
recognition result, i.e., the probability distribution and the
gesture label, on the GUI. A label queue (Queue 2) is used to
save the labels constantly. Meanwhile, the transmission thread
sends the results in the output queue (Queue 2) into the robotic
arm with the same sequence, and the robotic arm could give
corresponding designed responses.

3.1. GUI Operation
To realize visualization of the system operation, and

assistance for human workers without programming skills in the
system controlling, a GUI software is designed. As shown in
Fig. 5, two buttons, two display windows, and a set of
distribution labels are displayed in this GUI. The start button
can be pushed to launch the whole system, including the four
threads and related devices (camera, robotic arm, etc.). The stop
button can be utilized to stop the system operation. The current
camera and the newest MHI are updated on the two windows
continually. The human worker can check the current behaviors

FIGURE 5: THE DESIGNED GUI.

and corresponding updating MHI on the GUI [26–28]. Then the
probability distribution of the current gesture and the final
recognition result are shown on the bottom of the GUI.

3.2. Real-time MHI Generation
In order to extract the dynamic features of the designed

gestures, the MHI method is adopted and modified into a
real-time version. An MHI is a kind of temporal template,
which is the weighted sum of successive frames, and the weight
decay as time is further away. In the previous works, we applied
this method to obtain MHIs of the dynamic gesture videos and
constructed a data set of the CNN model with these images.
However, in a manufacturing stage where a human worker
carries out gestures constantly, the performance of the
video-based MHI method is limited. One reason is that a
video-based MHI generator cannot detect the accurate the start
and end time of the real-time movements of a human worker,
which means almost all MHIs might be invalid. As shown in
Fig. 6, Fig. 6 (a) missed the start of the gesture le f t. Fig. 6 (b)
and (c) captured the late end time and recorded irrelevant
movements. Fig. 6 (d) mixed two constant gestures together.
With these invalid results, the system would suffer great
challenges to continue operating properly, i.e., these invalid
MHIs could decrease the fault tolerance of the whole
system [29]. Another reason is that for a same human worker,
the performance time of different gestures are not equal, and for
a same gesture, the time cost of different workers might be
different. Even for a same gesture, one worker might spend
different time on it when it is performed many times. So the
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(a) (b) (c) (d)

FIGURE 6: INVALID VIDEO-BASED MHI SAMPLES.

video-based MHI generator is not powerful enough for the
real-time situations.

For the solutions to the above problems, the real-time MHI
generation method is designed here. Based on Eq. 1, and 2 in
section 2, there are mainly three parameters in the process of a
video-based MHI (Fig. 3), i.e., the duration time τ , the decay
parameter δ , and the threshold ξ . In the real-time MHI
generation, the main idea is the transformation of video-based
MHI into frame-based MHI while representing the duration
time τ with the decay parameter δ during the MHI generation.
As shown in Fig. 7, when the camera is started, the input
intensity value images I(x,y, t) of input frames are captured
continually. After that, as shown in Eq. 3, the binary images
Ψ(x,y, t) in the MHI generation are calculated by subtraction of
every two adjacent intensity value images. Note that the
temporal difference 4 in Eq. 2 set as 1 frame in Eq. 3, which
means every new input frame could be recorded and trigger a
new binary image Ψ(x,y, t) as follows:

Ψ(x,y, t) =

{
1 if | I(x,y, t)− I(x,y, t−1) |≥ ξ

0 otherwise
(3)

where Ψ(x,y, t) represents the binary image, and ξ is the
threshold. The threshold ξ is used to eliminate the background
noises in the MHIs. I(x,y, t) is the intensity value of pixel
location with the coordinate (x, y) at the tth frame of the image
sequence [22].

Later, the program collects the new binary image Ψ(x,y, t)
into the constant updating real-time MHI continuously.
Meanwhile, the value of all previous pixels in the updating MHI
are reduced by δ , until it is zero. In an 8-bit gray scale image,
the value of the pixel is between 0 and 255. Typically zero is
taken to be black, and 255 is taken to be white. [30]. This step
generates the scalar-valued feature of the MHI, where more
recently moving pixels are brighter and vice-versa. More
importantly, the duration time τ of all input binary images in the
real-time MHI can be denoted by the decay parameter δ . In the
binary image, the value of movement pixels are set as 255
(white) in the first time input, and each new input frame updates
the real-time MHI with adding a new binary image Ψ(x,y, t) and
reduce the value of previous pixels by δ . After d255/δe (the
rounded up result of 255/δ ) times decay, the white pixels

FIGURE 7: THE GENERATION PROCESS OF THE REAL-
TIME MHI.

become black. So the duration time τ can be set as 255/δ

frames. Note that the frame rate of the camera in this system is
set as 30 frames per second. Finally, the real-time MHI can be
obtained as follows:

Hτ (x,y, t) =

{
τ (τ = 255/δ ) if Ψ(x,y, t) = 1

max(0,Hτ (x,y, t−1)−δ )) otherwise
(4)

In the above procedure, the threshold ξ is set as 10 based on
validation experiments in the previous work [20]. With regard
to the duration time τ , the lengths of all the gesture videos in
the data set are calculated and the obtained results are as shown
in Table. 1. It can be seen that the biggest value of the length
is equal to or less than 35 frames (frame rate 30 frames/second).
For the purpose of recording all gestures completely, the duration
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TABLE 1: DISTRIBUTION OF THE DURATION TIME IN
THE DATA SET.

Threshold τ value (integer) 20∼25 25∼30 30∼35

Number of the videos 495 2410 1665

time τ is set as 35 frames in this system. Based on Eq. 5,
the decay parameter δ can be calculated as 7.29 to satisfy the
temporal extent of movements in the real-time MHI. After all
parameters are set, and the real-time MHI in this system can be
calculated as:

Hτ (x,y, t) =

{
τ = 35 f rames if Ψ(x,y, t) = 1

max(0,Hτ (x,y, t−1))−7.29) otherwise
(5)

In comparison with the video-based MHI creation method,
the advantages of the real-time MHI generator designed above
are obvious. First of all, it realizes the real-time and continuous
MHI generation of current frames. Moreover, one new input
frame can trigger a new MHI with a new binary image means
that every input frame is recorded in the real-time MHI, i.e.,
every movement (more than one frame) of the human worker
can update more than one similar MHI, and which is of great
importance in supplying the higher fault tolerance and
recognition accuracy than the video-based MHI for the later
real-time gesture identification.

The pseudo-code of the real-time MHI generation is shown
as Algorithm 1.

Algorithm 1 Real-time MHI Generation

Input: P-img /*Previous input frame image*/, F-img /*Newest
input frame image*/, τ /*Duration time*/, ξ /*Threshold*/;

Output: F-MHI /*Frame-based real-time MHI*/;
1: function REAL-TIME MHI(P-img,F-MHI)
2: F-MHI← O /*Initialization of the F−MHI*/;
3: δ ← d255/δe /*Obtain of the decay parameter*/;
4: for each F-img do
5: di f f -img← |F-img−P-img|;
6: F-MHI← max(0,F-MHI−δ );
7: F-MHI(di f f -img > ξ )← 255;
8: P-img← F-img;
9: end for

10: end function

FIGURE 8: SAMPLES OF AUGMENTED MHIS.

3.3. Real-time Gesture Recognition
Since the MHIs can be created in real time, the recognition

thread is developed for the gesture identification with the
pre-trained deep learning model in the previous work. In order
to increase the variations of images in the training data, two new
data augmentation methods are adopted to artificially create new
training data together with the brightness change and shift
methods, including zooms and perspective transformation.
Fig. 8 shows some samples of the augmented images. Note that
the first image is the initial image before augmentation, and all
the augmentation methods are combined together randomly.

With the CNN model, the recognition thread extracts the
MHIs saved in the Queue 1 in Fig. 4 and output distribution of
the identification probabilities on the GUI. The probability
distribution describes the likelihood of obtaining the possible
values that a random variable can assume in the sample
space [31]. In the neural network model using the new data set
(Fig. 9), It can be seen that the last 10-dimensional score vector
layer is transformed by the softmax activation function to output
the predicted probabilities. The softmax function is calculated
as follows:

P(xi) =
exi−max(xk)

∑
10
k=1 exk−man(xk)

f or i = 1, ...,10 (6)

where P(xi) is the predicted probability of being class i for
sample x, xk is the weighted inputs of the softmax layer, and 10
is the number of gestures. max(xk) is the maximal number of the
output layer before the normalization. The subtraction of the
maximum in xk can improve numerical stability. Because an
exponential function grows very fast, the exponential result of
even a moderate-magnitude positive xk can be very huge, which
makes the scaling sum huge, and dividing by a huge number can
cause arithmetic computation problems. A solution to avoid this
problem is the subtraction of the max( xk) [32].
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FIGURE 9: THE SOFTMAX LAYER OF THE CNN MODEL.
(The ‘Conv.’ and ‘Pool.’ denote the operations of convolution
and pooling, respectively).

The softmax function can conduct the normalization process
through limiting the output of the function into the range 0∼1,
and making all the outputs adding up to 1. An impossible event
is denoted by 0 and a sure event is denoted by 1 [33].

In the probability distribution above, the uniform
distribution leads to the most conservative estimate of
uncertainty, i.e., it gives the largest standard deviation. The
distribution with a single spike leads to the least conservative
estimate of uncertainty, i.e., it gives the largest confidence. Note
that with the subtraction of the max(xk) in the softmax
operation, the distribution of the probabilities might seem less
distinct. However, the recognition label can be obtained by the
output layer values before the softmax operation, which means
the index of the maximum in the initial output layer is identified
as the gesture label.

Generally, a movement that belongs to the ten dynamic
gestures could be recognized correctly. For the other gestures,
the distribution could have a uniform feature. However, it might
share a similar distribution with a single spike. At this time, a
threshold is set to eliminate the confusing movements to avoid
the wrong inputs to the robotic arm. In the pre-trained CNN
model, the maximum in the initial output layer are all larger
than 10000, so an easy way is to set the threshold as 10000 to
filter the invalid gestures before they are input to the label queue
(Queue 2 in Fig. 4) of the system.

FIGURE 10: SIMILAR ADJACENT MHIS.

3.4. Transmission of Recognition Results
Since the input gestures are recognized and saved into the

label queue, the data transmission thread extracts the gesture
labels and transmit them into the robotic arm. Note that for one
movement, the real-time MHI method might generate several
similar adjacent images as shown in Fig. 10. However, the
intent of the human worker performing this gesture is to enable
the robotic arm to give a one-time response. Considering the
duration time τ in the real-time MHI is set as 35 frames, which
means that if all 35 constant MHIs are recognized as the same
label, these images might be generated from one same input
gesture. Concerning this issue, the manner of the data
transmission thread can be designed as sending the same gesture
label with a frequency of one time per 35 frames. In this way,
the robotic arm can execute commands of the human worker
accurately. If two same gestures are given constantly, the same
response could be carried out twice without missing any control
commands.

4. DESIGN OF ROBOTIC ARM RESPONSES
In order to interact with human workers, designated

responding robot movements are matched with ten dynamic
gestures. During the collaboration, the robotic arm gives
corresponding responses for different input gestures. In the ten
dynamic gestures designed before, there are mainly two types,
i.e., calibration and operation gestures. The calibration gestures
include some routine procedures of industrial robots (e.g., start
- initialization, and stop - emergency stop). Specifically, the
start gesture controls the robot to conduct the calibration, which
is the initialization process of identifying certain parameters in
the kinematic structure of a robot, such as the relative position
of robot links. When the calibration command is given by start
gesture of the human worker, the robotic arm executes with a
specific start pose. The stop gesture can stop the movement of
the robot and let it stay in the current pose. In terms of the
operation gestures, they can instruct the robot to move the
end-effector along the six directions (up/down, left/right,
inward/outward) of the workspace, or control the gripper (a
common end-effector of a robotic am) to open/close. As the
response of an operation gesture input, the robotic arm would
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FIGURE 11: THE E.DO ROBOTIC ARM AND POSITIVE
ORIENTATIONS OF SIX JOINTS.

conduct the kinematics calculation and the end-effector would
move a designed distance along the related direction until the
end-effector reaches the edge of the workspace, or any joint
angle reaches the limitation.

5. SYSTEM INTEGRATION AND APPLICATIONS
5.1. Robotic Parameters

In this section, using a 6-DOF e.DO robotic arm, we have
conducted the system integration and applications of our
proposed real-time human-robot collaboration system. This
e.DO robotic arm is equipped with a gripper as the end-effector,
and the axis directions are shown in Fig. 11. The parameters of
the robotic arm are shown in Table. 2, including the ranges of
six joints.

TABLE 2: RANGE OF THE SIX JOINTS.

Axis Label Stroke/(degree) Maximum Speed/(deg/s)

Axis 1 +/- 180 deg 22.8 deg/s

Axis 2 +/- 99 deg 22.8 deg/s

Axis 3 +/- 99 deg 22.8 deg/s

Axis 4 +/- 180 deg 33.6 deg/s

Axis 5 +/- 104 deg 33.6 deg/s

Axis 6 +/- 180 deg 33.6 deg/s

5.2. System Application
The proposed real-time HRC system is tested to

demonstrate its feasibility. The platform is Ubuntu 16.04 on a
laptop with NVIDIA GTX 850 M and main memory 8G bytes.
Logitech HD Webcam C920 is used to capture gestures. The

FIGURE 12: INITIALIZATION POSE FOR THE GESTURE
START .

(a) recognition result:down

(b) the initial pose and the targeted pose

(c) the initial pose and the targeted pose

FIGURE 13: EXPERIMENTAL RESULTS OF THE GESTURE
DOWN.
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(a) recognition result:right

(b) initial pose and targeted pose (c) initial pose and targeted pose

FIGURE 14: EXPERIMENTAL RESULTS OF THE GESTURE
RIGHT .

software development environment is Python 3.5 with image
processing library OpenCV 4.1.2 installed. The ROS (Robot
Operating System) is adopted for the communication between
the laptop and the robotic arm. In order to satisfy the safety, the
executing distance for each gesture is set as 5 centimeters at one
time in these experiments.

When the calibration command is given by start gesture of
the human worker, the robotic arm gives feedback with the pose
in Fig. 12. In this pose, all the joint angles are zero and the
robotic arm straights up. The coordinate system of the robotic
arm is shown in the Fig. 12.

When the robotic arm receives operation gesture command
from the system, the movement of the end-effector is conducted.
Since the operation gestures are designed in pairs, and the
responses of the robotic arm follow the same manner, only four
gestures (right, down, outward, open) and related robotic
movements are given in the experiments to show the
performance of the whole system. To meet safety requirements,
for every input operation gesture, the distance of movement

(a) recognition result:outward

(b) initial pose and targeted pose (c) initial pose and targeted pose

FIGURE 15: EXPERIMENTAL RESULTS OF THE GESTURE
OUTWARD.

along the specific direction is set 5 centimeters in these
experiments. Fig. 13, 14, 15, and 16 show the recognition
results of the real-time input gestures by the human worker, and
the response movements of the robotic arm from different initial
poses.

In Fig. 13 (a), it can be seen that the current camera frames
and corresponding MHIs are updating on the two display
windows, respectively. Note that the MHI generation in the
right display window has a mild unstable delay relative to the
current movements of the human worker due to the limited
operation abilities of the experimental devices. The recognition
probability distribution of the input gesture is shown on the GUI
at the same time. It shows that the distribution of the
probabilities seems less distinct because of the softmax layer
processing, i.e., both down and inward are 33%. However, the
recognition label can be obtained by the output layer values
before the softmax operation, which means the index of the
maximum in the initial output layer is identified as the gesture
label. The final identification result, i.e., the gesture label down,
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(a) recognition result:open

(b) targeted pose

(c) targeted pose

FIGURE 16: EXPERIMENTAL RESULTS OF THE GESTURE
OPEN.

is output on the bottom of the interface, which is transmitted
into the robotic arm. And when the robotic arm obtains a
recognition label, the end-effector would move 5 centimeters
along the corresponding direction or open the gripper. As shown
in Fig. 13 (b) and (c), the same responses of the robotic arm are
given for the corresponding gestures no matter the which pose
(position and orientation) the robotic arm is on unless the
end-effector or any joint reach the limitation of the dimension,
which is same in Fig. 14, 15, and 16. Note that the gesture
outward is defined with respect to the human worker, and the
human worker is in a mirrored relationship with the robotic arm.
So the the robotic arm in Fig. 15 moves back along the negative
x axis as response of the gesture outward.

In the working mode, if the movements other than the
designed gestures are performed by the human worker, the
system would regard them as invalid gestures (as shown in
Fig. 17). The robotic arm would not response to these invalid
commands and stay in the current pose. There are mainly two

(a)

(b)

FIGURE 17: INVALID MOVEMENT FILTRATION.

cases of invalid gesture, including dynamic and static. In Fig. 17
(a), the probability distribution shows the dynamic invalid
gesture has a higher probability to be similar to the gesture start
and close. In Fig. 17 (b), when the human worker stops moving
and keep static, the input invalid frame-based MHI generates a
more uniform distribution.

6. CONCLUSION
In this paper, a real-time HRC system is developed for the

gesture-based interaction between a human worker and a robot.
In this system, the multi-threading technique is applied for
operations of four parallel tasks, including user interface
control, gesture capture and feature extraction, target
recognition, and data transmission. A GUI is designed for
system monitoring and operation. A real-time MHI method is
designed for the feature extraction of the input dynamic gesture
frames, and the CNN-based identification is carried out to
obtain the label of the input gesture features. The data
transmission between the host computer and a six DOFs robotic
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arm is implemented simultaneously. In the experiments, A
human worker can control the robotic arm by designed dynamic
gestures in real-time pattern in this system. If the system detects
movements other than expecting gestures, it would recognize
these movements as invalid commands and the robotic arm
would wait for the next command instead of giving responses.
The robotic arm would stop movements when the end-effector
touches the edge of the workspace or any joint is in the limiting
position. It is shown that the behaviors of the human worker
behaviors can be continuously captured and identified, and
when designated gestures appear, the robotic arm can conduct
responding operations accordingly to interact with the worker
sequentially and seamlessly.
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