
Journal of Functional Analysis 279 (2020) 108611
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Cartan subalgebras for non-principal twisted 

groupoid C∗-algebras ✩

A. Duwenig a, E. Gillaspy b,∗, R. Norton c, S. Reznikoff d, 
S. Wright c

a School of Mathematics and Applied Statistics, University of Wollongong, 
Northfields Ave, Wollongong, NSW 2522, Australia
b Department of Mathematical Sciences, University of Montana, 32 Campus Drive 
#0864, Missoula, MT 59812, USA
c Mathematics Department, Fitchburg State University, 160 Pearl Street, Fitchburg, 
MA 01420, USA
d Department of Mathematics, Kansas State University, 138 Cardwell Hall, 
Manhattan, KS 66506, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 January 2020
Accepted 29 April 2020
Available online 7 May 2020
Communicated by S. Vaes

Keywords:
Cartan subalgebra
Weyl groupoid
Groupoid 2-cocycle
Twisted groupoid C*-algebra

Renault proved in 2008 [22, Theorem 5.2] that if G is a 
topologically principal groupoid, then C0(G(0)) is a Cartan 
subalgebra in C∗

r (G, Σ) for any twist Σ over G. However, there 
are many groupoids which are not topologically principal, yet 
their (twisted) C∗-algebras admit Cartan subalgebras. This 
paper gives a dynamical description of a class of such Cartan 
subalgebras, by identifying conditions on a 2-cocycle c on G
and a subgroupoid S ⊆ G under which C∗

r (S, c) is Cartan in 
C∗

r (G, c). When G is a discrete group, we also describe the 
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Weyl groupoid and twist associated to these Cartan pairs, 
under mild additional hypotheses.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A Cartan subalgebra in a C∗-algebra A is a maximal abelian subalgebra B of A
satisfying certain regularity conditions (see Definition 1 below). Inspired by the work 
of Feldman and Moore [9] on Cartan subalgebras in von Neumann algebras, the theory 
of Cartan subalgebras in C∗-algebras was initiated by Renault in [21] and subsequently 
developed by Kumjian [11] and Renault [22].

Identifying a Cartan subalgebra in a C∗-algebra A often facilitates a concrete under-
standing of A, for several reasons. First, the existence of a Cartan subalgebra B ⊆ A

implies that A has a dynamical model [22], and in many situations (e.g. [16,6]), a C∗-
isomorphism between Cartan pairs is equivalent to an isomorphism of the underlying 
dynamics. Second, information about B can often be extended to A: for example, [4], 
[18], and [3] identify situations where injectivity of a representation lifts from a Cartan 
subalgebra to the entire C∗-algebra. Third, the presence of a Cartan subalgebra B often 
enables one to apply the machinery of Elliott’s classification program to A (e.g., [15,14]). 
In particular, [14] shows that for certain C∗-algebras, having a Cartan subalgebra is 
equivalent to satisfying the Universal Coefficient Theorem, and thus implies that A is 
indeed classified by its Elliott invariant. Due to these applications, among others, there 
has been extensive research into Cartan subalgebras in recent years.

Renault showed [22, Theorem 5.2] that every separable Cartan pair arises from a twist 
over a topologically principal, second countable, locally compact Hausdorff, étale grou-
poid, and that conversely, every reduced C∗-algebra of such a groupoid has a canonical 
Cartan subalgebra. However, many natural Cartan algebras appear in the C∗-algebras 
of groupoids that are not topologically principal. For example, the rotation algebra Aθ

can be described as the C∗-algebra of a topologically principal groupoid T �θ Z, or as 
a twisted group C∗-algebra C∗(Z2, cθ). From the first picture and [22, Theorem 5.2], it 
is clear that Aθ has a Cartan subalgebra, but the second description of Aθ gives no hint 
of this.

Another example comes from the setting of graph C∗-algebras, which have a groupoid 
model under mild assumptions on the graph [12]. The cycline subalgebra of a graph C∗-
algebra C∗(E) ∼= C∗

r (GE) (introduced in [18] as the “abelian core”) is always Cartan in 
C∗(E), though the groupoid GE associated to E is topologically principal only if the 
graph E satisfies Condition (L), in which case the cycline subalgebra coincides with the 
diagonal. In any case, the cycline subalgebra is generated by the interior of the isotropy 
subgroupoid of GE ; [4, Corollary 4.5] provides conditions under which for an arbitrary 
locally compact Hausdorff étale groupoid G, C∗

r (Iso(G)◦) is Cartan in C∗
r (G).
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Inspired by these examples, we set out to find a dynamical description – i.e., a descrip-
tion at the level of the groupoid G – of Cartan subalgebras inside the twisted C∗-algebras 
of groupoids that need not be topologically principal. Our main result is as follows; see 
Definition 2 for the meaning of “immediately centralizing.”

Theorem 3.1. Let G be a second countable, locally compact Hausdorff, étale groupoid, and 
let c be a 2-cocycle on G. Suppose S is maximal among abelian subgroupoids of Iso(G) on 
which c is symmetric. If S is clopen, normal, and immediately centralizing, then C∗

r (S, c)
is Cartan in C∗

r (G, c).

If (G, S, c) satisfies the hypotheses of Theorem 3.1, then by [22, Theorem 5.2], there 
exists a unique topologically principal groupoid H – called the Weyl groupoid – and a 
twist Σ over H such that the Cartan pair (C∗

r (G, c), C∗
r (S, c)) is isomorphic to the pair 

(C∗
r (H, Σ), C0(H(0))). One is then led to ask about the relationship between the original 

groupoid G and the new data (H, Σ). We show in Proposition 5.10 that if G is a countable 
discrete group and the hypotheses of Theorem 3.1 are satisfied by (G, S � G, c), mild 
additional hypotheses guarantee that the Weyl groupoid H is easily constructed from G. 
To be precise, H is a transformation groupoid (G/S) � Ŝ. We emphasize that a given 
group G may give rise, via different subgroups S, to a variety of different groupoids 
H = (G/S) � Ŝ – the Weyl groupoid is an invariant of the Cartan pair (A, B), not of 
the enveloping C∗-algebra A. Indeed, in Section 6 we exhibit a group G which admits 
subgroups S1, S2 satisfying the hypotheses of Proposition 5.10 with S1 ∼= S2, but for 
which the associated Weyl groupoids H1, H2 are not isomorphic.

Finally, we comment on the relationship between our description of the Weyl groupoid 
and twist in Section 5 and certain results in the recent preprint [10]. Theorem 3.4 of 
[10] describes an (untwisted) groupoid C∗-algebra C∗(Σ) as the twisted C∗-algebra of a 
quotient groupoid Â�Σ/A, using a closed normal subgroupoid A of Iso(Σ). Theorem 5.8
and Proposition 5.10 of the current paper offer similar descriptions of C∗

r (G, c) for a 
discrete group G and a normal subgroup S. These results do not overlap with those of 
[10], however, because of the assumption in [10] that G/A be topologically principal, 
which is never true for a nontrivial group G/S. However, the consonance between their 
results and ours is encouraging and suggests that a unified description of the Weyl 
groupoids of a larger class of algebras may be within reach.

This paper is structured as follows. In Section 2, we recall the definitions of Cartan 
subalgebras, groupoids, and the C∗-algebras associated to groupoids. Section 3 is devoted 
to the proof of Theorem 3.1. Preparatory to our analysis of the Weyl groupoid associated 
to the Cartan pairs identified in Theorem 3.1, Section 4 reviews the construction in [22]
of the Weyl groupoid and provides several technical results leading to a useful character-
ization of the elements of this groupoid. We anticipate that Proposition 4.1 in particular 
may be of independent interest. The next section, Section 5, contains our analysis of the 
Weyl groupoid and twist arising from Theorem 3.1, under a few additional hypotheses. 
We apply these results to several examples (arising from countable discrete groups) in 
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Section 6. The last section, Section 7, presents an example which showcases the necessity 
of the “immediately centralizing” hypothesis in Theorem 3.1.

2. Background

Definition 1. [22, Definition 5.1] Let A be a C∗-algebra. A C∗-subalgebra B of A is a 
Cartan subalgebra if:

(1) B is a maximal abelian subalgebra (masa) of A.
(2) There exists a faithful conditional expectation Φ: A → B.
(3) B is regular; i.e., the normalizer of B,

N(B) := {n ∈ A : nbn∗, n∗bn ∈ B ∀ b ∈ B},

generates A as a C∗-algebra.
(4) B contains an approximate identity for A.

Recall (cf. [5, Theorem 1.5.10]) that if B ⊆ A is a C∗-subalgebra, a map Φ: A → B is 
a conditional expectation if Φ satisfies Φ|B = idB and is contractive and linear. We say 
Φ is faithful if, for any a ∈ A, Φ(a∗a) = 0 implies a = 0.

A groupoid is a generalization of a group which has inverses but only a partially defined 
multiplication. Precisely, a groupoid G is a small category in which every morphism g
has an inverse g−1; we then have source and range maps s(g) := g−1g, r(g) := gg−1

satisfying r(g)g = g = gs(g) for all g ∈ G. The space of objects (or units) in G is 
G(0) := {r(g) | g ∈ G} = {s(g) | g ∈ G}. We denote by G(2) the set {(g, h) | s(g) = r(h)}
of composable elements. Note that since s(gh) = s(h) and r(gh) = r(g) whenever g, h ∈
G(2), we have

(g, h), (h, k) ∈ G(2) ⇒ (gh, k), (g, hk) ∈ G(2) and (gh) · k = g · (hk).

The arrows-only picture of category theory allows us to identify each object u with 
the identity morphism idu : u → u ∈ G.

For each u ∈ G(0), we write

Gu = {γ ∈ G : r(γ) = u} Gu = {γ ∈ G : s(γ) = u}, and Gu
u = Gu ∩ Gu.

The isotropy subgroupoid Iso(G) is {g ∈ G : s(g) = r(g)}. When the only elements in 
G with s(g) = r(g) are the units themselves, we say G is principal.

In general, a subset S of G will be called a subgroupoid if whenever (s, t) ∈ G(2) ∩
S × S, we have st, t−1, s−1 ∈ S. We note that in the sequel our subgroupoids will 
necessarily contain G(0) (see Remark 3.3), so this may be taken as part of the definition. 
A subgroupoid S is normal if gSg−1 ⊆ S for all g ∈ G, where gSg−1 = {gtg−1 : t ∈
S, s(t) = r(t) = s(g)}.
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A subset S of G is abelian if, whenever (g, h) ∈ G(2) ∩ S × S, we also have (h, g) ∈
G(2) ∩ S × S and gh = hg.

In the following, we will only consider topological groupoids; that is, groupoids G
equipped with a topology such that the multiplication, range, and source maps are 
continuous. In this setting, we say G is topologically principal if the set {u ∈ G(0) : s(g) =
r(g) = u ⇒ g = u} is dense in G(0). It is worth noting that when the groupoid G is 
actually a group, the unit space G(0) = {e}, and thus if the group is nontrivial, then 
G is not topologically principal. Nor is the path groupoid [12] of a graph that does not 
satisfy Condition (L) (every cycle has an entry). Indeed, any cycle in a graph gives rise 
to nontrivial isotropy elements in this groupoid; if the cycle has no entry, these elements 
form singleton open sets.

A topological groupoid is said to be étale if r – and thus also s – is a local home-
omorphism. It is straightforward to check that in an étale groupoid G, the unit space 
G(0) is clopen. A bisection in a groupoid G is a set B ⊆ G such that there exists an open 
set U ⊇ B for which r : U → r(U), s : U → s(U) are homeomorphisms. If G is étale, the 
open bisections generate the topology on G [23, Lemma 2.4.9].

A (T -valued) 2-cocycle on G is a function c : G(2) → T such that

c(g, s(g)) = c(r(g), g) = 1 for all g ∈ G, and

c(g, hk)c(h, k) = c(gh, k)c(g, h) whenever (g, h), (h, k) ∈ G(2).

Lemma 2.1. For G a groupoid with a 2-cocycle c and g any element in G, we have 
c(g, g−1) = c(g−1, g).

Proof. The cocycle condition gives

1 = c(g, g−1g) = c(gg−1, g) c(g, g−1) c(g−1, g) = c(g, g−1) c(g−1, g). �
Given a continuous T -valued 2-cocycle on G, the associated full and reduced C∗-

algebras C∗(G, c), C∗
r (G, c) were introduced in [21]. As we will mostly be concerned with 

C∗
r (G, c) in this paper, we focus our discussion on this setting.
Both C∗(G, c) and C∗

r (G, c) are completions of Cc(G), which we consider as a ∗-algebra 
via

f ∗ h(γ) =
∑

η∈Gs(γ)

f(γη)h(η−1)c(γη, η−1) and f∗(γ) = f(γ−1)c(γ, γ−1).

The reduced norm of f ∈ Cc(G) is given by representing Cc(G) on the Hilbert spaces 
�2(Gu) for u ∈ G(0). To be precise, for ξ ∈ �2(Gu) and f ∈ Cc(G), define f ∗ ξ ∈ �2(Gu) by

f ∗ ξ(γ) =
∑

u

f(γη)ξ(η−1)c(γη, η−1).

η∈G
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Then

‖f‖r := sup{‖f ∗ ξ‖ : u ∈ G(0), ξ ∈ �2(Gu), ‖ξ‖ = 1}. (1)

The reduced twisted groupoid C∗-algebra C∗
r (G, c) is the completion of Cc(G) in the norm 

‖ · ‖r.
A continuous 2-cocycle c on G gives rise to a twist over G – that is, a groupoid Σ with 

Σ(0) = G(0) and an action of T on Σ that fixes the unit space, such that Σ/T ∼= G. In 
particular, given c, we take Σ = G×T as topological spaces, and define the multiplication 
in Σ by

(γ, t)(η, s) = (γη, c(γ, η)ts)

whenever (γ, η) ∈ G(2).
The full and reduced C∗-algebras C∗(G, Σ), C∗

r (G, Σ) of a twist Σ over G are defined 
as completions of

{f ∈ Cc(Σ) : f(zγ) = zf(γ) for all z ∈ T , γ ∈ Σ};

see [17, Example 2.9] for the details. If Σ arises from a 2-cocycle c, then one can compute 
that C∗(G, Σ) ∼= C∗(G, c) and C∗

r (G, Σ) ∼= C∗
r (G, c).

As explained in ([11, 1.6], [22, Proposition 4.7]), a separable Cartan pair (A, B) gives 
rise to a topologically principal groupoid and twist as follows. For any n ∈ N(B), there 
exists a unique partial homeomorphism αn with domain

dom(n) :=
{
x ∈ B̂

∣∣∣n∗n(x) > 0
}
,

where B̂ is the Gelfand dual of B, and with codomain dom(n∗), that satisfies

∀ b ∈ B n∗bn = (b ◦ αn) · n∗n. (2)

If n, m ∈ N(B), then one can show that

dom(nm) = {x ∈ dom(m) |αm(x) ∈ dom(n)} ,

and on this domain, αn ◦ αm and αnm agree. Furthermore, αn∗ = α−1
n . The family 

{αn}n∈N(B) gives rise to the Weyl groupoid G(A,B) of the Cartan pair: As a set, G(A,B)
is the quotient

{(αn(x), n, x) | n ∈ N(B), x ∈ dom(n)} / ∼

under the equivalence relation



A. Duwenig et al. / Journal of Functional Analysis 279 (2020) 108611 7
(αn(x), n, x) ∼ (αm(y),m, y) ⇐⇒
x = y and there exists an open U ⊆ B̂ with x ∈ U and αn|U = αm|U .

(3)

We shall denote the equivalence class of (αn(x), n, x) by [αn(x), n, x]. It can be verified 
(cf. [22], [23, Prop. 5.1.15]) that the composition given by

[αn(αm(x)), n, αm(x)] · [αm(x),m, x] = [αnm(x), nm, x]

is well-defined. We define a basic open set in G(A,B) to be of the form {[αn(x), n, x] :
αn(x) ∈ V, x ∈ U} for U, V ⊆ B̂ open and n ∈ N(B) (cf. [22, Section 3]).

Similarly to the Weyl groupoid, the Weyl twist Σ(A,B) is a quotient of

{(αn(x), n, x) |n ∈ N(B), x ∈ dom(n)} ,

but under the following, more rigid, equivalence relation:

(αn(x), n, x) ≈ (αm(y),m, y)

⇐⇒ x = y and ∃ b, b′ ∈ B such that b(x), b′(x) > 0 and nb = mb′.

We write �αn(x), n, x� for the class of the triple (αn(x), n, x) with respect to this equiva-
lence relation. Notice that equivalence with respect to ≈ implies equivalence with respect 
to ∼. Thus, setting (for λ ∈ T )

λ · �αn(x), n, x� = �αn(x), λn, x�

gives a well-defined action of T on Σ(A,B), and one can check (cf. [22, Proposition 4.14]) 
that Σ(A,B)/T ∼= G(A,B).

3. Main result

In this section we prove Theorem 3.1, which identifies Cartan subalgebras inside the 
C∗-algebras of twisted groupoid C∗-algebras that need not be topologically principal.

Theorem 3.1. Let G be a second countable, locally compact Hausdorff, étale groupoid, and 
let c be a 2-cocycle on G. Suppose S is maximal among abelian subgroupoids of Iso(G) on 
which c is symmetric. If S is clopen, normal, and immediately centralizing, then C∗

r (S, c)
is Cartan in C∗

r (G, c).

We begin with a discussion of the “immediately centralizing” hypothesis needed for 
Theorem 3.1, and then establish each of the four properties of Cartan subalgebras in a 
separate proposition.
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Definition 2. Given a subgroupoid S ⊆ G, we say an element ν ∈ Gu
u ⊆ Iso(G) is k-

centralizing for S (for k ≥ 1) if for all t ∈ Su
u there exists j ∈ {1, . . . , k} such that 

νtj = tjν. We will be concerned with subgroupoids S of Iso(G) where all k-centralizing 
elements are in fact 1-centralizing.

That is, letting Ck(S) = {ν ∈ G | ν is k-centralizing for S}, we say that S is immedi-
ately centralizing if ∀ k ≥ 1, Ck(S) = C1(S).

The property might seem very technical, so let us give two quick examples. We thank 
Caleb Eckhardt for introducing us to the unique root property.

Examples 3.2.

1. When Iso(G) is abelian, any subgroupoid of it is immediately centralizing. This is the 
case for the description of the irrational rotation algebra from Example 6.1, as well 
as for the path groupoid of any k-graph (see Section 2 of [13]).

2. A subgroupoid S is immediately centralizing if each isotropy group Su
u has the unique 

root property: if s, t ∈ Su
u are such that sj = tj for some j ∈ N, then s = t. (See 

[1] for a treatment of groups with the unique root property). In this situation, the 
equation νtj = tjν, or in other words (νtν−1)j = tj , implies νtν−1 = t. We will study 
an example of such a group in Section 6.

For the rest of this section, G will always denote an étale groupoid, c a 2-cocyle on G, 
and S a subgroupoid of Iso(G).

Remark 3.3. Note that G(0) is an abelian subgroupoid of Iso(G) on which c is symmetric. 
Indeed, given any abelian subgroupoid A of Iso(G) on which c is symmetric, the set 
A ∪ G(0) is another such. It follows that any subgroupoid S satisfying the hypotheses of 
Theorem 3.1 will contain G(0).

Remark 3.4. As discussed in the introduction to [4, Section 3], when S is an open sub-
groupoid of Iso(G), [20, Proposition 1.9] tells us that the map ι : Cc(S) → Cc(G) given 
by

ι(f)(g) =
{

0, g /∈ S

f(g), g ∈ S

extends to an injective ∗-homomorphism from C∗
r (S) into C∗

r (G). A careful examination 
of Phillips’ proof (using u(ξ) = γ �→ ξ(γg0)c(γ, g0)) reveals that ι also induces an injective 
∗-homomorphism of C∗

r (S, c) into C∗
r (G, c). Because of this, we will make no notational 

distinction between C∗
r (S, c) and ι(C∗

r (S, c)) ⊆ C∗
r (G, c).

Lemma 3.5. If S is abelian and c is symmetric on S, then C∗
r (S, c) is abelian.
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Proof. It suffices to check that Cc(S, c) is abelian. We compute for u ∈ G(0) = S(0) and 
s ∈ Su

u ,

(f ∗ g)(s) =
∑
t∈Su

u

f(st)g(t−1) c(st, t−1)

=
∑
r∈Su

u

f(r−1)g(sr) c(r−1, sr) (rs = sr)

=
∑
r∈Su

u

g(sr)f(r−1) c(sr, r−1) (c symmetric on S)

= (g ∗ f)(s). �
One might be tempted to think that the following result follows immediately from the 

definitions. However, this is emphatically not the case.

Lemma 3.6. Suppose S is maximal among abelian subgroupoids of Iso(G) on which c is 
symmetric. Let u be a unit. If η ∈ Gu

u satisfies ηs = sη and c(s, η) = c(η, s) for all 
s ∈ Su

u , then η ∈ S.

The key difficulty is that the assumption that c(s, η) = c(η, s) for all s ∈ S does not 
immediately imply that c(s, ηk) = c(ηk, s) for all k ∈ Z, and so there is non-trivial work 
required to prove that c is also symmetric on the subgroupoid generated by S and η
(which, by maximality, then implies η ∈ S). While the proof of Lemma 3.6 is fairly long 
and intricate, it consists primarily of several careful applications of induction and is not 
very enlightening, so we relegate it to Appendix A.

Lemma 3.7. Suppose that G is a second countable, locally compact Hausdorff, étale grou-
poid with 2-cocycle c. If h ∈ C∗

r (G, c) commutes with every element of Cc(S, c), then h
is supported in Iso(G) and satisfies

h(ν)c(s, ν) = h(sνs−1)c(sνs−1, s) (4)

for all ν ∈ Iso(G) and all s ∈ S with the same range (and source) as ν.

Proof. From Theorem 4.2 in [22] and the discussion above it, we get supp(h) ⊆ Iso(G), 
where h is thought of as an element of C0(G).

Fix any ν ∈ Iso(G) and any s ∈ S with the same source as ν (and hence also the same 
range). We can find a bisection B such that Gs(ν) ∩B = {s} and a function f ∈ Cc(S, c)
whose support is contained in B with f(s) = 1. Consequently, s is the only element of 
Gs(ν) with f(s) �= 0. Using the fact that supp(h) ⊆ Iso(G), we have
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(h ∗ f)(sν) =
∑

η∈s−1(s(ν))

h(sνη−1)f(η)c(sνη−1, η)

= h(sνs−1)c(sνs−1, s)

and

(f ∗ h)(sν) =
∑

ζ∈s−1(s(ν))

f(sνζ−1)h(ζ)c(sνζ−1, ζ)

=
∑

ζ∈Gs(ν)
s(ν)

f(sνζ−1)h(ζ)c(sνζ−1, ζ)

= f(s)h(ν)c(s, ν)

= h(ν)c(s, ν)

Since h and f commute, this completes the proof. �
Recall from [21, Proposition II.4.2] that for any étale groupoid G, we have an injective, 

norm-decreasing inclusion j : C∗
r (G, c) → C0(G), where the latter space is equipped with 

the supremum norm.

Lemma 3.8. Suppose the subgroupoid S is clopen. Then an element of C∗
r (G, c) is in the 

subalgebra C∗
r (S, c) if and only if its image in C0(G) is supported in S.

Proof. First, if h ∈ C∗
r (S, c), then there exist hn in Cc(S, c) which converge to h and so 

j(hn) = hn converge to j(h). The fact that each hn is supported on S therefore implies 
that if y /∈ S,

|j(h)(y)| = |j(h)(y) − hn(y)| ≤ ‖j(h) − hn‖∞ ≤ ‖h− hn‖r

can be forced less than ε for any ε > 0. Since S is closed, we conclude that supp(j(h)) ⊆ S.
Conversely, assume that the image of h ∈ C∗

r (G, c) under j is supported in S. Let 
hn ∈ Cc(G, c) converge to h in the reduced norm, and define h′

n := χS · hn. Since S is 
clopen, h′

n ∈ Cc(S, c). As ‖χS · f‖r ≤ ‖f‖r for any f ∈ Cc(G, c), it follows from the fact 
that hn→h that (h′

n)n is Cauchy. Since j is continuous, we have that j(hn) converges to 
j(h) in C0(G). As j(h) is supported in S, this implies that χS · j(hn) = χS · hn = j(h′

n)
also converges to j(h). In particular, since j is injective, we must have that the C∗-limit 
of (h′

n)n coincides with the C∗-limit of (hn)n, i.e. h is the limit of elements in Cc(S, c)
and hence an element of C∗

r (S, c). �
Proposition 3.9. With all the assumptions from Theorem 3.1, C∗

r (S, c) is maximal abelian 
in C∗

r (G, c).
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Remark 3.10. If S is not immediately centralizing, then this statement is not necessarily 
true. See the example in Section 7.

Proof. By Lemma 3.8, h ∈ C∗
r (G, c) is in C∗

r (S, c) exactly when its image in C0(G) has 
support in S. Consequently, if we assume that h ∈ C∗

r (G, c) commutes with every element 
of C∗

r (S, c), then we need to show that supp(h) ⊆ S in order to conclude that C∗
r (S, c)

is maximal abelian. As S is closed, it suffices to check that h(ν) �= 0 implies ν ∈ S. Note 
that we already know by Lemma 3.7 that ν ∈ Gu

u for some unit u.
First, suppose that ν commutes with every s ∈ Su

u . Then Equation (4) implies c(ν, s) =
c(s, ν) for all s ∈ Su

u . It follows from Lemma 3.6 that ν ∈ S, as desired.
Next, suppose there exists at least one s ∈ Su

u such that νs �= sν, i.e. ν /∈ C1(S)
(recall Definition 2). Since S is immediately centralizing, this implies that for all k ≥ 1, 
ν /∈ Ck(S) and therefore for every k ≥ 1, there exists a t ∈ Su

u such that the set 
{tjνt−j | 1 ≤ j ≤ k} has cardinality k. It follows that the set

T := {tνt−1 | t ∈ Su
u}

is infinite. However, Equation (4) implies that for any η ∈ T ,

|h(η)| = |h(ν)| > 0.

Now, if K is any compact subset of G, then the discrete set Gu
u must have finite intersec-

tion with K. In particular, the infinite set T cannot be fully contained in K. So we have 
shown that there exists an ε > 0, namely ε := |h(ν)|, such that for any compact K ⊆ G, 
there exists an η ∈ G, namely η ∈ T ∩ (G \K), so that |h(η)| ≥ ε. Therefore, h /∈ C0(G), 
which (by [21, Proposition II.4.2]) contradicts our assumption that h ∈ C∗

r (G, c). �
We require the following lemma to show that the normalizer of C∗

r (S, c) generates 
C∗

r (G, c) as a C∗-algebra. For the definition of the normalizer, see Definition 1, Item (3).

Lemma 3.11. Suppose that the subgroupoid S is normal. If h ∈ Cc(G, c) is supported in 
a bisection, then h is in the normalizer of Cc(S, c) in Cc(G, c).

Proof. Suppose f ∈ Cc(S, c). Since h ∗ f ∗ h∗ and h∗ ∗ f ∗ h are continuous functions 
with compact support, we only need to show that they are supported on S. For ξ ∈ G
we have

(h ∗ f) ∗ h∗(ξ) =
∑

ρ∈Gs(ξ)

(h ∗ f)(ξρ)h∗(ρ−1)c(ξρ, ρ−1)

=
∑

s(ξ)

⎛⎝ ∑
s(ρ)

h(ξρν)f(ν−1)c(ξρν, ν−1)

⎞⎠h∗(ρ−1)c(ξρ, ρ−1)

ρ∈G ν∈G
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=
∑

ρ∈Gs(ξ)

∑
ν∈Gs(ρ)

h(ξρν)f(ν−1)h(ρ)c(ρ−1, ρ)c(ξρν, ν−1)c(ξρ, ρ−1).

If a term in the sum is nonzero, then we must have ν−1 ∈ S, and also both ρ and ξρν
must be in supp(h). Since ν ∈ S ∩ Gs(ρ) ⊆ Iso(G), we have that s(ξρν) = s(ν) = r(ν) =
s(ρ). Since h is supported on a bisection, this implies ξρν = ρ. Thus, the only summand 
that might not vanish corresponds to ρ and ν such that ξ = ρν−1ρ−1. The normality of 
S thus implies that ξ ∈ S. Therefore h ∗ f ∗ h∗ ∈ Cc(S, c).

A similar calculation shows that h∗ ∗ f ∗ h is supported on S. Therefore h lies in the 
normalizer of Cc(S, c). �
Proposition 3.12. Assume the étale groupoid G with 2-cocycle c is locally compact 
and Hausdorff, and that the subgroupoid S of Iso(G) is normal. Then the normalizer 
N(C∗

r (S, c)) of C∗
r (S, c) generates C∗

r (G, c) as a C∗-algebra.

Proof. Suppose h ∈ Cc(G, c). Since G is étale, its topology has a basis of open bisections 
(see [8, Proposition 3.5] or [23, Lemma 2.4.9]); in particular, we can take a finite collection 
{Ui}ni=1 of such sets which cover the compact support of h. As G is assumed to be 
locally compact Hausdorff, we can choose a partition of unity {ξi}ni=1 subordinate to 
that cover. The pointwise products hi = ξi · h belong to Cc(G, c) with supp(hi) ⊆ Ui, 
and h =

∑n
i=1 hi.

By Lemma 3.11, hi is in the normalizer of Cc(S, c) for each i = 1, . . . , n. Therefore 
h =

∑n
i=1 hi is in the normalizer of Cc(S, c). Thus Cc(G, c) is contained in the normalizer 

of Cc(S, c).
Now, suppose (fn)n ⊆ Cc(S, c) converges to f in C∗

r (S, c). If h ∈ Cc(G, c), then 
h ∗ fn ∗ h∗ is an element of Cc(S, c) by the above argument and so its C∗

r (G, c)-limit 
h ∗ f ∗h∗ is an element of C∗

r (S, c). We have shown that Cc(G, c) is also contained in the 
normalizer of C∗

r (S, c), which hence generates C∗
r (G, c) as a C∗-algebra. �

Proposition 3.13. Assume the subgroupoid S of Iso(G) is clopen. Then there is a faithful 
conditional expectation Φ: C∗

r (G, c) → C∗
r (S, c).

Proof. Since S is open in G, there is an injective ∗-homomorphism ι : Cc(S, c) → Cc(G, c)
given by extension by zero. By Remark 3.4, the function ι extends to an inclusion

ι : C∗
r (S, c) → C∗

r (G, c).

For this proof, let Mr = ι(C∗
r (S, c)) ⊆ C∗

r (G, c). We claim that the function 
Φ0 : Cc(G, c) → Mr given by Φ0(f) = ι(f |S) extends to a conditional expectation.

First, observe that f |S ∈ Cc(S, c) for all f ∈ Cc(G, c), because S is clopen. Thus, Φ0

is well-defined. Clearly, Φ0 is linear and idempotent on Cc(S, c). We will show that Φ0

is contractive, i.e. that for f ∈ Cc(G, c), we have
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‖Φ0(f)‖Mr
≤ ‖f‖C∗

r (G,c),

so that Φ0 will extend to a linear, contractive map Φ on all of C∗
r (G, c) which fixes 

C∗
r (S, c) and is hence a conditional expectation.
For u ∈ G(0), let Lu : C∗

r (S, c) → B(�2(Su)) be the left regular representation, given 
for g ∈ Cc(S, c) and ξ ∈ �2(Su) by

Lu(g)(ξ) = g ∗ ξ =

⎡⎣γ �→
∑
η∈Gu

g(γη)ξ(η−1)c(γη, η−1)

⎤⎦ . (5)

By the definition of the norm ‖ · ‖r on C∗
r (S, c) (see Equation (1)), we can find, for any 

f ∈ Cc(G, c), a unit u ∈ S(0) = G(0) such that ‖ι(f |S)‖r ≤ ‖Lu(ι(f |S))‖ + ε.
Let πu : C∗

r (G, c) → B(�2(Gu)) be the left regular representation (given by the 
same formula as Equation (5)). Let P ∈ B(�2(Gu)) be the orthogonal projection 
onto span{eγ : γ ∈ Su}, where {eγ}γ∈Gu

denotes the standard orthonormal basis 
of �2(Gu). There is a canonical unitary isomorphism Γ: �2(Su) → P�2(Gu) given by 
Γ(
∑

γ∈Su
aγeγ) =

∑
γ∈Gu

χS(γ)aγeγ , where χS denotes the characteristic function of S. 
It is easy to check that for all ξ ∈ �2(Su),

Pπu(f)(Γ(ξ)) = Γ
(
Lu
(
ι(f |S)

)
(ξ)
)
,

and so with ε and u as above for the fixed f ∈ Cc(G, c), we have

‖Φ0(f)‖r = ‖ι(f |S)‖r ≤ ‖Lu(ι(f |S))‖ + ε = ‖Pπu(f)‖ + ε ≤ ‖f‖r + ε.

Thus Φ0 extends to a linear idempotent Φ: C∗
r (G, c) → Mr, which has norm 1 since it 

acts as the identity on Mr ⊆ C∗
r (G, c). By [2, II.6.10.2], Φ is a conditional expectation. 

To see that Φ is faithful, we follow the same idea as in the proof of [21, II.4.8]. For 
f ∈ C∗

r (G, c) and u ∈ G(0) = S(0), we have

Φ(f∗ ∗ f)(u) = (f∗ ∗ f)(u) =
∑
γ∈Gu

f∗(γ−1)f(γ)c(γ, γ−1) =
∑
γ∈Gu

|f(γ)|2.

In particular, if Φ(f∗ ∗ f) = 0, then 
∑

γ∈Gu
|f(γ)|2 = 0 for each u ∈ G(0) and hence 

f(γ) = 0 for every γ ∈ G. �
Proof of Theorem 3.1. We know from the remarks preceding [22, Proposition 4.1] that 
C0(G(0)) always contains an approximate unit for C∗

r (G, c); hence, so does C∗
r (S, c), and 

Condition (4) of Definition 1 holds. Propositions 3.9, 3.13, and 3.12, imply, respectively, 
that Conditions (1), (2), and (3) of Definition 1 are satisfied. �
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4. Weyl groupoid and Weyl twist

Having identified Cartan subalgebras inside twisted groupoid C∗-algebras in The-
orem 3.1, we can use Renault’s machinery [22] to identify an alternative groupoid 
model—one that is topologically principal—for these algebras. Our next goal is to ana-
lyze the relationship between the original groupoid data (G, S, c) and the Weyl groupoid 
and twist associated to the Cartan pair (C∗

r (G, c), C∗
r (S, c)) as in [22, Section 4]. Sec-

tion 5 analyzes the general structure of this relationship in the setting when G is a 
discrete group, and Section 6 computes the Weyl groupoid and twist explicitly in several 
examples.

The results in this section, particularly Proposition 4.1 which is the main result of this 
section, will facilitate our description and analysis of the Weyl groupoid in Section 5. 
We heartily thank Aidan Sims for suggesting Proposition 4.1 to us, and for helpful 
discussions relating to its proof.

Throughout the current section, B will denote a Cartan subalgebra of a separable 
C∗-algebra A with Φ: A → B the conditional expectation.

Proposition 4.1. Suppose there exists a subset N of N(B) which densely spans A. Then 
every element of the Weyl groupoid associated to (A, B) can be represented by some 
(αm(x), m, x) where m ∈ N .

Before proving this result we will make some clarifying observations about the Weyl 
groupoid defined in Section 2 and prove several preparatory lemmas. Recall Equation (2), 
the defining equation of the partial homeomorphisms αn:

∀ b ∈ B, n∗bn = (b ◦ αn) · n∗n.

Notice that b ◦ αn is a function that might be only partially defined (in which case it is 
not an element of B). But since the function n∗n ∈ B ∼= C0(B̂) vanishes wherever αn

does not make sense, one unambiguously defines for any x ∈ B̂:

(
n∗n · (b ◦ αn)

)
(x) =

(
(b ◦ αn) · n∗n

)
(x)

:=
{

n∗n(x) · b(αn(x)) if x ∈ dom(n),
0 otherwise.

Indeed, n∗n · (b ◦ αn) ∈ C0(B̂) ∼= B for any b ∈ B, n ∈ N(B), since b, n∗n ∈ C0(B̂)
and αn is a homeomorphism defined on the domain of n∗n.

Proofs of the following two lemmas are straightforward using Equation (2) (which 
uniquely determines αn), the C∗-identity, and the fact that B is maximal abelian in A.
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Lemma 4.2. Suppose b ∈ B vanishes outside of dom(n), so that

(b ◦ αn∗)(x) =
{

0 if x /∈ dom(n∗),
b (αn∗(x)) otherwise,

is a globally defined continuous function on B̂, i.e. an element of B. Then nb = (b ◦αn∗)n.

Lemma 4.3. If n ∈ N(B) has the property that αn = id|dom(n), then n ∈ B.

Lemma 4.4. Let n, m ∈ N(B). If either

(1) x /∈ dom(n) ∩ dom(m), or
(2) x ∈ dom(n) ∩ dom(m) satisfies αn(x) �= αm(x),

then Φ(n∗m)(x) = 0.

Proof. First assume that x is not in the domain of m, say, so that m∗m(x) = 0. Fix 
ε > 0. Continuity of m∗m implies that there exists a neighborhood U of x such that

sup{m∗m(y) : y ∈ U} < ε.

Let b ∈ B be a [0, 1]-valued function such that b(x) = 1 and b vanishes off of U . Then

‖mb‖2 = ‖(mb)∗mb‖ = sup{m∗m(y)b2(y) : y ∈ B̂}
≤ sup{m∗m(y) : y ∈ B̂ such that b(y) �= 0}
≤ sup{m∗m(y) : y ∈ U} < ε.

Since b(x) = 1, the B-linearity of the conditional expectation Φ, and the fact that Φ is 
norm-decreasing, now imply that

Φ(n∗m)(x) = Φ(n∗m)(x)b(x) = Φ(n∗mb)(x) ≤ ‖Φ(n∗mb)‖ ≤ ‖n∗mb‖
≤ ‖n‖ ‖mb‖ ≤ ‖n‖

√
ε.

As the left-hand side does not depend on ε and ε was arbitrary, we conclude Φ(n∗m)(x) =
0 as desired.

Now assume that x ∈ dom(n) ∩ dom(m). Multiplying the equation

nn∗(b ◦ αn∗) = nbn∗

for b ∈ B by n∗ on the left yields the following equation in A:

n∗[nn∗ · (b ◦ αn∗)] = n∗nbn∗ = b(n∗n)n∗, (6)



16 A. Duwenig et al. / Journal of Functional Analysis 279 (2020) 108611
where the last equation follows from the fact that n∗n ∈ B, so that it commutes with b. 
Similarly,

bn∗nn∗mm∗m = n∗[nn∗ · (b ◦ α−1
n )]mm∗m = n∗m

[
m∗m · [nn∗ · (b ◦ α−1

n )] ◦ αm

]
,

where we obtain the final equality by applying Equation (6) with n replaced by m∗ and 
b replaced by [nn∗ · (b ◦ αn∗)]. In particular, B-linearity of Φ yields

b · n∗n · Φ(n∗m) ·m∗m = Φ(bn∗nn∗mm∗m)

= Φ(n∗m
[
m∗m · [nn∗ · (b ◦ α−1

n )] ◦ αm

]
)

= Φ(n∗m) ·
[
m∗m · [nn∗ · (b ◦ α−1

n )] ◦ αm

]
, (7)

and this is an equation of globally defined continuous functions on B̂. Since n∗n(x) > 0
and m∗m(x) > 0 by assumption, then if b ∈ B is any element with b(x) �= 0, then 
Φ(n∗m)(x) �= 0 if and only if the function in Equation (7) is non-zero when evaluated at 
x, which implies

[nn∗ · (b ◦ α−1
n )] ◦ αm(x) �= 0.

This can happen only if αm(x) ∈ dom(n∗) and b
(
α−1
n (αm(x))

)
�= 0.

In particular, if αm(x) /∈ dom(n∗), then it follows that Φ(n∗m)(x) = 0 as claimed, 
by taking any b ∈ B with b(x) �= 0. On the other hand, if αm(x) ∈ dom(n∗), so that 
α−1
n (αm(x)) makes sense and is by assumption not equal to x, then we can find a function 

b ∈ B such that b(x) �= 0 and b(α−1
n (αm(x))) = 0. Again, the previous argument shows 

that we must have Φ(n∗m)(x) = 0, as claimed. �
The next result is a straightforward consequence of Lemma 4.4.

Corollary 4.5. Let n, m ∈ N(B). If either

(1) x /∈ dom(n) ∩ dom(m), or
(2) x ∈ dom(n) ∩ dom(m) satisfies αn(x) �= αm(x),

then ‖n −m‖2 ≥ n∗n(x).

The following lemma is readily checked using the defining equation for αm, Equa-
tion (2). However, we warn the reader that the analogous statement in the Weyl twist 
only holds if λ > 0. See Lemma 5.4 below.

Lemma 4.6. For any λ ∈ C \ {0} and m ∈ N(B), we have αm = αλm. In particular, for 
any z ∈ dom(m),

[αm(z),m, z] = [αλm(z), λm, z]. (8)
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Lemma 4.7. Suppose n ∈ N(B) and n =
∑
i∈F

ni with F finite and each ni ∈ N(B). For 

every x ∈ dom(n), there is an i ∈ F and an open set U ⊆ dom(n) ∩ dom(ni) containing 
x such that αni

|U ≡ αn|U .

Proof. Suppose, seeking contradiction, that there exists x ∈ dom(n) such that for every 
i in I := {i ∈ F such that x ∈ dom(ni)} and every neighborhood U of x in dom(n) ∩
dom(ni), there exists an element xU,i such that αni

(xU,i) �= αn(xU,i).
By Lemma 4.4, we have Φ(n∗ni)(xU,i) = 0. Since, for any fixed i ∈ I, the net (xU,i)U

converges to x, we conclude from the continuity of Φ(n∗ni) ∈ C0(B̂) that Φ(n∗ni)(x) = 0
also.

On the other hand, we have x /∈ dom(nj) for every j ∈ F \ I by definition, so 
Lemma 4.4(1) implies Φ(n∗nj)(x) = 0 also.

All in all, we have proved Φ(n∗ni)(x) = 0 for all i ∈ F , so that

n∗n(x) = Φ(n∗n)(x) =
∑
i∈F

Φ(n∗ni)(x) = 0,

which contradicts the assumption that x ∈ dom(n). �
Proof of Proposition 4.1. Let n ∈ N(B) and suppose first that n =

∑
i∈F ni for a finite 

F and ni = λimi with mi ∈ N and λi ∈ C \ {0}. Then for any x ∈ dom(n), we know 
by Lemma 4.7 that there exists an i ∈ F and neighborhood of x on which αn and αni

agree.
Since αλimi

= αmi
, we conclude that

[αn(x), n, x] = [αmi
(x),mi, x].

Next, take an arbitrary element of the Weyl groupoid, say [αn(x), n, x] for n ∈ N(B)
where x ∈ B̂ is such that n∗n(x) > 0. Write n = limq→∞ nq where each nq is a finite 
linear combination of elements from N . Fix a compact neighborhood K of x such that 
n∗n(y) > 0 for y ∈ K, and write ε = inf{|n∗n(y)|1/2 : y ∈ K}. Observe that ε > 0 since 
K is compact. Let Q be large enough so that ‖n − nq‖ < ε for all q ≥ Q. In particular, 
for any y ∈ Ko, we have ‖n− nq‖2

< n∗n(y). Therefore, for these y, we must have that 
y ∈ dom(nq) ∩ dom(n) and αn(y) = αnq

(y), by Corollary 4.5.
In other words, αn and αnq

agree on Ko, so [αn(x), n, x] = [αnq
(x), nq, x]. Since 

[αnq
(x), nq, x] = [αm(x), m, x] for some m ∈ N by the first part of the proof, we are 

done. �
5. Computing the Weyl groupoid and twist in the group setting

Let G be a countable discrete group, and let c be a 2-cocycle on G. Suppose S
is maximal among abelian subgroups of G = Iso(G) on which c is symmetric, and 
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assume further that S is normal and immediately centralizing. By Theorem 3.1, the pair 
(A, B) := (C∗

r (G, c), C∗
r (S, c)) is Cartan.

In this section, we describe the relationship between the Weyl groupoid G(A,B) and 
Weyl twist Σ(A,B) associated to (A, B) via Renault’s construction, and our original data 
(G, S, c). See Theorem 5.2 and Theorem 5.8 below.

For any g ∈ G, the Dirac-delta function δg on G is in N(B) since S is normal: indeed, 
we have

δgδsδ
∗
g = c(g, g−1) c(s, g−1) c(g, sg−1) δgsg−1 ∈ Cc(S), (9)

and so we conclude that δgfδ∗g ∈ C∗
r (S, c) for all f ∈ C∗

r (S, c).
As such elements densely span A, Proposition 4.1 shows that they entirely determine 

the family of partial homeomorphisms {αn : n ∈ N(B)} in the sense that every element 
of the Weyl groupoid G := G(A,B) is of the form [αδg (x), δg, x] for some g ∈ G and x ∈ B̂; 
we will therefore abuse notation from now on and write αg instead of αδg whenever this 
is unambiguous. Since δ∗gδg = δe, we have dom(δg) = B̂, i.e. αg is globally defined, and 
because of Equation (8), the groupoid composition can be rephrased as:

[αh(αg(x)), δh, αg(x)] · [αg(x), δg, x] = [αhg(x), δhg, x].

In particular,

s([αg(x), δg, x]) = x and r([αg(x), δg, x]) = αg(x). (10)

In what follows, we will use the usual notation G/S for the quotient of G by the 
normal subgroup S. However, to simplify certain computations, we will usually think of 
[g] ∈ G/S as denoting the left coset of S with respect to g, which equals the right coset 
because S is normal.

Lemma 5.1. If [g] = [h] in G/S, then αg ≡ αh.

Consequently, we will sometimes write α[g] for αg.

Proof. Recall that αg is uniquely determined as satisfying Equation (2) for n = δg. To 
show that αg = αsg for every s ∈ S, it thus suffices to check that δ∗sgbδsg = δ∗gbδg for all 
b ∈ B. As δsg = c(s, g)δsδg, the left-hand side can be rewritten as δ∗g(δ∗sbδs)δg. The fact 
that B is commutative and s ∈ S implies δ∗sbδs = bδ∗sδs = b, so the left-hand side of the 
equation indeed equals the right-hand side. �

Note that [g] �→ α[g] defines an action of G/S on B̂ by homeomorphisms since α[g] ◦
α[h] = α[gh] by Lemma 4.6. Since G is discrete, the transformation groupoid K :=
(G/S) α � B̂ is étale (see [23, Ex. 2.4.5]). It is furthermore locally compact Hausdorff 
because B̂ is locally compact Hausdorff. Lastly, it is second countable because S is 



A. Duwenig et al. / Journal of Functional Analysis 279 (2020) 108611 19
countable. The following Theorem shows that under mild hypotheses, K is the Weyl 
groupoid G(A,B).

Recall that α is called topologically free if for every finite set F ⊆ (G/S) \ {e}, the set 
{x ∈ B̂ | ∀ g ∈ F, αg(x) �= x} is dense in B̂.

Theorem 5.2. If α is topologically free, then the map

ϕ : K → G(A,B), ϕ([g], x) = [αg(x), δg, x],

is an isomorphism of topological groupoids.

Proof. To see that ϕ is well-defined, note that Lemma 5.1 shows that [g] = [h] implies 
αg = αh on all of B̂. So, in particular, [αg(x), δg, x] = [αh(x), δh, x] ∈ G(A,B) for any 
x ∈ B̂ by definition of ∼ (see Equation (3)).

If [g] �= [h], then for any neighborhood U of x ∈ B̂, the set {y ∈ U | αg−1h(y) �= y}
is nonempty since g−1h �= e and since α is topologically free by assumption. Therefore, 
αg �= αh on U , which implies [αg(x), δg, x] �= [αh(x), δh, x]. In particular, the map ϕ is 
injective. Note that ϕ is surjective because every element of G(A,B) has a representative 
of the form (αg(x), δg, x) by Proposition 4.1.

To see that ϕ is a groupoid homomorphism, we compute on the one hand,

([g], αh(y)) · ([h], y) = ([gh], y)

and on the other hand

[αg(αh(y)), δg, αh(y)] · [αh(y), δh, y] = [αgh(y), δgh, y].

Thus, ϕ is a groupoid isomorphism.
To see that ϕ is a homeomorphism, recall (cf. [22, Section 3]) that a basic open 

set in G(A,B) is of the form {[αn(x), n, x] : αn(x) ∈ V, x ∈ U} for U, V ⊆ B̂ open 
and n ∈ N(B). Consequently, the fact that αg is a globally defined homeomorphism 
implies that every point [αg(x), δg, x] ∈ G(A,B) has an open neighborhood O of the form 
O = {[αg(y), δg, y] : y ∈ U} for some open set U ⊆ B̂. Observe that

ϕ−1(O) = {([g], y) : y ∈ U},

which is open in K since G/S has the discrete topology. Thus, ϕ is continuous.
To see that ϕ is open, observe that ϕ takes any basic open set {[g]} ×U in K (where 

U ⊆ B̂ is open) to the basic open set {[αg(y), δg, y] : y ∈ U} in G(A,B). This completes 
the proof that ϕ : K → G(A,B) is an isomorphism of topological groupoids. �
Remark 5.3. The assumption of topological freeness in Theorem 5.2 was only needed to 
prove injectivity of the map ϕ.
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Next we turn to the Weyl twist Σ := Σ(A,B) associated to the Cartan pair (A, B) =
(C∗

r (G, c), C∗
r (S, c)). We will show that the twist is given by a 2-cocycle. That is, it is 

isomorphic as a topological groupoid to K ×σ T for σ a 2-cocycle on K.
In [22, Lemma 4.16], Renault gives a family of local trivializations for Σ, indexed by 

{n ∈ N(B)}. These are defined on the open support of αn,

supp′(n) = {[αn(y), n, y] ∈ G : y ∈ dom(n)} .

The discussion preceding [22, Lemma 4.16] describes the trivialization of the T -bundle 
Σ over G as follows: for each normalizer n ∈ N(B), the homeomorphism φn : Σ|supp′(n) →
dom(n) × T is given by φ−1

n (x, λ) = �αn(x), λn, x�, where λ ∈ T .

Lemma 5.4. Let R(S) be any choice of coset representatives for G/S. Then every element 
of Σ can be represented by some (αg(x), λδg, x), where g ∈ R(S) and where λ ∈ T can 
be explicitly computed.

Proof. Let �αn(x), n, x� be an arbitrary element of Σ. We know from Theorem 5.2
(cf. also Proposition 4.1) that there exists a (unique) g ∈ R(S) such that

[αn(x), n, x] = [αg(x), δg, x],

i.e. there exists a neighborhood U of x on which αn and αg coincide. In other words, 
αn∗ and

αg−1 := αδg−1 = αc(g,g−1)δ∗g = αδ∗g

coincide on αn(U). If f ∈ B vanishes outside of U , then f ◦ αn∗ = f ◦ αg−1 is a globally 
defined function, and we can use Lemma 4.2 together with the definition of α (Equation 
(2)) and the fact that δ∗g−1δg−1 = id to compute that

nf = (f ◦ αn∗)n = (f ◦ αg−1)n = δgfδ
∗
gn.

Let us check that f ′ := fδ∗gn is actually an element of B: First, if b ∈ B is arbitrary, 
then

f ′bf ′ ∗ = (fδ∗gn)b(n∗δgf
∗) = fδ∗g ((b ◦ αn∗)nn∗) δgf∗

= ff∗ · ((b ◦ αn∗)nn∗) ◦ αδg = ff∗b
(
nn∗ ◦ αδg

)
,

(11)

where the last equality follows from the fact that, on the support of f , we have αn∗◦αδg =
id. On the other hand, since n ∈ N(B), we have f ′ ∈ N(B) and hence by definition of 
αf ′ :
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f ′bf ′ ∗ = (b ◦ αf ′ ∗) · f ′f ′ ∗ = (b ◦ αf ′ ∗) · (fδ∗gn)(n∗δgf
∗)

= (b ◦ αf ′ ∗)ff∗ (nn∗ ◦ αδg

)
.

Comparing this with Equation (11), we conclude by uniqueness that αf ′ ∗ must be the 
identity on its domain. It follows from Lemma 4.3 that f ′ is an element of B.

As B̂ is locally compact and Hausdorff, we can choose a compactly supported function 
f which vanishes outside of U and has f(x) �= 0. We then have (similarly to Equation 
(11))

(f ′f ′ ∗)(x) = (ff∗)(x) · nn∗ (αδg (x)
)

= (ff∗)(x) · nn∗ (αn(x)) .

This is non-zero since x ∈ dom(n), and we conclude that f ′(x) �= 0.
Now that we have found f, f ′ ∈ B such that f(x) �= 0 �= f ′(x) and nf = δgf

′, we can 
define b, b′ ∈ B and λ ∈ T by

b := |f(x)|
f(x) f, b′ := |f ′(x)|

f ′(x) f ′, and λ := |f(x)|
f(x)

f ′(x)
|f ′(x)| ,

so that b(x) > 0 and b′(x) > 0 and:

nb = n

(
|f(x)|
f(x) f

)
= |f(x)|

f(x) · δgf ′ = |f(x)|
f(x) · δg

(
f ′(x)
|f ′(x)|

)
b′ = λ(δgb′).

We conclude �αn(x), n, x� = �αg(x), λδg, x�, as claimed. �
Our next goal is to show that under the hypotheses of Theorem 5.2, the Weyl twist 

arises from a 2-cocycle σ on K. First, we will show that Σ is a trivial circle bundle; that 
is, that Σ is homeomorphic to K × T .

Theorem 5.5. Let G be a countable discrete group with 2-cocycle c. Suppose S is maximal 
among abelian subgroups of G on which c is symmetric, and assume further that S
is normal and immediately centralizing. Let Σ denote the Weyl twist associated to the 
Cartan pair (C∗

r (G, c), C∗
r (S, c)). If the action α on B̂ is topologically free, then the map 

ψ : K × T → Σ given by

ψ
(
[g], x, λ

)
:= �α[g](x), λδr[g] , x�,

where λ ∈ T and r[g] ∈ R(S) is our chosen representative of [g], is a homeomorphism of 
topological spaces.

Proof. Surjectivity of ψ follows from Lemma 5.4.
For injectivity, take two elements ([g], x, λ) and ([h], y, ν) of K×T . If x �= y, then the 

source of ψ
(
[g], x, λ

)
is x, while the source of ψ

(
[h], y, ν

)
is y (see Equation (10)), and 

thus ψ([g], x, λ) �= ψ([h], y, ν).
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So assume x = y. If ψ([g], x, λ) = ψ([h], x, ν), then there must exist b, b′ ∈ B such 
that b(x), b′(x) > 0 and λδr[g]b = νδr[h]b

′. Rearranging yields

B � λνb′ = δ∗r[h]
δr[g]b = c(r[h], r

−1
[h] )c(r

−1
[h] , r[g])δr−1

[h] r[g]
b.

In particular, δr−1
[h] r[g]

b ∈ B. If we consider C∗
r (G, c) as a subset of C0(G) (see [21, 

Prop. II.4.2]), then for k ∈ G, the formula for the convolution yields

(δr−1
[h] r[g]

b)(k) = b(r−1
[g] r[h]k)c(r−1

[h] r[g], r
−1
[g] r[h]k).

Recall from Lemma 3.8 that an element of A = C∗
r (G, c) is in B = C∗

r (S, c) exactly if its 
image in C0(G) has support in S. As B � b �= 0, there therefore exists an element s ∈ S

with b(s) �= 0. Plugging in k := r−1
[h] r[g]s yields:

(δr−1
[h] r[g]

b)(r[g]r−1
[h] s) = b(s)c(r−1

[h] r[g], s) �= 0.

But since δr−1
[h] r[g]

b ∈ B is also supported in S, this implies that r[g]r−1
[h] s ∈ S. It follows 

that [r[g]] = [r[h]] in G/S, so that r[g] = r[h] since R(S) contains exactly one representa-
tive for each class in G/S. Thus λδr[g]b = νδr[h]b

′ implies λb = νb′. Since b(x) and b′(x)
were assumed to be positive and λ, ν ∈ T , this forces λ = ν. This concludes our proof of 
injectivity.

Continuity of ψ follows from the fact that each φ−1
g := φ−1

δg
is continuous (in fact a 

homeomorphism), and that K is étale since G/S is discrete. To be precise, if ([gi], xi, ti) →
([g], x, t), we must have xi → x and ti → t, and for large enough i, [gi] = [g] by 
discreteness. In particular r[gi] = r[g], so for notational convenience, let us denote g = r[g]. 
The continuity of φ−1

g implies that �αg(xi), tiδg, xi� → �αg(x), tδg, x�, so ψ is continuous.
For the continuity of ψ−1, suppose that γi → γ in Σ. By Lemma 5.4, we know that 

γ can be represented by (αg(x), λδg, x) for some x ∈ B̂, g ∈ R(S), and λ ∈ T , and 
similarly γi can be represented by (αgi(xi), λiδgi , xi). In particular, since we have chosen 
gi ∈ R(S),

γi = �αgi(xi), λiδgi , xi� = �αgi(xi), λiδr[gi] , xi� = ψ([gi], xi, λi). (12)

By convergence, we have for large enough i that γi is in the basic open neighborhood

φ−1
g (dom(δg) × T ) = φ−1

g (B̂ × T ) = Σsupp′(λδg)

of γ = �αg(x), λδg, x�. By definition of φ−1 there must hence exist some νi ∈ T so that

γi = �αg(xi), νiδg, xi�
= �αg(xi), νiδr[g] , xi� (since g ∈ R(S))

= ψ([g], xi, νi).
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As we have shown ψ to be injective, we conclude from Equation (12) that νi = λi and 
that [g] = [gi], so g = gi as these elements were chosen to be in R(S).

Because the topology of Σ is inherited from that of dom(δg) ×T via the maps φg, our 
hypothesis that γi → γ implies that

φ−1
g (�αg(xi), νiδg, xi�) = φ−1

g (γi) −→ φ−1
g (γ) = φ−1

g (�αg(x), λδg, x�) .

By the definition of φg (see page 20), this means exactly that the sequence (xi, λi) =
(xi, νi) converges to (x, λ) in B̂×T . Thus, for i large enough so that gi = g, we have by 
Equation (12),

ψ−1(γi) = ([gi], xi, λi) = ([g], xi, λi) → ([g], x, λ) = ψ−1(γ). �
Knowing that the bundle structure on Σ is trivial, we now compute the 2-cocycle on 

K = (G/S) α � B̂ which gives rise to Σ.

Lemma 5.6. For y ∈ B̂ and [g], [h] ∈ G/S, define

σ
(
([g], αh(y)), ([h], y)

)
:=

(
δ∗r[gh]

δr[g]δr[h]

)
(y)∣∣∣δ∗r[gh]

δr[g]δr[h](y)
∣∣∣ .

Then σ is a 2-cocycle on the groupoid K = (G/S) α � B̂.

Proof. Observe first thatσ takes values inT by construction. Furthermore, δ∗r[gh]
δr[g]δr[h] ∈

B = C∗
r (S, c), because [r[gh]] = [r[g]r[h]] ∈ G/S. Therefore, to check that σ is a 2-cocycle, 

it suffices to check the cocycle condition. This will follow if we can show that for any 
g, h, k ∈ G, we have(

δ∗r[ghk]
δr[g]δr[hk]

)
(α−1

k (y))
(
δ∗r[hk]

δr[h]δr[k]

)
(α−1

k (y)) (13)

!=
(
δ∗r[ghk]

δr[gh]δr[k]

)
(α−1

k (y))
(
δ∗r[gh]

δr[g]δr[h]

)
(y).

Since y = αk(α−1
k (y)) and δ∗r[k]

δr[k] = δe satisfies δ∗r[k]
δr[k](x) = 1 for all x ∈ B̂, Equation 

(2) implies for αr[k] = αk that

δ∗r[k]

(
δ∗r[gh]

δr[g]δr[h]

)
δr[k](α

−1
k (y)) =

(
δ∗r[gh]

δr[g]δr[h]

)
(y).

The fact that Gelfand duality is a ∗-algebra homomorphism therefore implies that Equa-
tion (13) will follow if we can show(

δ∗r[ghk]
δr[g]δr[hk]

) (
δ∗r[hk]

δr[h]δr[k]

)
!=
(
δ∗r[ghk]

δr[gh]δr[k]

) (
δ∗r[k]

δ∗r[gh]
δr[g]δr[h]δr[k]

)
,

and this follows immediately from the fact that δm is a unitary for all m ∈ G. �
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Theorem 5.7. In the setting of Theorem 5.5, the map ψ is a groupoid homomorphism 
from K ×σ T to Σ which intertwines the actions of T .

Proof. Note that ψ([e], x, 1) = �α[e](x), δr[e] , x� is an element of Σ(0) since α[e](x) = x, 
so ψ preserves the unit space.

We compute on the one hand for ξ := ([g], αh(y)) and ζ := ([h], y),

ψ ((ξ, λ)(ζ, ν)) = ψ([gh], y, σ(ξ, ζ)λν)

= �αgh(y), λν σ(ξ, ζ) δr[gh] , y�
= �αg(αh(y)), λν σ(ξ, ζ) δr[gh] , y�.

On the other hand,

ψ(ξ, λ)ψ(ζ, ν) = �α[g](αh(y)), λδr[g] , αh(y)� · �αh(y), νδr[h] , y�
= �αg(αh(y)), λν δr[g]δr[h] , y� = �αg(αh(y)), λν c(r[g], r[h]) δr[g]r[h] , y�.

Let n := λν c(r[g], r[h]) δr[g]r[h] = λν δr[g]δr[h] , and note that

αn = αr[g]r[h] = αgh,

where the first equation is due to Lemma 4.6 and the second due to Lemma 5.1, using 
that S is normal. Thus, we have to show that

�αn(y), n, y� != �αr[gh](y), λν σ(ξ, ζ) δr[gh] , y�. (14)

Taking f to be the constant function 1 in the proof of Lemma 5.4, and observing that 
δ∗r[gh]

n ∈ C0(B̂) takes values in T , reveals that μ := (δ∗r[gh]
n)(y) has the property

�αn(y), n, y� =
�
αr[gh](y),

μ
|μ| δr[gh] , y

�
= �αr[gh](y), μ δr[gh] , y�.

Indeed, the element δ∗r[gh]
n of C∗

r (G, c) is given by

δ∗r[gh]
n = λν c(r−1

[gh], r[gh]) c(r−1
[gh], r[g]r[h]) c(r[g], r[h]) δr−1

[gh]r[g]r[h]
.

Thus

μ = (δ∗r[gh]
n)(y) = λν c(r−1

[gh], r[gh]) c(r−1
[gh], r[g]r[h]) c(r[g], r[h]) δr−1

[gh]r[g]r[h]
(y).

We now observe that

c(r−1 , r[gh]) c(r−1 , r[g]r[h]) c(r[g], r[h]) δr−1 r r = δ∗r δr[g]δr[h] ,
[gh] [gh] [gh] [g] [h] [gh]
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revealing that μ is a positive scalar multiple of λν σ(ξ, ζ), so that Equation (14) indeed 
holds.

Lastly, to see that ψ intertwines the actions of T on K ×σ T and Σ, we compute for 
ν ∈ T :

ψ(ν · ([g], x, λ)) = ψ([g], x, νλ) = �αg(x), νλδr[g] , x�
= ν · �αg(x), λδr[g] , x� = ν · ψ([g], x, λ). �

Theorem 5.8. With the assumptions from Theorem 5.5, the Cartan pair (C∗
r (K ×σ

T ), C0(B̂)) is isomorphic to the pair (C∗
r (G, c), C∗

r (S, c)).

Proof. Theorems 5.2 and 5.5 show that the twisted groupoid (K, K×σ T ) is isomorphic 
to the twisted groupoid (G(A,B), Σ(A,B)), the Weyl twist associated to the Cartan pair 
(A, B) = (C∗

r (G, c), C∗
r (S, c)). Thus, C∗

r (G(A,B), Σ(A,B)) is isomorphic to C∗
r (K, K ×σ T )

in a diagonal-preserving fashion. By [22, Theorem 5.9], we thus have

(C∗
r (G, c), C∗

r (S, c)) ∼= (C∗
r (G(A,B),Σ(A,B)), C0(G(0)

(A,B)))

∼= (C∗
r (K,K ×σ T ), C0(K(0)))

∼= (C∗
r (K, σ), C0(K(0))). �

Remark 5.9. The isomorphism in Theorem 5.8 from C∗
r (G, c) to C∗

r (K, K×σ T ) may be 
defined explicitly on the generators of C∗

r (G, c) by

δg �→ δ̂g ◦ ψ, g ∈ G,

where δ̂g ∈ C0(Σ) ⊆ C∗
r (G, Σ) is defined by Renault in [22, Lemma 5.3] by

δ̂g(�αn(y), n, y�) := Φ(n∗δg)(y)√
n∗n(y)

,

and Φ: C∗
r (G, c) → C∗

r (S, c) is the conditional expectation.

When the 2-cocycle c is trivial on S, as will be the case in the examples considered 
in Section 6 below, we can identify the Gelfand dual B̂ of the Cartan subalgebra B =
C∗

r (S, c) ∼= C∗
r (S) with the Pontryagin dual Ŝ of S.

To be precise, if c is trivial on S, the map

Ψ: Ŝ
∼=−→ B̂, determined by Ψ(ν) :=

[
Cc(S, c) � b �→

∑
s∈S

b(s)ν(s)
]
,

is a homeomorphism with inverse

Ψ−1(χ) =
[
s �→ evδs(χ) := χ(δs)

]
.
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Proposition 5.10. Suppose c is trivial on S. Then the action [g] �→ α̃[g] := Ψ−1 ◦ αg ◦ Ψ
of G/S on Ŝ induced by Ψ is given by

α̃[g](ν) =
[
s �→ c(g, g−1) c(g−1, s) c(g−1s, g) ν(g−1sg)

]
,

for [g] ∈ G/S, ν ∈ Ŝ, and s ∈ S. Moreover the transformation groupoid H := (G/S) α̃�Ŝ

is isomorphic to the Weyl groupoid via

G(A,B) → H, [αg(x), δg, x] �→ ([g],Ψ−1(x)).

Proof. Let us be very precise and carefully distinguish between B and C0(B̂); so we 
rewrite the defining equation for αg as follows:

“For all b ∈ B : evδ∗gbδg = evb ◦ αg.”

One easily verifies that α̃[g] is indeed well-defined; that is, it only depends on [g] and not 
on g. Now, using the defining property of αg in the third equality, we compute for ν ∈ Ŝ

and s ∈ S that

(α̃[g](ν))(s) =
(
Ψ−1 ◦ αg ◦ Ψ

)
(ν)(s) = evδs

(
αg

(
Ψ(ν)

))
= evδ∗gδsδg

(
Ψ(ν)

)
= Ψ(ν)

(
δ∗gδsδg

)
=
∑
t∈S

(
δ∗gδsδg

)
(t) · ν(t).

By Equation (9), we conclude the formula for α̃[g]. The claim about the isomorphisms 
follows directly from Theorem 5.2 and the way we defined α̃. �

Thanks to Lemma 5.6, the map

σ̃
(
([g], α̃h(ν)), ([h], ν)

)
:=

(
δ∗r[gh]

δr[g]δr[h]

)
(Ψ(ν))∣∣∣δ∗r[gh]

δr[g]δr[h](Ψ(ν))
∣∣∣ , (15)

for ν ∈ Ŝ, [g], [h] ∈ G/S, defines a 2-cocycle on the groupoid H = (G/S) α̃ � Ŝ if c is 
trivial. Our previous results can be rephrased as follows:

Corollary 5.11 (of Theorems 5.5 and 5.7). In the setting of Theorem 5.5, assume more-
over that c is trivial on S. Then the map ψ̃ : K ×σ̃ T → Σ given by

ψ̃
(
[g], ν, λ

)
:= �α[g](Ψ(ν)), λδr[g] ,Ψ(ν)� = �Ψ(α̃[g](ν)

)
, λδr[g] ,Ψ(ν)�,

where λ ∈ T and r[g] ∈ R(S) is our preferred representative of [g], is an isomorphism of 
topological groupoids.
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6. Examples

In this section we briefly examine one of our motivating examples, the irrational 
rotation algebra, in light of the results of Theorem 3.1. We then apply the work of the 
previous three sections to compute three different Cartan subalgebras and the associated 
Weyl groupoids and twists in the case of a specific group C∗-algebra. Indeed, many of 
the simplifications that occur in this setting are due to the fact that the 2-cocycle c is 
trivial on the subgroups in question, and also on the coset representatives R(S).

Example 6.1. As mentioned in the introduction, the irrational rotation algebra Aθ can be 
realized as the twisted group C∗-algebra C∗

r (Z2, cθ) with the 2-cocycle cθ : Z2 ×Z2 → T

given by

cθ((n1, n2), (m1,m2)) = e2πiθn2m1 .

Notice that if we take S ∼= Z to be any of the subgroups Z ×{0} ∼= {0} ×Z ∼= {(n, n)|n ∈
Z}, the hypotheses of Theorem 3.1 are satisfied. In particular, cθ|S is trivial using either 
of the first two choices for S, so we see that C∗

r (Z, c) ∼= C∗
r (Z) ∼= C(T ) is Cartan in 

C∗
r (Z2, c) ∼= Aθ. Furthermore, a straightforward computation reveals that the action of 

Z2/S ∼= Z on T is given by

n · z = e2πiθnz,

so that the Weyl groupoid is the usual transformation groupoid T �θ Z. Moreover, for 
all of the subgroups S identified above, coset representatives R(S) can be chosen so 
that δ∗r[gh]

δr[g]δr[h] = δe. Consequently, the twist Σ on the Weyl groupoid is trivial, and 
Theorem 5.8 gives us the standard isomorphism C∗

r (Z2, cθ) ∼= C∗
r (T �θ Z).

We next apply the results of Section 5 to a group and 2-cocycle that arose in [19, 
Example 8.8]. We identify three subgroups S0, S1, S2 which give rise to different Car-
tan subalgebras and different Weyl groupoids. Indeed, it turns out that the Weyl twist 
associated to S0 is trivial, but this is not the case for S1 or S2.

While the existence of multiple non-isomorphic Cartan subalgebras in a given C∗-
algebra is not an uncommon occurrence (cf. [7]), the novelty of the examples highlighted 
in this section is the dynamical origin of these subalgebras, arising as they do from 
subgroups of the initial group.

For the remainder of this section, let G be the discrete group consisting, as a set, of 
the cartesian product Z5 with the following group operation:

a · b =(a1, a2, a3, a4, a5) · (b1, b2, b3, b4, b5)

:= (a1 + b1 + 2a5b3, a2 + b2 + 2a5b4, a3 + b3, a4 + b4, a5 + b5).
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The inverse of a is then given by

a−1 = (2a3a5 − a1, 2a4a5 − a2,−a3,−a4,−a5).

Equip G with the following 2-cocycle:

c(a,b) = (−1)a4b1 .

The following are three examples of subgroups of Iso(G) = G each falling into the scope 
of Theorem 3.1:

S0 := Z× Z× {0} × {0} × Z,

S1 := Z× Z× Z× 2Z× {0},

S2 := 2Z× Z× Z× Z× {0}.

1. They are subgroups:

S0 : (a1, a2, 0, 0, a5) · (b1, b2, 0, 0, b5)

= (a1 + b1, a2 + b2, 0, 0, a5 + b5) ∈ S0

(a1, a2, 0, 0, a5)−1 = (−a1,−a2, 0, 0,−a5) ∈ S0

S1 : (a1, a2, a3, 2a4, 0) · (b1, b2, b3, 2b4, 0)

= (a1 + b1, a2 + b2, a3 + b3, 2(a4 + b4), 0) ∈ S1

(a1, a2, a3, 2a4, 0)−1 = (−a1,−a2,−a3,−2a4, 0) ∈ S1

S2 : (2a1, a2, a3, a4, 0) · (2b1, b2, b3, b4, 0)

= (2(a1 + b1), a2 + b2, a3 + b3, a4 + b4, 0) ∈ S2

(2a1, a2, a3, a4, 0)−1 = (−2a1,−a2,−a3,−a4, 0) ∈ S2

We also immediately see from this that all three are abelian.
2. The 2-cocycle is trivial on them (not just symmetric): For S0, it follows from the 

fourth coordinate being zero. For S1 resp. S2, this follows from the evenness of the 
fourth resp. first coordinate.

3. They are maximal among abelian subgroupoids on which c is symmetric: For S0, 
we note that, since the last component is all of Z, we need the third and fourth 
component to be zero for the subgroup to be abelian (which immediately forces the 
cocycle to be trivial). For S1 resp. S2, allowing an odd number in the fourth and first 
component would make the cocycle non-symmetric, and allowing the last component 
to be non-trivial would make the subgroups non-abelian.
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4. They are normal: For g, s ∈ G, we have

g−1sg = (2g3g5 − g1, 2g4g5 − g2,−g3,−g4,−g5)

· (s1 + g1 + 2s5g3, s2 + g2 + 2s5g4, s3 + g3, s4 + g4, s5 + g5)

= (s1 + 2s5g3 − 2g5s3, s2 + 2s5g4 − 2g5s4, s3, s4, s5)

=
{

(s1 + 2s5g3, s2 + 2s5g4, 0, 0, s5) ∈ S0, if s ∈ S0
(s1 − 2g5s3, s2 − 2g5s4, s3, s4, 0) ∈ Si, if s ∈ Si (i = 1, 2).

(16)

5. They are immediately centralizing, because G has the unique root property (cf. Re-
mark 3.2): For any element g = (g1, g2, g3, g4, g5) ∈ G and j a positive integer, we 
have

gj = (jg1 + j(j − 1)g5g3, jg2 + j(j − 1)g5g4, jg3, jg4, jg5).

In particular, we see that gj = hj implies g = h.
6. Since G has the discrete topology, all three are clopen.

Note that S0 ∼= Z3 while S1 ∼= Z4 ∼= S2, so in particular, the Cartan algebras they 
generate are

C∗
r (S0) ∼= C(T 3) � C(T 4) ∼= C∗

r (S1) ∼= C∗
r (S2).

Next, we use the machinery developed in Section 5 to identify the Weyl groupoids 
and twists (Hi, Σi) that give rise to

(
C∗

r (Hi,Σi), C0(H(0)
i )
) ∼= (C∗

r (G, c), C∗
r (Si)

)
.

We begin with S0. Since c|S0 is trivial, we are in the setting of Corollary 5.11. The 
following Proposition describes the action α̃0 on H0 explicitly, and shows that the 2-
cocycle σ̃ is trivial in this case.

Proposition 6.2. Let H0 = Z2
α̃0�T 3, where for (c, d) ∈ Z2,

α̃0
(c,d)(z1, z2, z3) = ((−1)dz1, z2, z

2c
1 z2d

2 z3).

Then H0 is the Weyl groupoid associated to the Cartan pair (C∗
r (G, c), C∗

r (S0)), and 
(C∗

r (H0), C0(H(0)
0 )) ∼= (C∗

r (G, c), C∗
r (S0)). That is, the twist associated to this Cartan 

pair is trivial.

Proof. For g = (g1, g2, g3, g4, g5) ∈ G, let r[g] = (0, 0, g3, g4, 0) be the representative of 
[g] ∈ G/S0. Observe that if s = (s1, s2, 0, 0, s5) ∈ S0 we have
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c(r[g], r[g−1]) = c(r[g−1s], r[g]) = 1, c(r[g−1], s) = (−1)g4s1 , and

r[g−1]sr[g] = (s1 + 2s5g3, s2 + 2s5g4, 0, 0, s5).

Moreover, Ŝ0 ∼= T 3, with the pairing of Ŝ0 with T 3 given by

〈(s1, s2, 0, 0, s5), (z1, z2, z3)〉0 := zs11 zs22 zs53 .

Proposition 5.10 therefore tells us that the action α̃0 of G/S0 ∼= Z2 on T 3 which gives 
rise to the Weyl groupoid is

α̃0
[g3,g4](z1, z2, z3) =

[
(s1, s2, 0, 0, s5) �→ (−1)g4s1zs1+2s5g3

1 zs2+2s5g4
2 zs53

]
=
[
(s1, s2, 0, 0, s5) �→ ((−1)g4z1)s1 zs22

(
z2g3
1 z2g4

2 z3

)s5]
,

which is the formula for α̃0 asserted in the statement of the proposition.
The fact that the Weyl twist is trivial follows from the observation that the set of 

coset representatives, R(S0) = 0 × 0 × Z × Z × 0, is also a subgroup of G on which c is 
trivial, and hence δ∗r[gh]

δr[g]δr[h] = δe. Consequently, the abstract formula for the twist σ̃
giving rise to the Weyl twist (see Equation (15)) is given by

σ̃
(
([g], α̃0

h(�z)), ([h], �z)
)

= δe(Ψ(�z)) = 1

for all �z ∈ T 3 and g, h ∈ G. Theorem 5.8 completes the proof. �
To compute the Weyl groupoids and twists associated to S1 and S2, we will make use 

of the function f : Z → {0, 1} given by

f(2k + 1) = 1, f(2k) = 0.

The next proposition deals with the S1 case.

Proposition 6.3. The Weyl groupoid associated to the Cartan pair (C∗
r (G, c), C∗

r (S1)) is

H1 = (G/S1) α̃1�Ŝ1 = (Z/2Z× Z) α̃1�T 4,

where the action α̃1 of G/S1 on T 4 is given by

α̃1
[g](z1, z2, z3, z4) = ((−1)g4z1, z2, z

−2g5
1 z3, z

−4g5
2 z4).

The associated Weyl twist is H1 ×σ̃1 T , where the 2-cocycle σ̃1 on H1 satisfies
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σ̃1

(
((f(g4), g5), α̃1

[h](�z)), ((f(h4), h5), �z)
)

=

(
δ∗r[gh]

δr[g]δr[h]

)
(Ψ(�z))∣∣∣δ∗r[gh]

δr[g]δr[h](Ψ(�z))
∣∣∣

=

⎧⎪⎪⎨⎪⎪⎩
1, f(h4) = 0,
z2g5
2 , f(g4) = 0 and f(h4) = 1,
z−2g5−4h5
2 z4, f(g4) = f(h4) = 1.

(17)

Proof. Again, c|S1×S1 is trivial, so we invoke Proposition 5.10. To obtain a concrete 
formula for the action α̃1 described in that Proposition, we first compute

c(g,g−1) c(g−1, s) c(g−1s,g) = (−1)g4(2g3g5−g1)(−1)−g4s1(−1)(s4−g4)g1

= (−1)g1s4+g4s1

= (−1)g4s1 = c(g, s), if s ∈ S1 = Z× Z× Z× 2Z× {0}

The fact that the fourth component of S1 is 2Z means that the pairing 〈·, ·〉1 between 
S1 and its Pontryagin dual Ŝ1 ∼= T 4 is given by

〈(s1, s2, s3, s4, 0), (z1, z2, z3, z4)〉1 = zs11 zs22 zs33 z
s4/2
4 .

Thus, evaluating α̃1
[g] at ν = (z1, z2, z3, z4) ∈ T 4 yields

α̃1
[g](z1, z2, z3, z4) =

[
(s1, s2, s3, s4, 0) �→ (−1)g4s1zs1−2g5s3

1 zs2−2g5s4
2 zs33 z

s4/2
4

]
=
[
(s1, s2, s3, s4, 0) �→ ((−1)g4z1)s1 zs22

(
z−2g5
1 z3

)s3 (
z−4g5
2 z4

)s4/2]
,

i.e.

α̃1
[g](z1, z2, z3, z4) = ((−1)g4z1, z2, z

−2g5
1 z3, z

−4g5
2 z4). (18)

Observe that α̃1 is topologically free: If a point �z ∈ T 4 is fixed by α̃1
[g] for g /∈ S1, we 

must have g4 even and z1, z2 roots of unity. But then, in any neighborhood of �z there are 
points �w for which w1, w2 are not roots of unity, so there is no neighborhood of �z which 
is fixed by α̃1

[g]. Thus, Theorem 5.2 and Proposition 5.10 tell us that the Weyl groupoid 

is given by H1 = (G/S1) α̃1�Ŝ1.
To compute a concrete formula for the 2-cocycle σ̃1 associated to S1 out of the abstract 

formula in Equation (15), let R(S1) = 0 ×0 ×0 ×{0, 1} ×Z be our preferred representatives 
in G of the elements in G/S1. Although c|R(S1)×R(S1) is trivial, R(S1) is not a subgroup 
of G. Indeed,

r−1 = (0, 2f(g4)g5, 0,−f(g4),−g5) /∈ R(S1).
[g]
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One then computes that 1 = c(r[gh], r
−1
[gh]) = c(r−1

[gh], r[g]) = c(r[g], r[h]) and thus that

δ∗r[gh]
δr[g]δr[h] = δr−1

[gh]r[g]r[h]
.

Explicitly, we have

r−1
[gh]r[g]r[h] = (0, 2g5f(h4) + 2(g5 + h5)f(g4 + h4) − 2(g5 + h5)(f(g4) + f(h4)),

0,−f(g4 + h4) + f(g4) + f(h4), 0) .

If f(h4) = 0, so that f(g4 + h4) = f(g4), then we have r−1
[gh]r[g]r[h] = e. However, if 

f(h4) = 1, then

r−1
[gh]r[g]r[h] =

{
(0, 2g5, 0, 0, 0), if f(g4) = 0, and
(0,−2g5 − 4h5, 0, 2, 0), if f(g4) = 1.

Thus, the 2-cocycle σ̃1 on H1 is given by Equation (17), as claimed. �
One might suspect that the symmetry between S1 and S2 would result in the as-

sociated Weyl groupoids and twists being isomorphic. This is not the case, as we now 
show.

Proposition 6.4. The Weyl groupoid associated to the Cartan pair (C∗
r (G, c), C∗

r (S2)) is

H2 = (G/S2) α̃2�Ŝ2 = (Z/2Z× Z) α̃2�T 4,

where the action α̃2 of G/S2 ∼= Z/2Z × Z on T 4 is given by

α̃2
[g](z1, z2, z3, z4) = (z1, z2, z

−g5
1 z3, (−1)g1z−2g5

2 z4).

The associated Weyl twist is H2 ×σ̃2 T , where the 2-cocycle σ̃2 on H2 satisfies

σ̃2

(
((f(g1), g5), α̃2

[h](�z)), ((f(h1), h5), �z)
)

=
{
z1, f(g1) = f(h1) = 1,
1, else.

(19)

Proof. Again, we begin by computing for g ∈ G and s ∈ S2 = 2Z × Z × Z ××Z × {0}:

c(g,g−1) c(g−1, s) c(g−1s,g) = (−1)g4(2g3g5−g1)(−1)−g4s1(−1)(s4−g4)g1

= (−1)g1s4 = c(s,g).

The pairing 〈·, ·〉2 between S2 and T 4 is given by

〈(s1, s2, s3, s4, 0), (z1, z2, z3, z4)〉2 = z
s1/2
1 zs22 zs33 zs44 ,
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and so the fact that g−1sg = (s1 − 2g5s3, s2 − 2g5s4, s3, s4, 0) implies

α̃2
[g](z1, z2, z3, z4) =

[
(s1, s2, s3, s4, 0) �→ (−1)g1s4z

s1/2−g5s3
1 zs2−2g5s4

2 zs33 zs44

]
=
[
(s1, s2, s3, s4, 0) �→ z

s1/2
1 zs22

(
z−g5
1 z3

)s3 ((−1)g1z−2g5
2 z4

)s4]
.

Consequently,

α̃2
[g](z1, z2, z3, z4) = (z1, z2, z

−g5
1 z3, (−1)g1z−2g5

2 z4). (20)

Again, the action α̃2 is topologically free, because if α̃2
[g](�z) = �z and g /∈ S2, z1 and z2

must be roots of unity. Since every neighborhood of such a point contains points �w with 
w1 �= 1, α̃2 is topologically free.

We now compute σ̃2, using R(S2) = {0, 1} × 0 × 0 × 0 × Z, so that

r[g] = (f(g1), 0, 0, 0, g5) and r−1
[g] = (−f(g1), 0, 0, 0,−g5).

Note that the latter might not be an element of R(S2). As in the S1 case, 1 =
c(r[gh], r

−1
[gh]) = c(r−1

[gh], r[g]) = c(r[g], r[h]), and so

σ̃2
(
([g], α̃2

[h](�z)), ([h], �z)
)

= δr−1
[gh]r[g]r[h]

(Ψ(�z))

= δ(f(g1)+f(h1)−f(g1+h1),0,0,0,0)(Ψ(�z))

=
{
z1, f(g1) = f(h1) = 1,
1, else.

This concludes our proof. �
7. The necessity of being immediately centralizing

The following pathological group was constructed to establish the necessity of the 
“immediately centralizing” hypothesis in Theorem 3.1.

Let G be the set Z/4Z × Z/4Z ×Z × Z × Z/4Z, and define multiplication on G by

([a]4, [b]4, c, d, [e]4) · ([a′]4, [b′]4, c′, d′, [e′]4)

= ([a + a′ + 2ec′]4, [b + b′ + 2ed′]4, c + c′, d + d′, [e + e′]4).

One can check that G is a group with inverse given by

([a]4, [b]4, c, d, [e]4)−1 = ([2ec− a]4, [2ed− b]4,−c,−d, [−e]4).
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Define c : G ×G → T by

c(([a]4, [b]4, c, d, [e]4), ([a′]4, [b′]4, c′, d′, [e′]4)) = (−1)da
′
.

Then c is a 2-cocycle on G because c(a, 0) = c(0, a) = 1 for all a ∈ G and

c(a1,a2)c(a1a2,a3) = (−1)d1a2(−1)(d1+d2)a3

which equals

c(a1,a2a3)c(a2,a3) = (−1)d1(a2+a3+2e2c3)(−1)d2a3 = (−1)d1a2+d1a3(−1)d2a3 .

Now define S = Z/4Z × Z/4Z × Z × 2Z × {[0]4, [2]4}.

Proposition 7.1. S is a subgroup that is maximal among abelian subgroups on which c is 
symmetric.

Proof. Suppose ([a]4, [b]4, c, d, [e]4), ([a′]4, [b′]4, c′, d′, [e′]4) ∈ S. Then

([a]4, [b]4, c, d, [e]4) · ([a′]4, [b′]4, c′, d′, [e′]4)
= ([a + a′ + 2ec′]4, [b + b′ + 2ed′]4, c + c′, d + d′, [e + e′]4)

= ([a + a′]4, [b + b′]4, c + c′, d + d′, [e + e′]4),

since e is even so [2ec′]4 = [2ed′]4 = 0. Similarly,

([a′]4, [b′]4, c′, d′, [e′]4) · ([a]4, [b]4, c, d, [e]4)
= ([a′ + a + 2e′c]4, [b′ + b + 2e′d]4, c′ + c, d′ + d, [e′ + e]4)

= ([a′ + a]4, [b′ + b]4, c′ + c, d′ + d, [e′ + e]4).

The 2-cocycle is trivial on S because the fourth component is even.
Regarding maximality, assume T is a subgroup of G that contains S. If T contains an 

element whose fourth component is odd, then c is not symmetric on T . If T contains an 
element whose fifth component is odd, then T is not abelian. Thus S is maximal among 
abelian subgroups of G on which c is symmetric. �
Proposition 7.2. G and S satisfy all other assumptions of Theorem 3.1, except that S is 
not immediately centralizing.

Proof. Since G is a countable group with the discrete topology, G is a second countable 
locally compact Hausdorff étale groupoid and S is open and closed. To see that S is 
normal, we must check that a−1sa ∈ S for all a ∈ G and s ∈ S. Note that the fourth 
component of a−1sa equals the fourth component of s, and the fifth component of a−1sa
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equals the fifth component of s. It therefore follows that if s ∈ S, a ∈ G, then a−1sa ∈ S. 
Thus S is normal.

To see that S is not immediately centralizing, consider g = ([0]4, [0]4, 0, 0, [1]4). Ob-
serve that if s = ([a]4, [b]4, c, 2d, [e]4) ∈ S then

gsg−1 = ([a + 2c]4, [b]4, c, 2d, [e]4),

while gs2g−1 = ([2a]4, [2b]4, 2c, 4d, [2e]4) = s2. Since there are elements s ∈ S for which 
([a + 2c]4, [b]4, c, 2d, [e]4) �= ([a]4, [b]4, c, 2d, [e]4), we see that g is 2-centralizing but not 
1-centralizing. �
Proposition 7.3. C∗

r (S) is not maximal abelian.

Proof. Define the function h : G → C by h = δν + δμ where ν := (0, 0, 0, 0, [1]4) and 
μ := ([2]4, 0, 0, 0, [1]4). Then h does not have support in S, so h /∈ C∗

r (S, c), but we will 
prove that it commutes with every function in Cc(S).

Suppose ϕ ∈ Cc(S) and a = ([a]4, [b]4, c, d, [e]4) ∈ G. Then

h ∗ ϕ(a) =
∑
αβ=a

h(α)ϕ(β)c(α, β) = ϕ(ν−1a)c(ν, ν−1a) + ϕ(μ−1a)c(μ, μ−1a).

Notice that c(ν, ν−1t) = c(μ, μ−1a) = 1 since the fourth component of ν and μ is 0. Thus

h ∗ ϕ(a) = ϕ(ν−1a) + ϕ(μ−1a).

On the other hand,

ϕ ∗ h(a) =
∑

α′β′=a

ϕ(α′)h(β′)c(α′, β′) = ϕ(aν−1)c(aν−1, ν) + ϕ(aμ−1)c(aμ−1, μ).

Again, c(aν−1, ν) = c(aμ−1, μ) = 1 since the first components of ν and μ are even. Thus

ϕ ∗ h(a) = ϕ(aν−1) + ϕ(aμ−1)

Since ν−1 = ([0]4, [0]4, 0, 0, [3]4) and μ−1 = ([2]4, [0]4, 0, 0, [3]4), then

ν−1a = ([a + 6c]4, [b + 6d]4, c, d, [e + 3]4)

aν−1 = ([a]4, [b]4, c, d, [e + 3]4)

μ−1a = ([a + 2 + 6c]4, [b + 6d]4, c, d, [e + 3]4)

aμ−1 = ([a + 2]4, [b]4, c, d, [e + 3]4).

Since ϕ is supported on S, then ϕ ∗ h(a) is nonzero only if aν−1 or aμ−1 is in S, i.e., 
if d ∈ 2Z and e ∈ {[1]4, [3]4}. Similarly, h ∗ϕ(a) is nonzero only if ν−1a or μ−1a is in S, 
i.e., if d ∈ 2Z and e ∈ {[1]4, [3]4}.
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Thus if d /∈ 2Z or e /∈ {[1]4, [3]4}, then ϕ ∗ h(a) = 0 = h ∗ ϕ(a). Now let us consider 
the case when d ∈ 2Z and e ∈ {[1]4, [3]4}).

If c = 2k for some k ∈ Z, then

ν−1a = (([a + 6(2k)]4, [b + 6d]4, 2k, d, [e + 3]4)

= ([a]4, [b]4, 2k, d, [e + 3]4) = aν−1

and

μ−1a = ([a + 2 + 6(2k)]4, [b + 6d]4, 2k, d, [e + 3]4)

= ([a + 2]4, [b]4, 2k, d, [e + 3]4) = aμ−1.

On the other hand, if c = 2k + 1 for some k ∈ Z, then

ν−1a = ([a + 6(2k + 1)]4, [b + 6d]4, 2k + 1, d, [e + 3]4)

= ([a + 2]4, [b]4, 2k + 1, d, [e + 3]4) = aμ−1

and

μ−1a = ([a + 2 + 6(2k + 1)]4, [b + 6d]4, 2k + 1, d, [e + 3]4)

= ([a]4, [b]4, 2k + 1, d, [e + 3]4) = aν−1.

Thus, in each case, ϕ ∗ h(a) = h ∗ϕ(a) for all a ∈ G and all ϕ ∈ Cc(S), and hence all 
ϕ ∈ C∗

r (S). �
Acknowledgments

We thank the mathematics departments at Northwestern University and Fitchburg 
State University for support during the visits of the research group to these institutions. 
We also thank Aidan Sims for his contributions to Proposition 4.1.

Appendix A. Proof of Lemma 3.6

We still owe the reader the proof of the following lemma:

Lemma 3.6. Suppose G is an étale groupoid, c is a 2-cocyle on G, and S is maximal 
among abelian subgroupoids of Iso(G) on which c is symmetric. Let u be a unit. If 
η ∈ Gu

u satisfies ηs = sη and c(s, η) = c(η, s) for all s ∈ Su
u , then η ∈ S.

To do so, we require a few smaller results.
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Lemma A.1. Suppose G is a groupoid with a 2-cocycle c and u is a unit in G. If η, ξ ∈ Gu
u

commute, then the following statements are equivalent:

c(ξ, η) = c(η, ξ) (21)

c(ξη, η−1) = c(η−1, ξη) (22)

c(ξ, η−1) = c(η−1, ξ) (23)

c(ξη−1, η) = c(η, ξη−1) (24)

Proof. We will show (21) =⇒ (22) =⇒ (23). Replacing η by η−1, the same argument also 
gives (23) =⇒ (24) =⇒ (21) also, and so all conditions are equivalent.

Assume (21) holds. Since c(u, ξ) = c(ξ, u) = 1, we use the cocycle condition, and our 
hypotheses that ξη = ηξ and c(ξ, η) = c(η, ξ), to see that

c(ξη, η−1) = c(ξ, ηη−1) c(η, η−1) c(ξ, η) = c(η−1, η) c(ξ, η)

= c(η−1η, ξ) c(η−1, η) c(η, ξ)

= c(η−1, ηξ) = c(η−1, ξη).

Thus (21) =⇒ (22).
Next, assume Equation (22), i.e. c(ξη, η−1) = c(η−1, ξη). We compute

c(η−1, ξ) = c(η−1, (ξη)η−1) = c(η−1(ξη), η−1) c(η−1, ξη) c(ξη, η−1)

= c(η−1(ξη), η−1) = c(ξ, η−1),

which is exactly Equation (23). This concludes the proof. �
Lemma A.2. Suppose G is a groupoid with a 2-cocycle c and u is a unit in G. Assume 
further that S is an abelian subgroupoid of G on which c is symmetric. If η ∈ Gu

u satisfies 
ηs = sη for some s ∈ Su

u , the following are equivalent:

1. c(s, η) = c(η, s).
2. For all t ∈ Su

u , we have c(s, ηt) = c(ηt, s).
3. For some t ∈ Su

u , we have c(s, ηt) = c(ηt, s).

Proof. Suppose Hypothesis 1 holds. Then

c(s, ηt) = c(sη, t) c(s, η) c(η, t) = c(ηs, t) c(η, s) c(η, t)

=
(
c(η, st) c(s, t) c(η, s)

)
c(η, s) c(η, t) = c(η, ts) c(t, s) c(η, t)

= c(ηt, s).

The penultimate equality follows from the fact that S is abelian and c is symmetric on S.
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To see that Hypothesis 3 implies Hypothesis 1, note that the cocycle condition implies 
that for any t ∈ Gu,

c(s, η) =c(sη, t) c(s, ηt) c(η, t), and

c(η, s) =c(ηs, t) c(η, st) c(s, t).

Since S is abelian and c is symmetric on S, we can rewrite the second equality as follows, 
using the cocyle condition again for the last step:

c(η, s) = c(ηs, t)c(η, ts) c(t, s) = c(ηs, t)c(ηt, s)c(η, t).

Hypothesis 3 and the assumption that sη = ηs imply that the right hand sides of these 
equations agree; that is, Hypothesis 3 implies Hypothesis 1. �
Proof of Lemma 3.6. First of all, note that Lemma A.2 shows that c(s, ηt) = c(ηt, s) for 
any s, t ∈ Su

u . Moreover, the fact that η−1s = sη−1 for any s ∈ Su
u , together with the 

cocycle condition and Equation (23), imply that

c(tη−1, η) = c(η, tη−1) (25)

for all t ∈ Su
u .

Let T be the subgroupoid of Iso(G) generated by S and η; note that T is abelian. We 
want to show that c is symmetric on T , so that maximality of S implies S = T . Since 
an arbitrary element of T is either in S or of the form sηk for s ∈ Su

u and k ∈ Z, we 
have to show

c(sηk, tηn) != c(tηn, sηk) (26)

for all s, t ∈ Su
u and all n, k ∈ Z.

First, we prove the case n = 1, t = u, and k ∈ N0: the base case k = 0 is one of the 
assumptions. We compute

c(η, sηk+1) = c(η(sηk), η) c(η, sηk) c(sηk, η) (cocycle condition)

= c(η(sηk), η) c(sηk, η) c(sηk, η) (induction hypothesis)

= c(η(sηk), η) = c(sηk+1, η),

so we have shown that for all s ∈ Su
u and k ∈ N0,

c(sηk, η) = c(η, sηk). (27)

Next, we want to show the case n = 0 and k ∈ N0: the base case k = 0 is true since c
is assumed symmetric on S. We compute
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c(sηk+1, t) = c(η, (sηk)t) c(sηk, t) c(η, sηk) = c(η, (ts)ηk) c(sηk, t) c(η, sηk)

= c((ts)ηk, η) c(sηk, t) c(sηk, η) = c(t(sηk), η) c(t, sηk) c(sηk, η)

= c(t, sηk+1).

Thus, we have shown for all s, t ∈ Su
u and k ∈ N0,

c(sηk, t) = c(t, sηk). (28)

Now, let us show Equation (26) for arbitrary n, k ∈ N0 by induction on n. Equation 
(28), which holds for all k ∈ N0, is the base case n = 0. We compute

c(sηk, tηn+1) = c(sηk(tηn), η) c(sηk, tηn) c(tηn, η) (cocycle condition)

= c(η, stηk+n) c(sηk, tηn) c(η, tηn) (Eq. (27) twice)

= c(η, stηk+n) c(tηn, sηk) c(η, tηn) (induction hypothesis)

= c(η, (tηn)sηk) c(tηn, sηk) c(η, tηn)

= c(tηn+1, sηk). (cocycle condition)

To sum up: if ηs = sη and c(s, η) = c(η, s) for every s ∈ Su
u , then

∀ s, t ∈ Su
u ,∀ n, k ∈ N0, c(sηk, tηn) = c(tηn, sηk).

Since η−1s = sη−1 and since Lemma A.1 implies c(s, η−1) = c(η−1, s), the same proof 
shows

∀ s, t ∈ Su
u ,∀ n, k ∈ N0, c(s(η−1)k, t(η−1)n) = c(t(η−1)n, s(η−1)k),

or in other words, we have for all s, t ∈ Su
u and n, k ∈ N0

c(sη−k, tη−n) = c(tη−n, sη−k). (29)

It remains to check that c(sηk, tη−n) = c(tη−n, sηk) for n, k ∈ N×, which we do by 
another induction. We check the base case n = 1:

c(sηk, tη−1) = c(sηk−1, ηtη−1) c(η, tη−1) c(sηk−1, η)

= c(sηk−1, t) c(η, tη−1) c(η, sηk−1) = c(sηk−1, t) c(tη−1, η) c(η, sηk−1)

= c(t, sηk−1) c(tη−1, η) c(η, sηk−1) = c(tη−1, sηk).

Our final induction hypothesis is:

For a fixed n ≥ 1 and all k ∈ N0, s, t ∈ Su
u , c(sηk, tη−n) = c(tη−n, sηk).

We compute with the cocycle condition
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c(sηk, tη−(n+1)) = c((sηk)η−1, tη−n) c(sηk, η−1) c(η−1, tη−n)

= c(sηk−1, tη−n) c(sηk, η−1) c(tη−n, η−1) (Eq. (29))

= c(tη−n, η−1sηk) c(η−1, sηk) c(tη−n, η−1)

= c(tη−(n+1), sηk). (cocycle condition)

This concludes our proof. �
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