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Weyl groupoid and twist associated to these Cartan pairs,
under mild additional hypotheses.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A Cartan subalgebra in a C*-algebra A is a maximal abelian subalgebra B of A
satisfying certain regularity conditions (see Definition 1 below). Inspired by the work
of Feldman and Moore [9] on Cartan subalgebras in von Neumann algebras, the theory
of Cartan subalgebras in C*-algebras was initiated by Renault in [21] and subsequently
developed by Kumjian [11] and Renault [22].

Identifying a Cartan subalgebra in a C*-algebra A often facilitates a concrete under-
standing of A, for several reasons. First, the existence of a Cartan subalgebra B C A
implies that A has a dynamical model [22], and in many situations (e.g. [16,6]), a C*-
isomorphism between Cartan pairs is equivalent to an isomorphism of the underlying
dynamics. Second, information about B can often be extended to A: for example, [4],
[18], and [3] identify situations where injectivity of a representation lifts from a Cartan
subalgebra to the entire C*-algebra. Third, the presence of a Cartan subalgebra B often
enables one to apply the machinery of Elliott’s classification program to A (e.g., [15,14]).
In particular, [14] shows that for certain C*-algebras, having a Cartan subalgebra is
equivalent to satisfying the Universal Coefficient Theorem, and thus implies that A is
indeed classified by its Elliott invariant. Due to these applications, among others, there
has been extensive research into Cartan subalgebras in recent years.

Renault showed [22, Theorem 5.2] that every separable Cartan pair arises from a twist
over a topologically principal, second countable, locally compact Hausdorff, étale grou-
poid, and that conversely, every reduced C*-algebra of such a groupoid has a canonical
Cartan subalgebra. However, many natural Cartan algebras appear in the C*-algebras
of groupoids that are not topologically principal. For example, the rotation algebra Ag
can be described as the C*-algebra of a topologically principal groupoid T xy Z, or as
a twisted group C*-algebra C*(Z2,cy). From the first picture and [22, Theorem 5.2], it
is clear that Ay has a Cartan subalgebra, but the second description of Ay gives no hint
of this.

Another example comes from the setting of graph C*-algebras, which have a groupoid
model under mild assumptions on the graph [12]. The cycline subalgebra of a graph C*-
algebra C*(F) = C*(Gg) (introduced in [18] as the “abelian core”) is always Cartan in
C*(FE), though the groupoid Gg associated to E is topologically principal only if the
graph E satisfies Condition (L), in which case the cycline subalgebra coincides with the
diagonal. In any case, the cycline subalgebra is generated by the interior of the isotropy
subgroupoid of Gg; [4, Corollary 4.5] provides conditions under which for an arbitrary
locally compact Hausdorff étale groupoid G, C}(Iso(G)°) is Cartan in C}(G).
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Inspired by these examples, we set out to find a dynamical description — i.e., a descrip-
tion at the level of the groupoid G — of Cartan subalgebras inside the twisted C*-algebras
of groupoids that need not be topologically principal. Our main result is as follows; see
Definition 2 for the meaning of “immediately centralizing.”

Theorem 3.1. Let G be a second countable, locally compact Hausdorff, étale groupoid, and
let ¢ be a 2-cocycle on G. Suppose S is mazimal among abelian subgroupoids of Iso(G) on
which c is symmetric. If S is clopen, normal, and immediately centralizing, then CX(S,c)
is Cartan in C(G,c).

If (G, S, c) satisfies the hypotheses of Theorem 3.1, then by [22, Theorem 5.2], there
exists a unique topologically principal groupoid H — called the Weyl groupoid — and a
twist ¥ over H such that the Cartan pair (C(G,c),C*(S,¢)) is isomorphic to the pair
(C*(H, %), Co(H®)). One is then led to ask about the relationship between the original
groupoid G and the new data (#H, X). We show in Proposition 5.10 that if G is a countable
discrete group and the hypotheses of Theorem 3.1 are satisfied by (G,S < G, ¢), mild
additional hypotheses guarantee that the Weyl groupoid H is easily constructed from G.
To be precise, H is a transformation groupoid (G/S) x S. We emphasize that a given
group G may give rise, via different subgroups S5, to a variety of different groupoids
H = (G/S) x § — the Weyl groupoid is an invariant of the Cartan pair (A, B), not of
the enveloping C*-algebra A. Indeed, in Section 6 we exhibit a group G which admits
subgroups 51, Sy satisfying the hypotheses of Proposition 5.10 with S; & Ss, but for
which the associated Weyl groupoids H;, Ha are not isomorphic.

Finally, we comment on the relationship between our description of the Weyl groupoid
and twist in Section 5 and certain results in the recent preprint [10]. Theorem 3.4 of
[10] describes an (untwisted) groupoid C*-algebra C*(X) as the twisted C*-algebra of a
quotient groupoid AxE /A, using a closed normal subgroupoid A of Iso(X). Theorem 5.8
and Proposition 5.10 of the current paper offer similar descriptions of C*(G,¢) for a
discrete group G and a normal subgroup S. These results do not overlap with those of
[10], however, because of the assumption in [10] that G/A be topologically principal,
which is never true for a nontrivial group G/S. However, the consonance between their
results and ours is encouraging and suggests that a unified description of the Weyl
groupoids of a larger class of algebras may be within reach.

This paper is structured as follows. In Section 2, we recall the definitions of Cartan
subalgebras, groupoids, and the C*-algebras associated to groupoids. Section 3 is devoted
to the proof of Theorem 3.1. Preparatory to our analysis of the Weyl groupoid associated
to the Cartan pairs identified in Theorem 3.1, Section 4 reviews the construction in [22]
of the Weyl groupoid and provides several technical results leading to a useful character-
ization of the elements of this groupoid. We anticipate that Proposition 4.1 in particular
may be of independent interest. The next section, Section 5, contains our analysis of the
Weyl groupoid and twist arising from Theorem 3.1, under a few additional hypotheses.
We apply these results to several examples (arising from countable discrete groups) in
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Section 6. The last section, Section 7, presents an example which showcases the necessity
of the “immediately centralizing” hypothesis in Theorem 3.1.

2. Background

Definition 1. [22, Definition 5.1] Let A be a C*-algebra. A C*-subalgebra B of A is a
Cartan subalgebra if:

(1) B is a maximal abelian subalgebra (masa) of A.
(2) There exists a faithful conditional expectation ®: A — B.
(3) B is regular; i.e., the normalizer of B,

N(B) :={ne€ A:nbn*,n*bn € BV b € B},

generates A as a C*-algebra.
(4) B contains an approximate identity for A.

Recall (cf. [5, Theorem 1.5.10]) that if B C A is a C*-subalgebra, a map ®: A — B is
a conditional expectation if ® satisfies ®|p = idp and is contractive and linear. We say
® is faithful if, for any a € A, ®(a*a) = 0 implies a = 0.

A groupoid is a generalization of a group which has inverses but only a partially defined
multiplication. Precisely, a groupoid G is a small category in which every morphism g

. we then have source and range maps s(g) := g~ 'g, r(g) := gg~*

has an inverse g~
satisfying r(g)g = g = gs(g) for all ¢ € G. The space of objects (or units) in G is
GO = {r(g)lg € G} = {s(9) | g € G}. We denote by G*) the set {(g,h)|s(g) = r(h)}
of composable elements. Note that since s(gh) = s(h) and r(gh) = r(g) whenever g,h €

Q(Q), we have

(g, 1), (h, k) € G = (gh, k), (g, hk) € G? and (gh) -k = g - (hk).

The arrows-only picture of category theory allows us to identify each object u with
the identity morphism id,: v — u € G.
For each u € G, we write

G ={reG:r(y)=ut Gu={yeG:s(y)=u}, and Gi=G"Ng,..

The isotropy subgroupoid Iso(G) is {g € G : s(g) = r(g)}. When the only elements in
G with s(g) = r(g) are the units themselves, we say G is principal.

In general, a subset S of G will be called a subgroupoid if whenever (s,t) € G N
S x S, we have st,t7!,s7! € S. We note that in the sequel our subgroupoids will
necessarily contain G(©) (see Remark 3.3), so this may be taken as part of the definition.
A subgroupoid S is normal if gSg=* C S for all g € G, where gSg=! = {gtg™! : t €
S,s(t) =r(t) = s(g)}-
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A subset S of G is abelian if, whenever (g,h) € G NS x S, we also have (h,g) €
G NS xS and gh = hg.

In the following, we will only consider topological groupoids; that is, groupoids G
equipped with a topology such that the multiplication, range, and source maps are
continuous. In this setting, we say G is topologically principal if the set {u € GO . s(g) =
r(g) = u = g = u} is dense in G(¥). It is worth noting that when the groupoid G is
actually a group, the unit space G(®) = {e}, and thus if the group is nontrivial, then
G is not topologically principal. Nor is the path groupoid [12] of a graph that does not
satisfy Condition (L) (every cycle has an entry). Indeed, any cycle in a graph gives rise
to nontrivial isotropy elements in this groupoid; if the cycle has no entry, these elements
form singleton open sets.

A topological groupoid is said to be étale if r — and thus also s — is a local home-
omorphism. It is straightforward to check that in an étale groupoid G, the unit space
G is clopen. A bisection in a groupoid G is a set B C G such that there exists an open
set U 2 B for which r: U — r(U),s: U — s(U) are homeomorphisms. If G is étale, the
open bisections generate the topology on G [23, Lemma 2.4.9).

A (T-valued) 2-cocycle on G is a function c: G2 5 T such that

c(g,s(9)) = c(r(g),g9) = 1 for all g € G, and
(g, hk)e(h, k) = c(gh, k)e(g, h) whenever (g, h), (b, k) € @,

Lemma 2.1. For G a groupoid with a 2-cocycle ¢ and g any element in G, we have
c(g.g7) =clg™h,9).

Proof. The cocycle condition gives

—1

1=c(g,9"g) =clgg ", 9)clg. 9 ") clg~t9) =clg,g ") e(glg). O

Given a continuous T-valued 2-cocycle on G, the associated full and reduced C*-
algebras C*(G, ¢), C}(G, ¢) were introduced in [21]. As we will mostly be concerned with
C}(G,c) in this paper, we focus our discussion on this setting.

Both C*(G, ¢) and C*(G, ¢) are completions of C.(G), which we consider as a x-algebra
via

Fxh(y) =Y fomh(n He(yn,n™t) and [ (v) = f(y De(r, 7).

negsM

The reduced norm of f € C.(G) is given by representing C.(G) on the Hilbert spaces
¢2(G,) for u € GO, To be precise, for & € £2(G,) and f € C.(G), define f ¢ € £2(G,) by

Fe(y) = > femem Hetyn,n).

negH
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Then

£ 1l = sup{[If * €]l : w € GO, € € (G, II€]l = 13- (1)

The reduced twisted groupoid C*-algebra C (G, ¢) is the completion of C.(G) in the norm

- Il

A continuous 2-cocycle ¢ on G gives rise to a twist over G — that is, a groupoid X with
¥ = G) and an action of T on X that fixes the unit space, such that /T = G. In
particular, given ¢, we take ¥ = G x T as topological spaces, and define the multiplication
in ¥ by

(v,t)(n,8) = (yn, c(v,m)ts)

whenever (v,71) € G*.
The full and reduced C*-algebras C*(G,%),C’(G,X) of a twist X over G are defined
as completions of

{feCe(X): f(zy) =Zf(y) forall z € T,y € X};
see [17, Example 2.9] for the details. If ¥ arises from a 2-cocycle ¢, then one can compute
that C*(G, %) = C*(G,c) and C} (G, %) = C;(G,c).

As explained in ([11, 1.6], [22, Proposition 4.7]), a separable Cartan pair (4, B) gives
rise to a topologically principal groupoid and twist as follows. For any n € N(B), there
exists a unique partial homeomorphism «,, with domain

dom(n) := {ac €B ‘ n*n(x) > O} ,

where B is the Gelfand dual of B , and with codomain dom(n*), that satisfies

VbeB n'tn=(boay,) n'n. (2)
If n,m € N(B), then one can show that

dom(nm) = {z € dom(m) | e, (x) € dom(n)},

and on this domain, a, o a,, and ay, agree. Furthermore, o, = «,!. The family
{an}nen(p) gives rise to the Weyl groupoid G4 p) of the Cartan pair: As a set, G4 p)
is the quotient

{(an(x),n,2) | n € N(B),x € dom(n)}/ ~

under the equivalence relation
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(an(x),n,2) ~ (am(y), m,y) < (3)

x = y and there exists an open U C B with z € U and anlu = anmlu.

We shall denote the equivalence class of (a,(z),n,x) by [an (), n,x]. It can be verified
(cf. [22], [23, Prop. 5.1.15]) that the composition given by

[an(am (@), n, am(2)] - [ (2), m, 2] = [anm(2), nm, 7]

is well-defined. We define a basic open set in G4 p) to be of the form {[a,(z),n, 2] :
an(z) € Vx € U} for U,V C B open and n € N(B) (cf. [22, Section 3]).
Similarly to the Weyl groupoid, the Weyl twist ¥4 p) is a quotient of

{(an(x),n,z)|n € N(B),x € dom(n)},

but under the following, more rigid, equivalence relation:

(an(x),n,x) = (am(y), m,y)
<= 2z =y and 3 b,b' € B such that b(z),V' () > 0 and nb = mb'.

We write [a, (z),n, 2] for the class of the triple (a,,(2), n, ) with respect to this equiva-
lence relation. Notice that equivalence with respect to ~ implies equivalence with respect
to ~. Thus, setting (for A € T)

A [an(2),n, 2] = [an(x), An, 2]

gives a well-defined action of T on X4 p), and one can check (cf. [22, Proposition 4.14])
that E(A7B)/T = g(A,B).

3. Main result

In this section we prove Theorem 3.1, which identifies Cartan subalgebras inside the
C*-algebras of twisted groupoid C'*-algebras that need not be topologically principal.

Theorem 3.1. Let G be a second countable, locally compact Hausdorff, étale groupoid, and
let ¢ be a 2-cocycle on G. Suppose S is mazimal among abelian subgroupoids of Iso(G) on

which c is symmetric. If S is clopen, normal, and immediately centralizing, then C*(S, c)
is Cartan in C(G,c).

We begin with a discussion of the “immediately centralizing” hypothesis needed for
Theorem 3.1, and then establish each of the four properties of Cartan subalgebras in a
separate proposition.
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Definition 2. Given a subgroupoid & C G, we say an element v € G% C Iso(G) is k-
centralizing for S (for k > 1) if for all ¢ € Sy there exists j € {1,...,k} such that
vt! = t'v. We will be concerned with subgroupoids S of Iso(G) where all k-centralizing
elements are in fact 1-centralizing.

That is, letting C(S) = {v € G| v is k-centralizing for S}, we say that S is immedi-
ately centralizing it V k > 1, Cy(S) = C1(S).

The property might seem very technical, so let us give two quick examples. We thank
Caleb Eckhardt for introducing us to the unique root property.

Examples 3.2.

1. When Iso(G) is abelian, any subgroupoid of it is immediately centralizing. This is the
case for the description of the irrational rotation algebra from Example 6.1, as well
as for the path groupoid of any k-graph (see Section 2 of [13]).

2. A subgroupoid § is immediately centralizing if each isotropy group S;; has the unique
root property: if s,t € S* are such that s/ = tJ for some j € N, then s = t. (See
[1] for a treatment of groups with the unique root property). In this situation, the
equation vt/ = t/v, or in other words (vtr—1)7 = 7 implies vtr—1 = t. We will study
an example of such a group in Section 6.

For the rest of this section, G will always denote an étale groupoid, ¢ a 2-cocyle on G,
and S a subgroupoid of Iso(G).

Remark 3.3. Note that G(©) is an abelian subgroupoid of Iso(G) on which ¢ is symmetric.
Indeed, given any abelian subgroupoid A of Iso(G) on which ¢ is symmetric, the set
AUGO is another such. It follows that any subgroupoid S satisfying the hypotheses of
Theorem 3.1 will contain G(©.

Remark 3.4. As discussed in the introduction to [4, Section 3], when & is an open sub-
groupoid of Iso(G), [20, Proposition 1.9] tells us that the map ¢: C.(S) = C.(G) given
by

0, g¢ s

uflg) = {f(g% gcs

extends to an injective *-homomorphism from C}(S) into C}(G). A careful examination
of Phillips’ proof (using u(§) = v — £(vg0)c(, go)) reveals that ¢ also induces an injective
s-homomorphism of C*(S, ¢) into C(G, ¢). Because of this, we will make no notational
distinction between C (S, ¢) and «(C}(S,c)) C CX(G, ).

Lemma 3.5. If S is abelian and c is symmetric on S, then C}(S,c) is abelian.
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Proof. It suffices to check that C.(S,¢) is abelian. We compute for v € G(© = S and
s €S,

(f*g)(s) =" flst)gt™") e(st,t™")

teSu

= > FNglsr)e(r sr) (rs = sr)
reSY

= Z g(sr)f(r=Y) e(sr,r™1) (¢ symmetric on S)
resSy

=(g=*f)(s). O

One might be tempted to think that the following result follows immediately from the
definitions. However, this is emphatically not the case.

Lemma 3.6. Suppose S is mazimal among abelian subgroupoids of Iso(G) on which c is
symmetric. Let u be a unit. If n € GY satisfies ns = sn and c(s,n) = c(n,s) for all
se€ Sy, thenneS.

The key difficulty is that the assumption that ¢(s,n) = ¢(n, s) for all s € S does not
immediately imply that c(s,n*) = ¢(n*, s) for all k € Z, and so there is non-trivial work
required to prove that c is also symmetric on the subgroupoid generated by S and 7
(which, by maximality, then implies n € §). While the proof of Lemma 3.6 is fairly long
and intricate, it consists primarily of several careful applications of induction and is not
very enlightening, so we relegate it to Appendix A.

Lemma 3.7. Suppose that G is a second countable, locally compact Hausdorff, étale grou-
poid with 2-cocycle c. If h € C}(G,c) commutes with every element of C.(S,c), then h
is supported in Iso(G) and satisfies

h(v)e(s,v) = h(svs™He(svs™) s) (4)
for allv € Iso(G) and all s € S with the same range (and source) as v.

Proof. From Theorem 4.2 in [22] and the discussion above it, we get supp(h) C Iso(G),
where h is thought of as an element of Cy(G).

Fix any v € Iso(G) and any s € S with the same source as v (and hence also the same
range). We can find a bisection B such that G,y N B = {s} and a function f € C.(S,c)
whose support is contained in B with f(s) = 1. Consequently, s is the only element of
Gsy with f(s) # 0. Using the fact that supp(h) C Iso(G), we have
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(hxf)lsv) = D hlson™ ") f(m)e(svn™,n)

nes—1(s(v))

= h(svs™H)e(svs™t, s)
and

(fxh)(sv)= Y f(sv¢HR(Qelsv¢ Q)
¢esT(s(v))
= Y fsr¢HR(Qe(sv¢T Q)
cegey)
= f(s)h(v)e(s,v)
= h(v)c(s,v)

Since h and f commute, this completes the proof. 0O

Recall from [21, Proposition I1.4.2] that for any étale groupoid G, we have an injective,
norm-decreasing inclusion j : C}(G, c¢) — Cy(G), where the latter space is equipped with
the supremum norm.

Lemma 3.8. Suppose the subgroupoid S is clopen. Then an element of C;(G,c) is in the
subalgebra C* (S, ¢) if and only if its image in Cy(G) is supported in S.

Proof. First, if h € C(S, ¢), then there exist h,, in C.(S, ¢) which converge to h and so
j(hyn) = hy, converge to j(h). The fact that each h,, is supported on S therefore implies
that if y ¢ S,

IR = i (R)(y) = hn ()] < [l5(h) = hnlloo < 1A = hnll

can be forced less than € for any e > 0. Since S is closed, we conclude that supp(j(h)) C S.

Conversely, assume that the image of h € C(G,c) under j is supported in S. Let
hy, € C.(G,c¢) converge to h in the reduced norm, and define h!, :== xs - h,,. Since § is
clopen, h;, € C.(S,c). As ||xs - f|l, < || f]l, for any f € C.(G,c), it follows from the fact
that h,—h that (b)), is Cauchy. Since j is continuous, we have that j(h,) converges to
j(h) in Co(G). As j(h) is supported in S, this implies that xs - j(hn) = x5 hn = j(h)
also converges to j(h). In particular, since j is injective, we must have that the C*-limit
of (hl,)n coincides with the C*-limit of (hy,),, i.e. h is the limit of elements in C.(S,c)
and hence an element of C}(S,¢). O

Proposition 3.9. With all the assumptions from Theorem 3.1, C*(S, ¢) is maximal abelian

in Cr(G,c).
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Remark 3.10. If S is not immediately centralizing, then this statement is not necessarily
true. See the example in Section 7.

Proof. By Lemma 3.8, h € C}(G,¢) is in C}(S, ¢) exactly when its image in Cy(G) has
support in §. Consequently, if we assume that h € C*(G, ¢) commutes with every element
of C*(S,¢), then we need to show that supp(h) C S in order to conclude that C} (S, c)
is maximal abelian. As S is closed, it suffices to check that h(v) # 0 implies v € S. Note
that we already know by Lemma 3.7 that v € G} for some unit u.

First, suppose that v commutes with every s € 8. Then Equation (4) implies ¢(v, s) =
c(s,v) for all s € S¥. Tt follows from Lemma 3.6 that v € S, as desired.

Next, suppose there exists at least one s € S such that vs # sv, i.e. v ¢ C1(S)
(recall Definition 2). Since S is immediately centralizing, this implies that for all k¥ > 1,
v ¢ Ci(S) and therefore for every k > 1, there exists a ¢ € S such that the set
{t/vt=9|1 < j < k} has cardinality k. It follows that the set

T :={tvt™'|t € S"}
is infinite. However, Equation (4) implies that for any n € T
|h(n)| = |h(v)[ > 0.

Now, if K is any compact subset of G, then the discrete set G must have finite intersec-
tion with K. In particular, the infinite set T' cannot be fully contained in K. So we have
shown that there exists an € > 0, namely € := |h(v)], such that for any compact K C G,
there exists an € G, namely n € TN (G \ K), so that |h(n)| > €. Therefore, h ¢ Cy(G),
which (by [21, Proposition I1.4.2]) contradicts our assumption that h € C*(G,c). O

We require the following lemma to show that the normalizer of C}(S,c) generates
C(G,c) as a C*-algebra. For the definition of the normalizer, see Definition 1, Item (3).

Lemma 3.11. Suppose that the subgroupoid S is normal. If h € C.(G,c) is supported in
a bisection, then h is in the normalizer of C.(S,c) in C.(G,c).

Proof. Suppose f € C.(S,c). Since h * f *x h* and h* % f * h are continuous functions
with compact support, we only need to show that they are supported on S. For £ € G
we have

(hx f)xh* (€)= Y (hx )€ (p~ " )e(€p,p™ ")

peGs(©)

Sl DD wEp)fNe€or v | B (0 el€p, ph)

peGs(&) vegs(p)
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= Y > e fH(p)elp T p)e(Spv, v e(€p, 7).

peGs (&) vegsp)

If a term in the sum is nonzero, then we must have v~ € S, and also both p and &pv
must be in supp(h). Since v € SN G5P) C Iso(G), we have that s(épv) = s(v) = r(v) =
s(p). Since h is supported on a bisection, this implies {pv = p. Thus, the only summand

1p~=1. The normality of

that might not vanish corresponds to p and v such that £ = pr~
S thus implies that £ € S. Therefore h x f x h* € C.(S, ¢).
A similar calculation shows that h* x f x h is supported on S. Therefore h lies in the

normalizer of C¢(S,¢). O

Proposition 3.12. Assume the étale groupoid G with 2-cocycle ¢ is locally compact
and Hausdorff, and that the subgroupoid S of Iso(G) is normal. Then the normalizer
N(C((S, ) of CX(S,¢) generates C(G,c) as a C*-algebra.

Proof. Suppose h € C.(G, c). Since G is étale, its topology has a basis of open bisections
(see [8, Proposition 3.5] or [23, Lemma 2.4.9]); in particular, we can take a finite collection
{U;}_, of such sets which cover the compact support of h. As G is assumed to be
locally compact Hausdorff, we can choose a partition of unity {£;}7, subordinate to
that cover. The pointwise products h; = &; - h belong to C.(G,c) with supp(h;) C U;,
and h =31 h;.

By Lemma 3.11, h; is in the normalizer of C.(S,c) for each i = 1,...,n. Therefore
h = >"", h; is in the normalizer of C,(S, ¢). Thus C.(G, ) is contained in the normalizer
of C.(S,¢).

Now, suppose (fn)n € C.(S,c) converges to f in C;(S,c). If h € C.(G,c), then
h* fn % h* is an element of C.(S,c) by the above argument and so its C}(G, ¢)-limit
h# f*h* is an element of C(S, ¢). We have shown that C.(G, ¢) is also contained in the
normalizer of C*(S, ¢), which hence generates C*(G,c) as a C*-algebra. O

Proposition 3.13. Assume the subgroupoid S of 1so(G) is clopen. Then there is a faithful
conditional expectation ®: Cx(G,c) — Cr(S,c).

Proof. Since S is open in G, there is an injective s-homomorphism ¢: C.(S,c) — C.(G,¢)
given by extension by zero. By Remark 3.4, the function ¢ extends to an inclusion

t: Cx(S,c) = Cr (G, c).

For this proof, let M, = «(C}(S,¢)) € C}(G,c). We claim that the function
Dy: C.(G,c) = M, given by ®(f) = ¢(f|s) extends to a conditional expectation.

First, observe that f|s € C.(S,¢) for all f € C.(G,c), because S is clopen. Thus, ®g
is well-defined. Clearly, ®q is linear and idempotent on C.(S,c¢). We will show that &g
is contractive, i.e. that for f € C.(G,c), we have
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so that ®g will extend to a linear, contractive map ® on all of C(G,c) which fixes
Cr (S, c) and is hence a conditional expectation.

For u € GO, let L*: C*(S,c) — B(£*(S,)) be the left regular representation, given
for g € C.(S,c) and € € ¢3(S,) by

L)€ =g*&= |y Y glymém elynn )| - (5)

neg

By the definition of the norm || - ||, on C*(S,¢) (see Equation (1)), we can find, for any
f€C.(G,c), aunit uc SO =GO such that [|o(f|s)|l» < | L*(e(f]s))]| + €.

Let m,: CF(G,c) — B({?>(Gy)) be the left regular representation (given by the
same formula as Equation (5)). Let P € B({?2(G,)) be the orthogonal projection
onto span{e, : 7 € S,}, where {e,},cg, denotes the standard orthonormal basis
of /2(G,). There is a canonical unitary isomorphism I': ¢?(S,) — P/?*(G,) given by
(32, es, @4€y) = 2 g, Xs(7)aye,, where xs denotes the characteristic function of S.
It is easy to check that for all £ € £2(S,),

Pru(f)(T() = T(L*((f19))(©)),

and so with € and u as above for the fixed f € C.(G, ¢), we have

[@o()llr = [le(fls)llr < NL*(fls)I + €= [[Pru(F)] + e < [ fllr + €

Thus @ extends to a linear idempotent ®: C*(G, ¢) — M,., which has norm 1 since it
acts as the identity on M, C C}(G,c). By [2, 11.6.10.2], ® is a conditional expectation.
To see that ® is faithful, we follow the same idea as in the proof of [21, 11.4.8]. For
feC(G,c)and u € GO = SO we have

O(f*x f)w) = (f* f)lw) = Y fS O Metrvy™) = D IF P

YEG, YEG,

In particular, if ®(f* x f) = 0, then Z'yegu|f(7)|2 = 0 for each u € G(® and hence
f(y)=0forevery y€G. O

Proof of Theorem 3.1. We know from the remarks preceding [22, Proposition 4.1] that
Co(G) always contains an approximate unit for C*(G, ¢); hence, so does C*(S, ¢), and
Condition (4) of Definition 1 holds. Propositions 3.9, 3.13, and 3.12, imply, respectively,
that Conditions (1), (2), and (3) of Definition 1 are satisfied. O
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4. Weyl groupoid and Weyl twist

Having identified Cartan subalgebras inside twisted groupoid C*-algebras in The-
orem 3.1, we can use Renault’s machinery [22] to identify an alternative groupoid
model—one that is topologically principal—for these algebras. Our next goal is to ana-
lyze the relationship between the original groupoid data (G, S, ¢) and the Weyl groupoid
and twist associated to the Cartan pair (C}(G,c), C;(S,c)) as in [22, Section 4]. Sec-
tion 5 analyzes the general structure of this relationship in the setting when G is a
discrete group, and Section 6 computes the Weyl groupoid and twist explicitly in several
examples.

The results in this section, particularly Proposition 4.1 which is the main result of this
section, will facilitate our description and analysis of the Weyl groupoid in Section 5.
We heartily thank Aidan Sims for suggesting Proposition 4.1 to us, and for helpful
discussions relating to its proof.

Throughout the current section, B will denote a Cartan subalgebra of a separable
C*-algebra A with ®: A — B the conditional expectation.

Proposition 4.1. Suppose there exists a subset N of N(B) which densely spans A. Then
every element of the Weyl groupoid associated to (A, B) can be represented by some
(am (), m, z) where m € N.

Before proving this result we will make some clarifying observations about the Weyl
groupoid defined in Section 2 and prove several preparatory lemmas. Recall Equation (2),
the defining equation of the partial homeomorphisms a,:

Vbe B, n*bn=(boay) n'n.

Notice that b o «, is a function that might be only partially defined (in which case it is
not an element of B). But since the function n*n € B = Cy(B) vanishes wherever ay,
does not make sense, one unambiguously defines for any = € B:

(n*n-(boay))(z) =((boay) n*n)(z)

{ n*n(z) - blap(zr)) if z € dom(n),

0 otherwise.

Indeed, n*n - (bo ay,) € Co(B) = B for any b € B,n € N(B), since b,n*n € Co(B)
and «, is a homeomorphism defined on the domain of n*n.

Proofs of the following two lemmas are straightforward using Equation (2) (which
uniquely determines «,), the C*-identity, and the fact that B is maximal abelian in A.
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Lemma 4.2. Suppose b € B vanishes outside of dom(n), so that

(b0 aye)(x) = {0 ¥ ¢ dom(n’),

b(an+(x))  otherwise,
1s a globally defined continuous function on E, i.e. an element of B. Then nb = (boay,« )n.
Lemma 4.3. If n € N(B) has the property that o, = id|qom(n), then n € B.

Lemma 4.4. Let n,m € N(B). If either

(1) x ¢ dom(n) Ndom(m), or
(2) x € dom(n) Ndom(m) satisfies an(x) # am(x),

then ®(n*m)(x) = 0.

Proof. First assume that x is not in the domain of m, say, so that m*m(x) = 0. Fix
€ > 0. Continuity of m*m implies that there exists a neighborhood U of x such that

sup{m*m(y) :y e U} < e.
Let b € B be a [0, 1]-valued function such that b(z) = 1 and b vanishes off of U. Then

Imb||* = || (mb)*mb]| = sup{m*m(y)b*(y) : y € B}
<sup{m*m(y):y € B such that b(y) # 0}
<sup{m*'m(y) :y e U} <e.

Since b(z) = 1, the B-linearity of the conditional expectation ®, and the fact that ® is
norm-decreasing, now imply that

B(n*m)(x) = B(n*m)(2)b(z) = B(n*mb)(x) < |[S(n*mb)| < [n*mb]
< ]l mb] < lin] V.

As the left-hand side does not depend on € and e was arbitrary, we conclude ®(n*m)(z) =
0 as desired.
Now assume that x € dom(n) N dom(m). Multiplying the equation

nn*(b o ) = nbn*
for b € B by n* on the left yields the following equation in A:

n*[nn* - (bo apx)] = n*nbn* = b(n*n)n*, (6)



16 A. Duwenig et al. / Journal of Functional Analysis 279 (2020) 108611

where the last equation follows from the fact that n*n € B, so that it commutes with b.
Similarly,

bn*nn*mm*m = n*[nn” - (bo ayM)lmm*m = n*m[m*m - [nn* - (bo ay )] o oy,

where we obtain the final equality by applying Equation (6) with n replaced by m* and
b replaced by [nn* - (bo ay,-)]. In particular, B-linearity of ® yields

b-n*n-®(n*m) - m*m = ®(bn*nn*mm*m)
=®(n*m[m*m-[nn* - (bo a D)o m])

=®(n*m) - [m*m - [nn* - (bo oy, ")] 0 aun], (7)

and this is an equation of globally defined continuous functions on B. Since n*n(z) > 0
and m*m(x) > 0 by assumption, then if b € B is any element with b(z) # 0, then
®(n*m)(x) # 0 if and only if the function in Equation (7) is non-zero when evaluated at
x, which implies

[nn - (bo ag™)] o am(x) # 0.

This can happen only if oy, (z) € dom(n*) and b(a;,* (am(z))) # 0.

In particular, if a;,(z) ¢ dom(n*), then it follows that ®(n*m)(z) = 0 as claimed,
by taking any b € B with b(z) # 0. On the other hand, if a,,(z) € dom(n*), so that
a;, (o (2)) makes sense and is by assumption not equal to x, then we can find a function
b € B such that b(z) # 0 and b(a;, *(a, (7)) = 0. Again, the previous argument shows
that we must have ®(n*m)(z) = 0, as claimed. O

The next result is a straightforward consequence of Lemma 4.4.

Corollary 4.5. Let n,m € N(B). If either

(1) = ¢ dom(n) Ndom(m), or
(2) = € dom(n) Ndom(m) satisfies a,(x) # am(x),

then ||n —m||? > n*n(x).

The following lemma is readily checked using the defining equation for «,,, Equa-
tion (2). However, we warn the reader that the analogous statement in the Weyl twist
only holds if A > 0. See Lemma 5.4 below.

Lemma 4.6. For any A € C\ {0} and m € N(B), we have &y, = Qam. In particular, for
any z € dom(m),

[am (2), m, 2] = [arm(2), Am, z]. (8)
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Lemma 4.7. Suppose n € N(B) and n = an with F finite and each n; € N(B). For
i€F

every x € dom(n), there is an i € F and an open set U C dom(n) Ndom(n;) containing

x such that an,|v = anlu.

Proof. Suppose, seeking contradiction, that there exists € dom(n) such that for every
iin I := {i € F such that z € dom(n;)} and every neighborhood U of x in dom(n) N
dom(n;), there exists an element zy; such that o, (zv;) # an(zu,)-

By Lemma 4.4, we have ®(n*n;)(zy,;) = 0. Since, for any fixed i € I, the net (zy;)u
converges to x, we conclude from the continuity of ®(n*n;) € Co(B) that ®(n*n;)(z) = 0
also.

On the other hand, we have = ¢ dom(n;) for every j € F \ I by definition, so
Lemma 4.4(1) implies ®(n*n;)(z) = 0 also.

All in all, we have proved ®(n*n;)(x) =0 for all i € F, so that

nn(x) = ®(n*n)(z) = »_ (n*n;)(x) =0,

ieF
which contradicts the assumption that z € dom(n). O

Proof of Proposition 4.1. Let n € N(B) and suppose first that n =, n; for a finite
F and n; = \;m; with m; € N and A; € C \ {0}. Then for any = € dom(n), we know
by Lemma 4.7 that there exists an ¢ € F' and neighborhood of x on which «, and oy,
agree.

Since ax;m; = Qm,, we conclude that

[Oln($)7n, (E] = [ami (1')’ miax]'

Next, take an arbitrary element of the Weyl groupoid, say [a,(x),n,z]| for n € N(B)
where 2 € B is such that n*n(z) > 0. Write n = limy_,o, ngy where each n, is a finite
linear combination of elements from N. Fix a compact neighborhood K of x such that
n*n(y) > 0 for y € K, and write € = inf{|n*n(y)|'/? : y € K}. Observe that ¢ > 0 since
K is compact. Let @ be large enough so that ||n — ngy|| < € for all ¢ > Q. In particular,
for any y € K°, we have ||n — ny||> < n*n(y). Therefore, for these y, we must have that
y € dom(ny) Ndom(n) and ay,(y) = an,(y), by Corollary 4.5.

In other words, a, and a,, agree on K°, so [an(x),n,z] = [ay,, (x),ng,x]. Since
[n, (7),ng, 7] = [am(x), m,x] for some m € N by the first part of the proof, we are
done. O

5. Computing the Weyl groupoid and twist in the group setting

Let G be a countable discrete group, and let ¢ be a 2-cocycle on G. Suppose S
is maximal among abelian subgroups of G = Iso(G) on which ¢ is symmetric, and
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assume further that S is normal and immediately centralizing. By Theorem 3.1, the pair
(A,B) := (C}(G,¢),Cr(S, ¢)) is Cartan.

In this section, we describe the relationship between the Weyl groupoid G4 p) and
Weyl twist ¥4,y associated to (A, B) via Renault’s construction, and our original data
(G, S,c). See Theorem 5.2 and Theorem 5.8 below.

For any g € G, the Dirac-delta function 6, on G is in N(B) since S is normal: indeed,
we have

840507 = c(g,971) c(s,97") c(g,sg7") 4591 € Ce(S), (9)

and so we conclude that d, fd; € C(S,c) for all f € C(S, ).

As such elements densely span A, Proposition 4.1 shows that they entirely determine
the family of partial homeomorphisms {«,, : n € N(B)} in the sense that every element
of the Weyl groupoid G := G4, p) is of the form [, (x), d,, z] for some g € G and z € E;
we will therefore abuse notation from now on and write oy instead of as, whenever this
is unambiguous. Since J;d, = J., we have dom(d,) = E, i.e. ag is globally defined, and
because of Equation (8), the groupoid composition can be rephrased as:

[O‘h(ag(x))v 6ha ag(l')} : [ag(x)v 693 SC] = [ahg(x)a 5hgv SU]
In particular,
s(lag(x), 09, 2]) = x and r([ag(x), 04, z]) = ag(x). (10)

In what follows, we will use the usual notation G/S for the quotient of G by the
normal subgroup S. However, to simplify certain computations, we will usually think of
[g] € G/S as denoting the left coset of S with respect to g, which equals the right coset
because S is normal.

Lemma 5.1. If [g] = [h] in G/S, then ay = ay,.
Consequently, we will sometimes write ag) for a.

Proof. Recall that oy is uniquely determined as satisfying Equation (2) for n = d,4. To
show that ay = a,, for every s € S, it thus suffices to check that 63,65, = d;bd, for all
b€ B. As 655 = c(s,9)050y, the left-hand side can be rewritten as d;(05bd,)dy. The fact
that B is commutative and s € S implies 0:bds = bd:ds = b, so the left-hand side of the

equation indeed equals the right-hand side. O

Note that [g] — a4 defines an action of G'/S on B by homeomorphisms since apg o
app) = apgp by Lemma 4.6. Since G is discrete, the transformation groupoid K :=
(G/S) o X B is étale (see (23, Ex. 2.4.5]). It is furthermore locally compact Hausdorff
because B is locally compact Hausdorff. Lastly, it is second countable because S is
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countable. The following Theorem shows that under mild hypotheses, K is the Weyl
groupoid G4 p-

Recall that « is called topologically free if for every finite set F' C (G/S)\ {e}, the set
{zreB|VgeF, ag(x) # x} is dense in B.

Theorem 5.2. If « is topologically free, then the map

¥ :’C_>g(A,B)7 @([g]’x) = [ag(x)v(sg’x]a
s an isomorphism of topological groupoids.

Proof. To see that ¢ is well-defined, note that Lemma 5.1 shows that [g] = [h] implies
ag = ap on all of B. So, in particular, lag(2),04, 2] = [an(x),0n, 2] € Ga,p) for any
2 € B by definition of ~ (see Equation (3)).

If [g] # [h], then for any neighborhood U of z € B, the set {y € U | ag-1,(y) # y}
is nonempty since g~'h # e and since « is topologically free by assumption. Therefore,
ag # o, on U, which implies [og(2), dg, x] # [an(z), On, 2]. In particular, the map ¢ is
injective. Note that ¢ is surjective because every element of G 4 ) has a representative
of the form (o, (z),d4, ) by Proposition 4.1.

To see that ¢ is a groupoid homomorphism, we compute on the one hand,

(lg]; an(y)) - (1], y) = ([gh], v)

and on the other hand

[ag(@n (), 095 n ()] - [an(y), ons Y] = [agn(y), gn. Y-

Thus, ¢ is a groupoid isomorphism.

To see that ¢ is a homeomorphism, recall (cf. [22, Section 3]) that a basic open
set in Gea,py is of the form {[an(z),n, 2] : an(z) € V,x € U} for U,V C B open
and n € N(B). Consequently, the fact that «, is a globally defined homeomorphism
implies that every point [ay(x),dy, 2] € G(a,5) has an open neighborhood O of the form
O ={lag(y),6g,y] : y € U} for some open set U C B. Observe that

0 H0) ={(lgl,y) : y € U},

which is open in K since G/S has the discrete topology. Thus, ¢ is continuous.

To see that ¢ is open, observe that ¢ takes any basic open set {[g]} x U in K (where
U C B is open) to the basic open set {lag(y),04,y] - y € U} in Gea ). This completes
the proof that ¢ : K — G4 p) is an isomorphism of topological groupoids. O

Remark 5.3. The assumption of topological freeness in Theorem 5.2 was only needed to
prove injectivity of the map .
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Next we turn to the Weyl twist ¥ := ¥4 p) associated to the Cartan pair (A, B) =
(CH(G,¢),Cx(S,c)). We will show that the twist is given by a 2-cocycle. That is, it is
isomorphic as a topological groupoid to IC x, T for ¢ a 2-cocycle on K.

In [22, Lemma 4.16], Renault gives a family of local trivializations for ¥, indexed by
{n € N(B)}. These are defined on the open support of oy,

supp’(n) = {[an(y),n,y] € G :y € dom(n)}.

The discussion preceding [22, Lemma 4.16] describes the trivialization of the T-bundle
¥ over G as follows: for each normalizer n € N(B), the homeomorphism ¢, : ¥|supp(n) —
dom(n) x T is given by ¢, (z,\) = [an(z), An, 2], where A € T.

Lemma 5.4. Let R(S) be any choice of coset representatives for G/S. Then every element
of ¥ can be represented by some (ag4(x), Adg,x), where g € R(S) and where A € T can
be explicitly computed.

Proof. Let [ay,(z),n,z] be an arbitrary element of ¥. We know from Theorem 5.2
(cf. also Proposition 4.1) that there exists a (unique) g € R(S) such that

[an(x)’nax] = [ag(x)’agvx]v

i.e. there exists a neighborhood U of z on which «, and a4 coincide. In other words,
ay+ and

Qg—1 1= Oz(;g_l = O(C(gﬁgfl)(;; = 045;

coincide on o, (U). If f € B vanishes outside of U, then foay- = foag-1 is a globally
defined function, and we can use Lemma 4.2 together with the definition of « (Equation
(2)) and the fact that &;_,d,-1 = id to compute that

nf=(foan)n=(foaz1)n=74,fin.

Let us check that f/ := fogn is actually an element of B: First, if b € B is arbitrary,
then

fogn)b(n*dyf*) = fog ((bo an-)nn®) by f*

= fI* - ((boan-)nn*) o as, = f[f*b(nn* o as,)

where the last equality follows from the fact that, on the support of f, we have a,-oas, =
id. On the other hand, since n € N(B), we have f' € N(B) and hence by definition of
Qs
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fof' "= (boap) - f'f'"=(boap-) (foiyn)(n"d,f")
=(boap-)ff" (nn* oa(;g) .

Comparing this with Equation (11), we conclude by uniqueness that a - must be the
identity on its domain. It follows from Lemma 4.3 that f’ is an element of B.

As Bis locally compact and Hausdorff, we can choose a compactly supported function
f which vanishes outside of U and has f(z) # 0. We then have (similarly to Equation

(11))
(' F) @) = (Ff) (@) nn* (a5, (2) = (f£7) (@) - nn” (an(2)).

This is non-zero since x € dom(n), and we conclude that f'(z) # 0.
Now that we have found f, f’ € B such that f(z) # 0 # f'(z) and nf = d,f', we can
define b, € B and A € T by

@l
JoV =y and A

/@)
"=

so that b(xz) > 0 and ' (x) > 0 and:

(@ U@L @l (@ Yy
= (f(z) f) @ % 59(| >b Mgt

We conclude o, (), n, 2] = [og(x), Adg, 2], as claimed. O

Our next goal is to show that under the hypotheses of Theorem 5.2, the Weyl twist
arises from a 2-cocycle o on K. First, we will show that X is a trivial circle bundle; that
is, that 3 is homeomorphic to I x T.

Theorem 5.5. Let G be a countable discrete group with 2-cocycle c. Suppose S is maximal
among abelian subgroups of G on which ¢ is symmetric, and assume further that S
is normal and immediately centralizing. Let 3 denote the Weyl twist associated to the
Cartan pair (C7(G,c),C*(S,¢)). If the action o on B is topologically free, then the map
P: K xT — X given by

O ([g), 2, A) = [ogg) (), by, 2],

where A € T and rig € R(S) is our chosen representative of [g], is a homeomorphism of
topological spaces.

Proof. Surjectivity of ¢ follows from Lemma 5.4.

For injectivity, take two elements ([g], 2, A) and ([h],y,v) of K x T. If 2 # y, then the
source of ¥([g],z,\) is #, while the source of 1 ([h],y,v) is y (see Equation (10)), and
thus ¢([g], z, A) # ¢([h],y,v).
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So assume z = y. If ¥([g],z,\) = ¥([h],z,v), then there must exist b,b’ € B such
that b(z),b'(x) > 0 and A6, b = vd,,, b'. Rearranging yields

By * =N (-1

B> \wb = 5%] Oy b= c(rpn)s T )c(r[h] ,r[g])@[fh]lr[g]b.
In particular, 5T[;L]1T[g]b € B. If we consider C}(G,c) as a subset of Cy(G) (see [21,
Prop. I1.4.2]), then for k € G, the formula for the convolution yields

—1 —1 —1

(57“[;]174[9] b)(k) = b(T[g] T[h]k)c(’l“[h] T[g],T[g] T‘[h]k‘).

Recall from Lemma 3.8 that an element of A = C¥(G, ¢) is in B = C}5(S, ¢) exactly if its
image in Cy(G) has support in S. As B 3 b # 0, there therefore exists an element s € S
with b(s) # 0. Plugging in k := r[jl]lr[g]s yields:

(0, b) (r[g}r[;b]ls) = b(s)c(r[;]lr[g],s) #0.

—1
1] Lol

But since 4, rekr) b € B is also supported in S, this implies that r[g]r[h] s € S. It follows

that [rg] = [rpp] in G/S, so that rj, = rp,) since R(S) contains exactly one representa-
tive for each class in G/S. Thus Aoy, b = vd,, 0" implies \b = vb'. Since b(x) and b'(x)
were assumed to be positive and \,v € T, this forces A = v. This concludes our proof of
injectivity.

Continuity of 1 follows from the fact that each (;5;1 = gi)ggl is continuous (in fact a
homeomorphism), and that K is étale since G/ S is discrete. To be precise, if ([g;], z;,t;) —
([g], z,t), we must have x; — x and t; — ¢, and for large enough i, [g;] = [g] by
discreteness. In particular r(y,) = 7y, so for notational convenience, let us denote g = r(g).
The continuity of ¢, implies that [y (2:),tidg, z:] = [ag(z),tdy, ], so ¢ is continuous.

For the continuity of /=1, suppose that 7; — v in ¥. By Lemma 5.4, we know that
v can be represented by (ag4(x), Aoy, x) for some = € B, g € R(S), and A € T, and
similarly 7; can be represented by (o, (2;), Aidg,, z;). In particular, since we have chosen
g9i € R(S),

Vi = o, (@), Mg, ] = [ag, (@), Nidr, ), @3] = ¥([ga], 23, Ae).- (12)

By convergence, we have for large enough i that ~y; is in the basic open neighborhood
9, (dom(8g) x T) = ¢, (B x T) = Zuuppr(as,)

of v = [ay(z), Ay, x]. By definition of ¢! there must hence exist some v; € T so that

[[O‘g(%) Vzdgvxzﬂ
= [org (@), vy 2]l (since g € R(S))
=1/J([9],33z‘71/i)-
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As we have shown 1 to be injective, we conclude from Equation (12) that v; = A; and
that [g] = [gi], s0 g = ¢; as these elements were chosen to be in R(.S).

Because the topology of ¥ is inherited from that of dom(d,) x T via the maps ¢4, our
hypothesis that v; — + implies that

¢g_1 ([org (i), vidg, z:]) = %_1 (i) — %_1 (v) = ¢g_1 ([ag (@), Adg, z]) -

By the definition of ¢, (see page 20), this means exactly that the sequence (z;, A;) =
(4, v;) converges to (z,A) in B x T. Thus, for i large enough so that g; = g, we have by
Equation (12),

11’71(%') = ([g:]; wis M) = ([g], %6, Ni) — ([g], 2, A) = 7#71(7)- g

Knowing that the bundle structure on ¥ is trivial, we now compute the 2-cocycle on
= (G/S) o X B which gives rise to X.

Lemma 5.6. For y € B and [g],[h] € G/S, define

(6* Or 9]57"[h)( )
07 Orig)Orpy () ’ |

O'(([g], ah(y))a ([h]v y)) =

Then o is a 2-cocycle on the groupoid K = (G/S) o x B.

Proof. Observe first that o takes values in T by construction. Furthermore, 5T[ }]5%] O €

B = C} (S, c), because [r(gp)] = [r(g7n)] € G/S. Therefore, to check that o is a 2- cocycle
it suffices to check the cocycle condition. This will follow if we can show that for any
g,h, k € G, we have

(67 s Brt By ) (0 ) (851,80 ) (05 0) (13)
= (8Os ) @ 0)) (87,8118 ) (0):

Since y = ay(a; ' (y)) and 07 Oryy = Oc satisfies 67 6y, (x (z) =1 for all 2 € B, Equation

(2) implies for o, = ay, that

570 (57,0000 ) s (0 D) = (87,8000 ) (0

The fact that Gelfand duality is a *-algebra homomorphism therefore implies that Equa-
tion (13) will follow if we can show

(R N GRS I B R A [ B S B

and this follows immediately from the fact that J,, is a unitary for allm € G. O
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Theorem 5.7. In the setting of Theorem 5.5, the map v is a groupoid homomorphism
from IC x5 T to ¥ which intertwines the actions of T.

Proof. Note that 1([e],x,1) = [a¢ (), 6y, 7] is an element of 2O since apy(z) = z,
S0 1 preserves the unit space.
We compute on the one hand for £ := ([¢], an(y)) and ¢ := ([h],y),

¥ (£, (¢, v)) = U([ghl,y,0(£,¢) Av)
= [[agh (y)7 Av 0'(6, C) 67"[9;1] ) yﬂ
= [[O‘g(ah (y)>7 Av O’(f, C) 5T[gh] ) y]]

On the other hand,
1/’(&/\)1/’((, V) = [[a[g] (ah( )) AéT[J ( )]] ’ [[ah(y)71/67“[n 7yﬂ
= [[a9<ah(y>)’ Av 6T[g] 6T[h,]’yﬂ = [ag(ah( )) Av C(r[g] r[h]) 6T[q h]’y]]

Let n := Avc(rig), ) Or = AV 0y, 0r,» and note that

[91"h]
an = ar[g]’r[h,] = agh7

where the first equation is due to Lemma 4.6 and the second due to Lemma 5.1, using
that S is normal. Thus, we have to show that

[t (), 7, 9] = [ty (1) AV 0 (6, C) Sy . (14)

Taking f to be the constant function 1 in the proof of Lemma 5.4, and observing that
§* n € Cy(B) takes values in T, reveals that y := (5;"[gh] n)(y) has the property

Tlgh]
[[Oén(y),n,yﬂ - [[a?”[gh ) ‘ﬁ‘ oy T[gh] ’y]] Har[g}L] (y)vﬂdr[gh]ayﬂ'

Indeed, the element & n of C*(G,c) is given by

Tlgh]
* -1 N -1
Oty T = AV (T (g Tg)) E(Tignys Tla1 1) €M) P11 Ot -
Thus

* -1 N -1
n = (6r[gh] n) (y) = \v C<T[gh] ) T[gh]) C<T[gh] ) T[g]ﬁh]) C(’I"[g]7 T[h]) 6T[:]}L]T[g]r[h] (y)

We now observe that

c(Tighys Tlgn)) 0 ghys Tia 7)) €Tl Tih) Ot o= 07 Oy O
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revealing that u is a positive scalar multiple of Av o (€, (), so that Equation (14) indeed
holds.

Lastly, to see that ¢ intertwines the actions of T on K x, T and X, we compute for
veT:

1/)(1/~ ([g],x,)\)) = 111([9],%1/)\) = [[ag(x)a VA&T[Q]va
= v [ag(x), Aoy, 2] = v - (g, z,A). O

Theorem 5.8. With the assumptions from Theorem 5.5, the Cartan pair (Cf(K X4
T), Co(B)) is isomorphic to the pair (C}(G,c), C}(S,c)).

Proof. Theorems 5.2 and 5.5 show that the twisted groupoid (K, K x, T) is isomorphic
to the twisted groupoid (Ga,py, ¥(4,B)), the Weyl twist associated to the Cartan pair
(A,B) = (C}(G, ), Cr(S,c)). Thus, CF(G(a,B), X(a,p)) is isomorphic to C (K, K x, T)
in a diagonal-preserving fashion. By [22, Theorem 5.9], we thus have

(CF(G, ), C(5,0)) = (CF (Geay S(a.B): Co(G 1)
(CHK,K x5 T), Co(K))
> (Cr(K,0),Co(K)). O

11

Remark 5.9. The isomorphism in Theorem 5.8 from C(G,¢) to C} (K, K x, T) may be
defined explicitly on the generators of C¥(G, ¢) by

Gg 0500, g€G,
where 5; € Cp(X) C CF(G,%) is defined by Renault in [22, Lemma 5.3] by

P(n"dy)(y)
n*n(y)

and ®: C* (G, c) — C(S5,¢) is the conditional expectation.

S;([O‘n(y),n,y]]) =

3

When the 2-cocycle c is trivial on S, as will be the case in the examples considered
in Section 6 below, we can identify the Gelfand dual B of the Cartan subalgebra B =
C(S,¢) = C*(S) with the Pontryagin dual S of S.

To be precise, if ¢ is trivial on .S, the map

U: 8§ =5 B, determined by U(v) := |Co(S,c) > b Zb(s)u(s) ,
ses

is a homeomorphism with inverse

T (x) = [s > evs, (x) = x(65)].
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Proposition 5.10. Suppose c is trivial on S. Then the action [g] — ajq) 1= U~lo ago W
of G/S on S induced by ¥ is given by

g (v) = |5 = c(g,97) elg™

forlgl € G/S, v e S, and s € S. Moreover the transformation groupoid H := (G/S) axs
is tsomorphic to the Weyl groupoid via

Gam) = Hy lag(x), 84,2 = ([g], U7 (2)).

Proof. Let us be very precise and carefully distinguish between B and C’o(é); SO we
rewrite the defining equation for oy as follows:

“Forallbe B : eVrbs, = €V} O (g 7

One easily verifies that &g is indeed well-defined; that is, it only depends on [g] and not
on g. Now, using the defining property of a, in the third equality, we compute for v € S
and s € S that

(615 () (s) = (" 0 g 0 W) (1)(s) = evs, (o (¥(1) )

= evi;5.5, (V) = W) (5;0:05) = D _ (850:0,) (1) - v(2).

tesS

By Equation (9), we conclude the formula for apy. The claim about the isomorphisms
follows directly from Theorem 5.2 and the way we defined @. O

Thanks to Lemma 5.6, the map

oy N (STQ Ori (T(v))
5 ((lg], @an()), ([h],v)) := ( fgh] " "191 T ])
o ]57'[51 5"’[;1] (\II(V))

Tlgh

; (15)

for v € S, [g],[h] € G/S, defines a 2-cocycle on the groupoid H = (G/S) 4 x S if ¢ is
trivial. Our previous results can be rephrased as follows:

Corollary 5.11 (of Theorems 5.5 and 5.7). In the setting of Theorem 5.5, assume more-
over that c is trivial on S. Then the map ¢: K x5 T — X given by

"Z’([g]v v, )‘) = [[O‘[g](\ll<y>)’ )‘67‘[9] ) \II<V)]] = [[\II (5‘[9]<V)>7 )‘57‘[91 ) qj(”)]L

where A € T and 715 € R(S) is our preferred representative of [g], is an isomorphism of
topological groupoids.
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6. Examples

In this section we briefly examine one of our motivating examples, the irrational
rotation algebra, in light of the results of Theorem 3.1. We then apply the work of the
previous three sections to compute three different Cartan subalgebras and the associated
Weyl groupoids and twists in the case of a specific group C*-algebra. Indeed, many of
the simplifications that occur in this setting are due to the fact that the 2-cocycle c is
trivial on the subgroups in question, and also on the coset representatives R(S).

Example 6.1. As mentioned in the introduction, the irrational rotation algebra Ay can be
realized as the twisted group C*-algebra C;(Z?, cg) with the 2-cocycle cp: Z2 x Z2 — T
given by

co((n1,n2), (M1, mg)) = *mi0n2m,

Notice that if we take S = Z to be any of the subgroups Z x {0} 2 {0} xZ = {(n,n)|n €
Z}, the hypotheses of Theorem 3.1 are satisfied. In particular, cy|s is trivial using either
of the first two choices for S, so we see that C*(Z,c) = C}(Z) = C(T) is Cartan in
C#(Z?,¢) = Ap. Furthermore, a straightforward computation reveals that the action of
Z?/S=7Z on T is given by

n-z—= 6271'20712’

so that the Weyl groupoid is the usual transformation groupoid T Xy Z. Moreover, for
all of the subgroups S identified above, coset representatives R(S) can be chosen so
that 5:[9;1] Oy Orp; = Oc. Consequently, the twist X on the Weyl groupoid is trivial, and
Theorem 5.8 gives us the standard isomorphism C7(Z2, cg) = C#(T g Z).

We next apply the results of Section 5 to a group and 2-cocycle that arose in [19,
Example 8.8]. We identify three subgroups Sp, S1,.52 which give rise to different Car-
tan subalgebras and different Weyl groupoids. Indeed, it turns out that the Weyl twist
associated to Sy is trivial, but this is not the case for Sy or Ss.

While the existence of multiple non-isomorphic Cartan subalgebras in a given C*-
algebra is not an uncommon occurrence (cf. [7]), the novelty of the examples highlighted
in this section is the dynamical origin of these subalgebras, arising as they do from
subgroups of the initial group.

For the remainder of this section, let G be the discrete group consisting, as a set, of
the cartesian product Z° with the following group operation:

a-b = (a1,az,as,a4,as) - (b1, bs,b3,b4,bs5)

= (a1 + by + 2asb3, ag + ba + 2a5by, az + b3, ag + by, as + bs).
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The inverse of a is then given by
a~! = (2a3a5 — a1, 2a4a5 — az, —a3, —a4, —as).
Equip G with the following 2-cocycle:
c(a,b) = (1),

The following are three examples of subgroups of Iso(G) = G each falling into the scope
of Theorem 3.1:

So:=Z xZ x {0} x {0} x Z,
S1:=7Z X Z x Z x 2Z x {0},
So:=2Z X Z x Z x Z x {0}.

1. They are subgroups:

So: (a1,a2,0,0,a5) - (b1,be,0,0,b5)
= (a1 + b1, a2 +b2,0,0,a5 + b5) € Sy
(a1,0a2,0,0,a5)"" = (—ay, —as,0,0, —as) € So
Syt (a1,a9,a3,2a4,0) - (b1, ba, b3, 2b4,0)
= (a1 + b1, a2 + b2, a3 + b3, 2(as + b4),0) € Sy
(a1,a9,a3,2a4,0)"" = (—ay, —ag, —as, —2a4,0) € Sy
St (2a1,a9,a3,a4,0) - (201, ba, b3, by, 0)
= (2(a1 + b1), a2 + ba, a3 + b3, ag + b4,0) € Sy

(2a1, a2, a3,a4,0) " = (—2a1, —az, —az, —ay,0) € Sy

We also immediately see from this that all three are abelian.

2. The 2-cocycle is trivial on them (not just symmetric): For Sy, it follows from the
fourth coordinate being zero. For S; resp. So, this follows from the evenness of the
fourth resp. first coordinate.

3. They are maximal among abelian subgroupoids on which ¢ is symmetric: For Sp,
we note that, since the last component is all of Z, we need the third and fourth
component to be zero for the subgroup to be abelian (which immediately forces the
cocycle to be trivial). For Sp resp. So, allowing an odd number in the fourth and first
component would make the cocycle non-symmetric, and allowing the last component
to be non-trivial would make the subgroups non-abelian.
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4. They are normal: For g,s € G, we have

g 'sg = (29395 — 91,29495 — 92, —93, —94, —75)
(81 4+ 91+ 28593, 52 + g2 + 28594, S3 + g3, S4 + g4, S5 + g5)
= (51 4 25593 — 29553, S2 + 25594 — 20554, 53, 54, S5)

(16)

. (81 + 258593, S2 + 25594, 0,0, 85) € So, if s €Sy
| (51— 29583, 52 — 29554, 53,54,0) € S,  ifs€ S;(i=1,2).

5. They are immediately centralizing, because G has the unique root property (cf. Re-
mark 3.2): For any element g = (g1, 92,93,94,95) € G and j a positive integer, we
have

g’ = (jor + 30 — 1)9593, 492 + 5 (J — 1)9594, 793, 794, 1 g5)-

In particular, we see that g/ = h’ implies g = h.
6. Since G has the discrete topology, all three are clopen.

Note that Sy = Z3 while S; = Z* = S, so in particular, the Cartan algebras they
generate are

Cr(So) = C(T?) 2 C(T*) = C7(S1) = C7(Sa)-

Next, we use the machinery developed in Section 5 to identify the Weyl groupoids
and twists (H;, ;) that give rise to

(C(Hi,20), Co(H")) = (C1(G, ¢), C1(Sh)).

We begin with Sy. Since c|g, is trivial, we are in the setting of Corollary 5.11. The
following Proposition describes the action &° on Hg explicitly, and shows that the 2-
cocycle ¢ is trivial in this case.

Proposition 6.2. Let Ho = Z? 50x T3, where for (c,d) € 72,

2d

al, gy (21,22, 23) = ((=1)%21, 29, 27°25% 23).

Then Ho is the Weyl groupoid associated to the Cartan pair (C}(G,c),Ck(So)), and
(C’;‘(Ho),C’O(H((JO))) ~ (Cr(G,c),CE(Sy)). That is, the twist associated to this Cartan
pair s trivial.

Proof. For g = (g1, 92,93,94,95) € G, let rig = (0,0, 93, 94,0) be the representative of
[g] € G/Sy. Observe that if s = (s1, s2,0,0,s5) € Sy we have
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c(rig) Tg—1) = clrig-1s), 7)) =1, clrg-y,8) = (=17, and
Tlg-1)5T[g] = (51 + 25503, 52 + 25594, 0,0, 55).

Moreover, EE =~ T3, with the pairing of SB with T3 given by

<(317 52, 07 Oa S5)a (Zlv 22, Z3)>0 = Zflzgzzgs'

Proposition 5.10 therefore tells us that the action a° of G/Sy = Z? on T3 which gives
rise to the Weyl groupoid is

~0 _ s1,,51+28593 S2+28594 s
Oé[g37g4](21,22723) - |:(513 82a030755) — (_1)94 lzl Z2 Z35

= |:(51a 82a050755) — ((_1)g4z1)51 252 (Z%Q3Z§g4z3) 5:| ’

which is the formula for &° asserted in the statement of the proposition.

The fact that the Weyl twist is trivial follows from the observation that the set of
coset representatives, R(Sp) =0 x 0 x Z x Z x 0, is also a subgroup of G on which c¢ is
trivial, and hence 6:[th Org Or = de. Consequently, the abstract formula for the twist &
giving rise to the Weyl twist (see Equation (15)) is given by

for all Z€ T? and g,h € G. Theorem 5.8 completes the proof. O

To compute the Weyl groupoids and twists associated to S; and S5, we will make use
of the function f : Z — {0,1} given by

F2k+1) =1, f(2k) = 0.
The next proposition deals with the S; case.
Proposition 6.3. The Weyl groupoid associated to the Cartan pair (C}(G,c),Ck(S1)) is
Hy = (G/S1) a1xS) = (Z)27 x Z) 5 xT*,

where the action &' of G/Sy on T* is given by

d[lg](zl,z2,z3,z4) = ((—1)9421722,21_2g523,z2_4g5z4).

The associated Weyl twist is Hi x5, T, where the 2-cocycle 61 on H1 satisfies
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(87 g O O ) (2(2))
7 ony ey Oy (2 (2))

o1 (((F(91),95), Gy (D), ((F(ha), hs), 2)) =

1) f(h4) == O7
=4 239, f(g94) =0 and f(hy) =1, (17)
227295*4h5z4’ f(g4) _ f(h4) -1

Proof. Again, c|g, xs, is trivial, so we invoke Proposition 5.10. To obtain a concrete
formula for the action &' described in that Proposition, we first compute

g8 ) clg s clg s, g) = (~1)7H 200 (1) ()0
— (_1)9184-‘1-.!]481

= (—1)9**1 =¢(g,s), ifse S =7ZxZx1Zx2Z x{0}

The fact that the fourth component of S; is 2Z means that the pairing (-,-); between
S and its Pontryagin dual S; = T* is given by

<(81, 52, 83, 8470)7 (Zh 22,23, Z4)>1 = 2‘1”2522;3224/2'

Thus, evaluating d[lg} at v = (21, 22,23, 24) € T* yields
~1 _ 0 1)9451 s1—2g583 S2—29g554 53 _S4/2
Qg (21, 22, 23, 24) = | (51, S2, 83, 84,0) > (=1)9*"" 2y %2 ?3" %4
S3 S4/2
s -2 —4
= [(31,52,53,54,0) = ((=1)9421)%" 232 (zl 9523) (z2 g524) ] ,

i.e.

alg (21,22, 23, 24) = ((=1)% 21, 22, 2729 25, 25 " 2). (18)
Observe that @' is topologically free: If a point z € T* is fixed by d[lg] for g ¢ Sy, we
must have g4 even and z1, z3 roots of unity. But then, in any neighborhood of Z there are
points w for which wi,ws are not roots of unity, so there is no neighborhood of 2’ which
is fixed by dllg]. Thus, Theorem 5.2 and Proposition 5.10 tell us that the Weyl groupoid
is given by Hi = (G/S1) a |><§;.

To compute a concrete formula for the 2-cocycle 1 associated to S out of the abstract
formula in Equation (15), let R(S7) = 0x0x0x{0, 1} XZ be our preferred representatives
in G of the elements in G/S;. Although c|g(s,)xr(s,) is trivial, R(S1) is not a subgroup
of GG. Indeed,

T[_g]l = (O’2f(g4)g570’ _f(g4)7 _95) ¢ R(Sl)
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One then computes that 1 = c(r(gn], T[Tg%l]) = c(r[gil]7r[g]) = ¢(r[g), 7n)) and thus that

* —
5T[gh] 5%] 5”[*11 o 5T[gi]’“[g]7’[h1 ’

Explicitly, we have

T[_giﬂ?“[g]f[h] = (0,295 f(ha) +2(g5 + h5) f(gs + ha) — 2(g5 + hs)(f(94) + f(ha)),
0, = f(g4 + ha) + f(ga) + f(ha),0).

If f(hy) = 0, so that f(gs + ha) = f(ga), then we have T[Tgil]r[g]r[h] = e. However, if
f(h4) = 1, then

7"71 ror _ (07295307030)7 if f(g4) = Oa and
ekl B T (0, _9gs — 4k5,0,2,0), if f(ga) = 1.

Thus, the 2-cocycle &1 on H; is given by Equation (17), as claimed. O

One might suspect that the symmetry between S; and S; would result in the as-
sociated Weyl groupoids and twists being isomorphic. This is not the case, as we now
show.

Proposition 6.4. The Weyl groupoid associated to the Cartan pair (C}(G,c),Ck(S2)) is
Ho = (G/Ss) a2 S = (227 x Z) a2xT4,

where the action &% of G /Sy =2 7./27 x 7, on T* is given by

&[Qg](21722723,24) = (21,22, 2, P23, (—1)9 25 2% 24).

The associated Weyl twist is Ho X5, T, where the 2-cocycle G2 on Ha satisfies

21, flg1) = f(h) =1,

19
1, else. (19)

52 (((F0n): 95), 3%y (20): ((F (1), hs), 2)) = {

Proof. Again, we begin by computing for g € G and s € So = 2Z X Z x Z x XZ x {0}:

17 S) c(gfls, g) — (_1)94(29395*%) (_1)*9481 (_1)(54*94)91

= (=1)7" = (s, g).

c(g,g7!)c(g™

The pairing (-, )2 between Sy and T is given by

2
<(81,32,S3,S4,0), (2’1722,23724)>2 = Zigl/ Z§2Z§3ZZ47
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and so the fact that g~ 'sg = (s1 — 29583, S2 — 2g5 84, S3, 84,0) implies

~2 _ sS4 51/2—0g583 _S2—2g584 _S3 _S4
a[g](zl7z27z37z4) - [(51)8235375470) — (_1)91 421 Z2 23 Z4

= {(31, S92, 83, 84,0) — zf1/2252 (2179523)53 ((—1)912529524) 84} )
Consequently,
dfg} (21,22, 23, 24) = (21, 22, 2] % 23, (—1)9 25 295 24). (20)
Again, the action G2 is topologically free, because if d[zg} (2) =Zand g ¢ Sa, 21 and 2z
must be roots of unity. Since every neighborhood of such a point contains points @ with

wy # 1, @ is topologically free.
We now compute &2, using R(S2) = {0,1} x 0 x 0 x 0 x Z, so that

Tlg] = (f(gl)a 0707 0595) and 7/.[;]1 - (7f(gl)703 0707 7.95)'

Note that the latter might not be an element of R(S). As in the S; case, 1 =

(7 (gn], T[ngl]) = C(T[gi],r[g]) = ¢(r[g], 7)), and so

72 (([gl, & (2)); ([h], 2)) = Ot g (Y (2)
= 0(f(g1)+F(h1)— F(g1+71),0,0,0,0) (¥ (Z))
_ { Flgn) = f(h) =1,

1, else.
This concludes our proof. O
7. The necessity of being immediately centralizing
The following pathological group was constructed to establish the necessity of the

“immediately centralizing” hypothesis in Theorem 3.1.
Let G be the set Z /47 x Z/AZ X Z x Z x Z/4Z, and define multiplication on G by

([a]47 [b]4v ¢, d, [6]4) ’ ([al]4v [b,}‘lv Clv dl? [61]4)
= ([a+a' +2ec]y,[b+V +2ed|s,c+,d+d, e+ €']a).

One can check that G is a group with inverse given by

([ala, [B]a, ¢, d, [e]a) ™' = ([2ec — a]u, [2ed — b]4, —c, —d, [—€]4).
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Define ¢: G x G = T by

’

c(([ala, [bla, ¢, d, [ela), ([a']a, (D], ', @', [€']a)) = (=1)"*.
Then c is a 2-cocycle on G because c(a,0) = ¢(0,a) =1 for all a € G and

c(ay, az)c(ajas, az) = (—1)492(—1)(ditdz)as

which equals
c(al,azag)c(ag,ag) _ (_1)d1(a2+a3+26203)(_1)d2a3 _ (_l)dlaerdlag(_l)dzaa.
Now define S = Z /47 x Z/AZ X Z x 27 x {[0]4, [2]4}

Proposition 7.1. S is a subgroup that is maximal among abelian subgroups on which c is
symmetric.

Proof. Suppose ([G‘Lb [b]4v ¢, d7 [6]4), ([a/]47 [b,]4a Cl7 d/a [6/]4) € S. Then

([a]4> [b]47 ¢, d, [6]4) : ([a/]47 [b,]4v C/a d/a [el]4)
= ([a+d +2ec]s,[b+ b +2ed|s,c+,d+d, e+ els)
= ([a+d]s,[b+V]s,c+d+d e+ €ls),

since e is even so [2ec’]4 = [2ed’]4 = 0. Similarly,

([al]4ﬂ [b/]47 clv dl7 [6/]4) : ([a]47 [b]47 & d7 [6]4)
= ([ +a+2ec)s, [ +b+2eds,d +c,d +d, e +e€ls)
(la" 4+ a]a, [V + bla, " + e, d +d, [ + €]q).

The 2-cocycle is trivial on S because the fourth component is even.

Regarding maximality, assume 7T is a subgroup of G that contains S. If T' contains an
element whose fourth component is odd, then c is not symmetric on T'. If T' contains an
element whose fifth component is odd, then 7' is not abelian. Thus S is maximal among
abelian subgroups of G on which ¢ is symmetric. 0O

Proposition 7.2. G and S satisfy all other assumptions of Theorem 3.1, except that S is
not immediately centralizing.

Proof. Since G is a countable group with the discrete topology, G is a second countable
locally compact Hausdorff étale groupoid and S is open and closed. To see that S is
normal, we must check that a=!'sa € S for all a € G and s € S. Note that the fourth
component of a~!sa equals the fourth component of s, and the fifth component of a~'sa
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equals the fifth component of s. It therefore follows that if s € S,a € G, then a~'sa € S.
Thus S is normal.

To see that S is not immediately centralizing, consider g = ([0]4, [0]4, 0,0, [1]4). Ob-
serve that if s = ([a]4, [b]4, ¢, 2d, [€]4) € S then

gSg71 = ([(l + 20}47 [b]47 ) 2d7 [6}4)7

while gs?g™! = ([2a]4, [2b]4, 2¢,4d, [2€]4) = s?. Since there are elements s € S for which
([a + 2cl4, [b]a, ¢, 2d, [e]a) # ([a]a,[b]a, ¢, 2d, [€]la), We see that g is 2-centralizing but not
1-centralizing. O

Proposition 7.3. C*(S) is not mazimal abelian.

Proof. Define the function h: G — C by h = 6§, + 6, where v := (0,0,0,0,[1]4) and
i = ([2]4,0,0,0,[1]4). Then h does not have support in S, so h ¢ C*(S, ¢), but we will
prove that it commutes with every function in C.(S5).

Suppose ¢ € C.(S) and a = ([al4, [b]4, ¢, d, [€]4) € G. Then

heola) = 3 hl)p(B)ela, B) = p(vta)e(v,v1a) + p(u a)e(u, ).
af=a
Notice that c(v, v~ 1t) = ¢(u, p~'a) = 1 since the fourth component of v and y is 0. Thus

hxp(a) = (v 'a) + (" a).

On the other hand,
prh(a)= > oa)h(B)e(,B) = plar " )e(ar™",v) + plap™ elap™ ", p).

1

Again, c(av™!,v) = c(ap™t, u) = 1 since the first components of v and y are even. Thus

pxh(a) = plav™) + plap™)
Since ™! = ([0]4, [0]4,0,0,[3]4) and p~=t = ([2]4,[0]4,0,0,[3]4), then
a + 6cly, [b+ 6d4,c,d, e+ 3]4)
ala, [bla, ¢, d, [e + 3]a)

(l
(l
(la+ 2+ 6cls, [b+ 6d]s,c,d, [e + 3]4)
(la+2]4, [ba, c,d, [e + 3]a).

Since ¢ is supported on S, then ¢ * h(a) is nonzero only if av=—! or ay~! isin S, i.e.,

if d € 2Z and e € {[1]4, [3]4}. Similarly, h * ¢(a) is nonzero only if v~ 'a or p~taisin S,

ie., if d € 2Z and e € {[1]4,[3]4}.
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Thus if d ¢ 2Z or e ¢ {[1]4,[3]4}, then @ * h(a) = 0 = h* p(a). Now let us consider
the case when d € 2Z and e € {[1]4, [3]4})-
If ¢ = 2k for some k € Z, then

v'a = (([a+ 6(2k)]4, [b+ 6d]4, 2k, d, [e + 3]4)
= ([ala, [b]a, 2k, d, [e + 3]s) = av™"

and

pla = ([a+ 2+ 6(2k)], [b+ 6], 2k, d, [e + 3]4)
= ([a + 2]4, [D]4, 2k, d, [e + 3]4) = ap~".

On the other hand, if ¢ = 2k + 1 for some k € Z, then

vla = ([a+6(2k+ 1)y, [b+6d]s, 2k +1,d,[e + 3]4)
([a + 2]43 [b]47 2k+1.d, [6 + 3]4) = alu‘il

and

pta = ([a+2+6(2k + 1)), [b+ 6da, 2k + 1,d, [e + 3]a)
([als, [D]a, 2k 4+ 1,d,[e + 3]4) = av™ .

Thus, in each case, ¢ * h(a) = h*x p(a) for all a € G and all ¢ € C.(5), and hence all
peCHS). O

Acknowledgments

We thank the mathematics departments at Northwestern University and Fitchburg
State University for support during the visits of the research group to these institutions.
We also thank Aidan Sims for his contributions to Proposition 4.1.
Appendix A. Proof of Lemma 3.6

We still owe the reader the proof of the following lemma:
Lemma 3.6. Suppose G is an étale groupoid, ¢ is a 2-cocyle on G, and S is maximal
among abelian subgroupoids of Iso(G) on which ¢ is symmetric. Let u be a unit. If

1 € GY satisfies ns = sn and ¢(s,n) = ¢(n, s) for all s € S¥, then n € S.

To do so, we require a few smaller results.
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Lemma A.1. Suppose G is a groupoid with a 2-cocycle ¢ and uw is a unit in G. If n,& € G
commute, then the following statements are equivalent:

c(&,m) =c(n,§) (21)
(&) =c(n™t,&n) (22)
c&n ) =cn™',9) (23)
c(&n~tm) = c(n,én ") (24)

Proof. We will show (21) = (22) = (23). Replacing n by !, the same argument also
gives (23) = (24) = (21) also, and so all conditions are equivalent.

Assume (21) holds. Since c(u, &) = ¢(§,u) = 1, we use the cocycle condition, and our
hypotheses that £&n = n& and ¢(&,n) = ¢(n, ), to see that

cén,n ) =c&m et (€ n) = cln™ ) e(€n)
e, & c(n,n) c(n. €)
c(n~hng) = cln™, &n).

Thus (21) = (22).
Next, assume Equation (22), i.e. c(én,n71) = c¢(n™1, &n). We compute

et =cln™, Emn ) =cln™ " (En).n~ ) e(n™" &n) e(€n.n~T)
=c(n ') =cl&n ),

which is exactly Equation (23). This concludes the proof. 0O

Lemma A.2. Suppose G is a groupoid with a 2-cocycle ¢ and w is a unit in G. Assume
further that S is an abelian subgroupoid of G on which c is symmetric. If n € G! satisfies
ns = sn for some s € Sy, the following are equivalent:

L e(s,n) = c(n, ).
2. For allt € 8¢, we have c(s,nt) = c(nt, s).

3. For somet € SY (nt s).

u’

we have ¢(s,nt)

Proof. Suppose Hypothesis 1 holds. Then

c(s,mt) = c(sn, t) c(s,n) c(n, t) = c(ns, t) c(n, s) c(n, 1)
= (c(n, st) (s, t) c(n, 5)) c(, ) c(n, t) = c(n, ts) c(t, s) c(n, 1)
= c(nt, s).

The penultimate equality follows from the fact that S is abelian and ¢ is symmetric on S.
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To see that Hypothesis 3 implies Hypothesis 1, note that the cocycle condition implies
that for any t € G,

c(s,n) =c(sn,t) c(s,nt) c(n,t), and
c(n, s) =c(ns,t) c(n, st) c(s,t).

Since S is abelian and ¢ is symmetric on S, we can rewrite the second equality as follows,
using the cocyle condition again for the last step:

c(n, s) = e(ns, t)e(n, ts) e(t, s) = e(ns, t)c(nt, s)c(n, t).

Hypothesis 3 and the assumption that sn = ns imply that the right hand sides of these
equations agree; that is, Hypothesis 3 implies Hypothesis 1. O

Proof of Lemma 3.6. First of all, note that Lemma A.2 shows that ¢(s, nt) = ¢(nt, s) for

-1

any s,t € S*. Moreover, the fact that n~1s = sn~! for any s € S¥, together with the

cocycle condition and Equation (23), imply that

c(tn™"n) =c(n,tn~") (25)

for all t € §.

Let T be the subgroupoid of Iso(G) generated by S and n; note that T is abelian. We
want to show that ¢ is symmetric on 7, so that maximality of S implies S = 7. Since
an arbitrary element of 7T is either in S or of the form sn* for s € S and k € Z, we
have to show

Lo
c(sn® ") = c(tn™, sn) (26)

for all s,t € Sp and all n, k € Z.
First, we prove the case n = 1, t = u, and k € Ny: the base case k = 0 is one of the
assumptions. We compute

Q

c(n, sn™) =

Q

c(n(sn®),m)
sn*),m)

(sn),m) = c(sn**,m),

(1, sn™) c(snk, n) (cocycle condition)
(sn*,m) c(sn

Yc(sn*,n) (induction hypothesis)

I
Q
—~

3

so we have shown that for all s € S, and k € Ny,

c(sn®,m) = c(n, sn*). (27)

Next, we want to show the case n = 0 and k € Ny: the base case k = 0 is true since ¢
is assumed symmetric on §. We compute
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c(sn* T t) = c(n, (sn®)t) c(sn®, ) c(n, sn*) = c(n, (ts)n*) c(sn”, t) c(n, sn*)

= c((ts)n",n) c(sn®,t) c(snk,n) = c(t(sn®),n) c(t, sn™) c(snk,n)
k‘+1).

c(t,sn
Thus, we have shown for all s,¢ € S and k € N,
c(snf,t) = c(t, sn®). (28)

Now, let us show Equation (26) for arbitrary n,k € Ny by induction on n. Equation
(28), which holds for all k € Ny, is the base case n = 0. We compute

c(snf, ") = c(snk (tn™), n) c(sn®, tn™) c(tnym, n) (cocycle condition)
= c(n, stn**") c(sn®, tn") c(n, tn") (Eq. (27) twice)
= c(n, sty e(tn™, sn*) e(n,ty?)  (induction hypothesis)
= c(n, (tn")sn*) e(tn™, su™) c(n, ™)
= c(tn" 1, snk). (cocycle condition)

To sum up: if ns = sn and ¢(s,n) = ¢(n, s) for every s € S¥, then
Vs, teS,,Vn, ke Ny, c(sn®, tn™) = c(tn™, sn®).

1 -1

Since 7ts = sn~! and since Lemma A.1 implies c(s,n™!) = ¢(n~1, s), the same proof

shows
Vs, teS)Vn, ke Ny, c(s(n_l)k,t(n_l)n) = c(t(n~H)", S(W_l)k)a
or in other words, we have for all s,t € S} and n,k € Ny
c(sn™F ™) = c(tn™", sn7"). (29)

It remains to check that c(sn®,tn™™) = c(tn~™,sn") for n,k € N*, which we do by
another induction. We check the base case n = 1:

c(sn® tn™h) = c(sn® mtn~) e(n, tn ™) e(snF=1, )
=c(sn" ) e(n,tn ) e(n, snF=1) = (s t) e(tn ™, m) c(n, spP~1)
= c(t,sn* ) e(tn™' ) c(n, snF=1) = c(tn~ ", sn").

Our final induction hypothesis is:
For a fixed n > 1 and all k € N, s,t € S¥, c(snf, tn™") = c(tn™", sn*).

We compute with the cocycle condition
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c(sns tn~ D) = e((sn* )~ i) e(sn® ) e(n =T i)
= C(snk L) e(sn® 7t ety n ) (Eq. (29))
= c(tn™" " sy eln ™t sn®) eltn 07T
= c(tn~ (”'H) ,snt). (cocycle condition)

This concludes our proof. O
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