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In this paper, we present a new way to associate a finitely summable spectral triple 
to a higher-rank graph Λ, via the infinite path space Λ∞ of Λ. Moreover, we prove 
that this spectral triple has a close connection to the wavelet decomposition of 
Λ∞ which was introduced by Farsi, Gillaspy, Kang, and Packer in 2015. We first 
introduce the concept of stationary k-Bratteli diagrams, in order to associate a 
family of ultrametric Cantor sets, and their associated Pearson-Bellissard spectral 
triples, to a finite, strongly connected higher-rank graph Λ. We then study the zeta 
function, abscissa of convergence, and Dixmier trace associated to the Pearson-
Bellissard spectral triples of these Cantor sets, and show these spectral triples are 
ζ-regular in the sense of Pearson and Bellissard. We obtain an integral formula for 
the Dixmier trace given by integration against a measure μ, and show that μ is a 
rescaled version of the measure M on Λ∞ which was introduced by an Huef, Laca, 
Raeburn, and Sims. Finally, we investigate the eigenspaces of a family of Laplace-
Beltrami operators associated to the Dirichlet forms of the spectral triples. We show 
that these eigenspaces refine the wavelet decomposition of L2(Λ∞, M) which was 
constructed by Farsi et al.
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1. Introduction

Both spectral triples and wavelets are algebraic structures which encode geometrical information. In this 
paper, we expand the correspondence established in [27] between wavelets and spectral triples for the infinite 
path space of the Cuntz algebras ON to the setting of higher-rank graphs. To be precise, we associate a 
family of Pearson-Bellissard spectral triples [59] to the infinite path space of a higher-rank graph (or k-graph) 
Λ, and relate these spectral triples with the representation of the higher-rank graph C∗-algebra C∗(Λ) on 
the infinite path space, and the associated wavelet decomposition, which were introduced in [28]. We also 
investigate the geometry of ultrametric Cantor sets associated to Λ by studying the ζ-functions and Dixmier 
traces associated to these spectral triples.

Spectral triples were introduced by Connes in [19] as a noncommutative generalization of a compact 
Riemannian manifold. A spectral triple consists of a representation of a pre-C∗-algebra A on a Hilbert 
space H, together with a Dirac-type operator D on H, which satisfy certain commutation relations. In the 
case when A = C∞(X) is the algebra of smooth functions on a compact spin manifold X, Connes showed 
[20] that the algebraic structure of the associated spectral triple suffices to reconstruct the Riemannian 
metric on X. Moreover, Connes established in [19] that the spectral dimension and Dixmier trace of this 
spectral triple recover the Riemannian volume form on X. To be precise, the dimension δ of the manifold X
agrees with the spectral dimension of (C∞(X), D, H). Furthermore, for any f ∈ C∞(X), the Dixmier trace 
Trω(f |D|−δ) is independent of the choice of generalized limit ω, and gives a rescaled version of 

∫
X
f dν, 

where ν denotes the volume form associated to the Riemannian metric. For more general spectral triples, 
the ζ-function and Dixmier trace associated to a spectral triple also play important roles in the applications 
of spectral triples to physics, from the standard model [21] to classical field theory [44].

In addition to spin manifolds, Connes studied spectral triples for the triadic Cantor set and Julia set in [19,
22]. Shortly thereafter, Lapidus [52] suggested studying spectral triples (A, H, D) where A is a commutative 
algebra of functions on a fractal space X, and investigating which aspects of the geometry of X are recovered 
from the spectral triple. Of the many authors (cf. [15,35,59]) who have pursued Lapidus’ program, we focus 
here on the spectral triples introduced by Pearson and Bellissard in [59].

Motivated by a desire to apply the tools of noncommutative geometry to the study of transversals of 
aperiodic Delone sets [3], Pearson and Bellissard constructed in [59] spectral triples for ultrametric Cantor 
sets associated to Michon trees. They also showed how to recover geometric information about the Cantor set 
C from their spectral triple: using the ζ-function and the Dixmier trace, Pearson and Bellissard reconstructed 
the ultrametric and the upper box dimension of C. Moreover, they constructed a family of Laplace-Beltrami 
operators Δs, s ∈ R, on L2(C, μ), where the measure μ arises from the Dixmier trace. Julien and Savinien 
subsequently applied the Pearson-Bellissard spectral triples to the study of substitution tilings in [42], by 
sharpening many of the results from [59] and reinterpreting them using stationary Bratteli diagrams.

In this paper, we extend the Pearson-Bellissard spectral triples to the setting of higher-rank graphs. 
A k-dimensional generalization of directed graphs, higher-rank graphs (also called k-graphs) were introduced 
by Kumjian and Pask in [51]. The combinatorial character of k-graph C∗-algebras has facilitated the analysis 
of their structural properties, such as simplicity and ideal structure [60,62,24,45,12], quasidiagonality [18]
and KMS states [40,39,38]. In particular, results such as [64,9,8,58] show that higher-rank graphs often 
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provide concrete examples of C∗-algebras which are relevant to Elliott’s classification program for simple 
separable nuclear C∗-algebras.

By associating Pearson-Bellissard spectral triples to k-graphs, this paper establishes a link between 
k-graphs and their C∗-algebras, and the extensive literature on the spectral geometry of fractal and Cantor 
sets (cf. [13,15,16,35,46,47,53] and the references therein). In these cases, as is the case in the present paper, 
the pre-C∗-algebra of the spectral triple is abelian. Since the C∗-algebra of a graph or k-graph is rarely 
abelian, other researchers (cf. [10,31,32]) have studied non-abelian spectral triples for graph C∗-algebras 
and related objects; the research in this paper offers a complementary perspective on the noncommutative 
geometry of higher-rank graph C∗-algebras, and in particular on the connection between wavelets and 
spectral triples.

In order to associate Pearson-Bellissard spectral triples to k-graphs, we introduce a new class of Bratteli 
diagrams: namely, the stationary k-Bratteli diagrams. Where a stationary Bratteli diagram is completely 
determined by a single square matrix A, the stationary k-Bratteli diagrams are determined by k matrices 
A1, . . . , Ak; see Definition 2.5 below. The space of infinite paths XB of a stationary k-Bratteli diagram B
is often a Cantor set, enabling us to study its associated Pearson-Bellissard spectral triple. Indeed, if the 
matrices A1, . . . , Ak are the adjacency matrices for a k-graph Λ, then the space of infinite paths in Λ is 
homeomorphic to the Cantor set XB (also called ∂B). In other words, the Pearson-Bellissard spectral triples 
for stationary k-Bratteli diagrams can also be viewed as spectral triples for higher-rank graphs.

We then proceed to study, in Section 3, the geometrical information encoded by these spectral triples. The-
orem 3.14 establishes that the Pearson-Bellissard spectral triple associated to (XBΛ , dδ) is finitely summable, 
with dimension δ ∈ (0, 1). Section 3.3 focuses on the Dixmier traces of the spectral triples, and establishes 
both an integral formula for the Dixmier trace (Theorems 3.23 and 3.28) and a concrete expression for the 
measure induced by the Dixmier trace (Theorem 3.26). These computations also reveal that the ultrametric 
Cantor sets (XBΛ , dδ) are ζ-regular in the sense of [59, Definition 11]. Other settings in the literature in 
which spectral triples on Cantor sets admit an integral formula for the Dixmier trace include [13,47,17,14].

In full generality, Dixmier traces are defined on the Dixmier-Macaev (also called Lorentz) ideal M1,∞ ⊆
K(H) inside the compact operators and are computed using a generalized limit ω (roughly speaking, a 
linear functional that lies between lim sup and lim inf). Although the theory of Dixmier traces can be quite 
intricate, many of the computations simplify substantially in our setting, and so our treatment of the general 
theory will be brief; we refer the interested reader to the extensive literature on Dixmier traces and other 
singular traces (cf. [19,56,54,11,47,34,55]). For each such generalized limit ω, there is an ω-Dixmier trace 
Tω defined on M1,∞; however, if T ∈ M1,∞ is measurable in the sense of Connes, then the value of Tω(T )
is independent of ω, and in many cases can be computed via residue formulas. Indeed this is the case for 
T = |D|−δ, see Corollary 3.19, if D is the Dirac operator of the Pearson-Bellissard spectral triple associated 
to the ultrametric Cantor set (XBΛ , dδ). The calculation of the Dixmier trace of |D|−δ is one of the most 
technical results of the paper, since it relies on the explicit computation of a residue formula, and was 
inspired by a related result (Theorem 3.9 of [42]) for the case of stationary Bratteli diagrams with primitive 
adjacency matrices. Theorem 3.18 underlies the major results mentioned in the previous paragraph.

The complexity of stationary k-Bratteli diagrams, as compared to the stationary Bratteli diagrams studied 
in [42], complicates the analysis of the ζ-function and Dixmier trace of our spectral triples. However, a side 
benefit of our approach is that, when restricted to the setting of stationary Bratteli diagrams, the theorems 
in Section 3 below hold for an irreducible matrix A. Thus, even for stationary Bratteli diagrams, the results 
in this paper are new: the authors of [59,42] imposed on A the stronger requirement of primitivity.

As mentioned earlier, one of our motivations for studying Pearson-Bellissard spectral triples for k-graphs 
was to understand their relationship with the wavelets and representations for k-graphs introduced in 
[28]. Wavelet analysis has many applications in various areas of mathematics, physics and engineering. For 
example, it has been used to study p-adic spectral analysis [50], pseudodifferential operators and dynamics 
on ultrametric spaces [48,49], and the theory of quantum gravity [26,2].
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Although wavelets were introduced as orthonormal bases or frames for L2(Rn) which behaved well under 
compression algorithms, wavelet decompositions for L2(X), where X is a fractal space, were defined by 
Jonsson [41] and Strichartz [65] shortly thereafter. In this fractal setting, the wavelet orthonormal bases 
reflect the self-similar structure of X. A few years later, Jonsson and Strichartz’ fractal wavelets inspired 
Marcolli and Paolucci [57] to construct a wavelet decomposition of L2(ΛA, μ) for the Cuntz-Krieger algebra 
OA, where A is an N ×N matrix, ΛA denotes the limit set of infinite sequences in an alphabet on N letters, 
and μ is a Hausdorff measure on ΛA. Similar wavelets were developed in the higher-rank graph setting by 
four of the authors of the current paper [28], using a separable representation π of the k-graph C∗-algebra 
C∗(Λ). In particular, this representation gave us a wavelet decomposition of L2(Λ∞, M), where Λ∞ denotes 
the space of infinite paths in the k-graph Λ, and the measure M was introduced by an Huef et al. in [40]. 
This wavelet decomposition is given by

L2(Λ∞,M) = V0 ⊕
⊕
n≥0

Wn. (1)

Each subspace1 Wn = {Sλf : f ∈ W0, λ ∈ Λ(n,...,n)} is constructed from W0 by means of limit “scaling and 
translation” operators Sλ := π(sλ) which reflect the (higher-rank) graph structure of Λ. (See Theorem 4.2 
of [28] or Section 4 below.)

One of the main results of this paper, Theorem 4.6, proves that the spectral triples of Pearson and 
Bellissard [59] are intimately tied to the wavelets of [28]. Recall that a Pearson-Bellissard spectral triple 
for an ultrametric Cantor set C gives rise to a family of Laplace-Beltrami operators Δs, s ∈ R, on L2(C, μ)
associated to the spectral triple’s Dirichlet form as in Equation (28) below. Julien and Savinien established 
in [42] that in the Bratteli diagram setting the eigenspaces of Δs are parametrized by the finite paths γ
in the Bratteli diagram. Theorem 4.6 establishes that when (C, μ) = (Λ∞, M), the eigenspaces Eγ of the 
Laplace-Beltrami operators refine the wavelet decomposition of (1).

This paper is organized as follows. In Section 2, we recall the basic facts about higher-rank graphs (or 
k-graphs) and we develop the machinery of stationary k-Bratteli diagrams (Definition 2.5). This enables us 
to construct a family of ultrametrics {dδ : δ ∈ (0, 1)} on the infinite path space Λ∞ of a k-graph Λ, identified 
as the boundary of the associated stationary k-Bratteli diagram BΛ. In many situations, Λ∞ ∼= XBΛ is a 
Cantor set (see Proposition 2.4); Section 3 studies the fine structure of the Pearson-Bellissard spectral triples 
associated to the ultrametric Cantor sets {XBΛ , dδ}δ∈(0,1). We begin by allowing δ to range over the interval 
(0, 1) because there is no a priori preferred value of δ in this range; later, we see in Corollary 3.15 that the 
Pearson-Bellissard spectral triple of (XBΛ , dδ) has dimension δ. However, other properties of the spectral 
triple (cf. Theorem 3.26) are independent of the choice of δ ∈ (0, 1).

The major technical achievements of this paper are Theorems 3.14 and 3.18. These results underpin 
Theorems 3.26 and 3.28, which offer less computationally intensive perspectives on the Dixmier trace. 
Theorem 3.14 establishes that the ζ-function of the spectral triple associated to the ultrametric Cantor 
set (XBΛ , dδ) has abscissa of convergence δ, while Theorem 3.18 enables the computation of the Dixmier 
trace integral formula in Theorems 3.23 and 3.28, which in turn reveals the ζ-regularity of (XBΛ , dδ). 
Theorem 3.26 then shows that under mild additional hypotheses, the measures μδ which appear in the 
Dixmier trace integral formula are simply a rescaling of the measure M on the infinite path space XBΛ that 
was introduced in Proposition 8.1 of [40] and which we used in [28] to construct a wavelet decomposition 
of L2(Λ∞, M).

Finally, Section 4 presents the promised connection between the Pearson-Bellissard spectral triples and 
the wavelet decomposition of L2(Λ∞, M) from [28]. Under appropriate hypotheses we show in Theorem 4.6

1 The subspaces denoted in this paper by Wn were labeled Wj,Λ for j ∈ N in Theorem 4.2 of [28].



C. Farsi et al. / J. Math. Anal. Appl. 482 (2020) 123572 5
that the eigenspaces Eγ of the Laplace-Beltrami operator Δs refine the wavelet decomposition of (1): namely, 
for all n ∈ N,

Wn =
⊕

nk≤|γ|<(n+1)k

Eγ .
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2. Higher-rank graphs and ultrametric Cantor sets

In this section, we review the basic definitions and results that we will need about directed graphs, 
higher-rank graphs, (weighted/stationary) Bratteli diagrams, infinite path spaces, and (ultrametric) Cantor 
sets. Throughout this article, N will denote the non-negative integers.

2.1. Bratteli diagrams

A directed graph is given by a quadruple E = (E0, E1, r, s), where E0 is the set of vertices of the graph, 
E1 is the set of edges, and r, s : E1 → E0 denote the range and source of each edge. A vertex v in a directed 
graph E is a sink if s−1(v) = ∅; we say v is a source if r−1(v) = ∅.

Definition 2.1. [6] A Bratteli diagram B = (V, E) is a directed graph with vertex set V = �n∈N Vn, and 
edge set E = �n≥1 En, where En consists of edges whose source vertex lies in Vn and whose range vertex 
lies in Vn−1, and Vn and En are finite sets for all n.

For a Bratteli diagram B = (V, E), define a sequence of adjacency matrices An = (fn(v, w))v,w of B for 
n ≥ 1, where

fn(v, w) = #
(
{e ∈ En : r(e) = v ∈ Vn−1, s(e) = w ∈ Vn}

)
,

where by #(Q) we denote the cardinality of the set Q. A Bratteli diagram is stationary if An = A1 =: A
are the same for all n ≥ 1. We say that η is a finite path of B if there exists m ∈ N such that η = η1 . . . ηm
for ηi ∈ Ei, and in that case the length of η, denoted by |η|, is m.

Remark 2.2. In the literature, Bratteli diagrams traditionally have s(En) = Vn and r(En) = Vn+1; our edges 
point the other direction for consistency with the standard conventions for higher-rank graphs and their 
C∗-algebras.

It is also common in the literature to require |V0| = 1 and to call this vertex the root of the Bratteli 
diagram; we will NOT invoke this hypothesis in this paper.

Definition 2.3. Given a Bratteli diagram B = (V, E), denote by XB the set of all of its infinite paths:

XB = {(xn)n≥1 : xn ∈ En and s(xn) = r(xn+1) for n ≥ 1}.
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For each finite path λ = λ1λ2 · · ·λ� in B with r(λ) ∈ V0, λi ∈ Ei, define the cylinder set [λ] by

[λ] = {x = (xn)n≥1 ∈ XB : xi = λi for 1 ≤ i ≤ �}.

The collection T of all cylinder sets forms a compact open sub-basis for a locally compact Hausdorff topology 
on XB and cylinder sets are clopen; we will always consider XB with this topology.

The following proposition will tell us when XB is a Cantor set; that is, a totally disconnected, compact, 
perfect topological space.

Proposition 2.4. (Lemma 6.4, of [1]) Let B = (V, E) be a Bratteli diagram such that B has no sinks outside of 
V0, and no sources. Then XB is a totally disconnected compact Haudorff space, and the following statements 
are equivalent:

1. The infinite path space XB of B is a Cantor set;
2. For each infinite path x = (x1, x2, ....) in XB and each n ≥ 1 there is an infinite path y = (y1, y2, ....)

with

x �= y and xk = yk for 1 ≤ k ≤ n;

3. For each n ∈ N and each v ∈ Vn there is m ≥ n and w ∈ Vm such that there is a path from w to v and

#(r−1({w})) ≥ 2.

2.2. Higher-rank graphs and stationary k-Bratteli diagrams

Definition 2.5. Let A1, A2, · · · , Ak be N × N matrices with non-negative integer entries. The stationary 
k-Bratteli diagram associated to the matrices A1, . . . , Ak, which we will call B(Aj)j=1,...,k , is the Bratteli 
diagram given by a set of vertices V = �n∈N Vn and a set of edges E = �n≥1 En, where the edges in En go 
from Vn to Vn−1, such that:

(a) For each n ∈ N, Vn consists of N vertices, which we will label 1, 2, . . . , N .
(b) When n ≡ i (mod k), there are Ai(p, q) edges whose range is the vertex p of Vn−1 and whose source is 

the vertex q of Vn.

In other words, the matrix A1 determines the edges with source in V1 and range in V0; then the matrix 
A2 determines the edges with source in V2 and range in V1; etc. The matrix Ak determines the edges with 
source in Vk and range in Vk−1, and the matrix A1 determines the edges with range in Vk and source in 
Vk+1.

Note that a stationary 1-Bratteli diagram is often called a stationary Bratteli diagram in the literature 
(cf. [6,42]).

Just as a directed graph has an associated adjacency matrix A which also describes a stationary Bratteli 
diagram BA, the higher-dimensional generalizations of directed graphs known as higher-rank graphs or 
k-graphs give us k commuting matrices A1, . . . , Ak and hence a stationary k-Bratteli diagram.

We use the standard terminology and notation for higher-rank graphs, which we review below for the 
reader’s convenience.
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Definition 2.6. [51] A k-graph is a countable small category Λ equipped with a degree functor2 d : Λ → Nk

satisfying the factorization property: whenever λ is a morphism in Λ such that d(λ) = m + n, there are 
unique morphisms μ, ν ∈ Λ such that d(μ) = m, d(ν) = n, and λ = μν.

We use the arrows-only picture of category theory; thus, λ ∈ Λ means that λ is a morphism in Λ. For 
n ∈ Nk, we write

Λn := {λ ∈ Λ : d(λ) = n}.

When n = 0, Λ0 is the set of objects of Λ, which we also refer to as the vertices of Λ.
Let r, s : Λ → Λ0 identify the range and source of each morphism, respectively. For v ∈ Λ0 a vertex, we 

define

vΛn := {λ ∈ Λn : r(λ) = v} and Λnw := {λ ∈ Λn : s(λ) = w}.

We say that Λ is finite if #(Λn) < ∞ for all n ∈ Nk, and we say Λ is source-free or has no sources if 
#(vΛn) > 0 for all v ∈ Λ0 and n ∈ Nk.

For 1 ≤ i ≤ k, write ei for the ith standard basis vector of Nk, and define a matrix Ai ∈ MΛ0(N) by

Ai(v, w) = #(vΛeiw).

We call Ai the ith adjacency matrix of Λ. Note that the factorization property implies that the matrices Ai

commute.

Despite their formal definition as a category, it is often useful to think of k-graphs as k-dimensional 
generalizations of directed graphs. In this interpretation, Λei is the set of “edges of color i” in Λ. The 
factorization property implies that each λ ∈ Λ can be written as a concatenation of edges in the following 
sense: A morphism λ ∈ Λ with d(λ) = (n1, n2, . . . , nk) can be thought of as a k-dimensional hyper-rectangle 
of dimension n1×n2 ×· · ·×nk. Any minimal-length lattice path in Nk through the rectangle lying between 
0 and (n1, . . . , nk) corresponds to a choice of how to order the edges making up λ, and hence to a unique 
decomposition or “factorization” of λ. For example, the lattice path given by walking in straight lines from 
0 to (n1, 0, . . . , 0) to (n1, n2, 0, . . . , 0) to (n1, n2, n3, 0, . . . , 0), and so on, corresponds to the factorization of 
λ into edges of color 1, then edges of color 2, then edges of color 3, etc.

For any directed graph E, the category of its finite paths ΛE is a 1-graph; the degree functor d : ΛE → N

takes a finite path λ to its length |λ|. Example 2.7 below gives a less trivial example of a k-graph. The 
k-graphs Ωk of Example 2.7 are also fundamental to the definition of the space of infinite paths in a 
k-graph.

Example 2.7. For k ≥ 1, let Ωk be the small category with

Obj (Ωk) = Nk, Mor (Ωk) = {(m,n) ∈ Nk ×Nk : m ≤ n}, r(m,n) = m, s(m,n) = n.

If we define d : Ωk → Nk by d(m, n) = n −m, then Ωk is a k-graph with degree functor d.

Definition 2.8. Let Λ be a k-graph. An infinite path of Λ is a k-graph morphism

x : Ωk → Λ;

2 We view Nk as a category with one object, namely 0, and with composition of morphisms given by addition.
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we write Λ∞ for the set of infinite paths in Λ. For each p ∈ Nk, we have a map σp : Λ∞ → Λ∞ given by

σp(x)(m,n) = x(m + p, n + p)

for x ∈ Λ∞ and (m, n) ∈ Ωk.

Remark 2.9.

(a) Given x ∈ Λ∞, we often write r(x) := x(0) = x(0, 0) for the terminal vertex of x. This convention 
means that an infinite path has a range but not a source.
We equip Λ∞ with the topology generated by the sub-basis {[λ] : λ ∈ Λ} of compact open sets, where

[λ] = {x ∈ Λ∞ : x(0, d(λ)) = λ}.

Remark 2.5 of [51] establishes that, with this topology, Λ∞ is a locally compact Hausdorff space.
Note that we use the same notation for a cylinder set of Λ∞ and a cylinder set of XB in Definition 2.3
since we will prove in Proposition 2.10 and Remark 2.11 (a) that Λ∞ is homeomorphic and Borel 
isomorphic to XBΛ for a finite, source-free k-graph Λ.

(b) For any λ ∈ Λ and any x ∈ Λ∞ with r(x) = s(λ), we write λx for the unique infinite path y ∈ Λ∞

such that y(0, d(λ)) = λ and σd(λ)(y) = x. If d(λ) = p, the maps σp and σλ := x �→ λx are local 
homeomorphisms which are mutually inverse:

σp ◦ σλ = id[s(λ)], σλ ◦ σp = id[λ],

although the domain of σp is Λ∞ � [λ].
Informally, one should think of σp as “chopping off” the initial segment of length p, and the map x �→ λx

as “gluing λ on” to the front of x. By “front” and “initial segment” we mean the range of x, since an 
infinite path has no source.

We can now state precisely the connection between k-graphs and stationary k-Bratteli diagrams.

Proposition 2.10. Let Λ be a finite, source-free k-graph with adjacency matrices A1, . . . , Ak. Denote by BΛ
the stationary k-Bratteli diagram associated to the matrices {Ai}ki=1. Then XBΛ is homeomorphic to Λ∞.

Proof. Fix x ∈ Λ∞ and write 1 := (1, 1, . . . , 1) ∈ Nk. Then the factorization property for Λ∞ implies that 
there is a unique sequence

(λi)i ∈
∞∏
i=1

Λ1

such that x = λ1λ2λ3 · · · with λi = x((i − 1)1, i1). (See the details in Remark 2.2 and Proposition 2.3 of 
[51]). Since there is a unique way to write λi = f i

1f
i
2 · · · f i

k as a composable sequence of edges with d(f i
j) = ej , 

we have

x = f1
1 f

1
2 · · · f1

kf
2
1 f

2
2 · · · f2

kf
3
1 · · · ,

where the nk + jth edge has color j. Thus, for each i, f i
j corresponds to an entry in Aj , and hence

f1
1 f

1
2 · · · f1

kf
2
1 f

2
2 · · · f2

kf
3
1 · · · ∈ XBΛ .
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Conversely, given y = (g�)� ∈ XBΛ , we construct an associated k-graph infinite path ỹ ∈ Λ∞ as follows. 
To y = (g�)� we associate a sequence (ηn)n≥1 of finite paths in Λ, where

ηn = g1 · · · gnk

is the unique morphism in Λ of degree (n, . . . , n) represented by the sequence of composable edges g1 · · · gnk. 
Recall from [51] Remark 2.2 that a morphism ỹ : Ωk → Λ is uniquely determined by {ỹ(0, n1)}n∈N . Thus, 
the sequence (ηn)n determines ỹ:

ỹ(0, 0) = r(y) = r(g1), ỹ(0, n1) := ηn ∀ n ≥ 1.

The map y �→ ỹ is easily checked to be a bijection which is inverse to the map x �→ f1
1 f

1
2 · · · f1

kf
2
1 f

2
2 · · · f2

kf
3
1

· · · .
Moreover, for any i ∈ N, 0 ≤ j ≤ k − 1, and any λ = f1

1 f
1
2 · · · f1

kf
2
1 f

2
2 · · · f2

kf
3
1 · · · f i

j with d(λ) =

(i − 1)1 + (
j︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0), both of these bijections preserve the cylinder set [λ]. In particular, these 
bijections preserve the “square” cylinder sets [λ] associated to paths λ with d(λ) = i1 for some i ∈ N. (If 
i = 0 then we interpret d(λ) = 0 ·1 as meaning that λ is a vertex in V0 ∼= Λ0.) From the proof of Lemma 4.1 
of [28], any cylinder set can be written as a disjoint union of square cylinder sets, and therefore the square 
cylinder sets generate the topology on Λ∞. We deduce that Λ∞ and XBΛ are homeomorphic, as claimed. �
Remark 2.11.

(a) Thanks to Proposition 2.10, we will usually identify the infinite path spaces XBΛ and Λ∞, denoting 
this space by the symbol which is most appropriate for the context. In particular, the Borel structures 
on XBΛ and Λ∞ are isomorphic, and so any Borel measure on Λ∞ induces a unique Borel measure on 
XBΛ and vice versa.

(b) The bijection of Proposition 2.10 between infinite paths in the k-graph Λ and in the associated Bratteli 
diagram BΛ does not extend to finite paths. While any finite path in the Bratteli diagram determines 
a finite path, or morphism, in Λ, not all morphisms in Λ have a representation in the Bratteli diagram. 
For example, if e1 is a morphism of degree (1, 0, . . . , 0) ∈ Nk in a k-graph (k > 1) with r(e1) = s(e1), 
the composition e1e1 is a morphism in the k-graph which cannot be represented as a path on the 
Bratteli diagram. However, the proof of Proposition 2.10 above establishes that “rainbow” paths in Λ

– morphisms of degree (
j︷ ︸︸ ︷

q + 1, . . . , q + 1, q, . . . , q) for some q ∈ N and 1 ≤ j ≤ k – can be represented 
uniquely as paths of length kq + j in the Bratteli diagram.

2.3. Ultrametrics on XB

Although the Cantor set is unique up to homeomorphism, different metrics on it can induce quite different 
geometric structures. In this section, we will focus on Bratteli diagrams B for which the infinite path space 
XB is a Cantor set. In this setting, we construct ultrametrics on XB by using weights on B. To do so, we 
first need to introduce some definitions and notation.

Definition 2.12. A metric d on a Cantor set C is called an ultrametric if d induces the Cantor set topology 
and satisfies the so-called strong triangle inequality

d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ C. (2)
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Definition 2.13. Let B be a Bratteli diagram. Denote by FB the set of finite paths in B with range in V0. 
For any n ∈ N, we write

FnB = {λ ∈ FB : |λ| = n}.

Given two (finite or infinite) paths λ, η in B, we say η is a sub-path of λ if there is a sequence γ of edges, 
with r(γ) = s(η), such that λ = ηγ.

For any two infinite paths x, y ∈ XB, we define x ∧ y to be the longest path λ ∈ FB such that λ is a 
sub-path of x and y. We write x ∧ y = ∅ when no such path λ exists.

Definition 2.14. (cf. [59]) A weight on a Bratteli diagram B is a function w : FB → R+ such that

• If V0 denotes the set of vertices at level 0, then 
∑

v∈V0
w(v) ≤ 1.

• limn→∞ sup{w(λ) : λ ∈ FnB} = 0.
• If η is a sub-path of λ, then w(λ) < w(η).

A Bratteli diagram with a weight is often called a weighted Bratteli diagram and denoted by (B, w).

Observe that the third condition implies that for any path x = (xn)n ∈ B (finite or infinite),

w (x1x2 . . . xn) > w (x1x2 · · ·xn+1) for all n.

The concept above of a weight was inspired by Definition 2.9 of [42] which was in turn inspired by the work 
of [59]; indeed, if one denotes a weight in the sense of [42] Definition 2.9 by w′, and defines w(λ) := w′(s(λ)), 
then w is a weight on B in the sense of Definition 2.14 above.

Proposition 2.15. Let (B, w) be a weighted Bratteli diagram such that XB is a Cantor set. The function 
dw : XB ×XB → R+ given by

dw(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x ∧ y = ∅,
0 if x = y,

w(x ∧ y) else,

is an ultrametric on XB. Moreover dw metrizes the cylinder set topology on XB.

Proof. It is evident from the defining conditions of a weight that dw is symmetric and satisfies dw(x, y) =
0 ⇔ x = y. Since the inequality (2) is stronger than the triangle inequality, once we show that dw satisfies 
the ultrametric condition (2) it will follow that dw is indeed a metric.

To that end, first suppose that dw(x, y) = 1; in other words, x and y have no common sub-path. This 
implies that for any z ∈ XB, at least one of dw(x, z) and dw(y, z) must be 1, so

dw(x, y) ≤ max{dw(x, z), dw(y, z)},

as desired. Now, suppose that dw(x, y) = w(x ∧ y) < 1. If dw(x, z) ≥ dw(x, y) for all z ∈ XB then we are 
done. On the other hand, if there exists z ∈ XB such that dw(x, z) < dw(x, y), then the maximal common 
sub-path of x and z must be longer than that of x and y. This implies that

dw(y, z) := w(y ∧ z) = w(y ∧ x) = dw(x, y);

consequently, in this case as well we have dw(x, y) ≤ max{d(x, z), dw(y, z)}.
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Finally, we observe that the metric topology induced by dw agrees with the cylinder set topology. This 
fact may be known, but because we did not find the proof in the literature, we include it here. Let B[x, r]
be the closed ball of center x and radius r > 0. We will show first that B[x, r] ⊂ [x1 · · ·xn] for some n ∈ N. 
To obtain an easy upper bound on the diameter of B[x, r], choose y, z ∈ B[x, r] and observe that

dw(y, z) ≤ max{dw(x, y), dw(x, z)} ≤ r.

Taking supremums reveals that diamB[x, r] ≤ r.
We now check that B[x, r] = [x1 · · ·xn] for some n ∈ N. By the definition of the weight w, there is a 

smallest n ∈ N such that

w(x1 · · ·xn) ≤ diamB[x, r].

If y ∈ B[x, r], then

diamB[x, r] ≥ dw(x, y) = w(x ∧ y) = w(x1 · · ·xm)

for some m ≥ n ∈ N by Definition 2.14 and the minimality of n. It follows that y ∈ [x1 · · ·xn], so that 
B[x, r] ⊂ [x1 · · ·xn]. On the other hand, if z ∈ [x1 · · ·xn] then

dw(z, x) = w(z ∧ x) ≤ w(x1 · · ·xn) ≤ diamB[x, r] ≤ r,

so z ∈ B[x, r] by construction, and hence [x1 · · ·xn] ⊂ B[x, r]. In other words, B[x, r] = [x1 · · ·xn] as 
claimed, so cylinder sets of XB and closed balls (which are open in the topology induced by the metric dw) 
agree. (If n = 0 then we interpret [x1 · · ·xn] as [r(x)].) �
2.4. Strongly connected higher-rank graphs

When Λ is a finite k-graph whose adjacency matrices satisfy some additional properties, there is a natural 
family {wδ}0<δ<1 of weights on the associated Bratteli diagram BΛ which induce ultrametrics on the infinite 
path space XBΛ . We describe these additional properties on Λ and the formula of the weights wδ below.

Definition 2.16. A k-graph Λ is strongly connected if, for all v, w ∈ Λ0, vΛw �= ∅.

In Lemma 4.1 of [40], an Huef et al. show that a finite k-graph Λ is strongly connected if and only if 
the adjacency matrices A1, . . . , Ak of Λ form an irreducible family of matrices. Also, Proposition 3.1 of [40]
implies that if Λ is a finite strongly connected k-graph, then there is a unique positive vector xΛ ∈ (0, ∞)Λ0

such that 
∑

v∈Λ0 xΛ
v = 1 and for all 1 ≤ i ≤ k,

Aix
Λ = ρix

Λ,

where ρi denotes the spectral radius of Ai. We call xΛ the Perron-Frobenius eigenvector of Λ. Moreover, an 
Huef et al. constructed a Borel probability measure M on Λ∞ in Proposition 8.1 of [40] when Λ is finite, 
strongly connected k-graph. The measure M on Λ∞ is given by

M([λ]) = ρ(Λ)−d(λ)xΛ
s(λ) for λ ∈ Λ, (3)

where xΛ is the Perron-Frobenius eigenvector of Λ and ρ(Λ) = (ρ1, . . . , ρk), and for n = (n1, . . . , nk) ∈ Nk,

ρ(Λ)n := ρn1
1 · · · ρnk .
k
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We know from Remark 2.11 that every finite path λ ∈ BΛ corresponds to a unique morphism in Λ. Using 
this correspondence and the homeomorphism XBΛ

∼= Λ∞ of Proposition 2.10, Equation (3) translates into 
the formula

M([λ]) = (ρ1 · · · ρt)−(q+1)(ρt+1 · · · ρk)−qxΛ
s(λ) (4)

for [λ] ⊆ XBΛ , where λ ∈ FBΛ with |λ| = qk + t and xΛ is the Perron-Frobenius eigenvector of Λ.
In the proof that follows, we rely heavily on the identification between Λ∞ and XBΛ by Proposition 2.10

and Remark 2.11 (a). We also use the observation from Remark 2.11 that every finite path in FBΛ corre-
sponds to a unique finite path λ ∈ Λ.

Proposition 2.17. Let Λ be a finite, strongly connected k-graph with adjacency matrices Ai. Then the infinite 
path space Λ∞ is a Cantor set whenever 

∏
i ρi > 1.

Proof. We let A = A1 . . . Ak; it is a matrix whose entries are indexed by Λ0 ×Λ0, and its spectral radius is ∏
i ρi. We assume that Λ∞ is not a Cantor set, and will prove that the spectral radius of A is at most 1, 

hence proving the Proposition.
Since Λ∞ is compact Hausdorff and totally disconnected, but not a Cantor set, it has an isolated point x. 

We write {γn}n∈N for the increasing sequence of finite paths in BΛ which are sub-paths of x. If n = �k + t, 
then |γn| = n and (thinking of γn as an element of Λ) d(γn) = (� + 1, . . . , � + 1, �, . . . , �) with t occurrences 
of � + 1. Since x is an isolated point, there exists N ∈ N such that for all n ≥ N , [γn] = {x}. Without loss 
of generality, we can assume that N = dk is a multiple of k, so that d(γN ) = (d, . . . , d). For n ≥ N , we 
write γn = γNηn, with |γn| = n and |ηn| = n −N = qk + t, so that d(ηn) = (q + 1, . . . , q + 1, q, . . . , q), with 
t occurrences of q + 1.

By Proposition 2.4, our hypothesis that x is an isolated point implies that for all n ≥ N , ηn is the unique 
path of degree d(ηn) whose range is s(γN ) = r(ηn). This, in turn, implies that for all n ≥ N , we have 
AqA1 . . . At(r(ηn), z) equal to 1 for a single z, and 0 otherwise. In other words, if we consider the column 
vector δv which is 1 at the vertex v and 0 else, we have that(

δr(ηn)
)T ·AqA1 . . . At =

(
δs(ηn)

)T
.

Note that for each n ≥ N with n − N = qk + t, s(ηn+1) is the label of the only non-zero entry in row 
s(ηn) of the matrix At. Since each entry in the sequence (s(ηn))n∈N is completely determined by a finite 
set of inputs – namely, the previous entry in the sequence, and the entries of the matrices At – and the set 
Λ0 of vertices is finite, the sequence (s(ηn))n∈N is eventually periodic. Let p be a period for this sequence. 
Then kp is also a period, so there exists J such that for all n ≥ J we have

(Ap)T δs(ηn) = δs(ηn).

If we average along one period and define

�v = 1
kp

J+kp∑
j=J+1

δs(ηj),

then we can compute that

AT�v = 1
kp

J+kp∑
j=J+1

δs(ηj) = �v,

so �v is an eigenvector of AT with eigenvalue 1, with non-negative entries.
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Since Λ is strongly connected by hypothesis, Lemma 4.1 of [40] implies that there exists a matrix AF

which is a finite sum of finite products of the matrices Ai and which has positive entries. This matrix AF

commutes with A, and therefore

ATAT
F�v = AT

FA
T�v = AT

F�v,

and so �u := AT
F�v is an eigenvector of AT with eigenvalue 1. Since AF is positive and �v is non-negative, �u is 

positive. Therefore, we can apply Lemma 3.2 of [40] and conclude that 
∏

i ρi = ρ(A) ≤ 1. �
Remark 2.18. The proof of Proposition 2.17 simplifies considerably if we add the hypothesis that each row 
sum of each adjacency matrix Ai is at least 2. In this case, any finite path γ in the Bratteli diagram has at 
least two extensions γe and γf . In terms of neighborhoods, this means that each clopen set [γ] contains at 
least two disjoint non-trivial sets [γe], [γf ]. It is therefore impossible to have a cylinder set [γ] consist of a 
single point. Therefore, there is no isolated point in XBΛ , and the path space is a Cantor set.

The next Proposition constructs, for any δ ∈ (0, 1), a weight wδ on the stationary k-Bratteli diagram 
BΛ of any k-graph Λ which satisfies certain mild hypotheses. In Section 3 below, we will examine the 
Pearson-Bellissard spectral triples associated to the ultrametric Cantor sets (XBΛ , dwδ

) and in particu-
lar the relationship between the parameter δ and various properties of the spectral triple. For example, 
Corollary 3.15 establishes that the spectral triple associated to (XBΛ , dwδ

) has spectral dimension δ, while 
Theorem 3.26 shows that the measure on XBΛ induced by the spectral triple is independent of δ.

Proposition 2.19. Let Λ be a finite, strongly connected k-graph with adjacency matrices Ai. For η ∈ FBΛ
with |η| = n ∈ N, write n = qk + t for some q, t ∈ N with 0 ≤ t ≤ k − 1. For each δ ∈ (0, 1), define 
wδ : FBΛ → R+ by

wδ(η) =
(
ρq+1
1 · · · ρq+1

t ρqt+1 · · · ρ
q
k

)−1/δ
xΛ
s(η), (5)

where xΛ is the unimodular Perron-Frobenius eigenvector for Λ. If the spectral radius ρi of Ai satisfies 
ρi > 1 ∀ i, then wδ is a weight on BΛ.

Proof. Recall that xΛ ∈ (0, ∞)Λ0 , 
∑

v∈Λ0 xΛ
v = 1 and Aix

Λ = ρix
Λ for all 1 ≤ i ≤ k; thus,

∑
v∈V0

wδ(v) =
∑
v∈V0

xΛ
v = 1,

and the first condition of Definition 2.14 is satisfied. Since ρi > 1 for all i and 0 < δ < 1,

lim
q→∞

(ρqi )
−1/δ = lim

q→∞

(
1

ρ
1/δ
i

)q

= 0.

Thus the second condition of Definition 2.14 holds. To see the third condition, we observe that it is enough 
to show that wδ(λ) > wδ(λf) for any edge f with s(λ) = r(f). Note that if |λ| = qk + j for q ∈ N and 
0 ≤ j ≤ k − 1, so that s(λ) ∈ Vqk+j , then∑

f:r(f)=s(λ)
d(f)=ej+1

wδ(λf) = ((ρ1 · · · ρk)qρ1 . . . ρj+1)−1/δ ∑
v∈Λ0

Aj+1(s(λ)), v)xΛ
v

= ((ρ1 · · · ρk)qρ1 . . . ρj)−1/δ
ρ
−1/δ
j+1 ρj+1x

Λ
s(λ)

< wδ(λ).
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Here the second equality follows since xΛ is an eigenvector for Aj+1 with eigenvalue ρj+1, and the final 
inequality holds because ρj+1 > 1 and 1/δ > 1, and consequently

ρ
1−1/δ
j+1 = 1

ρ
1/δ−1
j+1

< 1. �

Our primary application for the results of this section is the following.

Corollary 2.20. Let Λ be a finite, strongly connected k-graph with adjacency matrices Ai and let ρi be the 
spectral radius for Ai, 1 ≤ i ≤ k. Suppose that ρi > 1 for all 1 ≤ i ≤ k. Let (BΛ, wδ) be the associated 
weighted stationary k-Bratteli diagram given in Proposition 2.19. Then the infinite path space XBΛ is an 
ultrametric Cantor set with the metric dwδ

induced by the weight wδ.

Proof. Combine Proposition 2.19, Proposition 2.17, and Proposition 2.15. �
3. Spectral triples for ultrametric higher-rank graph Cantor sets

Proposition 8 of [59] (also see Proposition 3.1 of [42]) gives a recipe for constructing an even spectral 
triple for any ultrametric Cantor set induced by a weighted tree. We begin this section by explaining 
how this construction works in the case of the ultrametric Cantor sets which we associated to a finite 
strongly connected k-graph in the previous section. Section 3.1 recalls basic facts about spectral triples, and 
Section 3.2 investigates the ζ-function of the spectral triples coming from the ultrametric Cantor sets that 
arise from k-graphs. Finally, Section 3.3 uses the theory of Dixmier traces to construct measures on XBΛ

from these spectral triples. We also derive an integral formula for the Dixmier trace in this section.
To be precise, consider the Cantor set Λ∞ ∼= XBΛ with the ultrametric induced by the weight wδ of 

Equation (5). (Because of Proposition 2.10, we will identify the infinite path spaces of Λ and of BΛ, and use 
either Λ∞ or XBΛ to denote this space, depending on the context.) Under additional (but mild) hypotheses, 
Theorem 3.14 establishes that the ζ-function of the associated spectral triple has abscissa of convergence 
δ, and thus is finitely summable with dimension δ. After proving in Proposition 3.22 that the Dixmier 
trace of the spectral triple induces a well-defined measure μδ on XBΛ , Theorem 3.26 establishes that the 
normalization νδ of μδ agrees with the measure M introduced in [40] and used in [28] to construct a wavelet 
decomposition of L2(Λ∞, M), and is therefore independent of δ. Finally, Theorems 3.23 and 3.28 establish a 
Dixmier trace integral formula; the computations underlying these proofs also establish that the ultrametric 
Cantor set (XBΛ , dδ) is ζ-regular in the sense of [59].

Analogues of Theorem 3.14 and Proposition 3.22 were proved in Section 3 of [42] for stationary Bratteli 
diagrams (equivalently, directed graphs) with primitive adjacency matrices. However, even for directed 
graphs our results in this section are stronger than those of [42], since in this setting, our hypotheses are 
equivalent to saying that the adjacency matrix is merely irreducible.

A crucial hypothesis for the main results in this section is the following Hypothesis 3.1, which will be a 
standing hypothesis throughout the paper. Lemma 3.2 below identifies conditions under which the weights 
wδ of Equation (5) satisfy Hypothesis 3.1. To state this hypothesis, recall that for any Bratteli diagram 
(B, w) and λ ∈ FB,

diam[λ] = sup{dw(x, y) | x, y ∈ [λ]}. (6)

Hypothesis 3.1. The weight w of a weighted Bratteli diagram (B, w) satisfies

w(λ) = diam[λ] for all λ ∈ FB. (7)
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Lemma 3.2. Let B = BΛ for a finite, strongly connected k-graph Λ with no sources. Hypothesis 3.1 holds for 
the weights wδ of Equation (5) if and only if every vertex a ∈ Λ0 receives at least two edges of each color, 
i.e.

∑
b∈Λ0 Ai(a, b) ≥ 2 for all a ∈ Λ0 and 1 ≤ i ≤ k.

Proof. Recall that, by definition of dwδ
and the third condition of Definition 2.14,

diam[λ] = max{dwδ
(x, y) : x, y ∈ [λ]} = max{wδ(x ∧ y) : x, y ∈ [λ]} ≤ wδ(λ).

Moreover, the hypothesis that Λ be source-free forces each vertex a to receive at least one edge of each 
color.

Suppose, then, that every vertex a ∈ Λ0 receives at least two edges ea, fa of each color. Then for any 
λ ∈ FBΛ with s(λ) = a, there are then two infinite paths x = λea · · · , y = λfa · · · in [λ] such that 
dwδ

(x, y) = wδ(x ∧ y) = wδ(λ). Conversely, if there is a vertex a and a color i such that there is only one 
edge e of color i and range a, then for any x, y ∈ [λ] we have x ∧ y = λe and hence

wδ(λ) > wδ(λe) ≥ diam[λ]. �
Remark 3.3. Recall that the spectral radius of a non-negative matrix is at least the minimum of its row 
sums. It follows that if (BΛ, wδ) satisfies Hypothesis 3.1, then ρi ≥ 2 > 1 for all 1 ≤ i ≤ k, and hence 
ρ = ρ1 . . . ρk > 1. Therefore, the function wδ given in Equation (5) is automatically a weight when it 
satisfies Equation (7) (and hence Hypothesis 3.1). In this setting, wδ also gives rise to an ultrametric Cantor 
set (XBΛ , dwδ

) by Corollary 2.20.

3.1. A review of spectral triples on Cantor sets and the associated ζ-functions

We begin by recalling the definitions of a pre-C∗-algebra and of a spectral triple we use in our paper; see 
[19], [33, Chapter 10].

Definition 3.4. ([19, Section IV γ]) A pre-C∗-algebra of a C∗-algebra A is a ∗-subalgebra A of A, which is 
stable under the holomorphic functional calculus of A.

Pre-C∗-algebras are called local C∗-algebras in [7]. By [59, page 450], the ∗-algebra CLip(XB) ⊆ C(XB)
of Lipschitz continuous functions on (XB, dw) is a pre-C∗-algebra of the C∗-algebra C(XB).

Definition 3.5. (cf. [33, Definition 9.16], [59, Definition 9]) A spectral triple is a triple (A, H, D) consisting 
of:

• a pre-C∗-algebra A ⊆ A (with A and A unital) equipped with a faithful ∗-representation π of A by 
bounded operators on a Hilbert space H; and

• a selfadjoint operator D on H, with dense domain Dom D ⊆ H, such that

a (DomD) ⊆ DomD, ∀a ∈ A;

the operator [D, a], defined initially on Dom D, extends to a bounded operator on H for all a ∈ A; and 
D has compact resolvent.

A spectral triple is even if it has an associated grading operator Γ : H → H satisfying:

Γ∗ = Γ; Γ2 = 1; ΓD = −DΓ; Γπ(a) = π(a)Γ, ∀a ∈ A.
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We now review the construction of the spectral triple associated to an ultrametric Cantor set from [59]
(see also Section 3 of [42]).

Definition 3.6. Let (B, w) be a weighted Bratteli diagram satisfying Hypothesis 3.1 with XB a Cantor 
set. Let (XB, dw) be the associated ultrametric Cantor space. A choice function for (XB, dw) is a map 
τ : FB → XB ×XB such that τ(γ) = (τ+(γ), τ−(γ)) ∈ [γ] × [γ] and dw(τ+(γ), τ−(γ)) = diam [γ]. We denote 
by Υ the set of choice functions for (XB, dw). Note that Υ is nonempty whenever XB is a Cantor set, because 
Condition (3) of Proposition 2.4 implies that for every finite path γ of B we can find two distinct infinite 
paths x, y ∈ [γ] with x ∧ y = γ.

As in [59,42], let CLip(XB) be the pre-C∗-algebra of Lipschitz continuous functions on (XB, dw) and let 
H = �2(FB, C2). For τ ∈ Υ, we define a faithful ∗-representation πτ of CLip(XB) on H by

πτ (f) =
⊕
γ∈FB

(
f(τ+(γ)) 0

0 f(τ−(γ))

)
. (8)

A Dirac operator D on H is given by

D =
⊕
γ∈FB

1
diam[γ]

(
0 1
1 0

)
,

and the grading operator Γ is given by

Γ = 1�2(FB) ⊗
(

1 0
0 −1

)
.

The following results were established by Pearson and Bellissard [59].

Proposition 3.7. [59, Proposition 8] Let (B, w) be a weighted Bratteli diagram with XB a Cantor set, satis-
fying Hypothesis 3.1. Then (CLip(XB), �2(FB, C2), πτ , D, Γ) is an even spectral triple for all τ ∈ Υ.

Lemma 3.8. [59, Section 6.1] |D| is invertible. In particular |D|−1ψ(γ) = diam[γ] ψ(γ), for every ψ ∈
�2(FB, C2) and every finite path γ ∈ FB.

It follows that {δλ ⊗ ei : λ ∈ FB, i = 1, 2} is an orthonormal basis of �2(FB, C2) ∼= �2(FB) ⊗ C2

which consists of eigenvectors for |D|−1, where {e1, e2} is the standard orthonormal basis of C2. Moreover, 
since |D| is invertible, we can replace the operator < D >−1:= (1 + D2)−1/2, appearing commonly in the 
noncommutative geometry literature, by |D|−1.

Definition 3.9. [59], [4, Section 9.6] To any positive operator with discrete spectrum P , we can associate a 
ζ-function ζP which is defined on {s ∈ R : s >> 0} by

ζP (s) := Tr (P s) =
∑
n

λ(n, P )s.

It now follows that the standard ζ-function associated to the spectral triple (CLip(XB), H, πτ , D, Γ) can 
be described as follows.

Definition 3.10. [59, Section 6.1] The ζ-function associated to the Pearson-Bellissard spectral triple 
(CLip(XB), H, πτ , D, Γ) is given by
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ζw(s) := 1
2Tr (|D|−s) =

∑
λ∈FB

diam[λ]s =
∑

λ∈FB
w(λ)s, for s>>0. (9)

The above ζ-function ζw is a Dirichlet series since |D|−1 is compact with a decreasing sequence of 
eigenvalues (equal to the diameters, or weights, of the finite paths) by Lemma 3.8. Thus, by [36, Chapter 2], 
ζw extends to a meromorphic function on C which either converges everywhere, nowhere, or in the complex 
half plane s = Re(z) > s0 for some s0. In this last case we will call s0 the abscissa of convergence of ζw. In 
other words, s0 is the infimum of s > 0 such that ζw(z) converges for Re(z) > s.

To determine the abscissa of convergence of the ζ-function ζw, it suffices to evaluate ζw at points s ∈ R. 
Since we are primarily interested in the abscissa of convergence of ζw, throughout this article, we will only 
consider real arguments for ζw.

Remark 3.11. The factor 1
2 in Equation (9) is non-standard, but is frequently used for Pearson-Bellissard 

spectral triples (cf. [59,42]). Using the factor 1
2 ensures that ζδ(s) equals exactly the sum of the weights to 

the power s. However, this rescaling has no effect on the dimension or summability of the spectral triple 
(see Definition 3.12 below).

We also note that Theorem 3.14 below establishes that, in our case of interest (namely when B = BΛ for 
a k-graph Λ satisfying Hypothesis 3.1, and w = wδ for δ ∈ (0, 1)) the ζ-function ζwδ

(s) converges for s > δ.

Definition 3.12. If there exists p > 0 such that ζw(p) < ∞, then the spectral triple (CLip(XB), H, πτ , D, Γ)
is p-summable. The spectral triple is finitely summable if p-summable for some p > 0. The dimension of the 
spectral triple is inf{p : ζw(p) < ∞}.

3.2. Finite summability for the Pearson-Bellissard spectral triples of k-graphs

From now on we will focus on Pearson-Bellissard spectral triples of the form (CLip(XBΛ), H, πτ , D, Γ)
associated to the weighted stationary k-Bratteli diagram (BΛ, wδ) of a k-graph, with weight wδ as in Equation 
(5) of Proposition 2.19 above. In this case, the set of choice functions will be called ΥΛ. In particular we will 
show in Theorem 3.14 that the dimension of (CLip(XBΛ), H, πτ , D, Γ) is δ, which coincides with the abscissa 
of convergence of ζwδ

.
Before developing our theory further, we will present a simple example.

Example 3.13. Let Λ2 be the 2-graph with one vertex and two loops of each color, respectively ej and fj , 
with j = 1, 2, and with factorization relations

eifj = fiej , ∀i, j.

By [30, Section 5.1], every infinite path ω ∈ Λ∞
2 has a unique representative of the form

ei1fj1ei2fj2 . . . eikfjk . . . .

Therefore Λ∞
2 is in bijection with 

∏
N{0, 1}. The vertex matrices of this 2-graph are A1 = (2), A2 = (2), and 

therefore their spectral radii are 2, with Perron-Frobenius eigenvector equal to 1. The weights of Equation 
(5) of Proposition 2.19 are consequently given by

wδ(η) = 2−n
δ , where η = er1fr2er3fr4 . . . ern or η = er1fr2er3fr4 . . . ern−1frn .

Since there are 2n paths of length n in FBΛ, the zeta function ζwδ
is given by
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ζwδ
(s) =

∑
n≥0

(1
2

) s n
δ 2n.

Fix a weighted stationary k-Bratteli diagram (BΛ, wδ) with weights as in Equation (5) of Proposition 2.19. 
For this fixed choice of weights, we will write dδ for the ultrametric dwδ

, and ζδ for the ζ-function ζwδ

associated to (CLip(XBΛ), H, πτ , D, Γ).
We now show that the dimension of (CLip(XBΛ), H, πτ , D, Γ) is δ, which coincides with the abscissa of 

convergence of ζδ.

Theorem 3.14. Let Λ be a finite, strongly connected k-graph. Fix δ ∈ (0, 1) and suppose that Equation 
(7) holds for the weight wδ of Equation (5). Then the zeta function ζδ(s) has abscissa of convergence δ. 
Moreover, lims↘δ ζδ(s) = ∞. In particular, (CLip(XBΛ), H, πτ , D, Γ) is always finitely summable.

Proof. In order to explicitly compute ζδ(s), we first observe that we can rewrite

ζδ(s) =
∑

λ∈FBΛ

wδ(λ)s =
∑
n∈N

∑
λ∈FnBΛ

wδ(λ)s =
∑
q∈N

k−1∑
t=0

∑
λ∈F qk+tBΛ

wδ(λ)s, (10)

where Fn(BΛ) is the set of finite paths of BΛ with length n. Now, write A := A1 · · ·Ak for the product of 
the adjacency matrices of Λ. If t ∈ {0, 1, . . . , k − 1} is fixed and n = qk + t, then the number of paths in 
Fn(BΛ) with source vertex b and range vertex a is given by AqA1 · · ·At(a, b). Thus, writing ρ := ρ1 · · · ρk
for the spectral radius of A, the formula for wδ given in Equation (5) implies that

ζδ(s) =
k−1∑
t=0

1
(ρ1 · · · ρt)s/δ

∑
q∈N

∑
a,b∈V0

AqA1 · · ·At(a, b)
(xΛ

b )s

ρqs/δ
. (11)

Since all terms in this sum are non-negative, the series ζδ(s) converges iff it converges absolutely; hence, 
rearranging the terms in the sum does not affect the convergence of ζδ(s). Thus, we can rewrite

ζδ(s) =
k−1∑
t=0

∑
a,b,z∈V0

A1 · · ·At(z, b)
(ρ1 · · · ρt)s/δ

(xΛ
b )s

∑
q∈N

Aq(a, z)
ρqs/δ

. (12)

In order to show that ζδ(s) converges for s > δ, we begin by considering the sum 
∑

q∈N
Aq(a,z)
(ρs/δ)q . Since A

has a positive right eigenvector of eigenvalue ρ (namely xΛ), Corollary 8.1.33 of [37] implies that

Aq(a, z)
ρq

≤ max{xΛ
b }b∈V0

min{xΛ
b }b∈V0

∀ q ∈ N\{0}.

Consequently,

∑
q∈N

Aq(a, z)
ρqρ(s/δ−1)q ≤ δa,z + max{xΛ

b }b∈V0

min{xΛ
b }b∈V0

∑
q≥1

1
ρ(s/δ−1)q .

If s > δ, then our hypothesis that ρ > 1 implies that 1/ρ(s/δ−1) ∈ (0, 1), and thus 
∑

q≥1 ρ
(1−s/δ)q converges 

to (1 − ρ(1−s/δ))−1 − 1. Consequently,

∑
q∈N

Aq(a, z)
(ρs/δ)q

< ∞,

and hence ζδ(s) < ∞, for any s > δ since V0 is a finite set.
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To see that ζδ(s) = ∞ whenever s ≤ δ, we have to work harder. Theorem 8.3.5 part(b) of [37] implies 
that the Jordan canonical form of A is

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 0 0 . . . 0 0 0 0 0 0 0

0
. . . 0 0 0 . . . 0 0 0 0 0 0 0

0 0 ρ 0 0 . . . 0 0 0 0 0 0 0
0 0 0 ω1ρ 0 . . . 0 0 0 0 0 0 0

0 0 0 0
. . . 0 . . . 0 0 0 0 0 0

0 0 0 0 0 ω1ρ 0 . . . 0 0 0 0 0
0 0 0 0 0 0 ω2ρ 0 . . . 0 0 0 0
... . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
...

0 0 0 0 0 0 0 0 ωp−1ρ 0 . . . 0 0
0 0 0 0 0 0 0 0 0 Jp+1 0 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . .
...

0 0 0 0 0 0 0 . . . . . . . . . 0 Jm−1 0
0 0 0 0 0 0 0 . . . . . . . . . 0 0 Jm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where p is the period of A, ωi is a pth root of unity for each i, each eigenvalue ωiρ is repeated along the 
diagonal mi times, and Ji, i = p + 1, . . . , m are Jordan blocks – that is, upper triangular matrices whose 
constant diagonal is given by an eigenvalue αi of A (with |αi| < ρ) and which have a superdiagonal of 1s as 
the only other nonzero entries. Thus, for each 1 ≤ a, b ≤ |V0|,

Jq(a, b) ∈ {0} ∪ {ρq} ∪ {ρqωq
i : 1 ≤ i ≤ p− 1} ∪

{
1
α�
i

(
q

�

)
αq
i : 0 ≤ � ≤ dim Ji

}
. (13)

Consequently, ∣∣∣∣ 1
ρq

Jq(a, b)
∣∣∣∣ ∈ {0, 1} ∪

{
βi

1
|α�

i |

(
q

�

)
: βi = |αi|

ρ
< 1, 0 ≤ � ≤ dim Ji

}
.

Thanks to [63] and [5, Chapter 2], we know that since A has a positive eigenvector (namely xΛ) of 
eigenvalue ρ, lim�→∞

1
ρ�p+j A

�p+j exists for all 0 ≤ j ≤ p − 1, where p denotes the period of A. Moreover, if 
we write

A(j) = lim
�→∞

1
ρ�p+j

A�p+j (14)

for this limit, and τ for the maximum modulus of the eigenvalues αi of A with |αi| < ρ,

∀
(
τ

ρ

)p

< β < 1, ∃ Mβ,j ∈ R+ s.t. ∀ m ∈ N,

∣∣∣∣Amp+j(a, b)
ρmp+j

−A(j)(a, b)
∣∣∣∣ ≤ Mβ,jβ

m.

Thus, for all � ∈ N and all 0 ≤ j ≤ p − 1, and all such β,

A�p+j(a, b)
ρ�p+j

≥ A(j)(a, b) −Mβ,jβ
� for all � ∈ N. (15)

Reordering the summands of 
∑

q∈N Aq(a, b)(ρ−s/δ)q, we see that

∑
Aq(a, b)(ρ−s/δ)q =

p−1∑ ∑
A�p+j(a, b)(ρ−s/δ)�p+j .
q∈N j=0 �∈N
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Now, fix j ∈ {0, . . . , p − 1} and consider the sum

∑
�∈N

A�p+j(a, b)(ρ−s/δ)�p+j =
∑
�∈N

A�p+j(a, b)
ρ�p+j

(
1

ρs/δ−1

)�p+j

≥ 1
ρ(s/δ−1)j

∑
�∈N

(A(j)(a, b) −Mβ,jβ
�)

(
1

ρs/δ−1

)p�

.

If A(j)(a, b) > 0, the fact that β < 1 and Mβ,j > 0 implies that there exists M such that for � > M , 
A(j)(a, b) > Mβ,jβ

�. Consequently, if we define

K = 1
ρ(s/δ−1)j

M∑
�=0

A(j)(a, b) −Mβ,jβ
�

ρ(s/δ−1)p� ,

and write ν = A(j)(a, b) −Mβ,jβ
M > 0, the fact that {Mβ,jβ

�}�∈N is a decreasing sequence implies that

∑
�∈N

A�p+j(a, b)(ρ−s/δ)�p+j > K + ν

ρ(s/δ−1)j

∑
�>M

(
1

ρs/δ−1

)p�

. (16)

Since ρ > 1 and s ≤ δ, ρ(1−s/δ)p ≥ 1; consequently, the series 
∑

�>M (ρ(1−s/δ)p)� diverges to infinity. 
The fact that K, ν are finite now implies that 

∑
�∈N Amp+j(a, b)(ρ−s/δ)�p+j also diverges to infinity if 

A(j)(a, b) > 0.
Inequality (16) above also shows that we must have lims↘δ ζδ(s) = ∞. All terms are non-negative on 

both sides of this inequality, and Fatou’s Lemma for series applied to the right-hand side of (16) shows that

lim
s↘δ

ν

ρ(s/δ−1)j

∑
�>M

(
1

ρs/δ−1

)p�

≥ ν

ρ(δ/δ−1)j

∑
�>M

(
1

ρδ/δ−1

)p�

= ν ·
∑
�>M

(
1
1

)p�

= +∞. (17)

Now, we show that for each j, there must exist some (a, b) ∈ V0 such that A(j)(a, b) > 0. Recall that xΛ

is an eigenvector for A, and consequently for A�p+j. Thus,∑
b∈V0

A�p+j(a, b)xΛ
b = ρ�p+jxΛ

a .

Since xΛ is a positive eigenvector, there exists α > 0 such that xΛ
a > α for all a ∈ V0. Moreover, xΛ is a 

unimodular eigenvector, so 0 < xΛ
b ≤ 1 for all b ∈ V0. Thus the above equation becomes

ρ�p+jα < ρ�p+jxΛ
a =

∑
b∈V0

A�p+j(a, b)xΛ
b ≤

∑
b∈V0

A�p+j(a, b).

Consequently, for each a ∈ V0 and each � ∈ N there exists at least one vertex b such that

A�p+j(a, b)
ρ�p+j

>
α

#(V0)
.

Moreover, since #(V0) < ∞, the definition of the limit A(j) implies that there exists N ∈ N such that 
whenever � ≥ N we have

A(j)(a, b) > A�p+j(a, b)
�p+j

− α ∀a, b ∈ V0.

ρ 2#(V0)
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Now, fix a and � ≥ N . Choose b ∈ V0 such that A
�p+j(a,b)
ρ�p+j > α

#(V0) . It then follows that for this choice of b,

A(j)(a, b) > A�p+j(a, b)
ρ�p+j

− α

2#(V0)
>

α

2#(V0)
.

In other words, we have proved that

∀ 1 ≤ j ≤ p, ∀ a ∈ V0, ∃ b ∈ V0 s.t. A(j)(a, b) > α

2#(V0)
> 0. (18)

Finally, recalling that the matrices Ai commute, we observe that
∑
z∈V0

A�p+j(a, z)A1 · · ·At(z, b) = (A1 · · ·At)A�p+j(a, b) =
∑
z∈V0

A1 · · ·At(a, z)A�p+j(z, b).

Using this, we rewrite

ζδ(s) =
∑

a,b,z∈V0

k−1∑
t=0

A1 · · ·At(a, z)(xΛ
b )s

(ρ1 · · · ρt)s/δ
p−1∑
j=0

∑
�∈N

A�p+j(z, b)
ρ(�p+j)s/δ .

It now follows from our arguments above that ζδ(s) diverges whenever s ≤ δ. To convince yourself of 
this, it may help to recall that xΛ

b is positive for all vertices b, and that (since A1 · · ·At(a, z) represents the 

number of paths of degree (
t︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) with source z and range a) our hypothesis that Λ be source-free 
implies that 

∑
a A1 · · ·At(a, z) must be strictly positive for each t. In other words, ζδ(s) is computed by 

taking a bunch of sums that diverge to infinity when s ≤ δ, possibly adding some other positive numbers, 
multiplying the lot by some positive scalars, and adding the results. Consequently, δ is the abscissa of 
convergence of the ζ-function ζδ(s), as claimed. �

As a corollary to Theorem 3.14 we obtain

Corollary 3.15. Let Λ be a finite, strongly connected k-graph. Fix δ ∈ (0, 1) and suppose that Equation (7)
holds for the weight wδ of Equation (5). Then the spectral triple (CLip(XB), H, πτ , D, Γ) is finitely summable 
and its dimension is δ.

Example 3.16. (Continuation of Example 3.13) In this example,

ζδ(s) =
∑
n≥0

(1
2

) s n
δ 2n =

∑
n≥0

2n(1− s
δ ) = 1

1 − 2(1− s
δ ) ,

which evidently has abscissa of convergence δ, and satisfies lims↘δ ζδ(s) = ∞.

3.3. Dixmier traces and measures on XBΛ

In this section we show (in Proposition 3.22) that, via the machinery of Dixmier traces, the spectral triples 
(CLip(XBΛ), �2(FBΛ, C2), πτ , D, Γ) give rise to measures μδ on XBΛ . A careful analysis of these measures 
reveals that they are independent of the choice of the choice function τ ∈ ΥΛ. Furthermore, Theorem 3.23
gives an integral formula, using the measure μδ, for the Dixmier trace. This computation of the Dixmier 
trace also establishes (Remark 3.25) that the Cantor sets (XBΛ , dδ) are ζ-regular in the sense of Pearson 
and Bellissard [59].
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We conclude the section with Theorems 3.26 and 3.28. Theorem 3.26 establishes that for any choice of δ, 
the normalized measure νδ = 1

μδ(XBΛ )μδ agrees with the measure M , described in Equation (4), which was 
introduced by an Huef et al. in [40]. Consequently, the measures μδ are in fact independent of δ ∈ (0, 1). With 
Theorem 3.26 in hand, we obtain a more general integral formula for the Dixmier trace in Theorem 3.28.

We begin by discussing some preliminaries about Dixmier traces. For the convenience of those readers 
wishing to compare our discussion with other sources, we recall that in our case the operator |D|, and hence 
|D|δ, is invertible, and so what in most references we cite is called < D >−δ:= (1 + D2)−δ/2 gets replaced 
by |D|−δ in the formulas below; see for example [35], [34].

Definition 3.17. [56, Example 1.2.9] Let {σk(T )}k∈N denote the singular values of a compact operator T on 
a separable Hilbert space H, listed with multiplicity, in (weakly) decreasing order of absolute values. The 
Dixmier-Macaev ideal (also called the Lorentz ideal) M1,∞ is

{
T ∈ K(H) : lim sup

n

1
ln(n)

n∑
k=1

σk(|T |) < ∞
}
.

Following [56], for a generalized limit ω on �∞(N) vanishing on c0, we can define the Dixmier trace Tω, 
which is a linear functional on M1,∞.

An operator T in M1,∞ is measurable in the sense of Connes (or Connes measurable, or in [56] Dixmier 
measurable) if Tω(T ) = Tω′(T ), for all Dixmier traces ω, ω′ on M1,∞ [56, Page 222]. By [54] (see also [23, 
Proposition A4]), when T is positive this is equivalent to saying that lims↘1(s −1)Tr(T s) exists and is finite, 
in which case, lims↘1(s − 1)Tr(T s) = limn→+∞

1
ln(n)

∑n
k=1 σk(T ). This was originally proved by Connes 

and Moscovici in [23, Proposition A4], where they used the notation L(1,∞) for the Dixmier-Macaev ideal 
(cf. [23, Definition A2]).

Because Theorem 3.18 below establishes that our operators of interest are measurable in Connes’ sense, 
we will study the quantity

T (T ) = lim
s↘1

(s− 1)Tr(T s), (19)

which gives the value of any Dixmier trace applied to T if T is positive and measurable in the sense of 
Connes. Note that if A is a clopen set in the Cantor set XBΛ , then χA is Lipschitz; so if λ ∈ FBΛ, then the 
characteristic function χ[λ] of the cylinder set [λ] is Lipschitz.

Theorem 3.18. Let Λ be a finite, strongly connected k-graph. Fix δ ∈ (0, 1) and suppose that Hypothesis 3.1
holds for the weight wδ of Equation (5). Then for any λ ∈ FBΛ, the operator πτ (χ[λ])|D|−δ is measurable 

in the sense of Connes, and T
(
πτ (χ[λ])|D|−δ

)
is finite and positive.

Proof. We first observe that the since the operators πτ (χ[λ]) and |D|−δ are both diagonal with respect to 
the basis {δλ⊗ ei : λ ∈ FBΛ, i = 1, 2} of H, they commute. Since πτ (χ[λ]) and |D|−δ are also positive, then, 
πτ (χ[λ])|D|−δ is positive. We now note that, by Equation (10),

1
2Tr((πτ (χ[λ])|D|−δ)s) = a finite sum plus

∑
η∈FλBΛ

wδ(η)δs.

Write p for the period of A = A1 · · ·Ak. We will show that L1 := lims↘1(1 − ρp(1−s)) 
∑

η∈FλBΛ
wδ(η)δs and 

L2 := lim s− 1
p(1−s) are both finite and nonzero. It then follows that
s↘1 1 − ρ
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T
(
πτ (χ[λ])|D|−δ

)
= lim

s↘1
(s− 1)Tr

((
πτ (χ[λ])|D|−δ

)s)
= 4L1L2

is finite and nonzero, so πτ (χ[λ])|D|−δ is Connes measurable as claimed.
The fact that L2 ∈ (0, ∞) follows from L’Hospital’s rule:

lim
s↘1

s− 1
1 − ρp(1−s) = lim

s↘1

1
ρp(1−s) ln(ρp)

= 1
ln(ρp) ∈ (0,∞),

since p ≥ 1 and ρ = ρ1 · · · ρk > 1. To see that L1 ∈ (0, ∞), observe that if |λ| = qk,

∑
η∈FλBΛ

wδ(η)δs = 1
ρqs

k−1∑
t=0

∞∑
n=0

∑
v,b∈V0

An(s(λ), v)
ρns

A1 · · ·At(v, b)
(ρ1 · · · ρt)s

(xΛ
b )δs (20)

Again, since all terms in the sum are non-negative, rearranging the order of the summation has no effect 
on the convergence of the series.

Recall from our computations in Equation (13) of the Jordan form J of A that for any z, v ∈ V0 we can 
find constants cz,vi and polynomials P z,v

i such that for any n ∈ N, we have

An(z, v) = cz,v1 ρn + cz,v2 ωn
1 ρ

n + · · · + cz,vp ωn
p−1ρ

n +
m∑

i=p+1
P z,v
i (n)αn

i , (21)

where p is the period of A, ωi is a pth root of unity for all i, and each αi is an eigenvalue of A with |αi| < ρ. 
In more detail, writing A = C−1JC for some invertible matrix C, we have

cz,vi =
m0+···+mi∑

j=m0+···+mi−1+1
C−1(z, j)C(j, v)

and P z,v
i (n) =

∑
(a,b):Jn

i (a,b) 
=0

C−1(z, a)C(b, v) 1
αb−a
i

(
n

b− a

)
.

Recall that since Ji is a Jordan block, Jn
i (a, b) = 0 unless a ≤ b. Equivalently, setting cz,v;n = cz,v1 +cz,v2 ωn

1 +
.... + cz,vp ωn

p−1, we have

An(z, v) = cz,v;nρ
n +

m∑
i=p+1

P z,v
i (n)αn

i . (22)

Observe that the definition of cz,v;n implies that cz,v;n = cz,v;n+p for all n ∈ N. Moreover, if we consider 
the limit A(j)(z, v) = lim�→∞

A�p+j(z,v)
ρ�p+j , Equation (22) implies that

A(j)(z, v) = cz,v;j , (23)

so each cz,v;j is a non-negative real number.
Using Equation (22), we rewrite a portion of Equation (20):

∞∑
n=0

An(s(λ), v)
ρns

=
p−1∑
j=0

cs(λ),v;j

∞∑
�=0

ρ(�p+j)(1−s) +
∞∑

n=0

m∑
i=1

P
s(λ),v
i (n)

(
αi

ρs

)n

=
p−1∑
j=0

ρjcs(λ),v;j

1 − ρp(1−s) +
m∑
i=1

∞∑
n=0

P
s(λ),v
i (n)

(
αi

ρs

)n

.
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The fact that ρ > 1, s > 1 and p ≥ 1 implies that the ratio ρp(1−s) of the geometric series 
∑∞

�=0 ρ
(�p+j)(1−s)

is less than 1. Moreover, since P z,v
i (n) is a polynomial in n, the fact that s > 1 and that |αi| < ρ for all i

implies that the second sum above converges to a finite value Fv(s); indeed, the function Fv(s) is continuous 
(and finite) at s = 1. Consequently,

L1 = lim
s↘1

(1 − ρp(1−s))
∑

η∈FλBΛ

wδ(η)δs

= lim
s↘1

1 − ρp(1−s)

ρqs

k−1∑
t=0

∞∑
n=0

∑
v,b∈V0

An(s(λ), v)
ρns

A1 · · ·At(v, b)
(ρ1 · · · ρt)s

(xΛ
b )δs

= lim
s↘1

1 − ρp(1−s)

ρqs

⎛
⎝k−1∑

t=0

∑
v,b∈V0

A1 · · ·At(v, b)
(ρ1 · · · ρt)s

(xΛ
b )δs

⎛
⎝p−1∑

j=0

ρjcs(λ),v;j

1 − ρp(1−s) + Fv(s)

⎞
⎠

⎞
⎠

= lim
s↘1

1
ρqs

∑
v∈V0

p−1∑
j=0

ρjcs(λ),v;j(1 − ρp(1−s))
1 − ρp(1−s)

∑
b∈V0

k−1∑
t=0

A1 · · ·At(v, b)
(ρ1 · · · ρt)s

(xΛ
b )sδ

= 1
ρq

∑
v,b∈V0

p−1∑
j=0

ρjcs(λ),v;j

k−1∑
t=0

A1 · · ·At(v, b)
ρ1 · · · ρt

(xΛ
b )δ,

which is finite and nonzero. (The penultimate equality holds because the continuity of Fv(s) at s = 1 implies 
that lims↘1

1−ρp(1−s)

ρqs Fv(s) = 0.) Consequently, πτ (χ[λ])|D|−δ is Connes measurable whenever |λ| = qk.
If |λ| = qk + t0 for some t0 > 0, the same argument as above will show that πτ (χ[λ])|D|−δ is Connes 

measurable; one simply has to take more care with the indexing of the sums. �
Corollary 3.19. Under the hypotheses of Theorem 3.18, |D|−δ is Connes measurable, and its Dixmier trace 
is positive.

Proof. The fact that T
(
πτ (χ[λ])|D|−δ

)
exists and is finite for all λ ∈ FBΛ implies that T (πτ (χXBΛ

)|D|−δ)
is also finite, since XBΛ = �v∈V0 [v] and V0 is finite. Moreover, πτ (χXBΛ

) = 1 ∈ B(H). Observing that |D|−δ

is positive, and that T (πτ (χ[v])|D|−δ) is positive for each v ∈ V0, completes the proof. �
Remark 3.20. Observe that the constants L1, L2 (and therefore the Dixmier trace T

(
πτ (χ[λ])|D|−δ

)
=

4L1L2) are independent of the choice function τ . For each δ ∈ (0, 1), we can therefore use the Dixmier trace 
to define a function μδ on the Borel σ-algebra of XBΛ :

μδ([λ]) = Dixmier trace of
(
πτ (χ[λ])|D|−δ

)
= T (πτ (χ[λ])|D|−δ) = lim

s↘1
(s− 1)Tr((πτ (χ[λ])|D|−δ)s). (24)

Example 3.21. (Continuation of Examples 3.13, 3.16) For this example, we can show directly that 
πτ (|D|−δ) ∈ M1,∞. By Equation (9), the singular values of 1

2πτ (|D|−δ) are precisely its eigenvalues, which 
are

1 with multiplicity 1; (1
2), with multiplicity 2; . . . ( 1

2k ), with multiplicity 2k; . . .

Therefore, for say Nn = 2n+1 − 1:

2
ln(Nn)

Nn∑
(eigenvalues of |D|−δ) = 2 (n + 1)

ln(2n+1 − 1) .

k=0
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So lim supN→+∞
1

ln(N)
∑N

k=0 (eigenvalues of |D|−δ) < +∞, and |D|−δ is in the Dixmier-Macaev ideal 
M1,∞. Furthermore, with the methods of Theorem 3.18, we see that |D|−δ is measurable in the sense of 
Connes and that the Dixmier trace of |D|−δ is given by

lim
s↘1

(s− 1)
+∞∑
k=0

(eigenvalues of |D|−δ)s = lim
s↘1

2 (s− 1)
+∞∑
k=0

(1
2

)k s

2k

= lim
s↘1

2 (s− 1)
+∞∑
k=0

(
2
)k−ks

= lim
s↘1

2 (s− 1)
1 − 2(1−s) = 2

ln 2 .

Proposition 3.22. Let Λ be a finite, strongly connected k-graph; fix δ ∈ (0, 1) such that (BΛ, wδ) satisfies 
Hypothesis 3.1. The function μδ of Equation (24) determines a unique finite measure on XBΛ

∼= Λ∞. That 
is, the assignment

[λ] → μδ([λ]), for every λ ∈ FBΛ,

determines a unique finite measure on XBΛ .

Proof. This proof relies on Carathéodory’s theorem [25, Theorem A.1.3]. Notice that

F := {[λ] : λ ∈ FBΛ}

is closed under finite intersections (if [λ] ∩ [γ] �= ∅, then either λ is a sub-path of γ or vice versa, and thus 
(in the first case) [λ] ∩ [γ] = [γ]), and

[λ]c = �
|λi|=|λ|,λi 
=λ

[λi].

In other words, the complement of any element of F can be written as a finite disjoint union of elements 
of F . Therefore F is a semiring of sets, so the fact that Λ is finite means that the collection of all finite 
disjoint unions of cylinder sets [λ], for λ ∈ FBΛ, is an algebra.

Since F generates the topology on XBΛ , and μδ([γ]) is finite for all [γ] ∈ F by hypothesis, Carathéodory’s 
theorem tells us that in order to show that μδ determines a measure on XBΛ , we merely need to check that 
μδ is σ-additive on F . In fact, since the cylinder sets [γ] are clopen, the fact that XBΛ is compact means 
that it is enough to check that μδ is finitely additive on F .

Recall that in calculating

μδ([γ]) = lim
s↘1

2(s− 1)
∑

λ∈FγBΛ

wδ(λ)δs

we can ignore finitely many initial terms in the sum. Thus, for any L ∈ N,

μδ([γ]) = lim
s↘1

2(s− 1)
∑

λ∈FγBΛ: |λ|≥L

wδ(λ)δs. (25)

Now, suppose that [γ] = �N
i=1[λi]. Write L = maxi |λi|, and for each i, write [λi] = ��[λi,�] where |λi,�| = L. 

If λ ∈ FγBΛ with |λ| ≥ L, then λi is a sub-path of λ for precisely one i, and hence
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μδ([γ]) = lim
s↘1

2(s− 1)
∑

λ∈FγBΛ
|λ|≥L

wδ(λ)δs = lim
s↘1

2(s− 1)
∑
i

∑
λ∈Fλi

BΛ

wδ(λ)δs

=
∑
i

μδ([λi]) =
∑
i,�

μδ([λi,�]).

For each fixed i, ��[λi,�] = [λi], so the same argument will show that μδ([λi]) =
∑

� μδ([λi,�]). Thus,

μδ([γ]) =
∑
i,�

μτ,δ([λi,�]) =
∑
i

μδ([λi]).

Since μδ is finitely additive on F , Carathéodory’s theorem allows us to conclude that it gives a well-defined 
finite measure on XBΛ . �

Our next main result establishes that under our standard hypotheses on Λ, if τ is a choice function and 
f ∈ C(XBΛ) is a continuous function, then πτ (f)|D|−δ is Connes measurable. Before beginning the proof, 
we make a few remarks which we will invoke regularly in the proof:

1. Since the Lipschitz functions are dense in C(XBΛ), we can extend the representation πτ to a represen-
tation of C(XBΛ) on H, which we will continue to denote by πτ .

2. Recall (from the proof of Theorem 3.18) that πτ (χ[λ])|D|−t = |D|−tπτ (χ[λ]) for any t > 0 and any 
λ ∈ FBΛ. Consequently, |D|−t also commutes with C(XBΛ).

Theorem 3.23. Let Λ be a finite, strongly connected k-graph; fix δ ∈ (0, 1) such that Hypothesis 3.1 holds for 
(BΛ, wδ), and fix a choice function τ . Let μδ be the Borel measure on XBΛ described in Proposition 3.22. 
Then πτ (f)|D|−δ is Connes measurable for all f ∈ C(XBΛ), and the Dixmier trace of πτ (f)|D|−δ is given 
by

T
(
πτ (f)|D|−δ

)
= lim

s↘1
(s− 1)Tr(πτ (f)|D|−δs) =

∫
XBΛ

f(x) dμδ(x).

Proof. Replacing t with 1
s−1 in the proof of [56, Theorem 8.6.5], and applying this proof to the setting ω =

limt→∞, M = B(H), τ = Tr, A = |D|−δ implies that for any f ∈ C(XBΛ)+, if lims↘1(s − 1)Tr(πτ (f)|D|−δs)
exists and is finite, then (since πτ (f) and |D|−r commute for any r > 0)

lim
s↘1

(s− 1)Tr((πτ (f)|D|−δ)s) = lim
s↘1

(s− 1)Tr(πτ (f)|D|−δs).

So for f non-negative and continuous, it also follows from [23] that if lims↘1(s − 1)Tr(πτ (f)|D|−δs) exists 
and is finite, then πτ (f)|D|−δ is Connes measurable, and its Dixmier trace is lims↘1(s −1)Tr(πτ (f)|D|−δs).

Note that by Theorem 3.18, if φ is a simple function on XBΛ of the form φ =
∑m

j=1 αjχ[λj ], then linearity 
of the integral combines with Proposition 3.22, our remarks in the first paragraph of this proof, and the 
definition of μδ in Equation (24) to show that

lim
s↘1

(s− 1)Tr(πτ (φ)|D|−δs) =
m∑
j=1

αj lim
s↘1

(s− 1)Tr(πτ (χ[λj ])|D|−δs) =
∫

XBΛ

φ(x) dμδ(x).

Fix ε ∈ (0, 1) and f ∈ C(XBΛ). There exists η1 > 0 such that whenever s ∈ (1, 1 + η1),

|(s− 1)Tr(|D|−sδ) − T (|D|−δ)| < ε.
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By the Stone-Weierstrass Theorem, the simple functions made from characteristic functions corresponding 
to finite paths in FBΛ are dense in C(XBΛ) so given our fixed continuous function f there is a simple 
function φ of the desired type with ‖f − φ‖sup < ε

4(T (|D|−δ)+1) , and hence

∣∣∣∣∣∣∣
∫

XBΛ

φ(x)dμδ(x) −
∫

XBΛ

f(x)dμδ(x)

∣∣∣∣∣∣∣ ≤
∫

XBΛ

‖f − φ‖sup dμδ(x) <
∫

XBΛ

ε

4(T (|D|−δ) + 1) · 1 dμδ(x) < ε

4 .

By our remarks at the beginning of this proof, there exists η2 > 0 such that if s ∈ (1, 1 + η2),

∣∣∣∣∣∣∣(s− 1)Tr(πτ (φ)|D|−δs) −
∫

XBΛ

φ(x) dμδ(x)

∣∣∣∣∣∣∣ <
ε

4 .

We now let η = min{η1, η2}. Suppose that s ∈ (1, 1 + η). Then,

∣∣∣∣∣∣∣(s− 1)Tr(πτ (f)|D|−δs) −
∫

XBΛ

f(x)dμδ(x)

∣∣∣∣∣∣∣ ≤ |(s− 1)Tr(πτ (f)|D|−δs) − (s− 1)Tr(πτ (φ)|D|−δs)|

+

∣∣∣∣∣∣∣(s− 1)Tr(πτ (φ)|D|−δs) −
∫

XBΛ

φ(x)dμδ(x)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫

XBΛ

φ(x)dμδ(x) −
∫

XBΛ

f(x)dμδ(x)

∣∣∣∣∣∣∣
= |(s− 1)Tr(πτ (f − φ)|D|−sδ)| + ε

4 + ε

4 ≤ (s− 1) Tr(|D|−sδ) · ‖πτ (f − φ)‖B(H) + ε

2

≤ (T (|D|−δ) + ε) · ε

4(T (|D|−δ) + 1) + ε

2 ≤ ε

4 + ε2

4 + ε

2 < ε.

In the penultimate inequality we used the fact that the set of trace class operators is an ideal in B(H), 
and if K is a trace-class operator and T ∈ B(H), |Tr(TK)| ≤ Tr(|K|) · ‖T‖B(H) [61, Page 218, Ex. 28a]. 
Thus we have established that

T (πτ (f)|D|−sδ) = lim
s↘1

(s− 1)Tr(πτ (f)|D|−sδ) =
∫

XBΛ

fdμδ(x) (26)

for any f ∈ C(XBΛ). As indicated at the beginning of the proof, for any non-negative function f ∈ C(XBΛ)+, 
πτ (f)|D|−δ is Connes measurable and Equation (26) computes its Dixmier trace. The linearity of the Dixmier 
trace, combined with the fact that any f ∈ C(XBΛ) can be written as the difference of two non-negative 
continuous functions, f = f+ − f−, now implies that for any f ∈ C(XBΛ), πτ (f)|D|−δ is also Connes 
measurable, and that Equation (26) gives the Dixmier trace of πτ (f)|D|−δ for all f ∈ C(XBΛ). �
Remark 3.24. Proposition 3.22 and Theorem 3.23 can also be deduced by following the argument indicated in 
[47]. Since πτ (|D|−δ) is in the Dixmier-Macaev ideal M1,∞ by Theorem 3.18, we have πτ (f)|D|−δ ∈ M1,∞, 
for all f ∈ C(XBΛ). For a fixed generalized limit ω, the Dixmier trace functional Dω : C(XBΛ) → C, defined 

by Dω

(
f
)

:= Tω
(
πτ (f)|D|−δ

)
is bounded, see e.g. [47, page 1826]. Now the Riesz representation theorem 

for linear functionals on C(XBΛ) implies that there exists a finite measure μω (also possibly dependent on 
τ and δ) on XBΛ such that (see [47, page 1826])
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Dω

(
f
)

=
∫

XBΛ

f dμω, ∀f ∈ C(XBΛ).

But by the Carathéodory/Kolmogorov extension theorem, the measure μω is determined by its values on 
cylinder sets. This evaluation on cylinder sets is (by Remark 3.20) independent of τ and ω; in other words, 
μω = μδ for all ω. Therefore we get

Dω

(
f
)

=
∫

XBΛ

f dμδ, ∀f ∈ C(XBΛ), for all generalized limits ω.

Remark 3.25. Theorem 3.23 also shows that the Cantor set XBΛ is ζ-regular in the sense of Definition 11 
of [59]. This is an immediate corollary of Theorem 3.23, Corollary 3.19, and the definition of ζ-regularity, 
together with the elementary observation that the limit of the quotient is the quotient of the limits if the 
latter exist.

Our next step will be the determination of the measure μδ on XBΛ , up to renormalization.

Theorem 3.26. Let Λ be a finite, strongly connected k-graph for which Lemma 3.2 holds. Write Ai for the i-th 
adjacency matrix of Λ and suppose that A = A1 · · ·Ak is irreducible. For any δ ∈ (0, 1), the normalization 
νδ of the measure μδ on XBΛ defined by

νδ(O) = μδ(O)
μδ(XBΛ) = T (πτ (χO)|D|−δ)

T (|D|−δ) for every Borel set O of XBΛ (27)

agrees with the measure M introduced in Proposition 8.1 of [40]. In particular, νδ is a probability measure 
which is independent of the choice of δ.

Proof. For any path γ ∈ FvBΛ with |γ| ≥ k, write γ = γ0γ
′ with |γ0| = k. Since r(γ′) ∈ Vk = V0, we can 

identify γ′ with a path in FBΛ. Then Proposition 2.19 tells us that

wδ(γ) = ρ−1/δwδ(γ′).

Consequently,

μδ([v]) = lim
s↘1

2(s− 1)
∑

γ∈FvBΛ

wδ(γ)δs = lim
s↘1

2(s− 1)

⎛
⎝ ∑

r(γ)=v,|γ|<k

wδ(γ)δs +
∑

r(γ)=v,|γ|≥k

wδ(γ)δs
⎞
⎠

= lim
s↘1

2(s− 1)

⎛
⎝ ∑

r(γ)=v,|γ|<k

wδ(γ)δs +
∞∑

n=1

k−1∑
t=0

∑
r(γ)=v, |γ|=nk+t

wδ(γ)δs
⎞
⎠

= lim
s↘1

2(s− 1)

⎛
⎝ ∑

r(γ)=v,|γ|<k

wδ(γ)δs + ρ−s
∞∑

n=0

k−1∑
t=0

∑
z∈Λ0

∑
r(γ′)=z, |γ′|=nk+t

A(v, z)wδ(γ′)δs
⎞
⎠

= lim
s↘1

1
ρs

2(s− 1)
∑
z∈Λ0

A(v, z)
∑

γ′∈FzBΛ

wδ(γ′)δs

= 1
ρ

∑
z∈Λ0

A(v, z)μδ([z]).
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The third equality holds because of the formula (5) for the weight wδ; to be precise, if γ = γ0γ
′ and |γ0| = k, 

then wδ(γ)δs = ρ−swδ(γ′)δs. Moreover, for each fixed such path γ′ with range z and length (n − 1)k + t, 
there are A(v, z) paths γ of length nk + t and range v such that γ = γ0γ

′ for some path γ0 with length k. 
The penultimate equality holds because the first sum (being finite) tends to zero as s tends to 1; the final 
equality holds since both lims↘1 ρ

−s and μδ([z]) are finite, so the limit of the product equals the product 
of the limits. Thus, (νδ([v]))v∈V0 is a positive eigenvector for A with �1-norm 1 and eigenvalue ρ, and hence 
must agree with xΛ by the irreducibility of A.

Moreover, if |γ| = q0k (equivalently, if we think of γ ∈ Λ, then d(γ) = (q0, . . . , q0)), then

μτ,δ([γ]) = lim
s↘1

2(s− 1) 1
ρsq0

∑
b,v∈V0

k−1∑
t=0

∑
n∈N

An(s(γ), v)
ρns

A1 · · ·At(v, b)(xΛ
b )s

(ρ1 · · · ρt)s
= 1

ρq0
μτ,δ([s(γ)]).

Comparing this formula with Equation (4) tells us that whenever |γ| = q0k,

νδ([γ]) = M([γ]).

Since νδ agrees with M on the square cylinder sets [λ] with d(λ) = (q0, . . . , q0), and we know from the proof 
of Lemma 4.1 of [28] that these sets generate the Borel σ-algebra of XBΛ , the measures νδ and M must 
agree on all Borel subsets of XBΛ . �
Remark 3.27.

1. If one could prove that the vector (μδ[v])v∈V0 was an eigenvector for each Ai with eigenvalue ρi, then 
we could use the theory of families of irreducible matrices, developed in [40, Section 3], to remove the 
hypothesis that A be irreducible in Theorem 3.26.

2. Since T (|D|−δ) does not depend on τ , the above proposition shows that μδ is a finite measure on XBΛ , 
with

μδ(O) = T (|D|−δ)M(O), for every Borel set O of XBΛ .

We have therefore proved the following improved version of Theorem 3.23, under the additional hypothesis 
that A = A1 · · ·Ak be irreducible.

Theorem 3.28. Let Λ be a finite, strongly connected k-graph. Write Ai for the ith adjacency matrix of Λ
and suppose that A = A1 · · ·Ak is irreducible. Fix δ ∈ (0, 1) and suppose that Hypothesis 3.1 holds for the 
weight wδ of Equation (5). Then for any f ∈ C(XBΛ), the operator πτ (f)|D|−δ is measurable in the sense 
of Connes and its Dixmier trace is

lim
s↘1

(s− 1)Tr(πτ (f)|D|−δs) = T (|D|−δ)
∫

XBΛ

f dM,

where M is the measure introduced in Proposition 8.1 of [40].

4. Eigenvectors of Laplace-Beltrami operators and wavelets

In this section, we investigate the relationship between the decomposition of L2(XBΛ , μδ) via the 
eigenspaces of the Laplace-Beltrami operators Δs associated to the spectral triples of Section 3 for the 
ultrametric Cantor set (XBΛ , dwδ

) of Corollary 2.20, and the wavelet decomposition of L2(Λ∞, M) given in 
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Theorem 4.2 of [28]. Our main result in this section, Theorem 4.6, establishes that the Laplace-Beltrami 
eigenspaces, as described in [42, Theorem 4.3], also encode the wavelet decomposition of [28, Theorem 4.2].

The connection between operators and wavelets that we identify in this section goes deeper than the 
frequently-seen connection between wavelet decompositions and Dirac operators. To be precise, the wavelet 
decomposition of L2(Λ∞, M) arises from a representation of C∗(Λ) (see Definition 4.4). Thus, the results 
in this section establish a link between representations of higher-rank graphs and the Pearson-Bellissard 
spectral triples, in addition to identifying the wavelet decomposition of [28] with the eigenspaces of the 
Laplace-Beltrami operators Δs.

4.1. The Laplace-Beltrami operators and their eigenspaces

We begin by describing the Laplace-Beltrami operators of [59] and their eigenspaces. Recall a choice 
function is a map τ : FBΛ → XBΛ ×XBΛ satisfying τ(γ) = (x, y) where x, y ∈ [γ] and d(x, y) = diam([γ]) =
w(γ). The set of all choice functions is denoted by ΥΛ. We want to identify ΥΛ with a measurable space which 
we can construct a measure related to the measure M which arose in the last section, see Theorem 3.26. 
Our approach will be the same as that given in Section 7.2 of [59] with slightly more detail.

Proposition 4.1. (cf. [59], Section 7.2) Let Λ be a strongly connected finite k-graph and δ ∈ (0, 1) such that 
(BΛ, wδ) satisfies Hypothesis 3.1. If ΥΛ represents the set of choice functions τ : FBΛ → XBΛ × XBΛ , we 
can identify ΥΛ with an infinite product space

Y =
∏

γ∈FBΛ

Yγ ,

where each Yγ is a compact set equal to a finite unions of products of cylinder sets. Moreover, assuming 
that the product A = A1 · · ·Ak of the adjacency matrices of Λ is irreducible, there is a probability measure 
N on Y that can be derived from the measure M on XBΛ described in Theorem 3.26.

Proof. We first fix γ ∈ FBΛ, and define the subset Gγ of FBΛ × FBΛ as in Section 7.2 of [59]. Let z ∈ XBΛ

be an element of [γ], so that z(0, d(γ)) = γ. If we set r = wδ(γ), we know from Proposition 2.15 and 
Hypothesis (3.1) that [γ] = B[z, r]. Now let τ be a choice function with τ(γ) = (x, y), so that dδ(x, y) =
wδ(γ) = diam([γ]). Hypothesis 3.1 implies the existence of γ1 and γ2 in FBΛ that are extensions of the 
fixed finite path γ with |γ1| = |γ2| = |γ| + 1, and x(0, d(γ1)) = γ1, and y(0, d(γ2)) = γ2. On the other hand, 
given γ1, γ2 ∈ FBΛ that are extensions of the fixed finite path γ with γ1 �= γ2, |γ1| = |γ2| = |γ| + 1, for 
any x ∈ [γ1] ⊂ B[z, r] we have x(0, d(γ1)) = γ1 and for any y ∈ [γ2] ⊂ B[z, r] we have y(0, d(γ2)) = γ2 so 
that by Proposition 2.15, dδ(x, y) = w(γ) = diam([γ]) = r. Thus we can identify all ordered pairs that are 
contained in the Cartesian products [γ1] × [γ2] with the image under a choice function of γ ∈ FBΛ. For each 
γ ∈ FBΛ, we therefore write

Gγ = {(γ1, γ2) ∈ FBΛ × FBΛ}

where γ1 and γ2 are extensions of γ with |γ1| = |γ2| = |γ| + 1. Our requirement that Λ be a finite k-graph 
implies that each Gγ is a finite set. For each γ ∈ FBΛ, we write

Yγ = �
(γ1,γ2)∈Gγ

[γ1] × [γ2].

Since Gγ is a finite set and each [γ1] × [γ2] is compact in XBΛ ×XBΛ , the finite disjoint union Yγ is closed 
in XBΛ ×XBΛ , hence compact. We then note that by construction, each element of the infinite product
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Y =
∏

γ∈FBΛ

Yγ

can be identified with a choice function, and thus Y can be identified with ΥΛ. It follows that if we equip 
each factor Yγ with a probability measure Nγ , we obtain a probability measure N on the infinite product 
space X, by the fundamental results of Kakutani [43].

We recall that M is the probability measure on XBΛ which arises via the normalized Dixmier trace, as 
described in Theorem 3.26, and so M ×M is a probability measure on the Cartesian product XBΛ ×XBΛ . 
Fixing (γ1, γ2) ∈ Gγ , then M ×M restricts to a finite measure on Borel subsets of the Cartesian product 
[γ1] × [γ2] ⊂ XBΛ ×XBΛ that is most likely not a probability measure. We now scale this measure as follows: 
for any Borel subset E of [γ1] × [γ2], let

N(γ1,γ2)(E) = (M ×M)(E)∑
(η,η′)∈Gγ

M([η])M([η′]) .

Now define the Borel measure Nγ on Yγ by setting

Nγ(E) =
∑

(γ1,γ2)∈Gγ

N(γ1,γ2)(E ∩ ([γ1] × [γ2])).

Finally, using Kakutani’s infinite product theory for measures [43], we have a Borel probability measure N
defined on Y =

∏
γ Yγ by

N =
∏

γ∈FBΛ

Nγ .

Since Y can be identified with ΥΛ, we write N for the corresponding measure on ΥΛ, as well. �
Remark 4.2. In Proposition 4.1 the hypothesis A = A1 · · ·Ak is irreducible is not essential. In its absence, 
we can prove that we obtain a probability measure Nδ on Y that can be derived from the measure μδ on 
XBΛ (of Proposition 3.22) in the same way that N is derived from M .

Therefore, according to Section 8.3 of [59] and Section 4 of [42], for each s ∈ R the ζ-regular Pearson-
Bellissard spectral triple from the previous section gives rise to a Laplace-Beltrami operator Δs on 
L2(XBΛ , M) via the Dirichlet form Qs as follows:

〈f,Δs(g)〉 = Qs(f, g) := 1
2

∫
Υλ

Tr
(
|D|−s[D,πτ (f)]∗[D,πτ (g)]

)
dN(τ). (28)

Thanks to Section 8.1 of [59], we know that Qs is a closable Dirichlet form for all s ∈ R and it has a dense 
domain that is generated by the set of characteristic functions on cylinder sets of XBΛ . Also, by applying the 
work of [59] and [42] to our weighted stationary k-Bratteli diagrams BΛ, we can obtain an explicit formula 
for Δs on characteristic functions as follows.

For a finite path η = (ηi)|η|i=1 (where each ηi is an edge) in BΛ, we write χ[η] for the characteristic function 
of the set [η] ⊆ XBΛ of infinite paths of BΛ whose initial segment is η, and η(0, i) for η1 · · · ηi. We denote 
by η(0, 0) the vertex r(η). Also, for γ ∈ FBΛ, we set

1
Fγ

=
∑

(e,e′)∈ext1(γ)

M([γe])M([γe′]),

where ext1(γ) is the set of pairs (e, e′) of edges in BΛ with e �= e′ and r(e) = r(e′) = s(γ).
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From Lemma 3.2, we know that if Hypothesis 3.1 holds for the weighted stationary k-Bratteli diagram 
(BΛ, wδ) associated to a higher-rank graph Λ, then ext1(γ) is nonempty for all γ ∈ FBΛ. We can therefore 
assume that ext1(γ) is always nonempty; equivalently, that Fγ < ∞. Then, as in Section 4 of [42], for each 
s ∈ R, we have

Δs(χ[η]) = −
|η|−1∑
i=0

2Fη(0,i)w(η(0, i))s−2 (
M([η(0, i)]\[η(0, i + 1)])χ[η]

−M([η])χ[η(0,i)]\[η(0,i+1)]
)
.

(29)

We now restate some results from Section 4 of [42], which we have adapted to our setting.

Proposition 4.3. (cf. [42], Theorem 4.3) Let Λ be a finite, strongly connected k-graph and choose δ ∈ (0, 1)
such that (BΛ, wδ) satisfies Hypothesis 3.1. Suppose that A = A1 · · ·Ak is irreducible. Let XBΛ be the 
infinite path space associated to Λ with associated probability measure M . Let {Δs : s > 0} be the family 
of Laplace–Beltrami operators defined on a dense subspace of L2(XBΛ , M) in Equation (29). Then the 
eigenspaces of {Δs : s > 0} are independent of s. Precisely, they are given by

E−1 = span{χXBΛ
}

with eigenvalue 0 and

E0 = span
{

1
M([v])χ[v] −

1
M([v′])χ[v′] : v �= v′ ∈ V0

}
,

with eigenvalue 2/ 
(∑

v 
=v′∈V0
M([v])M([v′])

)
. For each nonempty γ ∈ FBΛ, define a subspace

Eγ = span
{

1
M([γe])χ[γe] −

1
M([γe′])χ[γe′] : (e, e′) ∈ ext1(γ)

}
. (30)

Then the subspace Eγ consists of eigenvectors with the same eigenvalue, and for γ �= η ∈ FBΛ, Eγ is 
orthogonal to Eη.

Proof. This result is contained in Theorem 4.3 of [42], and here we are including details for completeness 
and clarity of notation.

By our discussion of the action of Δs on cylinder sets, χΛ∞ ≡ 1 is in the kernel of Δs so that E−1 has 
eigenvalue 0. The proof of Theorem 4.3 of [42] shows that

2∑
v,v′∈Λ0: v 
=v′ M([v])M([v′])

is an eigenvalue for the given space E0. Now consider the subspaces Eγ for a nonempty path γ ∈ FBΛ. The 
eigenvalues λγ for the subspaces Eγ as given in the statement of our theorem are computed via Theorem 
4.3 of [42] as follows. Recall for any finite path η of BΛ we have defined the set ext1(η) and the positive 
number Fη above. For each s > 0, let

Gs(η) = 1
2diam([η])2−sFη.

Thus for a nonempty finite path γ, the formula for the eigenvalue λγ is given by
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λγ =
|γ|−1∑
i=0

[M([γ(0, i)]) −M([γ(0, i + 1)])]
Gs(γ(0, i))

− M([γ])
Gs(γ)

,

and in Theorem 4.3 of [42] it is shown that every vector in Eγ is an eigenvector for Δs with eigenvalue λγ . 
For an arbitrary finite k-graph, it is not an easy task to compute the eigenvalues λγ for a specific weight 
wδ. The authors have done so in the case of a symmetric weight where Bratteli diagram comes from the 
directed graph ΛD with D vertices and D2 edges giving rise to the Cuntz algebra OD in [27, Theorem 4.10], 
and have done so for an arbitrary weight on Λ2 in [27, Proposition 6.8].

The eigenspaces of Δs are independent of s, although in general, the eigenvalues λγ depend on the choice 
of s ∈ R. For general γ, η in FBΛ with γ �= η, it is not obvious that λγ �= λη. However, it will be the case 
that Eγ ⊥ Eη, by the following reasoning. If [γ] ∩ [η] = ∅, it is evident that the functions in Eγ and Eη have 
disjoint support, thus are orthogonal. In the case where [γ] ∩ [η] �= ∅, suppose without loss of generality that 
|η| ≤ |γ|. It then follows that we must have [η] ⊆ [γ], and consequently η = γλ for some path λ. Therefore,

〈 1
M([γe])χ[γe] −

1
M([γe′])χ[γe′],

1
M([ηẽ]χ[ηẽ] −

1
M([ηẽ′])χ[ηẽ′]〉 = 1

M([γe])M([ηẽ])

∫
XBΛ

χ[γe]χ[ηẽ] dM

+ 1
M([γe′])M([ηẽ′])

∫
XBΛ

χ[γe′]χ[ηẽ′] dM

−

⎛
⎜⎝ 1
M([γe])M([ηẽ′])

∫
XBΛ

χ[γe]χ[ηẽ′] dM + 1
M([γe′])M([ηẽ])

∫
XBΛ

χ[γe′]χ[ηẽ] dM

⎞
⎟⎠ .

The first and third terms are both zero unless the first edge of λ is e, in which case their difference evaluates 
to

1
M([γe]) − 1

M([γe]) = 0.

Similarly, the second and fourth integrals are both zero unless the first edge of λ is e′, and in this case the 
integrals take the same value. It follows that the basis vectors for Eγ will always be orthogonal to the basis 
vectors for Eη, so Eγ ⊥ Eη as claimed. �
4.2. Wavelets and eigenspaces for Δs

In this section, we prove our Theorem relating the wavelet decomposition (32) with the eigenspaces Eγ

of the Laplace-Beltrami operators Δs in the case when A := A1 · · ·Ak is irreducible.
In Theorem 4.6 below, we compare the subspaces Eγ with the wavelet decomposition of L2(Λ∞, M)

which was constructed in [28] out of a representation of the C∗-algebra C∗(Λ) on L2(Λ∞, M).
Before recalling this wavelet decomposition, we first review the construction of the C∗-algebra C∗(Λ)

associated to a higher-rank graph.

Definition 4.4. [51] Let Λ be a finite k-graph with no sources. C∗(Λ) is the universal C∗-algebra generated 
by a collection of partial isometries {sλ}λ∈Λ satisfying the Cuntz-Krieger conditions:

(CK1) {sv : v ∈ Λ0} is a family of mutually orthogonal projections;
(CK2) Whenever s(λ) = r(η) we have sλsη = sλη;
(CK3) For any λ ∈ Λ, s∗λsλ = ss(λ);
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(CK4) For all v ∈ Λ0 and all n ∈ Nk, 
∑

λ∈vΛn sλs
∗
λ = sv.

We now review the “standard representation” of C∗(Λ) on L2(Λ∞, M), which we denote by π. It is this 
representation, first described in Theorem 3.5 of [28], which gives the wavelets that will be used in the 
sequel. For p ∈ Nk and λ ∈ Λ, let σp and σλ be the shift map and prefixing map given in Remark 2.9(b). If 
we let Sλ := π(sλ), the image of the standard generator sλ of C∗(Λ), then Theorem 3.5 of [28] tells us that 
Sλ is given on characteristic functions of cylinder sets by

Sλχ[η](x) = χ[λ](x)ρ(Λ)d(λ)/2χ[η](σd(λ)(x))

=
{
ρ(Λ)d(λ)/2 if x = ληy for some y ∈ Λ∞

0 otherwise

= ρ(Λ)d(λ)/2χ[λη](x).

(31)

We can think of the operators Sλ as combined “scaling and translation” operators, since they change 
both the size and the range of a cylinder set [η], and are intimately tied to the geometry of the k-graph Λ.

Theorem 4.6 below shows that when Hypothesis 3.1 holds and the adjacency matrix A = A1 · · ·Ak of Λ
is irreducible, the eigenspaces of the Laplace–Beltrami operators refine the wavelet decomposition of [28]
which arises from the standard representation π. In order to state and prove this Theorem, we first review 
this wavelet decomposition.

For each n ∈ N, write

Vn = span{χ[λ] : d(λ) = (n, . . . , n)}, and Wn = Vn+1 ∩ V ⊥
n .

We know from Lemma 4.1 of [28] that {χ[λ] : d(λ) = (n, . . . , n) for some n ∈ N} densely spans L2(Λ∞, M). 
Consequently,

L2(Λ∞,M) = V0 ⊕
⊕
n∈N

Wn. (32)

Proposition 4.5 below establishes that the subspaces Wn := Vn+1 ∩ V ⊥
n are precisely the wavelet subspaces 

which were denoted Wn,Λ in Theorem 4.2 of [28]. Indeed, one can think of the subspaces {Vn}n∈N as a 
“multiresolution analysis” for L2(Λ∞, M). With this perspective, researchers familiar with wavelet theory 
will find it natural that the wavelet spaces Wn,Λ of [28] arise in this fashion from a multiresolution analysis.

For the proof of our main result, Theorem 4.6, as well as for the proof of Proposition 4.5, it will be 
convenient to work with a specific basis for W0. For each vertex v in Λ, let

Dv = vΛ(1,...,1).

One can show (cf. [40, Lemma 2.1(a)]) that Dv is always nonempty when Λ is finite and strongly connected.
Enumerate the elements of Dv as Dv = {λ0, . . . , λ#(Dv)−1}. Observe that if Dv = {λ} is a 1-element set, 

then [v] = [λ]. If #(Dv) > 1, then for each 1 ≤ i ≤ #(Dv) − 1, we define

f i,v = 1
M([λ0])

χ[λ0] −
1

M([λi])
χ[λi]. (33)

One easily checks that in L2(Λ∞, M), 〈f i,v, χ[w]〉 = 0 for all i and all vertices v, w, and that

{f i,v : v ∈ Λ0, 1 ≤ i ≤ #(Dv) − 1}

is an orthogonal basis for W0 = V1 ∩ V ⊥
0 ⊆ L2(Λ∞, M).
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The following Proposition justifies the labeling of the orthogonal decomposition of L2(Λ∞, M) given 
in Equation (32) as a wavelet decomposition; it is generated by applying our “scaling and translation” 
operators Sλ to a finite family {f i,v}i,v of “mother functions.”

Proposition 4.5. For any n ∈ N, the set

Sn = {Sλf
i,s(λ) : d(λ) = (n, . . . , n), 1 ≤ i ≤ #(Ds(λ)) − 1}

is a basis for Wn = Vn+1 ∩ V ⊥
n .

Proof. The formulas (31) and (33) show that if d(λ) = (n, . . . , n), then Sλf
i,s(λ) is a linear combination of 

characteristic functions of cylinder sets of degree (n +1, . . . , n +1). Thus, to see that Sλf
i,s(λ) ∈ Wn for each 

such λ and each 1 ≤ i ≤ #(Ds(λ)) − 1, we must check that 〈Sλf
i,s(λ), χ[η]〉 = 0 whenever d(η) = (n, . . . , n). 

We compute:

1
ρ(Λ)d(λ)/2 〈Sλf

i,s(λ), χ[η]〉 = 1
M([λ0])

∫
XBΛ

χ[η]χ[λλ0] dM − 1
M([λi])

∫
XBΛ

χ[η]χ[λλi] dM

=
{

0, η �= λ
M([λλ0])
M([λ0]) − M([λλi])

M([λi]) , λ = η.

Using the formula for M given in Equation (3), we see that

M([λλ0])
M([λ0])

− M([λλi])
M([λi])

= ρ(Λ)−d(λ) − ρ(Λ)−d(λ) = 0.

In other words, 〈Sλf
i,s(λ), χ[η]〉M = 0 always, so Sλf

i,s(λ) ⊥ Vn, and hence Sλf
i,s(λ) ∈ Wn for all λ and 

for all i. Moreover, Sn is easily seen to be a linearly independent set: if d(λ) = d(λ′) = (n, . . . , n) and 
d(λi) = d(λ′

i) = (1, . . . , 1),

[λλi] ∩ [λ′λ′
i] = δλ,λ′δλi,λ′

i
[λλi].

Since dimWn = dim Vn+1 − dim Vn = #(Λ(n+1,...,n+1)) − #(Λ(n,...,n)) and

#(Sn) =
∑

λ∈Λ(n,...,n)

(#(Ds(λ)) − 1) = #(Λ(n+1,...,n+1)) − #(Λ(n,...,n))

we have Wn = spanSn as claimed. �
Theorem 4.6. Let Λ be a finite, strongly connected k-graph with adjacency matrices Ai. Suppose that A =
A1 · · ·Ak is irreducible. For any weight wδ on the associated Bratteli diagram BΛ as in Proposition 2.19, 
such that Hypothesis 3.1 holds for (BΛ, wδ), the eigenspaces of the associated Laplace–Beltrami operators 
Δs refine the wavelet decomposition of (32):

V0 = E−1 ⊕ E0 and Wn = span {Eγ : |γ| = nk + t, 0 ≤ t ≤ k − 1}.

Proof. First observe that under the identification of Λ0 ⊆ Λ with V0 ⊆ BΛ, we have E0 ⊆ V0 and E−1 ⊆
V0, since the spanning vectors of both E0 and E−1 are linear combinations of χ[v] for vertices v. Thus 
E−1 ⊕E0 ⊂ V0. For the other inclusion, we compute
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⎛
⎝1 +

∑
w 
=v∈Λ0

M([w])
M([v])

⎞
⎠χ[v] = χΛ∞ −

∑
w 
=v∈Λ0

χ[w] +
∑
w 
=v

M([w])
M([v]) χ[v]

= χΛ∞ −
∑
w 
=v

μ[w]
(

1
M([w])χ[w] −

1
M([v])χ[v]

)
.

By rescaling, we see that χ[v] ∈ E−1 ⊕ E0, and hence V0 = E−1 ⊕E0 as claimed.
To examine the claim about Wn, let η ∈ FBΛ with |η| = nk + t. In other words, η represents an element 

of degree (
t︷ ︸︸ ︷

n + 1, . . . , n + 1, n, . . . , n) in the associated k-graph. Choose a typical generating element fη of 
Eη as in Equation (30),

fη = 1
M([ηe])χ[ηe] −

1
M([ηe′])χ[ηe′],

where (e, e′) ∈ ext1(η). Write η = ηnηt, where d(ηn) = (n, . . . , n) and d(ηt) = (
t︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0). Enumerate 
the paths in r(ηt)Λ(1,...,1) as

{λ0, . . . , λm, λm+1, . . . , λm+�, λm+�+1, . . . , λm+�+p}

where the paths λi for 0 ≤ i ≤ m are the extensions of ηte and the paths λi for m + 1 ≤ i ≤ m + � are the 
extensions of ηte′. Then

fη = 1
M([ηe])

m∑
i=0

χ[ηnλi] −
1

M([ηe′])

m+�∑
i=m+1

χ[ηnλi]. (34)

Using Equations (31) and (33), we obtain

Sηn
f i,r(ηt) = ρ(Λ)(n/2,...,n/2)

(
1

M([λ0])
χ[ηnλ0] −

1
M([λi])

χ[ηnλi]

)
,

and hence

Sηn

(
m∑
i=1

−M([λi])
M([ηe]) f i,r(ηt) +

m+�∑
i=m+1

M([λi])
M([ηe′])f

i,r(ηt)

)

= ρ(Λ)(n/2,...,n/2)
(

1
M([ηe])

m∑
i=1

χ[ηnλi] −
1

M([ηne′])

m+�∑
i=m+1

χ[ηnλi]

+ 1
M([λ0])

χ[ηnλ0]

(
m∑
i=1

−M([λi])
M([ηe]) +

m+�∑
i=m+1

M([λi])
M([ηe′])

))

= ρ(Λ)(n/2,...,n/2)
(
fη + 1

M([λ0])
χ[ηnλ0]

(
m∑
i=0

−M([λi])
M([ηe]) +

m+�∑
i=m+1

M([λi])
M([ηe′])

))
.

(35)

Since the paths λi, for 0 ≤ i ≤ m, constitute the extensions of ηte with the same degree (1, . . . , 1), we have ∑m
i=0 M([λi]) = M([ηte])). Similarly, 

∑m+�
j=m+1 M([λj ]) = M([ηte′]). Moreover,

M([ηte]) = ρ(Λ)d(ηe)−d(ηte) = ρ(Λ)d(ηn) = M([ηte′])
′ .
M([ηe]) M([ηe ])



C. Farsi et al. / J. Math. Anal. Appl. 482 (2020) 123572 37
In other words, the coefficient of χ[ηnλ0] in Equation (35) is zero, and so fη ∈ Wn.
If our “preferred path” λ0 is not an extension of either e or e′, Equations (34) and (35) hold in a modified 

form without the zeroth term, and we again have fη ∈ Wn. In other words,

Eη ⊆ Wn whenever |η| = nk + t.

To see that Wn =
⊕k−1

t=0
⊕

|η|=nk+t Eη, we first recall from Proposition (4.3) that if η1 and η2 are paths 
that are not equal, then Eη1 ⊥ Eη2 . After this, we again use a dimension argument. If |η| = nk+ t, we know 
from [42] Theorem 4.3 that dimEη = #(s(η)Λet+1) − 1. Since we have a bijection between⋃

|η|=nk+t

s(η)Λet+1 and Λd(η)+et+1 ,

dim

⎛
⎝k−1⊕

t=0

⊕
|η|=nk+t

Eη

⎞
⎠ =

k∑
t=1

#
(
Λ(

t︷ ︸︸ ︷
n + 1, . . . , n + 1,n,...,n)

)
−

k−1∑
t=0

#
(
Λ(

t︷ ︸︸ ︷
n + 1, . . . , n + 1,n,...,n)

)

= #(Λ(n+1,...,n+1)) − #(Λ(n,...,n))

= dimWn. �
Remark 4.7. Recall that a directed graph with adjacency matrix A gives rise to both a stationary Bratteli 
diagram with adjacency matrix A, and a 1-graph – namely, the category of its finite paths. Moreover, for 
many 1-graphs the wavelets of [28, Section 4] agree with the wavelets of [57, Section 3]. (Marcolli and 
Paolucci only considered in [57] strongly connected directed graphs whose adjacency matrix A has entries 
from {0, 1}; but for all such directed graphs, the wavelets of [28, Section 4] agree with the wavelets of [57, 
Section 3].) Thus, in this situation, Theorem 4.6 above implies that the eigenspaces of the Laplace-Beltrami 
operators Δs associated to the stationary Bratteli diagram with adjacency matrix A, as in [42] Section 4, 
refine the graph wavelets from Section 3 of [57].

Remark 4.8. In [29], four of the authors of the current paper introduced for any k-tuple J = (J1, J2, · · · , Jk) ∈
Nk the so-called J-shaped wavelet decomposition of the Hilbert space L2(Λ∞, M):

L2(Λ∞,M) = V0 ⊕
⊕
q∈N

WJ
q,�.

It is not difficult to modify our definition of the k-stationary Bratteli diagram associated to Λ and obtain 
a new Bratteli diagram using J :

BJ
Λ = ((VJ

Λ)n, (EJ
Λ)n),

where (VJ
Λ)n = V0 = Λ0 for all n, and if n = q(J1 + · · · + Jk) + (J1 + · · · + J�) + t for some 0 ≤ t < J�+1, 

then (EJ
Λ)n has adjacency matrix

(AJ1
1 AJ2

2 · · ·AJk

k )q(AJ1
1 · · ·AJ�

� )At
�+1.

Analogously, one can modify the definition of the weight wδ from Equation (5) to obtain a weight, and 
hence an ultrametric, on BJ

Λ whenever 0 < δ < 1. Assuming that Hypothesis 3.1 holds in this setting, we 
thus obtain a Pearson-Bellissard type spectral triple for XBJ

Λ
∼= Λ∞, for which the measure induced on XBJ

Λ

by the Dixmier trace agrees with the measure M given in Equation (3) on Λ∞ if AJ1
1 · · ·AJk

k is irreducible, 
as in Theorem 3.26. Then, constructing the associated Laplace-Beltrami operators, an easy modification of 
the proof of Theorem 4.6 shows that
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WJ
q = span{Eγ : q(J1 + · · · + Jk) ≤ |γ| < (q + 1)(J1 + · · · + Jk)}

in this more general case, as well.
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