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In this paper, we present a new way to associate a finitely summable spectral triple
to a higher-rank graph A, via the infinite path space A of A. Moreover, we prove
that this spectral triple has a close connection to the wavelet decomposition of
A which was introduced by Farsi, Gillaspy, Kang, and Packer in 2015. We first
introduce the concept of stationary k-Bratteli diagrams, in order to associate a
family of ultrametric Cantor sets, and their associated Pearson-Bellissard spectral
triples, to a finite, strongly connected higher-rank graph A. We then study the zeta
function, abscissa of convergence, and Dixmier trace associated to the Pearson-
Bellissard spectral triples of these Cantor sets, and show these spectral triples are
¢-regular in the sense of Pearson and Bellissard. We obtain an integral formula for
the Dixmier trace given by integration against a measure p, and show that p is a
rescaled version of the measure M on A®® which was introduced by an Huef, Laca,
Raeburn, and Sims. Finally, we investigate the eigenspaces of a family of Laplace-
Beltrami operators associated to the Dirichlet forms of the spectral triples. We show
that these eigenspaces refine the wavelet decomposition of L2(A>, M) which was
constructed by Farsi et al.
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1. Introduction

Both spectral triples and wavelets are algebraic structures which encode geometrical information. In this
paper, we expand the correspondence established in [27] between wavelets and spectral triples for the infinite
path space of the Cuntz algebras Oy to the setting of higher-rank graphs. To be precise, we associate a
family of Pearson-Bellissard spectral triples [59] to the infinite path space of a higher-rank graph (or k-graph)
A, and relate these spectral triples with the representation of the higher-rank graph C*-algebra C*(A) on
the infinite path space, and the associated wavelet decomposition, which were introduced in [28]. We also
investigate the geometry of ultrametric Cantor sets associated to A by studying the (-functions and Dixmier
traces associated to these spectral triples.

Spectral triples were introduced by Connes in [19] as a noncommutative generalization of a compact
Riemannian manifold. A spectral triple consists of a representation of a pre-C*-algebra A on a Hilbert
space H, together with a Dirac-type operator D on H, which satisfy certain commutation relations. In the
case when A = C*°(X) is the algebra of smooth functions on a compact spin manifold X, Connes showed
[20] that the algebraic structure of the associated spectral triple suffices to reconstruct the Riemannian
metric on X. Moreover, Connes established in [19] that the spectral dimension and Dixmier trace of this
spectral triple recover the Riemannian volume form on X. To be precise, the dimension § of the manifold X
agrees with the spectral dimension of (C*°(X), D, #H). Furthermore, for any f € C*°(X), the Dixmier trace
Tr, (f|D|~°%) is independent of the choice of generalized limit w, and gives a rescaled version of | v fdv,
where v denotes the volume form associated to the Riemannian metric. For more general spectral triples,
the (-function and Dixmier trace associated to a spectral triple also play important roles in the applications
of spectral triples to physics, from the standard model [21] to classical field theory [44].

In addition to spin manifolds, Connes studied spectral triples for the triadic Cantor set and Julia set in [19,
22]. Shortly thereafter, Lapidus [52] suggested studying spectral triples (A, H, D) where A is a commutative
algebra of functions on a fractal space X, and investigating which aspects of the geometry of X are recovered
from the spectral triple. Of the many authors (cf. [15,35,59]) who have pursued Lapidus’ program, we focus
here on the spectral triples introduced by Pearson and Bellissard in [59].

Motivated by a desire to apply the tools of noncommutative geometry to the study of transversals of
aperiodic Delone sets [3], Pearson and Bellissard constructed in [59] spectral triples for ultrametric Cantor
sets associated to Michon trees. They also showed how to recover geometric information about the Cantor set
C from their spectral triple: using the {-function and the Dixmier trace, Pearson and Bellissard reconstructed
the ultrametric and the upper box dimension of C. Moreover, they constructed a family of Laplace-Beltrami
operators Ag, s € R, on L?(C, 1), where the measure u arises from the Dixmier trace. Julien and Savinien
subsequently applied the Pearson-Bellissard spectral triples to the study of substitution tilings in [42], by
sharpening many of the results from [59] and reinterpreting them using stationary Bratteli diagrams.

In this paper, we extend the Pearson-Bellissard spectral triples to the setting of higher-rank graphs.
A k-dimensional generalization of directed graphs, higher-rank graphs (also called k-graphs) were introduced
by Kumjian and Pask in [51]. The combinatorial character of k-graph C*-algebras has facilitated the analysis
of their structural properties, such as simplicity and ideal structure [60,62,24,45,12], quasidiagonality [18]
and KMS states [40,39,38]. In particular, results such as [64,9,8,58] show that higher-rank graphs often
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provide concrete examples of C*-algebras which are relevant to Elliott’s classification program for simple
separable nuclear C*-algebras.

By associating Pearson-Bellissard spectral triples to k-graphs, this paper establishes a link between
k-graphs and their C*-algebras, and the extensive literature on the spectral geometry of fractal and Cantor
sets (cf. [13,15,16,35,46,47,53] and the references therein). In these cases, as is the case in the present paper,
the pre-C*-algebra of the spectral triple is abelian. Since the C*-algebra of a graph or k-graph is rarely
abelian, other researchers (cf. [10,31,32]) have studied non-abelian spectral triples for graph C*-algebras
and related objects; the research in this paper offers a complementary perspective on the noncommutative
geometry of higher-rank graph C*-algebras, and in particular on the connection between wavelets and
spectral triples.

In order to associate Pearson-Bellissard spectral triples to k-graphs, we introduce a new class of Bratteli
diagrams: namely, the stationary k-Bratteli diagrams. Where a stationary Bratteli diagram is completely
determined by a single square matrix A, the stationary k-Bratteli diagrams are determined by k£ matrices
Ay, ..., Ag; see Definition 2.5 below. The space of infinite paths Xp of a stationary k-Bratteli diagram B
is often a Cantor set, enabling us to study its associated Pearson-Bellissard spectral triple. Indeed, if the
matrices Ay, ..., Ax are the adjacency matrices for a k-graph A, then the space of infinite paths in A is
homeomorphic to the Cantor set Xz (also called 9B). In other words, the Pearson-Bellissard spectral triples
for stationary k-Bratteli diagrams can also be viewed as spectral triples for higher-rank graphs.

We then proceed to study, in Section 3, the geometrical information encoded by these spectral triples. The-
orem 3.14 establishes that the Pearson-Bellissard spectral triple associated to (Xg,, ds) is finitely summable,
with dimension 6 € (0,1). Section 3.3 focuses on the Dixmier traces of the spectral triples, and establishes
both an integral formula for the Dixmier trace (Theorems 3.23 and 3.28) and a concrete expression for the
measure induced by the Dixmier trace (Theorem 3.26). These computations also reveal that the ultrametric
Cantor sets (Xp,,ds) are (-regular in the sense of [59, Definition 11]. Other settings in the literature in
which spectral triples on Cantor sets admit an integral formula for the Dixmier trace include [13,47,17,14].

In full generality, Dixmier traces are defined on the Dixmier-Macaev (also called Lorentz) ideal M o, C
K(H) inside the compact operators and are computed using a generalized limit w (roughly speaking, a
linear functional that lies between lim sup and lim inf). Although the theory of Dixmier traces can be quite
intricate, many of the computations simplify substantially in our setting, and so our treatment of the general
theory will be brief; we refer the interested reader to the extensive literature on Dixmier traces and other
singular traces (cf. [19,56,54,11,47,34,55]). For each such generalized limit w, there is an w-Dixmier trace
7. defined on M o; however, if T' € M o is measurable in the sense of Connes, then the value of 7,,(T)
is independent of w, and in many cases can be computed via residue formulas. Indeed this is the case for
T = |D|~?, see Corollary 3.19, if D is the Dirac operator of the Pearson-Bellissard spectral triple associated
to the ultrametric Cantor set (Xp,,ds). The calculation of the Dixmier trace of |D|~° is one of the most
technical results of the paper, since it relies on the explicit computation of a residue formula, and was
inspired by a related result (Theorem 3.9 of [42]) for the case of stationary Bratteli diagrams with primitive
adjacency matrices. Theorem 3.18 underlies the major results mentioned in the previous paragraph.

The complexity of stationary k-Bratteli diagrams, as compared to the stationary Bratteli diagrams studied
in [42], complicates the analysis of the (-function and Dixmier trace of our spectral triples. However, a side
benefit of our approach is that, when restricted to the setting of stationary Bratteli diagrams, the theorems
in Section 3 below hold for an irreducible matrix A. Thus, even for stationary Bratteli diagrams, the results
in this paper are new: the authors of [59,42] imposed on A the stronger requirement of primitivity.

As mentioned earlier, one of our motivations for studying Pearson-Bellissard spectral triples for k-graphs
was to understand their relationship with the wavelets and representations for k-graphs introduced in
[28]. Wavelet analysis has many applications in various areas of mathematics, physics and engineering. For
example, it has been used to study p-adic spectral analysis [50], pseudodifferential operators and dynamics
on ultrametric spaces [48,49], and the theory of quantum gravity [26,2].
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Although wavelets were introduced as orthonormal bases or frames for L?(R™) which behaved well under
compression algorithms, wavelet decompositions for L?(X), where X is a fractal space, were defined by
Jonsson [41] and Strichartz [65] shortly thereafter. In this fractal setting, the wavelet orthonormal bases
reflect the self-similar structure of X. A few years later, Jonsson and Strichartz’ fractal wavelets inspired
Marcolli and Paolucci [57] to construct a wavelet decomposition of L?(A 4, 1) for the Cuntz-Krieger algebra
Oy, where A is an N x N matrix, A4 denotes the limit set of infinite sequences in an alphabet on N letters,
and p is a Hausdorff measure on A 4. Similar wavelets were developed in the higher-rank graph setting by
four of the authors of the current paper [28], using a separable representation 7 of the k-graph C*-algebra
C*(A). In particular, this representation gave us a wavelet decomposition of L2(A°°, M), where A> denotes
the space of infinite paths in the k-graph A, and the measure M was introduced by an Huef et al. in [40].
This wavelet decomposition is given by

(A%, M) = % & D W M)

n>0

Each subspace' W,, = {Sxf : f € Wy, A € A1 is constructed from W, by means of limit “scaling and
translation” operators Sy := m(sy) which reflect the (higher-rank) graph structure of A. (See Theorem 4.2
of [28] or Section 4 below.)

One of the main results of this paper, Theorem 4.6, proves that the spectral triples of Pearson and
Bellissard [59] are intimately tied to the wavelets of [28]. Recall that a Pearson-Bellissard spectral triple
for an ultrametric Cantor set C gives rise to a family of Laplace-Beltrami operators Ay, s € R, on L%(C, u)
associated to the spectral triple’s Dirichlet form as in Equation (28) below. Julien and Savinien established
in [42] that in the Bratteli diagram setting the eigenspaces of A, are parametrized by the finite paths =y
in the Bratteli diagram. Theorem 4.6 establishes that when (C, ) = (A®, M), the eigenspaces E. of the
Laplace-Beltrami operators refine the wavelet decomposition of (1).

This paper is organized as follows. In Section 2, we recall the basic facts about higher-rank graphs (or
k-graphs) and we develop the machinery of stationary k-Bratteli diagrams (Definition 2.5). This enables us
to construct a family of ultrametrics {ds : § € (0,1)} on the infinite path space A of a k-graph A, identified
as the boundary of the associated stationary k-Bratteli diagram By. In many situations, A*® = Xp, is a
Cantor set (see Proposition 2.4); Section 3 studies the fine structure of the Pearson-Bellissard spectral triples
associated to the ultrametric Cantor sets { Xz, , ds }s5¢(0,1)- We begin by allowing ¢ to range over the interval
(0,1) because there is no a priori preferred value of § in this range; later, we see in Corollary 3.15 that the
Pearson-Bellissard spectral triple of (Xp,,ds) has dimension §. However, other properties of the spectral
triple (cf. Theorem 3.26) are independent of the choice of § € (0,1).

The major technical achievements of this paper are Theorems 3.14 and 3.18. These results underpin
Theorems 3.26 and 3.28, which offer less computationally intensive perspectives on the Dixmier trace.
Theorem 3.14 establishes that the (-function of the spectral triple associated to the ultrametric Cantor
set (Xg,,ds) has abscissa of convergence d, while Theorem 3.18 enables the computation of the Dixmier
trace integral formula in Theorems 3.23 and 3.28, which in turn reveals the (-regularity of (Xg,,ds).
Theorem 3.26 then shows that under mild additional hypotheses, the measures ps which appear in the
Dixmier trace integral formula are simply a rescaling of the measure M on the infinite path space X, that
was introduced in Proposition 8.1 of [40] and which we used in [28] to construct a wavelet decomposition
of L2(A>°, M).

Finally, Section 4 presents the promised connection between the Pearson-Bellissard spectral triples and
the wavelet decomposition of L?(A>°, M) from [28]. Under appropriate hypotheses we show in Theorem 4.6

! The subspaces denoted in this paper by W,, were labeled W; A for j € N in Theorem 4.2 of [28].
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that the eigenspaces E., of the Laplace-Beltrami operator A, refine the wavelet decomposition of (1): namely,
forallm € N,

W.= @ E.

nk<|y|<(n+1)k
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2. Higher-rank graphs and ultrametric Cantor sets

In this section, we review the basic definitions and results that we will need about directed graphs,
higher-rank graphs, (weighted/stationary) Bratteli diagrams, infinite path spaces, and (ultrametric) Cantor
sets. Throughout this article, N will denote the non-negative integers.

2.1. Bratteli diagrams

A directed graph is given by a quadruple E = (E°, E',r, s), where E° is the set of vertices of the graph,
E' is the set of edges, and r, s : E' — E° denote the range and source of each edge. A vertex v in a directed
graph F is a sink if s71(v) = (); we say v is a source if 7= (v) = (.

Definition 2.1. [6] A Bratteli diagram B = (V,€) is a directed graph with vertex set V = | |,en Vn, and
edge set & = | |,,>1 &y, where &, consists of edges whose source vertex lies in V,, and whose range vertex
lies in V,,_1, and V,, and &,, are finite sets for all n.

For a Bratteli diagram B = (V, ), define a sequence of adjacency matrices A, = (f™(v,w))yw of B for
n > 1, where

M v,w) = #({e €&, :r(e) =vEV,_1, s(e) =we Vn}),

where by #(Q) we denote the cardinality of the set . A Bratteli diagram is stationary if A, = A3 =1 A
are the same for all n > 1. We say that 7 is a finite path of B if there exists m € N such that n =n; ... 0,
for n; € &;, and in that case the length of n, denoted by ||, is m.

Remark 2.2. In the literature, Bratteli diagrams traditionally have s(&,) = V,, and r(€,) = V,41; our edges
point the other direction for consistency with the standard conventions for higher-rank graphs and their
C*-algebras.

Tt is also common in the literature to require |Vy| = 1 and to call this vertex the root of the Bratteli
diagram; we will NOT invoke this hypothesis in this paper.

Definition 2.3. Given a Bratteli diagram B = (V, ), denote by X the set of all of its infinite paths:

X ={(zn)n>1: 2y € &, and s(x,) = r(zp41) for n > 1},
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For each finite path A = A2 -+ Ag in B with 7(\) € Vg, A; € &;, define the cylinder set [\] by

A ={z=(z)n>1 € Xp:x;=A; for 1 <i</}.

The collection 7T of all cylinder sets forms a compact open sub-basis for a locally compact Hausdorff topology
on Xp and cylinder sets are clopen; we will always consider Xz with this topology.

The following proposition will tell us when Xp is a Cantor set; that is, a totally disconnected, compact,
perfect topological space.

Proposition 2.4. (Lemma 6.4, of [1]) Let B = (V, ) be a Bratteli diagram such that B has no sinks outside of
Vo, and no sources. Then Xg is a totally disconnected compact Haudorff space, and the following statements
are equivalent:

1. The infinite path space Xp of B is a Cantor set;

2. For each infinite path © = (x1,x2,....) in Xg and each n > 1 there is an infinite path y = (y1,y2, ....)
with

x £y and xp =y for 1 <k <mn;
3. For each n € N and each v € V,, there is m > n and w € V,, such that there is a path from w to v and
#(r~ ({w}) > 2.
2.2. Higher-rank graphs and stationary k-Bratteli diagrams

Definition 2.5. Let A, As,--- , A be N x N matrices with non-negative integer entries. The stationary
is the Bratteli
diagram given by a set of vertices V = | |,,cy Vn and a set of edges £ = |_|,,>1 £,, where the edges in &, go
from V,, to V,,_1, such that:

k-Bratteli diagram associated to the matrices Ay, ..., Ay, which we will call Bia,,_, .,

(a) For each n € N, V,, consists of N vertices, which we will label 1,2,..., N.
(b) When n =i (mod k), there are A;(p, q) edges whose range is the vertex p of V,,_1 and whose source is
the vertex g of V,.

In other words, the matrix A; determines the edges with source in V; and range in Vj; then the matrix
Ay determines the edges with source in V5 and range in Vi; etc. The matrix Ay determines the edges with
source in Vi and range in Vi_1, and the matrix A; determines the edges with range in V; and source in
Vi1

Note that a stationary 1-Bratteli diagram is often called a stationary Bratteli diagram in the literature
(cf. [6,42]).

Just as a directed graph has an associated adjacency matrix A which also describes a stationary Bratteli
diagram B4, the higher-dimensional generalizations of directed graphs known as higher-rank graphs or
k-graphs give us k commuting matrices Aq,..., Ax and hence a stationary k-Bratteli diagram.

We use the standard terminology and notation for higher-rank graphs, which we review below for the
reader’s convenience.
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Definition 2.6. [51] A k-graph is a countable small category A equipped with a degree functor® d : A — N¥
satisfying the factorization property: whenever X is a morphism in A such that d(A\) = m + n, there are
unique morphisms p, v € A such that d(pu) = m,d(v) = n, and A = pv.

We use the arrows-only picture of category theory; thus, A € A means that A is a morphism in A. For
n € N¥, we write

At :={X e A:d(N\) =n}.

When n = 0, A° is the set of objects of A, which we also refer to as the vertices of A.
Let r,s : A — A9 identify the range and source of each morphism, respectively. For v € A® a vertex, we
define

VA" i ={A e A" :r(N) = v} and A"w = {A € A" : s(\) = w}.

We say that A is finite if #(A™) < oo for all n € N* and we say A is source-free or has no sources if
#(vA™) > 0 for all v € A® and n € N*.
For 1 <i < k, write e; for the ith standard basis vector of Nk, and define a matrix A; € Mjo(N) by

A;(v,w) = #(vA%w).

We call A; the ith adjacency matriz of A. Note that the factorization property implies that the matrices A;
commute.

Despite their formal definition as a category, it is often useful to think of k-graphs as k-dimensional
generalizations of directed graphs. In this interpretation, A% is the set of “edges of color ¢” in A. The
factorization property implies that each A € A can be written as a concatenation of edges in the following
sense: A morphism A € A with d(A\) = (n1,n9,...,nk) can be thought of as a k-dimensional hyper-rectangle
of dimension n; X ng X - - - X nj. Any minimal-length lattice path in N* through the rectangle lying between
0 and (nq,...,nk) corresponds to a choice of how to order the edges making up A, and hence to a unique
decomposition or “factorization” of A. For example, the lattice path given by walking in straight lines from
0 to (n1,0,...,0) to (n1,n2,0,...,0) to (n1,na,ns,0,...,0), and so on, corresponds to the factorization of
A into edges of color 1, then edges of color 2, then edges of color 3, etc.

For any directed graph E, the category of its finite paths Ag is a 1-graph; the degree functor d : Ap — N
takes a finite path A to its length |A|. Example 2.7 below gives a less trivial example of a k-graph. The
k-graphs ;. of Example 2.7 are also fundamental to the definition of the space of infinite paths in a
k-graph.

Example 2.7. For k > 1, let € be the small category with

Obj () = N*, Mor () = {(m,n) € N* x N* :m <n}, r(m,n)=m, s(m,n)=n.
If we define d : Q) — N* by d(m,n) = n — m, then Q4 is a k-graph with degree functor d.
Definition 2.8. Let A be a k-graph. An infinite path of A is a k-graph morphism

x:Qp = A;

2 We view N* as a category with one object, namely 0, and with composition of morphisms given by addition.
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we write A% for the set of infinite paths in A. For each p € N*, we have a map 0P : A — A given by
o”(z)(m,n) = z(m+ p,n+p)
for x € A and (m,n) € Q.

Remark 2.9.

(a) Given & € A*, we often write r(z) := x(0) = x(0,0) for the terminal vertex of x. This convention

means that an infinite path has a range but not a source.
We equip A* with the topology generated by the sub-basis {[A] : A € A} of compact open sets, where

N = {z € A% : 2(0,d())) = A}

Remark 2.5 of [51] establishes that, with this topology, A is a locally compact Hausdorff space.

Note that we use the same notation for a cylinder set of A and a cylinder set of X in Definition 2.3

since we will prove in Proposition 2.10 and Remark 2.11 (a) that A® is homeomorphic and Borel

isomorphic to Xp, for a finite, source-free k-graph A.
(b) For any A € A and any = € A with r(z) = s(\), we write Az for the unique infinite path y € A*®
such that y(0,d(\)) = A and o™ (y) = 2. If d(\) = p, the maps o? and oy := x — Az are local
homeomorphisms which are mutually inverse:

O’pOO'A Zid[s()\)], O’)\OO'p = id[)\],

although the domain of o is A D [)].

Informally, one should think of o? as “chopping off” the initial segment of length p, and the map =z — Ax

as “gluing A on” to the front of x. By “front” and “initial segment” we mean the range of x, since an

infinite path has no source.

We can now state precisely the connection between k-graphs and stationary k-Bratteli diagrams.

Proposition 2.10. Let A be a finite, source-free k-graph with adjacency matrices Ay, ..., Ar. Denote by B

the stationary k-Bratteli diagram associated to the matrices {A;}¥_,. Then Xg, is homeomorphic to A>.

Proof. Fix 2 € A* and write 1 := (1,1,...,1) € N*. Then the factorization property for A> implies that
there is a unique sequence

()‘z)z S ﬁ Al
i=1

such that @ = Ay AgAg -+ with A; = 2((¢ — 1)1,71). (See the details in Remark 2.2 and Proposition 2.3 of

[51]). Since there is a unique way to write \; = f1f4--- fi as a composable sequence of edges with d(f]’f) =ej,
we have

v=fify o Si S SR

where the nk + jth edge has color j. Thus, for each i, f; corresponds to an entry in A;, and hence

fily  Sofifs - SRfE - € Xy
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Conversely, given y = (g¢)¢ € Xg,, we construct an associated k-graph infinite path § € A> as follows.
To y = (g¢)e we associate a sequence (7, ),>1 of finite paths in A, where

Nn =91 Gnk

is the unique morphism in A of degree (n, ..., n) represented by the sequence of composable edges g1 - - - gnk-
Recall from [51] Remark 2.2 that a morphism ¢ : Q; — A is uniquely determined by {3(0,n1)},en. Thus,
the sequence (7,,),, determines g:

§(0,0) =r(y) =r(g1),  §(0,n1):=n, Vn =1
The map y + 7 is easily checked to be a bijection which is inverse to the map x +— fi fa--- fif2f3--- f2fi

Moreover, for any i € N, 0 < j < k —1, and any X\ = f{fy--- fAfifs--- fif? - f; with d(\) =

j
(¢t — 1)1+ (1,...,1,0,...,0), both of these bijections preserve the cylinder set [A]. In particular, these
bijections preserve the “square” cylinder sets [A] associated to paths A with d(A) = i1 for some i € N. (If
i = 0 then we interpret d(\) = 0-1 as meaning that \ is a vertex in Vo & A°.) From the proof of Lemma 4.1
of [28], any cylinder set can be written as a disjoint union of square cylinder sets, and therefore the square
cylinder sets generate the topology on A>°. We deduce that A> and X, are homeomorphic, as claimed. O

Remark 2.11.

(a) Thanks to Proposition 2.10, we will usually identify the infinite path spaces Xg, and A*°, denoting
this space by the symbol which is most appropriate for the context. In particular, the Borel structures
on Xp, and A* are isomorphic, and so any Borel measure on A* induces a unique Borel measure on
XB,

(b) The bijection of Proposition 2.10 between infinite paths in the k-graph A and in the associated Bratteli
diagram B, does not extend to finite paths. While any finite path in the Bratteli diagram determines
a finite path, or morphism, in A, not all morphisms in A have a representation in the Bratteli diagram.
For example, if e; is a morphism of degree (1,0,...,0) € N* in a k-graph (k > 1) with r(e1) = s(e1),
the composition eje; is a morphism in the k-graph which cannot be represented as a path on the

Bratteli diagram. However, the proof of Proposition 2.10 above establishes that “rainbow” paths in A
J

and vice versa.

—_—
— morphisms of degree (¢+1,...,¢+1,q,...,q) for some ¢ € N and 1 < j < k — can be represented
uniquely as paths of length kg + j in the Bratteli diagram.

2.8. Ultrametrics on Xp

Although the Cantor set is unique up to homeomorphism, different metrics on it can induce quite different
geometric structures. In this section, we will focus on Bratteli diagrams B for which the infinite path space
Xp is a Cantor set. In this setting, we construct ultrametrics on X by using weights on B. To do so, we
first need to introduce some definitions and notation.

Definition 2.12. A metric d on a Cantor set C is called an wltrametric if d induces the Cantor set topology
and satisfies the so-called strong triangle inequality

d(z,y) < max{d(z, z),d(y,z)} forall z,y,z €C. (2)
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Definition 2.13. Let B be a Bratteli diagram. Denote by FB the set of finite paths in B with range in V.
For any n € N, we write

F*B={\€ FB:|\ =n}.

Given two (finite or infinite) paths A\, n in B, we say 7 is a sub-path of X if there is a sequence v of edges,
with () = s(n), such that A = 7.

For any two infinite paths =,y € Xz, we define x A y to be the longest path A € FB such that A is a
sub-path of z and y. We write z Ay = () when no such path \ exists.

Definition 2.14. (cf. [59]) A weight on a Bratteli diagram B is a function w : FB — R* such that

o If Vo denotes the set of vertices at level 0, then ) ), w(v) < 1.
o lim, o sup{w(A) : A € F"B} = 0.
o If 7 is a sub-path of A, then w(\) < w(n).

A Bratteli diagram with a weight is often called a weighted Bratteli diagram and denoted by (B, w).
Observe that the third condition implies that for any path z = (x,), € B (finite or infinite),
w(x129 ... Tpn) > w(T122 - Xpy1) for all n.

The concept above of a weight was inspired by Definition 2.9 of [42] which was in turn inspired by the work
of [59]; indeed, if one denotes a weight in the sense of [42] Definition 2.9 by w’, and defines w(\) := w’(s(A)),
then w is a weight on B in the sense of Definition 2.14 above.

Proposition 2.15. Let (B,w) be a weighted Bratteli diagram such that Xp is a Cantor set. The function
dy: X x Xg — RT given by

1 ifx Ny =10,
dw(l‘,y) = O fo = y?
w(x Ay) else,

is an ultrametric on Xp. Moreover d,, metrizes the cylinder set topology on Xp.

Proof. It is evident from the defining conditions of a weight that d,, is symmetric and satisfies d,,(x,y) =
0 < x = y. Since the inequality (2) is stronger than the triangle inequality, once we show that d,, satisfies
the ultrametric condition (2) it will follow that d,, is indeed a metric.

To that end, first suppose that d,(z,y) = 1; in other words,  and y have no common sub-path. This
implies that for any z € Xp, at least one of d,(z, z) and d,,(y, z) must be 1, so

dy(z,y) < max{dy(z, 2),dw(y,2)},

as desired. Now, suppose that d,(z,y) = w(z Ay) < 1. If dy(x,2) > dy(z,y) for all z € Xz then we are
done. On the other hand, if there exists z € Xp such that d,(z,2) < dy(x,y), then the maximal common
sub-path of x and z must be longer than that of x and y. This implies that

duw(y,2) = w(y A z) =w(y Ax) = dy(z,9);

consequently, in this case as well we have d,,(z,y) < max{d(z, z),d,(y,2)}.
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Finally, we observe that the metric topology induced by d,, agrees with the cylinder set topology. This
fact may be known, but because we did not find the proof in the literature, we include it here. Let B[z, 7]
be the closed ball of center = and radius r > 0. We will show first that Blx,r] C [z1 - - - x,,] for some n € N.
To obtain an easy upper bound on the diameter of B[z, r], choose y,z € B[z, r] and observe that

dw(ya Z) < max{dw(z,y), dw(xv Z)} <r

Taking supremums reveals that diam B[z, r] < r.
We now check that Blz,r| = [z1---x,] for some n € N. By the definition of the weight w, there is a
smallest n € N such that

w(zy - xy) < diam Blx, r].
If y € Blz,r], then
diam B[z, 7] > dy(z,y) = w(x Ay) = w(zy - Tm)

for some m > n € N by Definition 2.14 and the minimality of n. It follows that y € [z ---x,], so that
Blz,r] C [#1- - 2y]. On the other hand, if z € [z1 - - x,,] then

dy(z,2) =w(z Az) <w(zy---x,) < diam Blz,r] <7,

so z € Blxz,r] by construction, and hence [z1---z,] C Blz,r]. In other words, Blz,r] = [r1---x,] as
claimed, so cylinder sets of Xz and closed balls (which are open in the topology induced by the metric d,,)
agree. (If n = 0 then we interpret [z1 ---z,] as [r(z)].) O

2.4. Strongly connected higher-rank graphs

When A is a finite k-graph whose adjacency matrices satisfy some additional properties, there is a natural
family {ws }o<s<1 of weights on the associated Bratteli diagram B, which induce ultrametrics on the infinite
path space Xp,. We describe these additional properties on A and the formula of the weights ws below.

Definition 2.16. A k-graph A is strongly connected if, for all v,w € A°, vAw # ().

In Lemma 4.1 of [40], an Huef et al. show that a finite k-graph A is strongly connected if and only if
the adjacency matrices Ay, ..., A; of A form an irreducible family of matrices. Also, Proposition 3.1 of [40]
implies that if A is a finite strongly connected k-graph, then there is a unique positive vector 2 € (0, oo)AO
such that > 1o x{)‘ =1landforalll<:<k,

AixA = Pian
where p; denotes the spectral radius of A;. We call 2 the Perron-Frobenius eigenvector of A. Moreover, an
Huef et al. constructed a Borel probability measure M on A in Proposition 8.1 of [40] when A is finite,
strongly connected k-graph. The measure M on A is given by

M([\]) = p(A)_d()‘)xQ(A) for A € A, (3)
where 2 is the Perron-Frobenius eigenvector of A and p(A) = (p1,...,pr), and for n = (nq,...,ng) € N*,

p(A)" == py* - pit.
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We know from Remark 2.11 that every finite path A € By corresponds to a unique morphism in A. Using
this correspondence and the homeomorphism Xz, = A* of Proposition 2.10, Equation (3) translates into
the formula

M) = (o1 p0) =D (prgr -+ i) "9 (4)

for [\] € Xp,, where A € FB, with |\| = ¢k +t and 2 is the Perron-Frobenius eigenvector of A.

In the proof that follows, we rely heavily on the identification between A* and Xp, by Proposition 2.10
and Remark 2.11 (a). We also use the observation from Remark 2.11 that every finite path in FB, corre-
sponds to a unique finite path A\ € A.

Proposition 2.17. Let A be a finite, strongly connected k-graph with adjacency matrices A;. Then the infinite
path space A is a Cantor set whenever [[, p; > 1.

Proof. We let A = A; ... Ay; it is a matrix whose entries are indexed by A? x A%, and its spectral radius is
IL; pi- We assume that A* is not a Cantor set, and will prove that the spectral radius of A is at most 1,
hence proving the Proposition.

Since A*° is compact Hausdorff and totally disconnected, but not a Cantor set, it has an isolated point z.
We write {7, }nen for the increasing sequence of finite paths in By which are sub-paths of z. If n = ¢k + ¢,
then |v,| = n and (thinking of +,, as an element of A) d(y,) = (£ +1,..., £+ 1,¢,...,¢) with ¢ occurrences
of £+ 1. Since z is an isolated point, there exists N € N such that for all n > N, [v,] = {z}. Without loss
of generality, we can assume that N = dk is a multiple of k, so that d(yn) = (d,...,d). For n > N, we
write v, = YN, with |v,| =n and |n,| =n — N = gk +t, so that d(n,) = (¢+1,...,9+1,q,...,q), with
t occurrences of ¢ + 1.

By Proposition 2.4, our hypothesis that x is an isolated point implies that for all n > N, n,, is the unique
path of degree d(n,) whose range is s(yy) = r(n,). This, in turn, implies that for all n > N, we have
AAq ... A(r(nn), z) equal to 1 for a single z, and 0 otherwise. In other words, if we consider the column
vector &, which is 1 at the vertex v and 0 else, we have that

T T
(Ornay)” - A%A1- - Ar = (Botn) -

Note that for each n > N with n — N = ¢k + ¢, s(n,41) is the label of the only non-zero entry in row
s(ny) of the matrix A;. Since each entry in the sequence (s(n,))nen is completely determined by a finite
set of inputs — namely, the previous entry in the sequence, and the entries of the matrices A; — and the set
A° of vertices is finite, the sequence (s(1,,))nen is eventually periodic. Let p be a period for this sequence.
Then kp is also a period, so there exists J such that for all n > J we have

(APYTs =9

5(77'n) 5(77n)'

If we average along one period and define

| Tk
6:]{7 Z 55(%)7
D .
j=J+1

then we can compute that

1 J+kp

T _.

A= > sty =T,
=T

so ¥ is an eigenvector of AT with eigenvalue 1, with non-negative entries.
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Since A is strongly connected by hypothesis, Lemma 4.1 of [40] implies that there exists a matrix Ap
which is a finite sum of finite products of the matrices A; and which has positive entries. This matrix Ar
commutes with A, and therefore

AT ATy = AT ATy = ALy,

and so @ := AL is an eigenvector of AT with eigenvalue 1. Since Af is positive and ¥ is non-negative,  is
positive. Therefore, we can apply Lemma 3.2 of [40] and conclude that [[, p; = p(4) <1. O

Remark 2.18. The proof of Proposition 2.17 simplifies considerably if we add the hypothesis that each row
sum of each adjacency matrix A; is at least 2. In this case, any finite path + in the Bratteli diagram has at
least two extensions ve and vf. In terms of neighborhoods, this means that each clopen set [y] contains at
least two disjoint non-trivial sets [ve], [yf]. It is therefore impossible to have a cylinder set [y] consist of a
single point. Therefore, there is no isolated point in Xp,, and the path space is a Cantor set.

The next Proposition constructs, for any § € (0,1), a weight ws on the stationary k-Bratteli diagram
Bp of any k-graph A which satisfies certain mild hypotheses. In Section 3 below, we will examine the
Pearson-Bellissard spectral triples associated to the ultrametric Cantor sets (Xp,,d,;) and in particu-
lar the relationship between the parameter § and various properties of the spectral triple. For example,
Corollary 3.15 establishes that the spectral triple associated to (Xg,, dw,) has spectral dimension ¢, while
Theorem 3.26 shows that the measure on Xp, induced by the spectral triple is independent of 4.

Proposition 2.19. Let A be a finite, strongly connected k-graph with adjacency matrices A;. For n € FBy
with In| = n € N, write n = gk +t for some ¢,t € N with 0 <t < k — 1. For each § € (0,1), define
ws : FBy — RT by

—1/6
ws(n) = (p o)y, (5)

A

where z is the unimodular Perron-Frobenius eigenvector for A. If the spectral radius p; of A; satisfies

pi > 1Y i, then ws is a weight on By.

Proof. Recall that 2 € (0, oo)AO, D vero zf} =1 and A;z® = p;z® for all 1 < i < k; thus,

Z ws(v) = Z =1,

vEVo v€Vo

and the first condition of Definition 2.14 is satisfied. Since p; > 1 for all i and 0 < § < 1,

Thus the second condition of Definition 2.14 holds. To see the third condition, we observe that it is enough
to show that ws(A) > ws(Af) for any edge f with s(\) = r(f). Note that if |A\| = gk + j for ¢ € N and
0 <j<k-—1,sothat s(\) € Vyg4;, then

S ws ) = ((r o)1 pia) 0D A (s(V), v
Fir(H)=s(0) vEA?
d(f)=ej+1

—1/5 —1/6
= ((pr- pu)pr--.pj) " Pj+{ i1y

< w5()\)
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A

Here the second equality follows since x* is an eigenvector for A;,; with eigenvalue p;yi, and the final

inequality holds because p;+; > 1 and 1/0 > 1, and consequently

1-176 1
Pt = g <1 D
J+1

Our primary application for the results of this section is the following.

Corollary 2.20. Let A be a finite, strongly connected k-graph with adjacency matrices A; and let p; be the
spectral radius for A;, 1 < i < k. Suppose that p; > 1 for all 1 < i < k. Let (Ba,ws) be the associated
weighted stationary k-Bratteli diagram given in Proposition 2.19. Then the infinite path space Xp, is an
ultrametric Cantor set with the metric d,,, induced by the weight ws.

Proof. Combine Proposition 2.19, Proposition 2.17, and Proposition 2.15. O
3. Spectral triples for ultrametric higher-rank graph Cantor sets

Proposition 8 of [59] (also see Proposition 3.1 of [42]) gives a recipe for constructing an even spectral
triple for any ultrametric Cantor set induced by a weighted tree. We begin this section by explaining
how this construction works in the case of the ultrametric Cantor sets which we associated to a finite
strongly connected k-graph in the previous section. Section 3.1 recalls basic facts about spectral triples, and
Section 3.2 investigates the (-function of the spectral triples coming from the ultrametric Cantor sets that
arise from k-graphs. Finally, Section 3.3 uses the theory of Dixmier traces to construct measures on Xp,
from these spectral triples. We also derive an integral formula for the Dixmier trace in this section.

To be precise, consider the Cantor set A* = Xp, with the ultrametric induced by the weight ws of
Equation (5). (Because of Proposition 2.10, we will identify the infinite path spaces of A and of B,, and use
either A* or Xp, to denote this space, depending on the context.) Under additional (but mild) hypotheses,
Theorem 3.14 establishes that the (-function of the associated spectral triple has abscissa of convergence
0, and thus is finitely summable with dimension ¢§. After proving in Proposition 3.22 that the Dixmier
trace of the spectral triple induces a well-defined measure p5 on Xp,, Theorem 3.26 establishes that the
normalization vs of us agrees with the measure M introduced in [40] and used in [28] to construct a wavelet
decomposition of L?(A>°, M), and is therefore independent of §. Finally, Theorems 3.23 and 3.28 establish a
Dixmier trace integral formula; the computations underlying these proofs also establish that the ultrametric
Cantor set (Xg,,ds) is (-regular in the sense of [59].

Analogues of Theorem 3.14 and Proposition 3.22 were proved in Section 3 of [42] for stationary Bratteli
diagrams (equivalently, directed graphs) with primitive adjacency matrices. However, even for directed
graphs our results in this section are stronger than those of [42], since in this setting, our hypotheses are
equivalent to saying that the adjacency matrix is merely irreducible.

A crucial hypothesis for the main results in this section is the following Hypothesis 3.1, which will be a
standing hypothesis throughout the paper. Lemma 3.2 below identifies conditions under which the weights
ws of Equation (5) satisfy Hypothesis 3.1. To state this hypothesis, recall that for any Bratteli diagram
(B,w) and X € FB,

diam([A] = sup{d. (2, y) | z,y € [A]}. (6)
Hypothesis 3.1. The weight w of a weighted Bratteli diagram (B, w) satisfies

w(\) = diam[)\] for all A € FB. (7)
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Lemma 3.2. Let B = By for a finite, strongly connected k-graph A with no sources. Hypothesis 3.1 holds for
the weights ws of Equation (5) if and only if every vertex a € A° receives at least two edges of each color,
i.e. Y peno Ai(a,b) > 2 for all a € A and 1 <i<k.

Proof. Recall that, by definition of d,,, and the third condition of Definition 2.14,
diam[\] = max{dy;(z,y) : x,y € [A\]} = max{ws(z Ay) : x,y € [\]} < ws(A).

Moreover, the hypothesis that A be source-free forces each vertex a to receive at least one edge of each
color.

Suppose, then, that every vertex a € A? receives at least two edges eq, f, of each color. Then for any
A € FBp with s(A\) = a, there are then two infinite paths z = Aey -,y = Afy--- in [A] such that
dws(2,y) = ws(x N y) = ws(N\). Conversely, if there is a vertex a and a color i such that there is only one
edge e of color ¢ and range a, then for any z,y € [A\] we have z A y = Ae and hence

ws(A) > ws(Ae) > diam[A]. O

Remark 3.3. Recall that the spectral radius of a non-negative matrix is at least the minimum of its row
sums. It follows that if (Ba,ws) satisfies Hypothesis 3.1, then p; > 2 > 1 for all 1 < ¢ < k, and hence
p = p1...pr > 1. Therefore, the function ws given in Equation (5) is automatically a weight when it
satisfies Equation (7) (and hence Hypothesis 3.1). In this setting, ws also gives rise to an ultrametric Cantor
set (Xg,,dws) by Corollary 2.20.

8.1. A review of spectral triples on Cantor sets and the associated C-functions

We begin by recalling the definitions of a pre-C*-algebra and of a spectral triple we use in our paper; see
[19], [33, Chapter 10].

Definition 3.4. ([19, Section IV 7]) A pre-C*-algebra of a C*-algebra A is a x-subalgebra A of A, which is
stable under the holomorphic functional calculus of A.

Pre-C*-algebras are called local C*-algebras in [7]. By [59, page 450], the x-algebra Cri,(Xg) C C(XB)
of Lipschitz continuous functions on (Xg,d,,) is a pre-C*-algebra of the C*-algebra C(Xpg).

Definition 3.5. (cf. [33, Definition 9.16], [59, Definition 9]) A spectral triple is a triple (A, H, D) consisting
of:

o a pre-C*-algebra A C A (with A and A unital) equipped with a faithful *-representation = of A by
bounded operators on a Hilbert space H; and
¢ a selfadjoint operator D on H, with dense domain Dom D C H, such that

a(Dom D) C Dom D, Va € A;

the operator [D, a], defined initially on Dom D, extends to a bounded operator on H for all a € A; and
D has compact resolvent.

A spectral triple is even if it has an associated grading operator I' : H — H satisfying:

I'*=T; IT?=1; I'D=-DT; Tn(a)=7(a)l, Ya € A.
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We now review the construction of the spectral triple associated to an ultrametric Cantor set from [59]
(see also Section 3 of [42]).

Definition 3.6. Let (B,w) be a weighted Bratteli diagram satisfying Hypothesis 3.1 with Xz a Cantor
set. Let (Xg,dy) be the associated ultrametric Cantor space. A choice function for (Xg,d,) is a map
T: FB — Xp x Xg such that 7(v) = (7 (), 7- (7)) € [7] X [7] and du (74 (), 7— (7)) = diam [y]. We denote
by T the set of choice functions for (X3, d,,). Note that T is nonempty whenever Xp is a Cantor set, because
Condition (3) of Proposition 2.4 implies that for every finite path v of B we can find two distinct infinite
paths z,y € [y] with x Ay = +.

As in [59,42], let Crip(Xpg) be the pre-C*-algebra of Lipschitz continuous functions on (Xg,d,,) and let
H = (*(FB,C?). For 7 € T, we define a faithful *-representation 7, of Cri,(Xg) on H by

T. 0
== @ (" 1.5) a

A Dirac operator D on H is given by
1 0 1
D - -4 < ) ’
7@?8 diam[y] \1 0

and the grading operator I' is given by

1 0
F = 1@2(}75) ® (0 _1) .

The following results were established by Pearson and Bellissard [59].

Proposition 3.7. [59, Proposition 8] Let (B,w) be a weighted Bratteli diagram with Xp a Cantor set, satis-
fying Hypothesis 3.1. Then (Cri(Xg), ¢?(FB,C?), 7., D,T) is an even spectral triple for all T € Y.

Lemma 3.8. /50, Section 6.1] |D| is invertible. In particular |D|~'¢(y) = diam[y]v(y), for every ¢ €
(?(FB,C?) and every finite path v € FB.

It follows that {6y ® e; : A € FB, i = 1,2} is an orthonormal basis of ¢*(FB,C?) = (*(FB) ® C?
which consists of eigenvectors for |D| ™!, where {e1, ez} is the standard orthonormal basis of C2. Moreover,

—1/2

since |D| is invertible, we can replace the operator < D >~1:= (1 + D?) , appearing commonly in the

noncommutative geometry literature, by |D| L.

Definition 3.9. [59], [4, Section 9.6] To any positive operator with discrete spectrum P, we can associate a
¢-function (p which is defined on {s € R : s >> 0} by

(p(s) :=Tr(P*) =Y _A(n,P)".

It now follows that the standard {-function associated to the spectral triple (CLip(Xg), H, 7, D,T") can
be described as follows.

Definition 3.10. [59, Section 6.1] The (-function associated to the Pearson-Bellissard spectral triple
(CLiP(XB)aHa Tr, D, F) is given by
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Cw(s) = %Tr(|D|_S) = Z diam[A]® = Z w(N)?®, for s>>0. (9)
XEFB AEFB

The above (-function (,, is a Dirichlet series since |D|~! is compact with a decreasing sequence of
eigenvalues (equal to the diameters, or weights, of the finite paths) by Lemma 3.8. Thus, by [36, Chapter 2],
Cyw extends to a meromorphic function on C which either converges everywhere, nowhere, or in the complex
half plane s = Re(z) > sp for some sg. In this last case we will call sg the abscissa of convergence of (. In
other words, s is the infimum of s > 0 such that (,(z) converges for Re(z) > s.

To determine the abscissa of convergence of the (-function (,, it suffices to evaluate (,, at points s € R.
Since we are primarily interested in the abscissa of convergence of (,,, throughout this article, we will only
consider real arguments for (.

Remark 3.11. The factor % in Equation (9) is non-standard, but is frequently used for Pearson-Bellissard
spectral triples (cf. [59,42]). Using the factor 3 ensures that (5(s) equals exactly the sum of the weights to
the power s. However, this rescaling has no effect on the dimension or summability of the spectral triple
(see Definition 3.12 below).

We also note that Theorem 3.14 below establishes that, in our case of interest (namely when B = By for
a k-graph A satisfying Hypothesis 3.1, and w = ws for § € (0,1)) the ¢-function (,(s) converges for s > 4.

Definition 3.12. If there exists p > 0 such that ¢, (p) < oo, then the spectral triple (Crip(X5), H, 7, D,T)
is p-summable. The spectral triple is finitely summable if p-summable for some p > 0. The dimension of the
spectral triple is inf{p : {,(p) < oo}.

3.2. Finite summability for the Pearson-Bellissard spectral triples of k-graphs

From now on we will focus on Pearson-Bellissard spectral triples of the form (Crip(Xg,),H, 7, D,T")
associated to the weighted stationary k-Bratteli diagram (B, ws) of a k-graph, with weight ws as in Equation
(5) of Proposition 2.19 above. In this case, the set of choice functions will be called T 5. In particular we will
show in Theorem 3.14 that the dimension of (CLi,(X3, ), H, 7, D,T') is §, which coincides with the abscissa
of convergence of (y,.

Before developing our theory further, we will present a simple example.

Example 3.13. Let Ay be the 2-graph with one vertex and two loops of each color, respectively e; and fj,
with j = 1,2, and with factorization relations

eifj:fiej7 VZ,]
By [30, Section 5.1], every infinite path w € A$° has a unique representative of the form
Bilfjlehfﬁ e eikfjk e
Therefore AS° is in bijection with [[5 {0, 1}. The vertex matrices of this 2-graph are A; = (2), Az = (2), and

therefore their spectral radii are 2, with Perron-Frobenius eigenvector equal to 1. The weights of Equation
(5) of Proposition 2.19 are consequently given by

—_n
ws(n) =275, where n = ep, fro€rsfra---€r, OT N =€pr fro€rsfra- - €r o fr. -

Since there are 2™ paths of length n in FB,, the zeta function ¢, is given by
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=3 (5) "

n>0

Fix a weighted stationary k-Bratteli diagram (B, ws) with weights as in Equation (5) of Proposition 2.19.
For this fixed choice of weights, we will write ds for the ultrametric d,,, and (5 for the {-function (,,
associated to (Crip(Xg, ), H, 7., D,T).

We now show that the dimension of (Crip(Xg, ), H, -, D,T") is §, which coincides with the abscissa of
convergence of (5.

Theorem 3.14. Let A be a finite, strongly connected k-graph. Fiz 6 € (0,1) and suppose that Equation
(7) holds for the weight ws of Equation (5). Then the zeta function (s(s) has abscissa of convergence 4.
Moreover, limg 5 (5(s) = oo. In particular, (Cryp(Xg, ), H, 7, D,T) is always finitely summable.

Proof. In order to explicitly compute (5(s), we first observe that we can rewrite

k-1
Gl)= D wsW)'=>" > ws(N) =D > w(N, (10)

AEF B neEN NEF™ B, geN t=0 \eFak+tB,

where F™(By) is the set of finite paths of By with length n. Now, write A := A; --- Ay for the product of
the adjacency matrices of A. If t € {0,1,...,k — 1} is fixed and n = ¢k + ¢, then the number of paths in
F™(B,) with source vertex b and range vertex a is given by A94; --- A;(a,b). Thus, writing p := p1 - px
for the spectral radius of A, the formula for ws given in Equation (5) implies that

k

) =D o s 2 2 At Ailand) foqs/a (11)

qEN a,beVy

|
—
>
—
@

~+
I
o

Since all terms in this sum are non-negative, the series (s(s) converges iff it converges absolutely; hence,
rearranging the terms in the sum does not affect the convergence of (5(s). Thus, we can rewrite

k—1

A1 A+ Ai(z,0) Ala, 2)
=2 X - o @) 2 (12)
t=0 a,b,z€Vy qeN P
In order to show that (s5(s) converges for s > §, we begin by considering the sum »_ ANa2) Gince A

qeN (ps/3)a
has a positive right eigenvector of eigenvalue p (namely ), Corollary 8.1.33 of [37] implies that

AY(a, z) < max{wé\}bevo

p? 7 min{zd}rey,

v ¢ € N\{o}.

Consequently,

Z Ad(a, z) <5 _’_maX{be}bEVoZ 1

plp(s/o=Da = "% T min{zd ey, p(s/0-1)q"

geN g>1

If s > §, then our hypothesis that p > 1 implies that 1/p(3/°~1) € (0, 1), and thus > 1 p(1=3/9)4 converges
to (1 — p(1=3/9)=1 — 1. Consequently,

Al(a, 2) ~
2 (i) =

qeN

and hence (5(s) < 0o, for any s > ¢ since Vy is a finite set.
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To see that (5(s) = oo whenever s < §, we have to work harder. Theorem 8.3.5 part(b) of [37] implies
that the Jordan canonical form of A is

p 0 0 0 0 0 0 0 0 0 0 0
0 - 0 0 0 0 0 0 0 0 0 0
0 0 »p 0 0 0 0 0 0 0 0 0
0 0 0 wip O 0 0 0 0 0 0 0
0 0 0 0o 0 0 0 0 0 0 0
0 0 O 0 0 wp O 0 0 0 0 0
J=10 0 0 0 0 0 weyp O 0 0 0 0 1,
0 0 0 0 0 0 0 0 wp—1p O 0 0
0 0 0 0 0 0 0 0 0 Jp+t1 O 0 0
0 0 O 0 0 0 0o ... 0 Jn-1 O
0 0 0 0 0 0 0o ... 0 0 Im

where p is the period of A, w; is a pth root of unity for each 4, each eigenvalue w;p is repeated along the
diagonal m; times, and J;, i = p+ 1,...,m are Jordan blocks — that is, upper triangular matrices whose
constant diagonal is given by an eigenvalue «; of A (with |a;| < p) and which have a superdiagonal of 1s as
the only other nonzero entries. Thus, for each 1 < a,b < [Vy|,

1
J9(a,b) € {0} U {p} U {plw] :1<i<p—-1}U {—Z(Z>ag :0<4< dimJZ}. (13)
@
Consequently,
iJ"(a b)| € {0, 1} U ﬁi 9 8= o] <1, 0<¢<dimJ;
pq ) ) 'L‘afl g M 3 p ) - — (2 .

Thanks to [63] and [5, Chapter 2], we know that since A has a positive eigenvector (namely x*) of

eigenvalue p, limy_, pe;}ﬂ‘ APt exists for all 0 < j < p — 1, where p denotes the period of A. Moreover, if

we write

AD) = lim — At (14)
£o00 ptPti

for this limit, and 7 for the maximum modulus of the eigenvalues «; of A with |o;| < p,

P A™Pti(a. b .
v <7) <B<1,3My, e R st.¥meN, |2 @b a6y )| < My, am.
P ’ lep-‘rJ ’
Thus, for all / € N and all 0 < j < p — 1, and all such g,
APHiab)
W > A(])(a, b) — Mﬂ,jﬁe for all £ € N. (15)

Reordering the summands of 3" _n A%(a,b)(p™%/%)4, we see that

qeN

p—1

DAY a,b)(p ) =N N AP (a,b)(p 7).

qeN j=0¢eN
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Now, fix j € {0,...,p — 1} and consider the sum

, . . Alrti(a,b) 1 trti
Z AP (q,b)(p~*/0) P H = Z PUaE] <ps/51)
teN teN

1 . 1 \*
E ' () _ .3t
z p(s/6-1); (AY(a,b) — Mg, ;) <p5/51> .

leN

If AU)(a,b) > 0, the fact that 8 < 1 and Mg ; > 0 implies that there exists M such that for £ > M,
AU (a,b) > Mp ;B¢. Consequently, if we define

1 E AU (a,b) — Mg B
- p(s/é—l)j Z p(s/é—l)pz ?
=0

and write v = AU (a,b) — Mg ;™ > 0, the fact that {Mj3 ;3 }sen is a decreasing sequence implies that
8,3 B,J €

; s ; v 1 vt
E AP (a,0)(p~*/0) P > K + PO E <p8/51> . (16)
¢eN £>M

Since p > 1 and s < 6, p(1=%/9? > 1. consequently, the series ZDM(,O“_S/‘S)”)E diverges to infinity.
The fact that K,v are finite now implies that Y ,. A™(a,b)(p™%/%)%*+7 also diverges to infinity if
AW (a,b) > 0.

Inequality (16) above also shows that we must have limg\ 5 (5(s) = oo. All terms are non-negative on
both sides of this inequality, and Fatou’s Lemma for series applied to the right-hand side of (16) shows that

_ v 1\ v 1 \* 1\*
l{% (/6= 1) Z (p5/51> = p(6/6-1)j ZZ\; <p5/51) = v Z (I) = +oo. (17)

£>M £>M

Now, we show that for each j, there must exist some (a,b) € Vo such that AY)(a,b) > 0. Recall that z*
is an eigenvector for A, and consequently for A?*J. Thus,

Z A@-&-J’(a’ b)xé\ - p€p+jxé\_
beVo

A

Since x* is a positive eigenvector, there exists a > 0 such that xfl\ > o for all a € V. Moreover, z is a

unimodular eigenvector, so 0 < x{} < 1 for all b € Vy. Thus the above equation becomes

p[p+ja < p6p+jx;\ — Z Aep"’j(a,b)x{)‘ < Z A‘”’"’j(a,b).
beVo beVo

Consequently, for each a € Vy and each ¢ € N there exists at least one vertex b such that

AtPti(a, b) S @
prti #(0Vo)

Moreover, since #(V,) < oo, the definition of the limit AU) implies that there exists N € N such that
whenever ¢ > N we have
APti(a,b) @

() _
AY)(a,b) > it 5500 Ya,b € V.




C. Farsi et al. / J. Math. Anal. Appl. 482 (2020) 123572 21

Now, fix a and ¢ > N. Choose b € V, such that z:+(7 ) #(”{,0). It then follows that for this choice of b,
) APti(q. b
A9 (a,b) > (a,b) @ - _°

P 2 (V0) T 2# (V)
In other words, we have proved that

(0%

2#(Vo)

Vi<j<p Yaecly 3beVy st A9D(a,b) > > 0. (18)

Finally, recalling that the matrices A; commute, we observe that

Z AP (a,2) Ay - Ay(2,b) = (Ay--- A) AP (a,b) Z Ay Ay(a, 2) AP (2,0).

ZEVy z€Vo

Using this, we rewrite

k—1 s P 1 Z ;
_ AlAt(aaZ)(l‘ljz\) Aer](Zab)
Gls)= > > (o1 pe)° /0 Z > P i)s]s
a,b,z€Vy t=0 j=0¢eN

It now follows from our arguments above that (5(s) diverges whenever s < 4. To convince yourself of

this, it may help to recall that zi* is positive for all vertices b, and that (since A; - - - A;(a, z) represents the
t

number of paths of degree (1,...,1,0,...,0) with source z and range a) our hypothesis that A be source-free
implies that ) A;--- As(a, z) must be strictly positive for each ¢. In other words, (s(s) is computed by
taking a bunch of sums that diverge to infinity when s < §, possibly adding some other positive numbers,
multiplying the lot by some positive scalars, and adding the results. Consequently, ¢ is the abscissa of
convergence of the (-function (5(s), as claimed. O

As a corollary to Theorem 3.14 we obtain
Corollary 3.15. Let A be a finite, strongly connected k-graph. Fiz 6 € (0,1) and suppose that Equation (7)
holds for the weight ws of Equation (5). Then the spectral triple (CLp(Xg), H, 7, D,T') is finitely summable

and its dimension s 0.

Example 3.16. (Continuation of Example 3.13) In this example,

1

C&(S):Z() Z2n g_ma

n>0 n>0

which evidently has abscissa of convergence §, and satisfies limg\ 5 (5(s) = oo.
3.8. Dizmier traces and measures on Xpg,

In this section we show (in Proposition 3.22) that, via the machinery of Dixmier traces, the spectral triples
(CLip(XB, ), > (FBx,C?), 7, D,T) give rise to measures p15 on Xp,. A careful analysis of these measures
reveals that they are independent of the choice of the choice function 7 € T . Furthermore, Theorem 3.23
gives an integral formula, using the measure pus, for the Dixmier trace. This computation of the Dixmier
trace also establishes (Remark 3.25) that the Cantor sets (Xp,,ds) are (-regular in the sense of Pearson
and Bellissard [59].
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We conclude the section with Theorems 3.26 and 3.28. Theorem 3.26 establishes that for any choice of §,
the normalized measure vs = m 1y agrees with the measure M, described in Equation (4), which was
introduced by an Huef et al. in [40]. Consequently, the measures ps are in fact independent of § € (0,1). With
Theorem 3.26 in hand, we obtain a more general integral formula for the Dixmier trace in Theorem 3.28.

We begin by discussing some preliminaries about Dixmier traces. For the convenience of those readers
wishing to compare our discussion with other sources, we recall that in our case the operator |D|, and hence
|DJ%, is invertible, and so what in most references we cite is called < D >~%:= (14 D?)~%/2 gets replaced
by |D|7? in the formulas below; see for example [35], [34].

Definition 3.17. [56, Example 1.2.9] Let {o%(T)}xen denote the singular values of a compact operator T' on
a separable Hilbert space H, listed with multiplicity, in (weakly) decreasing order of absolute values. The
Dizgmier-Macaev ideal (also called the Lorentz ideal) M o is

{T € K(H) : limsup ﬁ Zok(|T|) < oo} .
" k=1

Following [56], for a generalized limit w on ¢°°(N) vanishing on ¢y, we can define the Dixmier trace 7,
which is a linear functional on M .

An operator T in M « is measurable in the sense of Connes (or Connes measurable, or in [56] Dixmier
measurable) if 7,(T) = T./(T), for all Dixmier traces w, w’ on M o [56, Page 222]. By [54] (see also [23,
Proposition A4]), when T is positive this is equivalent to saying that lim, i (s—1)Tr(7*) exists and is finite,
in which case, limg\ 1 (s — 1)Tr(7%) = lim, 400 ﬁ > r—y 0k(T). This was originally proved by Connes
and Moscovici in [23, Proposition A4], where they used the notation L£1:°°) for the Dixmier-Macaev ideal
(cf. [23, Definition A2]).

Because Theorem 3.18 below establishes that our operators of interest are measurable in Connes’ sense,
we will study the quantity

T(T) = lim(s — 1)Tr(T7), (19)
s\ 1
which gives the value of any Dixmier trace applied to T if T is positive and measurable in the sense of
Connes. Note that if A is a clopen set in the Cantor set Xp, , then x4 is Lipschitz; so if A € F'By, then the
characteristic function xpy) of the cylinder set [A] is Lipschitz.

Theorem 3.18. Let A be a finite, strongly connected k-graph. Fiz 6 € (0,1) and suppose that Hypothesis 3.1
holds for the weight ws of Equation (5). Then for any A € FBy, the operator WT(X[,\])\DF‘S is measurable

in the sense of Connes, and T(’/T.,-(X[)\])|D|76) is finite and positive.

Proof. We first observe that the since the operators 7, (x[y) and |D|~° are both diagonal with respect to
the basis {0\ ®e; : A € FBy,i = 1,2} of H, they commute. Since 7, (x[5)) and |D|~° are also positive, then,
7 (x)| D] ~° is positive. We now note that, by Equation (10),

1 . s
ETr((wT(X[A])|D|_5)S) = a finite sum plus Z ws ()%,
nEFABA

Write p for the period of A = Aj - -+ Aj,. We will show that Ly := limg (1 — pP(17%)) S er By ws (1) and

Lo := lim are both finite and nonzero. It then follows that

s\ 1 — pp(1=s)
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T ()| DI°) = lim(s = 1T (D)) = 4Ly L,

is finite and nonzero, so 7, (x[x))|D|~° is Connes measurable as claimed.
The fact that Ls € (0, 00) follows from L’Hospital’s rule:
s—1 1 1

lim —— -
31\‘1 1— pp(l s) sl\rﬁ pp(1*5) ln(pp) ln(pp) € <0’ OO),

since p > 1 and p = py -+ pr > 1. To see that L; € (0,00), observe that if |A\| = gk,

-1

Z _ Z Z An(isi\), ’U) Al o At(vasb) ($é\)55 (20)
=0v,beVy

nEF\Bx t:O (Pl T Pt)

Again, since all terms in the sum are non-negative, rearranging the order of the summation has no effect
on the convergence of the series.

Recall from our computations in Equation (13) of the Jordan form J of A that for any z,v € Vy we can
find constants ¢, and polynomials P;"" such that for any n € N, we have

A (z,0) = 7"+ 5 WP e " + Z PPY(n)a, (21)
i=p+1

where p is the period of A, w; is a pth root of unity for all 7, and each «; is an eigenvalue of A with |«o;| < p.
In more detail, writing A = C~1JC for some invertible matrix C, we have

mo+---+m;

Ciz,v = Z C_l(z7j)0(j7 U)

j=mo+-+m;_1+1

and  Pm)= Y CY(za)C(b) 1a<bfa>

(a,b):J™(a,b)#0

ZU n

Recall that since J; is a Jordan block, J/*(a,b) = 0 unless a < b. Equivalently, setting ¢, ., = ¢]"" +¢5 " wi +

-+ ¢y wp_q, we have

m
A (20) = Conmp™ + S PP (m)al, (22)
1=p+1
Observe that the definition of c; .., implies that c, 4, = C; vntp for all n € N. Moreover, if we consider

the limit AU (z,v) = limy_ oo A G:2)

S Bquation (22) implies that

A(j)(z7 V) = Czuis (23)

so each c; ,;; is a non-negative real number.
Using Equation (22), we rewrite a portion of Equation (20):

I e NI LR 9 sl )

n=0 n=0 i=1
1

N 0w NSNS e (9)
s £ ()

i=1 n=0
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The fact that p > 1,5 > 1 and p > 1 implies that the ratio p?(!=%) of the geometric series Sreo pltrti)(1=s)
is less than 1. Moreover, since P"’(n) is a polynomial in n, the fact that s > 1 and that |a;| < p for all
implies that the second sum above converges to a finite value F,(s); indeed, the function F,(s) is continuous
(and finite) at s = 1. Consequently,

L= il\,‘n}(l — pp(l—s)> Z wé@)és

nEF\Bx
k 1 Al"'At('U7b) ANO
= lim . Z — ()"
1 pq t=0 n=0v,bc Vo (pr---po)
k—1 p—1 ;P
. 1*Pp (1=9) Al At U b) P Cs(N\),v;j
=lim —— —— 2 (x ) AL O (s)
s pe t=0 v,beVy " Jz_: 1—ppt=2)
-1
< peg (1= p707) Ay A(0,0)  aves
i Ly P ZZ ()
s S — pp(1=s) s b
Nt vEVy j=0 L—=ppti=s bEV, t= (p1-+-pe)
p—1 k— 1
< Ag(v,b
= Z D P A A0B) s,
v,bEVy =0 t=0 pt

which is finite and nonzero. (The penultimate equality holds because the continuity of F,(s) at s = 1 implies
1—pP(L=9)
PPT
If |A| = gk + to for some to > 0, the same argument as above will show that m-(xy)|D|~° is Connes

that limg F,(s) = 0.) Consequently, 7, (x(»)|D|~° is Connes measurable whenever || = gk.

measurable; one simply has to take more care with the indexing of the sums. O

Corollary 3.19. Under the hypotheses of Theorem 5.18, |D|~° is Connes measurable, and its Dizmier trace
18 positive.

Proof. The fact that T(’]TT(X[)\])‘D‘_(S) exists and is finite for all A € F3, implies that T(WT(XXBA)|D|—5)

is also finite, since Xp, = | Jyey, [v] and Vp is finite. Moreover, m-(xx,, ) = 1 € B(H). Observing that |D|~?
is positive, and that 7 (m,(x[,)|D|~°) is positive for each v € Vo, completes the proof. O

Remark 3.20. Observe that the constants Li, Ly (and therefore the Dixmier trace T(WT(X[)\])|D|*5) =
414 Ls) are independent of the choice function 7. For each ¢ € (0,1), we can therefore use the Dixmier trace
to define a function ps on the Borel o-algebra of Xp, :

ps(A) = Dixaier trace of (. (xp)|DI~*) = T (x DI ™) = lim (s = DTe((m () ID7)°). - (24)

Example 3.21. (Continuation of Examples 3.13, 3.16) For this example, we can show directly that
7:(|D|7%) € M1 . By Equation (9), the singular values of $7-(|D|~°) are precisely its eigenvalues, which
are

1 1
1 with multiplicity 1; (5)7 with multiplicity 2;...(=-), with multiplicity 2*;...

2k
Therefore, for say N, = 2"t — 1:

(n+1)

Ty

"/ k=0
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So limsupy_, o ﬁ chvzo (eigenvalues of |D|™%) < +oo, and |D|™ is in the Dixmier-Macaev ideal
M . Furthermore, with the methods of Theorem 3.18, we see that |D|~° is measurable in the sense of
Connes and that the Dixmier trace of |D|~° is given by

“+o0 “+oo
1\ ks
lim(s —1 eigenvalues of |D|7%)* = lim 2 (s — 1 (— ok
lis = 1) 3 e FIDI = 20 3 (5

X\ kks 2(s—1 2
zlim2(s—1)z<2) i 282D 2
sN\(1 —o

Proposition 3.22. Let A be a finite, strongly connected k-graph; fix 6 € (0,1) such that (Bx,ws) satisfies
Hypothesis 3.1. The function ps of Equation (24) determines a unique finite measure on Xp, = A*>°. That
1s, the assignment

[A] = ws([A), for every A € FBy,
determines a unique finite measure on Xpg, .

Proof. This proof relies on Carathéodory’s theorem [25, Theorem A.1.3]. Notice that
F:={[A\]: € FBp}

is closed under finite intersections (if [A] N [y] # @, then either X is a sub-path of v or vice versa, and thus
(in the first case) [A] N [vy] = [v]), and

A" = L]
[Ail=[ALA AN

In other words, the complement of any element of F can be written as a finite disjoint union of elements
of F. Therefore F is a semiring of sets, so the fact that A is finite means that the collection of all finite
disjoint unions of cylinder sets [\], for A € FB,, is an algebra.

Since F generates the topology on Xg, , and ps5([]) is finite for all [y] € F by hypothesis, Carathéodory’s
theorem tells us that in order to show that us determines a measure on Xp,, we merely need to check that
s is o-additive on F. In fact, since the cylinder sets [y] are clopen, the fact that Xp, is compact means
that it is enough to check that ps is finitely additive on F.

Recall that in calculating

ps([V]) = lim 2(s—1) Z wé(/\)ﬁs

1
™ AEF, By

we can ignore finitely many initial terms in the sum. Thus, for any L € N|

ps(p]) =lim2(s—1) Y ws(N) (25)
sN\(1
AEF,Ba: [A>L
Now, suppose that [y] = [ |V, [\;]. Write L = max; |\;|, and for each 4, write [\;] = [_|,[\i.¢] where |\; ¢| = L.

If X € F,By with |\| > L, then J\; is a sub-path of A for precisely one ¢, and hence
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ws([7]) = lim 2(s — 1) Z s(\)%° —hm2 s—1) Z Z ws (A

sN\(1
)\EFWBA i )\EF)\ Ba
[A=L

= us(AD) =D ms(Nid)).
i i
For each fixed i, ||,[Ai¢] = [\i], so the same argument will show that ps([Ai]) = >, pts([Ai,e]). Thus,

= Z,u.,.’(;([)\i’g]) = Z/M(P‘z])
i i

Since ps is finitely additive on F, Carathéodory’s theorem allows us to conclude that it gives a well-defined
finite measure on Xpz,. O

Our next main result establishes that under our standard hypotheses on A, if 7 is a choice function and
f € C(Xp,) is a continuous function, then 7. (f)|D|~? is Connes measurable. Before beginning the proof,
we make a few remarks which we will invoke regularly in the proof:

1. Since the Lipschitz functions are dense in C(Xp, ), we can extend the representation 7, to a represen-
tation of C'(Xp,) on H, which we will continue to denote by 7.

2. Recall (from the proof of Theorem 3.18) that m-(xz)|D|™" = |[D| "7, (xy) for any ¢t > 0 and any
A\ € FB,. Consequently, |D|~* also commutes with C'(Xg, ).

Theorem 3.23. Let A be a finite, strongly connected k-graph; fiz 6 € (0,1) such that Hypothesis 5.1 holds for
(Ba,ws), and fix a choice function 7. Let us be the Borel measure on Xp, described in Proposition 3.22.
Then m,(f)|D|=° is Connes measurable for all f € C(Xg,), and the Dizmier trace of m.(f)|D|~° is given
by

T (= (NIDIF) = limy(s = 1) T (1)|D] ) / 1 (@) dyss(a

Proof. Replacing ¢ with ﬁ in the proof of [56, Theorem 8.6.5], and applying this proof to the setting w =
lim; o0, M = B(H), 7 = Tr, A = |D|~° implies that for any f € C(Xg, )+, if lims1(s — 1)Tr(m, (f)|D|%%)
exists and is finite, then (since 7,(f) and |D|™" commute for any r > 0)

i =99 = lim(s — 1)Tr(x —99),
ll\ml(s—l)Tr((FT(f)|D| ) )—2\1( DTre(m- ()| D]7°%)

So for f non-negative and continuous, it also follows from [23] that if lim,w1 (s — 1)Tr(m ()| D|~%%) exists
and is finite, then 7, (f)|D|~° is Connes measurable, and its Dixmier trace is limg\1(s — 1) Tr(m, ()| D|~%%).

Note that by Theorem 3.18, if ¢ is a simple function on Xg, of the form ¢ = Z;”:l a;X[a,]» then linearity
of the integral combines with Proposition 3.22, our remarks in the first paragraph of this proof, and the
definition of us in Equation (24) to show that

. -0
ll\ml(s — 1)Tr(m-(¢)| D] %) Zaj hm (s = D)Tr(mr (xa,) 1D °%) / o(x) dus(z

Fix e € (0,1) and f € C(Xpg, ). There exists 71 > 0 such that whenever s € (1,1 + 1),

(s = D)Te(ID|~*°) = T(ID| )| < e.
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By the Stone-Weierstrass Theorem, the simple functions made from characteristic functions corresponding
to finite paths in FBy are dense in C(Xp,) so given our fixed continuous function f there is a simple

function ¢ of the desired type with ||f — ¢||sup < W, and hence
€ €
)d )d d ————— .14 —.
/ $(e)dus(z / @)z / 1 = bl dis(@) <[ Jorpis gy - el < §
X5,

By our remarks at the beginning of this proof, there exists 7y > 0 such that if s € (1,1 + n2),

(s — 1)Tx(m, (#)|D] ) — / o(x) dus(a)| <

X5

A~

A

We now let n = min{n;,n2}. Suppose that s € (1,1 + ). Then,

(s — 1)Ta(m. (f)|D] %) — / f(@)dus(x)| < |(s = D)Te(m-(f)| D7) = (s = DT (. (¢)| D7)

X5,

4 |(s = 1)Te(m (8)| D) - / o) dps(x / o(2)dus( / F(2)dps(x

B

= [(s = VTe(m-(f = S)|D[7))] + 3 it _(Sfl)Tr(lD\*s‘s)'IIWT(ffqﬁ)HB(H)Jri

4
2

€ +6+€<
1 5 €.

T+

A

< (T(DI™°) +¢) - +

€
< =
!

N

In the penultimate inequality we used the fact that the set of trace class operators is an ideal in B(H),
and if K is a trace-class operator and T € B(H), |Tr(TK)| < Tr(|K|) - ||| () [61, Page 218, Ex. 28a].
Thus we have established that

T(mr(f)ID]*) = lim (s — DTr(mr ()| D] %) = / fdps(z) (26)
X5,
for any f € C(Xg, ). As indicated at the beginning of the proof, for any non-negative function f € C'(Xpg, )+,
7-(f)|D|7? is Connes measurable and Equation (26) computes its Dixmier trace. The linearity of the Dixmier
trace, combined with the fact that any f € C(Xp,) can be written as the difference of two non-negative
continuous functions, f = f; — f_, now implies that for any f € C(Xg,), 7 (f)|D|~° is also Connes
measurable, and that Equation (26) gives the Dixmier trace of 7, (f)|D|™? for all f € C(Xp,). O

Remark 3.24. Proposition 3.22 and Theorem 3.23 can also be deduced by following the argument indicated in
[47]. Since 7 (|D|7%) is in the Dixmier-Macaev ideal M o, by Theorem 3.18, we have 7 (f)|D|™° € M oo,
for all f € C(Xp, ). For a fixed generalized limit w, the Dixmier trace functional D, : C(Xg,) — C, defined
by D, (f) =T, (77-,—(f)|D|_6) is bounded, see e.g. [47, page 1826]. Now the Riesz representation theorem
for linear functionals on C(Xp,) implies that there exists a finite measure p,, (also possibly dependent on
7 and &) on Xp, such that (see [47, page 1826])
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Dw(f):/fduw, v € C(Xs,).

X5,

But by the Carathéodory/Kolmogorov extension theorem, the measure y,, is determined by its values on
cylinder sets. This evaluation on cylinder sets is (by Remark 3.20) independent of 7 and w; in other words,
e = s for all w. Therefore we get

D, (f) = / fdus, YfeC(Xgp,), forall generalized limits w.

X8,

Remark 3.25. Theorem 3.23 also shows that the Cantor set Xp, is (-regular in the sense of Definition 11
of [59]. This is an immediate corollary of Theorem 3.23, Corollary 3.19, and the definition of (-regularity,
together with the elementary observation that the limit of the quotient is the quotient of the limits if the
latter exist.

Our next step will be the determination of the measure ps on Xg,, up to renormalization.

Theorem 3.26. Let A be a finite, strongly connected k-graph for which Lemma 3.2 holds. Write A; for the i-th
adjacency matriz of A and suppose that A = Ay - -+ Ay, is irreducible. For any 0 € (0,1), the normalization
vs of the measure 5 on Xpg, defined by

Cs(0) Tl (o)D)
vil0) = L Xe) ~  TUDI)

for every Borel set O of Xp, (27)

agrees with the measure M introduced in Proposition 8.1 of [40]. In particular, vs is a probability measure
which is independent of the choice of §.

Proof. For any path v € F,By with |y| > k, write v = vy’ with |y| = k. Since r(v') € Vi = Vy, we can
identify +" with a path in FB,. Then Proposition 2.19 tells us that

1/6

ws(y) = p~Pws(v').

Consequently,

ps([v]) = lim 2(s — 1) Y ws(v)’" = il\ir} 2(s—1) S wMT+ > ws(y)”

sN\(1
YEF,Ba r(vy)=v,|v|<k r(v)=v,|v[>k
o k—1
T ds ds
= lim 2(s — 1) S wsE Y ws(7)
r(y)=v,|vy|<k n=11t=0 r(y)=v, |y|=nk+t
oo k—1
1 ds —s \ds
= lim2(s —1) > w(W Y > A(v, 2)ws(y")
r(y)=uv,|y|<k n=0t=0 zeA0 r(y')=z, |y |=nk+t
1
=lim —2(s—1) 3 A(v,2) D ws(v)™
NP ZEN0 v EF. B

=Y A (e

zEANO
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The third equality holds because of the formula (5) for the weight ws; to be precise, if v = v9y' and || = &,

s = p~Sws(y")%. Moreover, for each fixed such path 4" with range z and length (n — 1)k 4+ t,

then wg(7)
there are A(v,z) paths 7 of length nk + ¢ and range v such that v = 49" for some path vy with length k.
The penultimate equality holds because the first sum (being finite) tends to zero as s tends to 1; the final
S

equality holds since both lims\ 1 p~% and ps([2]) are finite, so the limit of the product equals the product
of the limits. Thus, (v5([v]))vey, is a positive eigenvector for A with ¢!-norm 1 and eigenvalue p, and hence
must agree with z by the irreducibility of A.

Moreover, if |y| = gok (equivalently, if we think of v € A, then d(v) = (qo,-.-.,q0)), then

Al "(s v) Ay - Ag(v, b)(x)®
mwmAMm—n1§jZ§f“ﬂ”M Al O)w)" L (o).

sN\(1 psao e gt (pl . pt) plo

Comparing this formula with Equation (4) tells us that whenever |y| = gok,

Since v5 agrees with M on the square cylinder sets [A] with d(A) = (qo, . - -, ¢0), and we know from the proof
of Lemma 4.1 of [28] that these sets generate the Borel o-algebra of Xp,, the measures vs and M must
agree on all Borel subsets of X5,. O

Remark 3.27.

1. If one could prove that the vector (us[v])yey, wWas an eigenvector for each A; with eigenvalue p;, then
we could use the theory of families of irreducible matrices, developed in [40, Section 3], to remove the
hypothesis that A be irreducible in Theorem 3.26.

2. Since T (|D|~%) does not depend on 7, the above proposition shows that j; is a finite measure on Xz, ,
with

1s(0) = T(|D|~%) M(O), for every Borel set O of Xp, .

We have therefore proved the following improved version of Theorem 3.23, under the additional hypothesis
that A = Ay --- A, be irreducible.

Theorem 3.28. Let A be a finite, strongly connected k-graph. Write A; for the ith adjacency matriz of A
and suppose that A = Ay --- Ay is irreducible. Fiz 6 € (0,1) and suppose that Hypothesis 3.1 holds for the
weight ws of Equation (5). Then for any f € C(Xg, ), the operator . (f)|D|~° is measurable in the sense
of Connes and its Dizxmier trace is

. —0s\ __ -4
gw—nmmWW|>—ﬂwg/mm

A
where M is the measure introduced in Proposition 8.1 of [/0].
4. Eigenvectors of Laplace-Beltrami operators and wavelets
In this section, we investigate the relationship between the decomposition of L?*(Xp,,us) via the

eigenspaces of the Laplace-Beltrami operators A, associated to the spectral triples of Section 3 for the
ultrametric Cantor set (Xp, , dy,) of Corollary 2.20, and the wavelet decomposition of L?(A%, M) given in
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Theorem 4.2 of [28]. Our main result in this section, Theorem 4.6, establishes that the Laplace-Beltrami
eigenspaces, as described in [42, Theorem 4.3], also encode the wavelet decomposition of [28, Theorem 4.2].

The connection between operators and wavelets that we identify in this section goes deeper than the
frequently-seen connection between wavelet decompositions and Dirac operators. To be precise, the wavelet
decomposition of L?(A>, M) arises from a representation of C*(A) (see Definition 4.4). Thus, the results
in this section establish a link between representations of higher-rank graphs and the Pearson-Bellissard
spectral triples, in addition to identifying the wavelet decomposition of [28] with the eigenspaces of the
Laplace-Beltrami operators Aj,.

4.1. The Laplace-Beltrami operators and their eigenspaces

We begin by describing the Laplace-Beltrami operators of [59] and their eigenspaces. Recall a choice
function is a map 7 : FBy — Xp, x X, satisfying 7(v) = (x,y) where x,y € [y] and d(z,y) = diam([y]) =
w(7y). The set of all choice functions is denoted by T 4. We want to identify T 5 with a measurable space which
we can construct a measure related to the measure M which arose in the last section, see Theorem 3.26.
Our approach will be the same as that given in Section 7.2 of [59] with slightly more detail.

Proposition 4.1. (c¢f. [59], Section 7.2) Let A be a strongly connected finite k-graph and § € (0,1) such that
(Ba,ws) satisfies Hypothesis 3.1. If Ta represents the set of choice functions T : FBy — Xp, X Xp,, we
can identify YT with an infinite product space

v=]] v,

’)’EFBA

where each Y, is a compact set equal to a finite unions of products of cylinder sets. Moreover, assuming
that the product A = Ay --- Ay of the adjacency matrices of A is irreducible, there is a probability measure
N onY that can be derived from the measure M on Xg, described in Theorem 5.20.

Proof. We first fix v € FB), and define the subset G, of FBy x FB, as in Section 7.2 of [59]. Let z € Xp,
be an element of [v], so that z(0,d(y)) = . If we set r = ws(7y), we know from Proposition 2.15 and
Hypothesis (3.1) that [y] = B[z, r]. Now let 7 be a choice function with 7(y) = (x,y), so that ds(z,y) =
ws(y) = diam([y]). Hypothesis 3.1 implies the existence of y; and 2 in FB, that are extensions of the
fixed finite path v with |y1| = |y2| = |v| + 1, and x(0,d(y1)) = 71, and y(0,d(y2)) = 2. On the other hand,
given 71, 72 € FB, that are extensions of the fixed finite path v with v; # 72, |n| = |y = |7| + 1, for
any = € [y1] C B[z, r] we have z(0,d(v1)) = v, and for any y € [y2] C Blz,7] we have y(0,d(v2)) = 2 so
that by Proposition 2.15, ds(z,y) = w(y) = diam([y]) = r. Thus we can identify all ordered pairs that are
contained in the Cartesian products [y1] X [y2] with the image under a choice function of v € FB,. For each
v € FBy, we therefore write

Gy ={(11,72) € FBy x FBA}

where 1 and 7, are extensions of v with |v1| = |72| = |y| + 1. Our requirement that A be a finite k-graph
implies that each G, is a finite set. For each v € F By, we write

V= || Inlxhel

(71,72)€G~

Since G, is a finite set and each [y1] X [y2] is compact in Xz, x Xp,, the finite disjoint union Y, is closed
in Xp, x Xp,, hence compact. We then note that by construction, each element of the infinite product
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v=]] v

’YGFBA

can be identified with a choice function, and thus Y can be identified with T 5. It follows that if we equip
each factor Y, with a probability measure IV, we obtain a probability measure N on the infinite product
space X, by the fundamental results of Kakutani [43].

We recall that M is the probability measure on Xp, which arises via the normalized Dixmier trace, as
described in Theorem 3.26, and so M x M is a probability measure on the Cartesian product Xg, x Xz, .
Fixing (y1,72) € Gy, then M x M restricts to a finite measure on Borel subsets of the Cartesian product
[11] % [72] € Xp, x X, that is most likely not a probability measure. We now scale this measure as follows:
for any Borel subset E of [y1] X [y2], let

_orxane)
Ny, o) (E) = > nyea, MM (['])”

Now define the Borel measure IV, on Y, by setting

Ny(BE) = > Neyn (BN (1] x )
(71,72)€G4

Finally, using Kakutani’s infinite product theory for measures [43], we have a Borel probability measure N
defined on Y =[] Y, by

N= ][ N,

'YGFBA

Since Y can be identified with Y5, we write N for the corresponding measure on Yy, as well. O

Remark 4.2. In Proposition 4.1 the hypothesis A = A; --- Ay, is irreducible is not essential. In its absence,
we can prove that we obtain a probability measure Ns on Y that can be derived from the measure ps on
Xg, (of Proposition 3.22) in the same way that N is derived from M.

Therefore, according to Section 8.3 of [59] and Section 4 of [42], for each s € R the (-regular Pearson-
Bellissard spectral triple from the previous section gives rise to a Laplace-Beltrami operator Ag on
L?(Xg,, M) via the Dirichlet form Qs as follows:

(F:8u(0)) = QulF9) = 5 [ T(1DI D, 7P (D l9)]) AN (). (25)

T

Thanks to Section 8.1 of [59], we know that @ is a closable Dirichlet form for all s € R and it has a dense
domain that is generated by the set of characteristic functions on cylinder sets of Xp, . Also, by applying the
work of [59] and [42] to our weighted stationary k-Bratteli diagrams By, we can obtain an explicit formula
for A, on characteristic functions as follows.

For a finite path np = (771)1":'1 (where each 7; is an edge) in By, we write x|, for the characteristic function
of the set [n] C Xp, of infinite paths of By whose initial segment is 7, and 7(0,4) for ;- - - ;. We denote

by (0, 0) the vertex r(n). Also, for v € FBy, we set

LY MbeM(e.

T (ee)€exti(y)

where exty () is the set of pairs (e, ¢’) of edges in By with e # ¢’ and r(e) = r(e’) = s(v).
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From Lemma 3.2, we know that if Hypothesis 3.1 holds for the weighted stationary k-Bratteli diagram
(Ba,ws) associated to a higher-rank graph A, then ext; () is nonempty for all v € FB5. We can therefore
assume that ext(7) is always nonempty; equivalently, that F), < co. Then, as in Section 4 of [42], for each
s € R, we have

[nl—1
As(xm) == Y 2Fp0.0w(n(0,4))* (M([n(0,)\[17(0, i + 1)])xpy (29)
1=0
=M ()X 0,00\ (0,i+1)) -

We now restate some results from Section 4 of [42], which we have adapted to our setting.

Proposition 4.3. (c¢f. [/2], Theorem 4.3) Let A be a finite, strongly connected k-graph and choose § € (0,1)
such that (Ba,ws) satisfies Hypothesis 3.1. Suppose that A = Ay --- Ay is irreducible. Let Xg, be the
infinite path space associated to A with associated probability measure M. Let {Ag: s > 0} be the family
of Laplace—Beltrami operators defined on a dense subspace of L*(Xp,, M) in Equation (29). Then the
eigenspaces of {Ag : s > 0} are independent of s. Precisely, they are given by

E_y = span{xxs, }

with eigenvalue 0 and
E { L ! #v' eV }
0 = 8pan{ ———=Xp] — T Xjv] (v FV € Voo,
M) M)

with eigenvalue 2/ (Zv;év,evo M([v])M([v/])) For each nonempty v € FBy, define a subspace

By = spon { S~ g Ko (66 € )] 30)

Then the subspace E, consists of eigenvectors with the same eigenvalue, and for v # n € FBa, E, is
orthogonal to E,,.

Proof. This result is contained in Theorem 4.3 of [42], and here we are including details for completeness
and clarity of notation.

By our discussion of the action of A on cylinder sets, yp~ = 1 is in the kernel of Ay so that E_; has
eigenvalue 0. The proof of Theorem 4.3 of [42] shows that

2
ZU,'U’EAO: v’ M([’U])M([’Ul])

is an eigenvalue for the given space Ey. Now consider the subspaces E, for a nonempty path v € FBx. The
eigenvalues A, for the subspaces £, as given in the statement of our theorem are computed via Theorem
4.3 of [42] as follows. Recall for any finite path n of By we have defined the set ext;(n) and the positive
number F;, above. For each s > 0, let

G () = gliamn (1))~ F.

Thus for a nonempty finite path v, the formula for the eigenvalue A, is given by
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p = 5 DIGOD = MEOi+ Y] M)

2. G0,9) @)
and in Theorem 4.3 of [42] it is shown that every vector in E, is an eigenvector for A, with eigenvalue A,.
For an arbitrary finite k-graph, it is not an easy task to compute the eigenvalues )\, for a specific weight
ws. The authors have done so in the case of a symmetric weight where Bratteli diagram comes from the
directed graph Ap with D vertices and D? edges giving rise to the Cuntz algebra Op in [27, Theorem 4.10],
and have done so for an arbitrary weight on A in [27, Proposition 6.8].

The eigenspaces of Ay are independent of s, although in general, the eigenvalues A, depend on the choice
of s € R. For general v, 1 in F'By with v # 7, it is not obvious that A, # A,. However, it will be the case
that E, L E,, by the following reasoning. If [y] N [n] = 0, it is evident that the functions in E, and E,, have
disjoint support, thus are orthogonal. In the case where [y]N[n] # 0, suppose without loss of generality that
[7] < |y]- It then follows that we must have [n] C [v], and consequently n = v\ for some path . Therefore,

1 1 ) 1 1
<WX[76] N WX["/G']a M([né]x[né] - M([né/})X[né/D = W / Xlye] X[ng) AM
X5,
1
T M (e M (e ) / Xlye'| Xner) AM
X5,
: 1
_ WX/ XX M+ Wx/ X[ve'1X[ne) dM

A A

The first and third terms are both zero unless the first edge of A is e, in which case their difference evaluates
to

Similarly, the second and fourth integrals are both zero unless the first edge of A is €/, and in this case the
integrals take the same value. It follows that the basis vectors for E, will always be orthogonal to the basis
vectors for F,, so £, L E, as claimed. O

4.2. Wavelets and eigenspaces for Ag

In this section, we prove our Theorem relating the wavelet decomposition (32) with the eigenspaces E.
of the Laplace-Beltrami operators Ay in the case when A := A; --- Ay is irreducible.

In Theorem 4.6 below, we compare the subspaces E., with the wavelet decomposition of L*(A>, M)
which was constructed in [28] out of a representation of the C*-algebra C*(A) on L?(A>°, M).

Before recalling this wavelet decomposition, we first review the construction of the C*-algebra C*(A)
associated to a higher-rank graph.

Definition 4.4. [51] Let A be a finite k-graph with no sources. C*(A) is the universal C*-algebra generated
by a collection of partial isometries {sy}rca satisfying the Cuntz-Krieger conditions:

(CK1) {s,:v € A%} is a family of mutually orthogonal projections;
(CK2) Whenever s(\) = r(n) we have sys, = sx,;
(CK3) For any A € A, s3sx = 54(5);
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(CK4) Forallve A% and all n € N¥ 37\ s\s} = s,

We now review the “standard representation” of C*(A) on L?(A>°, M), which we denote by 7. It is this
representation, first described in Theorem 3.5 of [28], which gives the wavelets that will be used in the
sequel. For p € N¥ and A € A, let o” and o be the shift map and prefixing map given in Remark 2.9(b). If
we let Sy := 7(sy), the image of the standard generator sy of C*(A), then Theorem 3.5 of [28] tells us that
S\ is given on characteristic functions of cylinder sets by

Sxxpn () = xp (@) p(A) "D 2x 0 (09 (2))

7 p(A)IN/2if 2 = Ay for some y € A® (31)
0 otherwise

(A)d(A)/Q

=p X[An) (1')

We can think of the operators Sy as combined “scaling and translation” operators, since they change
both the size and the range of a cylinder set [n], and are intimately tied to the geometry of the k-graph A.

Theorem 4.6 below shows that when Hypothesis 3.1 holds and the adjacency matrix A = Ay --- A of A
is irreducible, the eigenspaces of the Laplace—Beltrami operators refine the wavelet decomposition of [28]
which arises from the standard representation 7. In order to state and prove this Theorem, we first review
this wavelet decomposition.

For each n € N, write

Y =span{xp : dA) = (n,...,n)}, and W, =¥ NY-

We know from Lemma 4.1 of [28] that {x[y) : d(X\) = (n,...,n) for some n € N} densely spans L*(A>°, M).
Consequently,

L*(A®, M) = % & @ Wha. (32)
neN
Proposition 4.5 below establishes that the subspaces W, := %41 N ¥,;- are precisely the wavelet subspaces

which were denoted W, o in Theorem 4.2 of [28]. Indeed, one can think of the subspaces {#,}.en as a
“multiresolution analysis” for L?(A°°, M). With this perspective, researchers familiar with wavelet theory
will find it natural that the wavelet spaces W, a of [28] arise in this fashion from a multiresolution analysis.

For the proof of our main result, Theorem 4.6, as well as for the proof of Proposition 4.5, it will be
convenient to work with a specific basis for Wj. For each vertex v in A, let

D, = vAL-1),

One can show (cf. [40, Lemma 2.1(a)]) that D, is always nonempty when A is finite and strongly connected.
Enumerate the elements of D, as D, = {Ao, ..., Ag(p,)—1}. Observe that if D, = {A} is a 1-element set,
then [v] = [A]. If #(D,) > 1, then for each 1 < ¢ < #(D,) — 1, we define

[ 1 (33)
M) ¥ T M N
One easily checks that in L2(A>, M), (f°, X[w]) = 0 for all i and all vertices v, w, and that
{f*" v e A% 1<i<#(D,) -1}

is an orthogonal basis for Wy = #; N ¥G- C L2(A%°, M).



C. Farsi et al. / J. Math. Anal. Appl. 482 (2020) 123572 35

The following Proposition justifies the labeling of the orthogonal decomposition of L?(A°, M) given
in Equation (32) as a wavelet decomposition; it is generated by applying our “scaling and translation”
operators Sy to a finite family {f*"}; , of “mother functions.”

Proposition 4.5. For any n € N, the set
Sn = {3 N 1 d(\) = (n,...,n),1 <i < #(Dyny) — 1}
is a basis for Wy, = V1 NV .

Proof. The formulas (31) and (33) show that if d(\) = (n,...,n), then Sy f**) is a linear combination of
characteristic functions of cylinder sets of degree (n+1,...,n+1). Thus, to see that Sy f>*» € W), for each
such A and each 1 <4 < #(Dy(y)) — 1, we must check that (S,\fivs(”,xh]) = 0 whenever d(n) = (n,...,n).
We compute:

1

1
PONTEVEN

) 1
1,5(A) - dM — ———— / 1dM
Sxf aX[n]> M) / X[ XA o] M([\i]) X[ X[AA]

By XB,

_{Q n# N

M([Mo))  M(A]) -y
M

]
(X)) M(N])

Using the formula for M given in Equation (3), we see that

- SN () — p(a) i) o

In other words, (S)\fi’s()‘),XMQM = 0 always, so Sy f>*N) 1 ¥, and hence S\ f**) e W, for all A and
for all 4. Moreover, S, is easily seen to be a linearly independent set: if d(A) = d(\') = (n,...,n) and
d(X) =d(A\) =(1,...,1),
[)\)\Z] n [)\IA;] = 5/\,)\,6)\1")\; [A)\z]
Since dim W,, = dim %, 1 — dim ¥%;, = #(A+1n 4Dy g (A(m)) and

#(Sn) = Z (#(Ds()\)) _ 1) _ #(A(n+1,...,n+1)) o #(A(n,...,n)>

we have W,, = span S, as claimed. 0O

Theorem 4.6. Let A be a finite, strongly connected k-graph with adjacency matrices A;. Suppose that A =
Ay -+ Ay s irreducible. For any weight ws on the associated Bratteli diagram By as in Proposition 2.109,
such that Hypothesis 3.1 holds for (Bx,ws), the eigenspaces of the associated Laplace—Beltrami operators
A refine the wavelet decomposition of (32):

Y=E_1®Ey and W, =span{E,:|y|=nk+t, 0<t<k—1}.

Proof. First observe that under the identification of A° C A with Vy C By, we have Ey C %, and E_; C
70, since the spanning vectors of both Ey and E_; are linear combinations of x|, for vertices v. Thus
E_1 ® Ey C ¥. For the other inclusion, we compute
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wH#VEA? wH#VEAN?

1 1
=0= = 32t (e = o)

w#v

By rescaling, we see that x|, € E_1 ® Ey, and hence 75 = E_; ® Ep as claimed.

To examine the claim about W, let n € FBy with |n| = nk + t. In other words, 7 represents an element
t

—_—
of degree (n+1,...,n+1,n,...,n) in the associated k-graph. Choose a typical generating element f, of
E, as in Equation (30),

fy = X —
"7 M ([pe) T M (per)

——
where (e, e’) € exty(n). Write n = 9,1, where d(n,,) = (n,...,n) and d(n:) = (1,...,1,0,...,0). Enumerate
the paths in r(n;)A1) as

{)\07 L) )\mv )‘m+17 L) )\m+Za )\m+Z+17 vy )\m+Z+p}

where the paths \; for 0 <1 < m are the extensions of n;e and the paths A\; for m +1 <i < m + £ are the
extensions of 7ye’. Then

m m-+£
1
nn z X[’I]n A7] N (34)
P M([ne’]) i:Zm ‘.

Using Equations (31) and (33), we obtain

. 1 1
i (1e) — p(A)(7/25m/2) _
ol o (M([Ao])x["“‘” M(M)X[""*”)’

and hence
O~ —M(AD) SR M(A)
S, fl () 4 fl r(ne)
(S 3
(n/2,.m/2) [ __L LS
= p(A)" 2,...,n/2 L X )
p( ) <M ,)\1] M([nne/]) i:;l [nn,)\z]
(35)
m M m-£
=1 1= m+1
1 m M m--£
— p(A) (/2,0 /2) —_ .
o I S X \ 24 e %; ST
Since the paths A;, for 0 <4 < m, constitute the extensions of n.e with the same degree (1,...,1), we have
o M([\i]) = M([ne])). Similarly, Z;"‘:tﬁﬂ M([N;]) = M([n.€']). Moreover,

M([me]) _ d(ne)—d(nee) _ d(n,) _ M(me'])
M(inel) ~ " AT = N (e
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In other words, the coefficient of [, x,] in Equation (35) is zero, and so f,, € W,.
If our “preferred path” \g is not an extension of either e or ¢/, Equations (34) and (35) hold in a modified
form without the zeroth term, and we again have f, € W,. In other words,

E, €W, whenever |n| =nk +t.

To see that W,, = @f;ol ®In\:nk+t E,, we first recall from Proposition (4.3) that if 7, and 7, are paths
that are not equal, then E,, L E,,. After this, we again use a dimension argument. If |n| = nk +1¢, we know
from [42] Theorem 4.3 that dim E, = #(s(n)A°+') — 1. Since we have a bijection between

U s(n)A®+t and A +ers

Inl=nk+t
t t
k—1 k P —— k—1 —_——
dim @ @ B, | = Z#<A(n+ 1,....,n+ 1,n,...,n)) _ Z#<A(n+ 1,....,n+ 1,n,...,n))
t=0 ‘7]|:nk‘+t t=1 t=0
= (AL (Al
=dimW,. O

Remark 4.7. Recall that a directed graph with adjacency matrix A gives rise to both a stationary Bratteli
diagram with adjacency matrix A, and a 1-graph — namely, the category of its finite paths. Moreover, for
many 1-graphs the wavelets of [28, Section 4] agree with the wavelets of [57, Section 3]. (Marcolli and
Paolucci only considered in [57] strongly connected directed graphs whose adjacency matrix A has entries
from {0, 1}; but for all such directed graphs, the wavelets of [28, Section 4] agree with the wavelets of [57,
Section 3].) Thus, in this situation, Theorem 4.6 above implies that the eigenspaces of the Laplace-Beltrami
operators A associated to the stationary Bratteli diagram with adjacency matrix A, as in [42] Section 4,
refine the graph wavelets from Section 3 of [57].

Remark 4.8. In [29], four of the authors of the current paper introduced for any k-tuple J = (Jy, Jo, -+ , J) €
N* the so-called J-shaped wavelet decomposition of the Hilbert space L?(A°, M):

L*(A=, M) =% & P W),
qeN

It is not difficult to modify our definition of the k-stationary Bratteli diagram associated to A and obtain
a new Bratteli diagram using J:

B = (V)" (E0)"),

where (VX)” =Vy=Aforall n, and if n = q(J1 + -+ J) + (J1 + -+ Jy) +t for some 0 < t < Jpy1,
then (7)™ has adjacency matrix

(A7 A A U(AT - AJ) AL

Analogously, one can modify the definition of the weight ws from Equation (5) to obtain a weight, and
hence an ultrametric, on B whenever 0 < § < 1. Assuming that Hypothesis 3.1 holds in this setting, we
thus obtain a Pearson-Bellissard type spectral triple for X 5] = A°°, for which the measure induced on X BY
by the Dixmier trace agrees with the measure M given in Equation (3) on A* if A'{1 e Ag’“ is irreducible,
as in Theorem 3.26. Then, constructing the associated Laplace-Beltrami operators, an easy modification of
the proof of Theorem 4.6 shows that
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W[]] =span{E, 1 q(Ji+ -+ Jp) < Y[ < (g+1)(J1 + -+ Ji)}
in this more general case, as well.
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