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Abstract. In this paper, we define the notion of monic representation for the C∗-algebras
of finite higher-rank graphs with no sources, and we undertake a comprehensive study
of them. Monic representations are the representations that, when restricted to the
commutative C∗-algebra of the continuous functions on the infinite path space, admit
a cyclic vector. We link monic representations to the 3-semibranching representations
previously studied by Farsi, Gillaspy, Kang and Packer (Separable representations, KMS
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1. Introduction
Higher-rank graphs 3—also known as k-graphs—and their C∗-algebras C∗(3) were
introduced by Kumjian and Pask in [37], building on the work of Robertson and Steger
[45, 46]. Generalizations of the Cuntz–Krieger C∗-algebras associated to directed graphs
(cf. [11, 12, 23, 38]), k-graph C∗-algebras share many of the important properties of
Cuntz and Cuntz–Krieger C∗-algebras, including Cuntz–Krieger uniqueness theorems and
realizations as groupoid C∗-algebras. Moreover, the C∗-algebras of higher-rank graphs
are closely linked with orbit equivalence for shift spaces [10] and with symbolic dynamics
more generally [43, 44, 47], as well as with fractals and self-similar structures [25, 26].
More links between higher-rank graphs and symbolic dynamics can be seen via [5, 6] and
the references cited therein.

The research presented in the pages that follow develops a non-commutative harmonic
analysis for finite higher-rank graphs with no sources. More precisely, we introduce monic
representations for the C∗-algebras associated to finite higher-rank graphs with no sources,
we undertake a detailed theoretical analysis of such representations, and we present a
variety of examples.

Like the Cuntz–Krieger algebras, k-graph C∗-algebras often fall in a class of non-type I
and, in fact, purely infinite C∗-algebras. The significance of this for representation theory
is that the unitary equivalence classes of irreducible representations of k-graph C∗-algebras
do not arise as Borel cross sections [15, 21, 22, 29, 30]. In short, for these C∗-algebras,
only subfamilies of irreducible representations admit ‘reasonable’ parametrizations.

Various specific subclasses of representations of Cuntz and Cuntz–Krieger C∗-algebras
have been extensively studied by many researchers, who were motivated by their
applicability to a wide variety of fields. In addition to connections with wavelets (cf.
[18, 19, 26–28, 40]), representations of Cuntz–Krieger algebras have been linked to
fractals and Cantor sets [25, 26, 35, 48] and to the endomorphism group of a Hilbert
space [8, 39]. Indeed, the astonishing goal of identifying both discrete and continuous
series of representations of Cuntz (and, to some extent, Cuntz–Krieger) C∗-algebras was
accomplished in [3, 17, 20], building on the pioneering results of [7].

In the setting of higher-rank graphs, however, the representation theory of these C∗-
algebras is in its infancy. Although the primitive ideal space of higher-rank graph C∗-
algebras is well understood [9, 34], representations of k-graph C∗-algebras have only
been systematically studied in the one-vertex case [13, 14, 50]. This motivated us to
undertake the present detailed study of monic representations of k-graph C∗-algebras and
their unitary equivalence classes. Despite the similarities between the Cuntz algebras and
k-graph C∗-algebras that we have highlighted above, there are fundamental structural
differences between them: for example, k-graph C∗-algebras need not be simple, nor is
their K -theory known in general. Thus, the extension of results on representations for
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Cuntz algebras to the k-graph context is not automatic, and we are pleasantly surprised to
have obtained such extensions in the pages that follow.

The monic representations that we focus on in this paper were inspired in part by the
wavelet theory for higher-rank graphs which was developed in [27]. These wavelets relied
on the concept of 3-semibranching function systems, which were introduced in [27] and
further studied in [24]. In this paper, we refine the 3-semibranching function systems
into a crucial technical tool for studying monic representations, namely, the 3-projective
systems of Definition 3.1. Monic representations also have strong connections to Markov
measures [3, 20] and Nelson’s universal representation of an abelian algebra [42]. Indeed,
studying monic representations enables us to convert questions about the representation
theory of higher-rank graphs into measure-theoretic questions (see Theorems 3.10 and 3.12
below).

This paper is organized as follows. We begin with an introductory section that reviews
the basic notation and terminology for higher-rank graphs as well as the 3-semibranching
function systems from [27]. Before turning our attention to a theoretic and systematic
analysis of the monic representations of finite k-graph C∗-algebras, §3 develops the
technical tools that we will need for this analysis. The 3-semibranching function systems
of [27] are refined in §3.1 into 3-projective systems, and §3.2 analyzes the projection-
valued measure P = Pπ on the infinite path space 3∞ which arises from a representation
π of C∗(3).

Section 3 ends by addressing the question of when representations of k-graph C∗-
algebras are disjoint or irreducible (see Theorems 3.10 and 3.12). To be precise,
Theorem 3.10 shows that, for representations of C∗(3) arising from3-projective systems,
the task of checking when two representations are equivalent reduces to a measure-
theoretical problem. Theorem 3.12 characterizes the commutant of such representations,
enabling a precise description of when a representation arising from a3-projective system
is irreducible.

Having laid the necessary technical groundwork, we undertake the promised analysis of
monic representations of C∗(3) in §4. This section contains two of the main results of this
paper as well as a number of examples of monic representations. Theorem 4.2 establishes
that, when 3 is a finite and source-free k-graph, monic representations of C∗(3) are
always unitarily equivalent to a 3-projective representation on 3∞. Theorem 4.5 gives
an alternative, measure-theoretic characterization of when a 3-semibranching function
system gives rise to a monic representation. More precisely, Theorem 4.5 proves that
a 3-semibranching representation is monic if and only if the measure-theoretic subsets
specified by the 3-semibranching function system (see Definition 2.7 below) generate the
σ -algebra.

The final section, §5, relates monic representations to Nelson’s universal Hilbert space,
which we denote by H(3∞). Theorem 5.7 shows that every monic representation whose
associated 3-projective system consists of positive functions is unitarily equivalent to
a sub-representation of the so-called ‘universal representation’ of C∗(3) on H(3∞),
which is described in Proposition 5.3. In particular, this Theorem establishes that every
representation of C∗(3) that arises from a 3-semibranching function system, as in [27],
is unitarily equivalent to a sub-representation of the universal representation.
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2. Foundational material
2.1. Higher-rank graphs. We recall the definition of higher-rank graphs and their C∗-
algebras from [37].

Let N= {0, 1, 2, . . . } denote the monoid of natural numbers under addition, and let
k ∈ N with k ≥ 1. We write e1, . . . , ek for the standard basis vectors of Nk , where ei is
the vector of Nk with 1 in the i th position and 0 everywhere else.

Definition 2.1. [37, Definition 1.1] A higher-rank graph or k-graph is a countable small
category† 3 with a degree functor d :3→ Nk satisfying the factorization property: for
any morphism λ ∈3 and any m, n ∈ Nk such that d(λ)= m + n ∈ Nk , there exist unique
morphisms µ, ν ∈3 such that λ= µν and d(µ)= m, d(ν)= n.

When discussing k-graphs, we use the arrows-only picture of category theory; thus,
objects in 3 are identified with identity morphisms, and the notation λ ∈3 means that λ
is a morphism in 3. We often regard k-graphs as a generalization of directed graphs, so
we call morphisms λ ∈3 paths in3, and the objects (identity morphisms) are often called
vertices. For n ∈ Nk , we write

3n
:= {λ ∈3 : d(λ)= n}. (1)

With this notation, note that 30 is the set of objects (vertices) of 3, and we will call
elements of 3ei (for any i) edges. We write r, s :3→30 for the range and source maps
in 3, respectively. For vertices v, w ∈30, we define

v3w := {λ ∈3 : r(λ)= v, s(λ)= w} and v3n
:= {λ ∈3 : r(λ)= v, d(λ)= n}.

Our focus in this paper is on finite k-graphs with no sources. A k-graph 3 is finite if
3n is a finite set for all n ∈ Nk . We say that 3 has no sources or is source-free if v3n

6= ∅

for all v ∈30 and n ∈ Nk . It is well known that this is equivalent to the condition that
v3ei 6= ∅ for all v ∈3 and all basis vectors ei of Nk .

For m, n ∈ Nk , we write m ∨ n for the coordinatewise maximum of m and n. Given
λ, η ∈3, we write

3min(λ, η) := {(α, β) ∈3×3 : λα = ηβ, d(λα)= d(λ) ∨ d(η)}. (2)

If k = 1, then 3min(λ, η) will have at most one element; this need not be true if k > 1.
For finite source-free k-graphs3, for each 1≤ i ≤ k, we can define the i th vertex matrix

Ai ∈ M30(N) by
Ai (v, w)= |v3

eiw|. (3)

Observe that the factorization property implies that Ai A j = A j Ai for 1≤ i, j ≤ k.
We now describe two fundamental examples of higher-rank graphs which were first

mentioned in the foundational paper [37]. More examples of higher-rank graphs can be
found in §4.1 below.

Example 2.2.
(a) For any directed graph E , let 3E be the category whose objects are the vertices of E

and whose morphisms are the finite paths in E . Then 3E is a 1-graph whose degree
functor d :3E → N is given by d(η)= |η| (the number of edges in η).

† Recall that a small category is one in which the collection of arrows is a set.
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(b) For k ≥ 1, let �k be the small category with

Obj(�k)= Nk and Mor(�k)= {(p, q) ∈ Nk
× Nk

: p ≤ q}.

Again, we can also view elements of Obj(�k) as identity morphisms, via the map
Obj(�k) 3 p 7→ (p, p) ∈Mor(�k). The range and source maps r, s :Mor(�k)→

Obj(�k) are given by r(p, q)= p and s(p, q)= q. If we define d :�k→ Nk by
d(p, q)= q − p, then one can check that �k is a k-graph with degree functor d .

Definition 2.3. [37, Definitions 2.1] Let3 be a k-graph. An infinite path in3 is a k-graph
morphism (degree-preserving functor) x :�k→3, and we write3∞ for the set of infinite
paths in 3. Since �k has a terminal object (namely, 0 ∈ Nk) but no initial object, we think
of our infinite paths as having a range r(x) := x(0) but no source. For each m ∈ Nk , we
have a shift map σm

:3∞→3∞ given by

σm(x)(p, q)= x(p + m, q + m) (4)

for x ∈3∞ and (p, q) ∈�k .
It is well known that the collection of cylinder sets

Z(λ)= {x ∈3∞ : x(0, d(λ))= λ},

for λ ∈3, form a compact open basis for a locally compact Hausdorff topology on 3∞

under reasonable hypotheses on 3 (in particular, when 3 is row-finite: see [37, §2]). If 3
is finite, then 3∞ is compact in this topology.

We also have a partially defined ‘prefixing map’ σλ : Z(r(λ))→ Z(λ) for each λ ∈3:
i.e.,

σλ(x)= λx =

(p, q) 7→


λ(p, q), q ≤ d(λ)

x(p − d(λ), q − d(λ)), p ≥ d(λ)

λ(p, d(λ))x(0, q − d(λ)), p < d(λ) < q

 .
Remark 2.4. The factorization rule implies an important property of infinite paths: for any
x ∈3∞ and m ∈ Nk ,

x = x(0, m)σm(x).

Taking m = pe j for an arbitrary p ∈ N reveals that every infinite path must contain
infinitely many edges of each color. Moreover, if we take m = (n, n, . . . , n) ∈ Nk for
some n ≥ 1, the factorization rule tells us that x(0, m) can be written uniquely as a
‘rainbow sequence’ of edges: i.e.,

x(0, m)= f 1
1 f 1

2 · · · f 1
k f 2

1 · · · f 2
k f 3

1 · · · f n
k ,

where d( f j
i )= ei .

For example, suppose that 3 is a 2-graph. We can visualize 3 as arising from a 2-
colored graph (red and blue edges). Moreover, each infinite path x ∈3∞ can be uniquely
identified with an infinite string of alternating blue and red edges (setting blue to be ‘color
1’ and red to be ‘color 2’).
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We stress that even finite k-graphs may have non-trivial infinite paths; in an infinite
path, the same edge may occur multiple times and even infinitely many times.

Now we introduce the C∗-algebra associated to a finite, source-free k-graph 3.

Definition 2.5. Let 3 be a finite k-graph with no sources. A Cuntz–Krieger 3-family is a
collection {tλ : λ ∈3} of partial isometries in a C∗-algebra satisfying:
(CK1) {tv : v ∈30

} is a family of mutually orthogonal projections;
(CK2) tλtη = tλη if s(λ)= r(η);
(CK3) t∗λ tλ = ts(λ) for all λ ∈3; and
(CK4) for all v ∈3 and n ∈ Nk , we have tv =

∑
λ∈v3n tλt∗λ .

The Cuntz–Krieger C∗-algebra C∗(3) associated to 3 is the universal C∗-algebra
generated by a Cuntz–Krieger 3-family.

The condition (CK4) implies that, for all λ, η ∈3,

t∗λ tη =
∑

(α,β)∈3min(λ,η)

tαt∗β . (5)

It follows that C∗(3)= span{tαt∗β : α, β ∈3, s(α)= s(β)}.

2.2. 3-semibranching function systems and their representations. In [27], separable
representations of C∗(3) were constructed by using 3-semibranching function systems
on measure spaces. A 3-semibranching function system is a generalization of the
semibranching function systems studied by Marcolli and Paolucci in [40]. As established
in [27, 40], 3-semibranching function systems (and their one-dimensional counterparts)
give rise to representations of C∗(3), and we provide examples of such representations in
§4.1 below. Indeed, we build upon the notion of3-semibranching function systems in §§3
and 4 below to characterize the monic representations of higher-rank graphs.

Definition 2.6. [40, Definition 2.1] Let (X, µ) be a measure space. Suppose that, for each
1≤ i ≤ N , we have a measurable map σi : Di → X , for some measurable subsets Di ⊂ X .
The family {σi }

N
i=1 is a semibranching function system if the following hold.

(a) Setting Ri = σi (Di ),

µ
(

X
∖⋃

i

Ri

)
= 0, µ(Ri ∩ R j )= 0 for i 6= j.

(b) For each i , the Radon–Nikodym derivative

8σi =
d(µ ◦ σi )

dµ

satisfies 8σi > 0, µ-almost everywhere (a.e.) on Di .
A measurable map σ : X→ X is called a coding map for the family {σi }

N
i=1 if σ ◦ σi (x)=

x for all x ∈ Di .

Definition 2.7. [27, Definition 3.2] Let 3 be a finite k-graph and let (X, µ) be a
measure space. A 3-semibranching function system on (X, µ) is a collection {Dλ}λ∈3
of measurable subsets of X , together with a family of prefixing maps {τλ : Dλ→ X}λ∈3,
and a family of coding maps {τm

: X→ X}m∈Nk , such that the following hold.
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(a) For each m ∈ Nk , the family {τλ : d(λ)= m} is a semibranching function system,
with coding map τm .

(b) If v ∈30, then τv = id and µ(Dv) > 0.
(c) Let Rλ = τλ(Dλ). For each λ ∈3, ν ∈ s(λ)3, we have Rν ⊆ Dλ (up to a set of

measure zero) and
τλτν = τλν a.e.

(Note that this implies that up to a set of measure zero, Dλν = Dν whenever s(λ)=
r(ν)).

(d) The coding maps satisfy τm
◦ τ n
= τm+n for any m, n ∈ Nk . (Note that this implies

that the coding maps pairwise commute.)

Remark 2.8. We pause to note that condition (c) of Definition 2.7 above implies that
Dλ = Ds(λ) and Rλ ⊂ Rr(λ) for λ ∈3. Also, when 3 is a finite 1-graph, the definition
of a 3-semibranching function system is not equivalent to Definition 2.6. In particular,
Definition 2.7(b) implies that the domain sets {Dv : v ∈30

} must satisfy µ(Dv ∩ Dw)=
µ(Rv ∩ Rw)= 0 for v 6= w ∈30, but Definition 2.6 does not require that the domain sets
Di be mutually disjoint µ-a.e. In fact, Definition 2.7 implies what is called condition
(C-K) in [3, §2.4]: up to a measure zero set,

Dv =
⋃

λ∈v3m

Rλ (6)

for all v ∈30 and m ∈ N, since Rv = τv(Dv)= id(Dv)= Dv. Also notice that, in the
above decomposition, the intersections Rλ ∩ Rλ′ , λ 6= λ′, have measure zero. This
condition is crucial to making sense of the representation of C∗(3) associated to the
3-semibranching function system (see Theorem 2.10 below). As established in [3,
Theorem 2.22], in order to obtain a representation of a 1-graph algebra C∗(3) from a
semibranching function system, one must also assume that the semibranching function
system satisfies condition (C-K).

We pause to enumerate some properties of 3-semibranching function systems, which
can be proved by routine computations.

Remark 2.9.
(1) For any n ∈ Nk and any measurable E ⊆ X ,

(τ n)−1(E)=
⋃
λ∈3n

τλ(E) and consequently µ ◦ (τ n)−1
� µ (7)

in any 3-semibranching function system.
(2) On Rλ, we have (τλ)−1

= τ n . Therefore, Condition (b) of Definition 2.6 implies that
µ ◦ (τλ)

−1
� µ on Rλ and that d(µ ◦ (τλ)−1)/dµ is non-zero a.e. on Rλ.

As established in [27], any 3-semibranching function system gives rise to a
representation of C∗(3) via ‘prefixing’ and ‘chopping off’ operators that satisfy the
Cuntz–Krieger relations. Intuitively, a 3-semibranching function system is a way of
encoding the Cuntz–Krieger relations at the measure-space level: the prefixing map τλ
corresponds to the partial isometry sλ ∈ C∗(3). For the convenience of the reader, we
recall the formula for these 3-semibranching representations of C∗(3).
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THEOREM 2.10. [27, Theorem 3.5] Let3 be a finite k-graph with no sources and suppose
that we have a3-semibranching function system on a measure space (X, µ) with prefixing
maps {τλ : λ ∈3} and coding maps {τm

: m ∈ Nk
}. For each λ ∈3, define an operator Sλ

on L2(X, µ) by

Sλξ(x)= χRλ(x)(8τλ(τ
d(λ)(x)))−1/2ξ(τ d(λ)(x)).

Then the operators {Sλ : λ ∈3} generate a representation π of C∗(3) on L2(X, µ).

3. Representations of higher-rank graph C∗-algebras: first analysis
We begin this section by developing the technical tools on which we will rely throughout
the paper: 3-projective systems and projection-valued measures. These tools enable us
to describe when certain representations of k-graph C∗-algebras are disjoint or irreducible
(see Theorems 3.10 and 3.12).

3.1. 3-projective systems and representations. The definition of a3-projective system
generalizes to the k-graph setting the definition of a monic system in [20] (for the Cuntz
algebras ON ) and [3] (in the case of Cuntz–Krieger algebras OA). We have decided to
change the name because, even for OA, not every monic system gives rise to a monic
representation of OA. The word ‘projective’ refers to the cocycle-like condition (b) of
Definition 3.1.

Definition 3.1. Let 3 be a finite k-graph with no sources. A 3-projective system on a
measure space (X, µ) is a 3-semibranching function system on (X, µ) with prefixing
maps {τλ : Dλ→ Rλ}λ∈3 and coding maps {τ n

: n ∈ Nk
} together with a family of

functions { fλ}λ∈3 ⊆ L2(X, µ) satisfying the following conditions.
(a) For any λ ∈3, we have 0 6= d(µ ◦ (τλ)−1)/dµ= | fλ|2.
(b) For any λ, ν ∈3, we have fλ · ( fν ◦ τ d(λ))= fλν .

Thus, a 3-projective system on (X, µ) consists of a 3-semibranching function system
plus some extra information (encoded in the functions fλ). We have a certain amount
of choice for the functions fλ; we can take positive or negative (or imaginary!) roots of
d(µ ◦ (τλ)−1)/dµ for fλ, as long as they satisfy the multiplicativity condition (b) above.

Example 3.2. For any 3-semibranching function system on (X, µ), there is a natural
choice of an associated 3-projective system; namely, for λ ∈3n , we define

fλ(x) :=8λ(τ n(x))−1/2χRλ(x). (8)

Condition (a) is satisfied because of the hypothesis that the Radon–Nikodym derivatives be
strictly positiveµ-a.e. on their domain of definition. Since the operators Sλ ∈ B(L2(X, µ))
of Theorem 2.10 are given by

Sλ( f )= fλ · ( f ◦ τ n),

and [27, Theorem 3.5] establishes that {Sλ}λ∈3 is a Cuntz–Krieger family, Proposition 3.4
below shows that equation (8) indeed describes a 3-projective system.

Remark 3.3. Observe that condition (a) of Definition 3.1 forces fλ(x)= 0 a.e. outside of
Rλ, since d(µ ◦ (τλ)−1)/dµ is supported only on Rλ.
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Condition (b) of Definition 3.1 is needed to associate a representation of C∗(3) to a
3-projective system. To be precise, we have the following proposition.

PROPOSITION 3.4. Let 3 be a finite, source-free k-graph. Suppose that a measure space
(X, µ) admits a 3-semibranching function system with prefixing maps {τλ : λ ∈3} and
coding maps {τ n

: n ∈ Nk
}. Suppose that { fλ}λ∈3 is a collection of functions satisfying

condition (a) of Definition 3.1. Then the maps {τλ}, {τ n
} and { fλ}λ form a 3-projective

system on (X, µ) if and only if the operators Tλ ∈ B(L2(X, µ)) given by

Tλ( f )= fλ · ( f ◦ τ d(λ)) (9)

form a Cuntz–Krieger3-family with each Tλ non-zero (and hence give a representation of
C∗(3)).

Proof. If the operators Tλ of equation (9) form a non-trivial Cuntz–Krieger3-family, then
it is easily checked that the functions { fλ}λ∈3 satisfy the hypotheses of Definition 3.1.

On the other hand, suppose that (X, µ) admits a 3-projective system with prefixing
maps {τλ}λ∈3, coding maps {τ n

}n∈Nk and functions { fλ}λ∈3. We will show that the
operators {Tλ} of equation (9) satisfy conditions (CK1)–(CK4).

For (CK1), observe that if v ∈30, Tv( f )= fv · ( f ◦ τ 0) is supported on Dv = Rv by
condition (a) of Definition 3.1. Moreover, since v = v2 for any v ∈30, and τv = idDv =

τ 0, condition (b) of Definition 3.1 implies that

fv = fv · ( fv ◦ τ 0)= f 2
v ⇒ fv = χDv .

Consequently, Tv( f )= χDv · f . Since the sets {Dv = Rv}v∈30 are disjoint (up to a set of
measure zero), it follows that {Tv : v ∈30

} is a set of mutually orthogonal projections; in
other words, (CK1) holds.

For (CK2), fix λ, ν ∈3 with s(λ)= r(ν). Since fν(x)= 0 unless x ∈ Rν , we see that

TλTν( f )(x)=

{
0, x 6∈ τλ(Rν),

fλ(τλ ◦ τν(y)) · fν(τν(y)) · f (y), x = τλτν(y).

On the other hand, condition (b) of Definition 3.1 implies that if x = τλτν(y), then

fλ(τλ ◦ τν(y)) · fν(τν(y))= fλ(x) · fν(τ d(λ)(x))= fλν(y).

This implies that TλTν = Tλν , as claimed.
To check (CK3), we first compute that T ∗λ f = f ◦ τλ · fλ ◦ τλ ·8λ. Alternatively,

T ∗λ f =
χDλ · ( f ◦ τλ)

fλ ◦ τλ
. (10)

Condition (CK3), and the fact that the operators Tλ are partial isometries, now follow from
straightforward calculations. Finally, an easy computation establishes that TλT ∗λ ( f )=
χRλ · f for any λ ∈3, from which (CK4) follows. �

We call the representation given in equation (9) a 3-projective representation.
The following Proposition enables us to translate a 3-projective system on (X, µ) to a

3-projective system on (X, µ′) for any measure µ′ that is equivalent to µ.
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PROPOSITION 3.5. Let 3 be a finite k-graph with no sources. Suppose we are given
a 3-projective system {τλ : λ ∈3}, {τ n

: n ∈ Nk
} and { fλ : λ ∈3} on a measure space

(X, µ). Let µ′ be a measure equivalent to µ, and set g1(x) = (dµ′/dµ)(x) and g2(x)=
(dµ/dµ′)(x). If we define { f̃λ}λ∈3 by

f̃λ(x) =

√
g1 ◦ τ d(λ)(x)
√

g1(x)
· fλ(x), λ ∈3, (11)

then {τλ : λ ∈3}, {τ n
: n ∈ Nk

} and { f̃λ}λ∈3 give a 3-projective system on (X, µ′).
Moreover, the associated representations {Tλ : λ ∈3} and {T̃λ : λ ∈3} of C∗(3) on
L2(X, µ) and L2(X, µ′) given by equation (9) of Proposition 3.4 are unitarily equivalent
via the unitary U given by

U ( f )(x) =

√
dµ
dµ′

(x) · f (x), f ∈ L2(X, µ),

U−1(h)(x) =

√
dµ′

dµ
(x) · h(x), h ∈ L2(X, µ′).

Proof. It is straightforward to check that { f̃λ}λ∈3 satisfies Conditions (a), (b) and (c) of
Definition 3.1. Also it is straightforward to see that U ◦ Tλ ◦U−1

= T̃λ. We leave the
verification of the details to the reader. �

Proposition 3.6 below is the analog of [20, Proposition 2.11] for 3-projective systems.

PROPOSITION 3.6. Let 3 be a finite k-graph with no sources. Suppose we are given
two 3-projective systems on X, with the same prefixing and coding maps {τλ : λ ∈3},
{τ n
: n ∈ Nk

}, but with different measures µ, µ′ and 3-projective functions { fλ}λ∈3 for
(X, µ) and { f ′λ}λ∈3 for (X, µ′).

Let dµ′ = h2 dµ+ dν be the Lebesgue–Radon–Nikodym decomposition, with h ≥ 0
and ν singular with respect to µ. Then there is a partition of X into Borel sets X = A ∪ B
such that:
(a) the function h is supported on A, ν is supported on B and µ(B)= 0, ν(A)= 0;
(b) the sets A, B are invariant under τ n for all n ∈ Nk , i.e.,

(τ n)−1(A)= A and (τ n)−1(B)= B;

(c) we have ν ◦ τ−1
λ � ν and kλ :=

√
d(ν ◦ τ−1

λ )/dν is supported on B; and

(d) | f ′λ| · h = | fλ| · (h ◦ τ
d(λ)) µ-a.e. on A and | f ′λ| = kλ ν-a.e. on B.

Proof. We start by proving (a) and (b) together. Let B̃ be the support of ν, and observe
that µ(B̃)= 0. We observe that the definitions of 3-semibranching function systems and
3-projective systems, together with the fact that (τ n)−1(B̃)=

⋃
λ∈3n τλ(B̃), imply that

(τ n)−1(B̃) and (τλ)
−1(B̃)

have µ-measure zero. Therefore we can take the orbit B of B̃ under the functions {τ n
:

n ∈ Nk
} and {τλ : λ ∈3}, and B will then have µ-measure zero. Let A := X\B. Then A

contains the support of µ, and we can choose h to be supported on A. Moreover, ν(A)= 0.
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By construction, A and B are invariant under τ n . This establishes (a) and (b). To prove
(c), let E be a Borel set with ν(E)= 0. Then ν(E ∩ B)= 0, so the fact that µ vanishes on
B implies that µ′(E ∩ B)= 0. We consequently have µ′(τ−1

λ (E ∩ B))= 0, which means
that µ′(τ−1

λ (E) ∩ B)= 0, so ν(τ−1
λ (E))= 0. Since B is invariant under τ−1

λ and ν and
ν ◦ τ−1

λ are supported on B, it follows that kλ is supported on B. To see (d), let f be a
bounded Borel function supported on A. Then∫

A
| f ′λ|

2 f h2 dµ=
∫

A
| f ′λ|

2 f dµ′ =
∫

A
f

d(µ′ ◦ τ−1
λ )

d(µ′)
dµ′ =

∫
A
( f ◦ τλ) dµ′

=

∫
A
( f ◦ τλ) h2 dµ=

∫
X
( f ◦ τλ) (h2

◦ τ d(λ)
◦ τλ) dµ

=

∫
X

f (h2
◦ τ d(λ)) d(µ ◦ τ−1

λ )

=

∫
X

f (h2
◦ τ d(λ)) | fλ|2 dµ,

which implies the first relation. The second relation follows from the fact that µ′|B = ν. �

3.2. Projection-valued measures. The second technical tool that underpins our analysis
of the monic representations of C∗(3) is the projection-valued measure associated to a
representation of C∗(3). Our work in this section is inspired by Dutkay, Haussermann,
and Jorgensen [17, 20].

LEMMA 3.7. (Kolmogorov extension theorem [36, 49]) Let (X, Fn, νn)n∈N be a sequence
of probability measures (νn)n∈N on the same space X, each associated with a σ -algebra
Fn; further, assume that (X, Fn, νn)n∈N form a projective system, i.e., an inverse limit.
Suppose that Kolmogorov’s consistency condition holds: i.e.,

νn+1|Fn = νn .

Then there is a unique extension ν of the measures (νn)n∈N to the σ -algebra
∨

n∈N Fn

generated by
⋃

n∈N Fn .

Lemma 3.7 is central to the proof of the following proposition.

PROPOSITION 3.8. Let 3 be a finite k-graph with no sources. Given a representation
{tλ}λ∈3 of a k-graph C∗-algebra C∗(3) on a Hilbert space H, there is a unique projection-
valued measure P on the Borel σ -algebra Bo(3

∞) of the infinite path space3∞ such that

P(Z(λ))= tλt∗λ for all λ ∈3.

Proof. Recall from the proof of [27, Lemma 4.1] that

{Z(λ) : d(λ)= (n, n, . . . , n) for some n ∈ N}

generates the topology on 3∞. Thus Bo(3
∞)= lim

−→
Fn . By Lemma 3.7, it therefore

suffices to show that
P(Z(λ))=

∑
η∈s(λ)3(1,...,1)

P(Z(λη))
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whenever d(λ)= (n, . . . , n) for some n ∈ N. However, this follows immediately from
(CK4): i.e.,

P(Z(λ))= tλt∗λ = tλ

( ∑
η∈s(λ)3(1,...,1)

tηt∗η

)
t∗λ =

∑
η∈s(λ)3(1,...,1)

P(Z(λη). (12)

�

We now record some properties of P on which we will rely in the following. The
equations below are the analogs for k-graphs of [17, equations (2.7) and (2.8) and (2.13)].

PROPOSITION 3.9. Let 3 be a row-finite, source-free k-graph, and fix a representation
{tλ : λ ∈3} of C∗(3).
(a) For λ, η ∈3 with s(λ)= r(η), we have tλP(Z(η))t∗λ = P(σλ(Z(η))), where σλ is

the prefixing map on 3∞ given in equation (4).
(b) For any fixed n ∈ Nk , we have∑

λ∈ f (η)3n

tλP(σ−1
λ (Z(η)))t∗λ = P(Z(η)).

(c) For any λ, η ∈3 with r(λ)= r(η), we have tλP(σ−1
λ (Z(η)))= P(Z(η))tλ.

(d) When λ ∈3n , we have tλP(Z(η))= P((σ n)−1(Z(η)))tλ.

Proof. Straightforward calculation. �

3.3. Disjoint and irreducible representations. In this section, we will derive from the
technical results in §3.1 important consequences that detail when representations of k-
graph C∗-algebras are disjoint or irreducible. In particular, Theorem 3.10 suggests the
importance of dealing with 3-projective systems with non-negative functions fλ. We will
focus more exclusively on such 3-projective systems in §5 below.

THEOREM 3.10. [20, Cf. Theorem 2.12] Let 3 be a finite k-graph with no sources.
Suppose we are given two 3-projective systems on the infinite path space 3∞ with the
standard prefixing and coding maps {σλ : λ ∈3}, {σ n

: n ∈ Nk
}, but associated to different

measures µ, µ′ and different 3-projective families of non-negative functions { fλ}λ∈3 on
(3∞, µ), and { f ′λ}λ∈3 on (3∞, µ′). Then the two associated representations {Tλ : λ ∈3}
and {T ′λ : λ ∈3} of C∗(3) given by equation (9) of Proposition 3.4 are disjoint if and only
if the measures µ and µ′ are mutually singular.

Proof. If the representations are not disjoint, there exist subspaces Hµ ⊆ L2(3∞, µ)

and Hµ′ ⊆ L2(3∞, µ′), preserved by their respective representations, and a unitary
W :Hµ→Hµ′ such that

W Tλ|Hµ
= T ′λ|Hµ′

W, W T ∗λ |Hµ
= (T ′λ)

∗
|Hµ′

W.

The fact that each operator T ∗λ also preserves Hµ implies that

W TλT ∗λ |Hµ
=W Tλ|Hµ

T ∗λ |Hµ
= T ′λ|Hµ′

W T ∗λ |Hµ

= T ′λ(T
′
λ)
∗
|Hµ′

W.
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Moreover, it follows easily from the formulae for Tλ and T ∗λ in equations (9) and (10) that

TλT ∗λ = MχZ(λ) = T ′λ(T
′
λ)
∗.

In other words, the representations of C(3∞) given by χZ(λ) 7→ TλT ∗λ and χZ(λ) 7→

T ′λ(T
′
λ)
∗ (on L2(3∞, µ) and L2(3∞, µ′), respectively) are multiplication representations.

Since W implements a unitary equivalence between their subrepresentations on Hµ and
Hµ′ , respectively, [2, Theorem 2.2.2] tells us that the measures µ, µ′ cannot be mutually
singular.

For the converse, assume that the representations are disjoint and that the measures
are not mutually singular. Then, use Proposition 3.6 and decompose dµ′ = h2 dµ+ dν,
with the subsets A, B as in Proposition 3.6. Define the operator W on L2(3∞, µ′)

by W ( f )= f · h if f ∈ L2(A, µ′), and W ( f )= 0 on the orthogonal complement of
L2(A, µ′)⊆ L2(3∞, µ′). Since A is invariant under τ n for all n, L2(A, µ′) is an
invariant subspace for the representation. To check that W is intertwining, we use part
(d) of Proposition 3.6 and the non-negativity condition on { fλ} and { f ′λ} to obtain the a.e.
equalities

TλW ( f )= fλ(h ◦ τ d(λ))( f ◦ τ d(λ))= f ′λ h ( f ◦ τ d(λ))=W T ′λ( f ).

Since W intertwines the representations {Tλ}λ∈3, {T ′λ}λ∈3 of C∗(3), we must have W =
0; hence h = 0, so µ, µ′ are mutually singular. �

Remark 3.11. As a Corollary of Theorem 3.10, we see that the examples of Markov
measures introduced in [24, §4.2] generate representations of C∗(3) disjoint from the
representation of [27, Theorem 3.5]; see also Example 4.10 below. In fact, these Markov
measures are mutually singular with the Perron–Frobenius measure [20, 33].

THEOREM 3.12. [20, Cf. Theorem 2.13] Let 3 be a finite k-graph with no sources.
Suppose that the infinite path space 3∞ admits a 3-projective system on (3∞, µ) for
some measure µ, with the standard prefixing maps {σλ : λ ∈3} and coding maps {σ n

:

n ∈ Nk
} of Definition 2.3. Let {Tλ : λ ∈3} be the associated representation of C∗(3).

Then:
(a) the commutant of the operators {Tλ : λ ∈3} consists of multiplication operators by

functions h with h ◦ σ n
= h, µ-a.e for all n ∈ Nk; and

(b) the representation given by {Tλ : λ ∈3} is irreducible if and only if the coding maps
σ n are jointly ergodic with respect to the measure µ, i.e., the only Borel sets A ⊂3∞

with (σ n)−1(A)= A for all n are sets of measure zero or of full measure.

Proof. We first observe that the commutant of {Tλ}λ∈3 is contained in C(3∞)′ ⊆
B(L2(3∞, µ)) and hence consists of multiplication operators. The proof of part (a) is
then a straightforward calculation, and part (b) follows from part (a) and the definition of
ergodicity. �

4. Monic representations of finite k-graph algebras
The first main result of this section, Theorem 4.2, establishes that every monic
representation of a finite, strongly connected k-graph algebra C∗(3) is unitarily equivalent
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to a 3-projective representation of C∗(3) on L2(3∞, µπ ), where the measure µπ arises
from the representation. (See Definition 4.1 and equation (14) below for details.) After
proving Theorem 4.2, we examine a variety of examples of representations of C∗(3),
and identify which representations are monic. This analysis requires our second main
result, Theorem 4.5, which provides a measure-theoretic characterization of when a 3-
semibranching representation is monic.

Definition 4.1. Let 3 be a finite k-graph with no sources. A representation {tλ : λ ∈3}
of a k-graph on a Hilbert space H is called monic if tλ 6= 0 for all λ ∈3 and there exists a
vector ξ ∈H such that

spanλ∈3{tλt∗λξ} =H.

From the projection-valued measure P associated to {tλ : λ ∈3} as in Theorem 3.8, we
obtain a representation π : C(3∞)→ B(H): i.e.,

π( f )=
∫
3∞

f (x) d P(x),

which gives, for λ ∈3,

π(χZ(λ))=

∫
3∞

χZ(λ) (x) d P(x)= P(Z(λ))= tλt∗λ . (13)

Since we can view C(3∞) as a subalgebra of C∗(3) via the embedding χZ(λ) 7→ tλt∗λ , the
representation π is often understood as the restriction of the representation {tλ}λ∈3 to the
‘diagonal subalgebra’ span{tλt∗λ }λ∈3.

If the representation {tλ}λ is monic, there is a cyclic vector ξ ∈H for π . So we obtain a
Borel measure µπ on 3∞ given by

µπ (Z(λ))= 〈ξ, P(Z(λ))ξ〉 = 〈ξ, tλt∗λξ〉. (14)

THEOREM 4.2. Let 3 be a finite k-graph with no sources. If {tλ}λ∈3 is a monic
representation of C∗(3) on a Hilbert space H, then {tλ}λ∈3 is unitarily equivalent to
a representation {Sλ}λ∈3 associated to a 3-projective system on (3∞, µπ ), which is
associated to the standard coding and prefixing maps σ n, σλ of Definition 2.3.

Conversely, if we have a representation of C∗(3) on L2(3∞, µ) that arises from a 3-
projective system associated to the standard coding and prefixing maps σ n, σλ, then the
representation is monic.

By Example 3.2, this implies that a 3-semibranching function system on (3∞, µ), for
any Borel measure µ, gives rise to a monic representation of C∗(3).

Proof. Suppose that the representation {tλ}λ∈3 of C∗(3) is monic, and let ξ ∈H be a
cyclic vector for C(3∞). Note that the map W : C(3∞)→H given by

W ( f )= π( f )ξ

is linear. Moreover, if we think of C(3∞) as a dense subspace of L2(3∞, µπ ), the
operator W is isometric: i.e.,

‖ f ‖2L2 =

∫
3∞
| f |2 dµπ = 〈ξ, π(| f |2)ξ〉 = ‖π( f )ξ‖2 = ‖W ( f )‖2.



Monic representations of finite higher-rank graphs 15

Therefore W extends to an isometry from L2(3∞, µπ ) to H. Since W is also onto
(because the representation is monic), W is a surjective isometry; that is, W is a unitary.

Moreover, for any f ∈ C(3∞) and any ϕ ∈ L2(3∞, µπ ),

π( f )W (ϕ)= π( f )π(ϕ)ξ = π( f · ϕ)ξ =W ( f · ϕ).

Thus, unitarity of W implies that W ∗π( f )W acts on L2(3∞, µπ ) by multiplication by f :
i.e.,

W ∗π( f )W = M f and W M f W ∗ = π( f ). (15)

Now define the operator Sλ =W ∗tλW for λ ∈3. By construction, the operators
{Sλ}λ∈3 also give a representation of C∗(3). Moreover, since W is a unitary,

SλS∗λ( f )=W ∗tλt∗λW ( f )=W ∗π(χZ(λ))π( f )ξ =W ∗π(χZ(λ) · f )ξ

=W ∗W (χZ(λ) · f )= χZ(λ) · f.
(16)

Let 1 denote the characteristic function of3∞, and define a function fλ ∈ L2(3∞, µπ )

by
fλ = Sλ1=W ∗tλξ.

We will now show that the functions fλ, combined with the usual coding and prefixing
maps {σ n, σλ}n,λ on 3∞, form a 3-projective system on (3∞, Bo(3

∞), µπ ). To that
end, we will invoke Proposition 3.9. Since

P(Z(ν))= π(χZ(ν))

for any ν ∈3, and as the proof of [27, Lemma 4.1] shows that characteristic functions of
cylinder sets densely span L2(3∞, µπ ), the equalities established in Proposition 3.9 still
hold if we replace P(Z(ν)) by π( f ) for any f ∈ L2(3∞, µπ ). In particular, note that

χ(σ n)−1(Z(ν)) = χZ(ν) ◦ σ
n and χ

σ−1
λ (Z(ν)) = χZ(ν) ◦ σλ.

Part (d) of Proposition 3.9 implies that if d(λ)= n, then

tλπ( f )= π( f ◦ σ n)tλ (17)

and part (c) implies that
t∗λπ( f )= π( f ◦ σλ)t∗λ . (18)

Let f ∈ L2(3∞, µπ ) and let n = d(λ). By using part (d) of Proposition 3.9, equation
(15) and the fact that W is a unitary, we obtain

Sλ( f )=W ∗tλW ( f )=W ∗tλπ( f )ξ

=W ∗π( f ◦ σ n)tλξ =W ∗π( f ◦ σ n)W W ∗tλξ

= ( f ◦ σ n) · fλ.

In order to show that {Sλ}λ∈3 is a 3-projective representation, Proposition 3.4 tells us
that it remains to check that the standard prefixing and coding maps make (3∞, µπ ) into
a 3-semibranching function system and that condition (a) of Definition 3.1 holds for the
functions fλ.
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To establish condition (a), we work indirectly. Since W is a unitary, we have (for any
f ∈ L2(3∞, µπ ) and any λ ∈3n),∫
3∞
| fλ|2 · f dµπ = 〈Sλ(1), Sλ(1) · f 〉L2 = 〈W ∗tλ(ξ), M f W ∗tλ(ξ)〉L2

= 〈tλξ, W M f W ∗(tλξ)〉H = 〈ξ, t∗λπ( f )tλξ〉H = 〈ξ, π( f ◦ σλ)ξ〉H

=

∫
3∞

f ◦ σλ dµπ =
∫
3∞

f d(µπ ◦ σ−1
λ ).

If E ⊆3∞ is any set for which µπ (E)= 0, then taking f = χE above shows that
µπ ◦ σ

−1
λ (E)= 0 also: in other words,

µπ ◦ σ
−1
λ � µπ . (19)

The uniqueness of Radon–Nikodym derivatives then implies that

| fλ|2 =
d(µπ ◦ σ−1

λ )

d(µπ )
.

In other words, condition (a) of Definition 3.1 holds.
We now show that fλ 6= 0 a.e. on Z(λ). Define Eλ ⊆ Z(λ) by

Eλ := {x ∈ Z(λ) : fλ(x)= 0}.

Then 0=
∫

Eλ
| fλ|2 dµπ =µπ ◦ σ−1

λ (Eλ)=π(χσ−1
λ (Eλ)

)= t∗λπ(χEλ)tλ by Proposition 3.9.
By hypothesis, tλ 6= 0, so there exists ζ ∈H such that tλ(ζ ) 6= 0. However, for any ζ ,

〈tλ(ζ ), π(χEλ)tλ(ζ )〉 = 〈tλ(ζ ), π(χEλ)
2π(χZ(λ))tλ(ζ )〉

= 〈t∗λπ(χEλ)tλ(ζ ), t∗λπ(χEλ)tλ(ζ )〉 = 0

by the Cuntz–Krieger relations and the fact that π(C(3∞)) is abelian. In other words,
π(χEλ) is orthogonal to the range projection π(χZ(λ)) of tλ.

On the other hand, χEλχZ(λ) = χEλ since Eλ ⊆ Z(λ). It follows that π(χEλ)= 0;
equivalently, µπ (Eλ)= 0. In other words, the set Eλ ⊆ Z(λ) of points where fλ = 0 has
µπ -measure zero, as claimed.

Similarly, for any set F ⊆ Z(s(λ)) such that µπ (F)= 0, taking f = χσλ(F) reveals that

0= µπ (F)= µπ ◦ σ−1
λ (σλ(F))=

∫
σλ(F)

| fλ|2 dµπ .

Since | fλ|2 > 0 a.e. on Z(λ)⊇ σλ(F), we must have µπ ◦ σλ(F)= 0 and hence µπ ◦
σλ� µπ . Furthermore, the Radon–Nikodym derivative (d(µπ ◦ σλ))/d(µπ ) is non-zero
µπ -a.e. on Z(s(λ)). To see this, we set

E =
{

x ∈ Z(s(λ)) :
d(µπ ◦ σλ)

d(µπ )
= 0

}
and observe that

µπ (σλ(E))=
∫

E

d(µπ ◦ σλ)
d(µπ )

dµπ = 0.

Equation (19) therefore implies that µπ (E)= (µπ ◦ σ−1
λ )(σλ(E))= 0.
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[24, Proposition 4.1] now implies that the standard prefixing and coding maps make
(3∞, µ) into a 3-semibranching function system. Consequently, the functions fλ make
{Sλ}λ∈3 into a 3-projective representation, which is unitarily equivalent to our initial
monic representation by construction.

For the converse, suppose that {tλ}λ∈3 is a representation of C∗(3) on L2(3∞, µ), for
some Borel measure µ, which arises from a3-projective system { fλ}λ∈3 associated to the
standard coding and prefixing maps {σ n, σλ}n,λ. The computations from Proposition 3.4
establish that tλt∗λ is given by multiplication by χRλ = χZ(λ). Consequently, 1= χ3∞ is a
cyclic vector for C(3∞)⊆ C∗(3). Thus {tλ}λ∈3 is monic. �

Remark 4.3. In the final section of their paper [3], Bezuglyi and Jorgensen studied the
relationship between semibranching function systems and monic representations of Cuntz–
Krieger algebras (1-graph C∗-algebras). Theorem 5.6 of [3] establishes that within a
specific class of semibranching function systems, which the authors term monic systems,
those for which the underlying space is the infinite path space 3∞ are precisely the
systems that give rise to monic representations of the Cuntz–Krieger algebra. The 3-
projective systems studied in §3.1 constitute our extension to k-graphs of the monic
systems for Cuntz–Krieger algebras. Thus, even in the case of 1-graph algebras (Cuntz–
Krieger algebras), our Theorem 4.2 is substantially stronger than [3, Theorem 5.6]: our
Theorem 4.2 gives a complete characterization of monic representations, without the
hypothesis that such representations arise from a monic or 3-projective system.

THEOREM 4.4. Let 3 be a finite, source-free k-graph, and let {Sλ}λ∈3, {Tλ}λ∈3 be two
monic representations of C∗(3). Let µS, µT be the measures on 3∞ associated to these
representations as in (14). The representations {Sλ}λ∈3, {Tλ}λ∈3 are equivalent if and
only if the measures µS and µT are equivalent and there exists a function h on 3∞ such
that

dµS

dµT
= |h|2 (20)

and

f S
λ =

h ◦ σ n

h
f T
λ for all λ ∈3 with d(λ)= n. (21)

Proof. Suppose {Sλ}λ∈3, {Tλ}λ∈3 are equivalent representations of C∗(3). From
Theorem 3.10, it follows that the associated measures µS, µT are equivalent. Let
W : L2(3∞, µS)→ L2(3∞, µT ) be the intertwining unitary for them. Then the two
representations are also equivalent when restricted to the diagonal subalgebra C∗({tλt∗λ :
λ ∈3}). By linearity, we can extend the formula from equation (16) to all of C(3∞). It
follows that πS, πT are both given on C(3∞) by multiplication: i.e.,

πS(φ)= Mφ and πT (φ)= Mφ for all φ ∈ C(3∞).

Since W intertwines a dense subalgebra (namely, πS(C(3∞))) of the maximal abelian
subalgebra L∞(3∞, µS)⊆ B(L2(3∞, µS)) that consists of multiplication operators
with the dense subalgebra πT (C(3∞))⊆ L∞(3∞, µT ), the unitary W must be
given by multiplication by some nowhere-vanishing function h on 3∞: W ( f )= h f .
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Moreover, since W is a unitary,∫
3∞
|W ( f )|2 dµT =

∫
3∞
| f |2|h|2 dµT =

∫
3∞
| f |2 dµS for all f ∈ L2(3∞, µS),

which implies (20).
From the intertwining property Tλ W =W Sλ, we obtain, for any f ∈ L2(3∞, µS) and

any λ with d(λ)= n, that

Tλ W ( f )=W Sλ( f ), i.e., f T
λ (h ◦ σ

n)( f ◦ σ n)= h f S
λ ( f ◦ σ n).

Take f = 1 and we obtain that

f T
λ

h ◦ σ n

h
= f S

λ ,

as claimed in (21).
For the converse, suppose that the measures µS, µT are equivalent and there is a

function h on3∞ satisfying (20) and (21). Then define W : L2(3∞, µS)→ L2(3∞, µT )

by
W f = h f.

It is then straightforward to check that W Sλ = TλW and that W is a unitary. �

4.1. 3-semibranching function systems and monic representations. In this section, we
discuss several examples of 3-semibranching function systems and identify which of
them give rise to monic representations of C∗(3); or, equivalently, which are unitarily
equivalent to 3-semibranching function systems on the infinite path space. First, we
provide another characterization of monic representations. The next theorem shows that a
3-semibranching system on (X, µ) induces a monic representation of C∗(3) if and only
if its associated range sets generate the σ -algebra of X . To state our result more precisely,
we will denote by (X,F , µ) the measure space associated to L2(X, µ); in particular, F is
the standard σ -algebra associated to L2(X, µ).

THEOREM 4.5. Let 3 be a finite, source-free k-graph and let {tλ}λ∈3 be a 3-
semibranching representation of C∗(3) on L2(X, F , µ) with µ(X) <∞. Let R be the
collection of sets that are modifications of range sets Rλ by sets of measure zero; that is,
each element X ∈R has the form

X = Rλ ∪ S or X = Rλ\S

for some set S of measure zero. Let σ(R) be the σ -algebra generated by R. The
representation {tλ}λ∈3 is monic, with cyclic vector χX ∈ L2(X, F , µ), if and only if
σ(R)= F . In particular, for a monic representation {tλ}λ∈3, the set

S :=
{ n∑

i=1

ai tλi t
∗
λi
χX | n ∈ N, λi ∈3, ai ∈ C

}
=

{ n∑
i=1

aiχRλi
| n ∈ N, λi ∈3, ai ∈ C

}

is dense in L2(X, F , µ).
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Proof. First, suppose that the representation {tλ}λ∈3 is monic and that χX is a cyclic vector
for the representation. As computed in the proof of [27, Theorem 3.4],

tλt∗λ (χX )= χRλ .

Therefore, our hypothesis that χX is a cyclic vector implies that, for any f ∈ L2(X, F , µ),
there is a sequence ( f j ) j , with f j ∈ span{χRλ : λ ∈3}, such that

lim
j→∞

∫
X
| f j − f |2 dµ= 0.

In particular, ( f j )→ f in measure.
For any σ -algebra T , standard measure-theoretic results [41, Proposition 6] imply that,

since µ(X) <∞, convergence in measure among T -a.e. finite measurable functions on
(X, T , µ) is metrized by the distance

dT ( f, g) :=
∫
�

| f − g|
1+ | f − g|

dµ.

Moreover, dT makes the space of S-a.e. finite measurable functions into a complete metric
space (this can be seen, for example, by combining [41, Proposition 1 and Corollary 7]).

The fact that ( f j ) j → f in measure in (X, F , µ), and that f j ∈ L2(X, σ (R), µ) for
all j , implies that ( f j ) j is a Cauchy sequence with respect to both dF and dσ(R).
Consequently, the limit f of ( f j ) j must also be a σ(R)-a.e. finite measurable function.
In other words, every f ∈ L2(X, F , µ) is, in fact, in L2(X, σ (R), µ). Since R⊆ F , by
construction, we must have σ(R)= F , as desired.

For the converse, assume that σ(R)= F . We begin by observing that

R̃ := {finite unions of elements in R}
is a subalgebra of P(X)—that is, closed under finite unions and complements. Closure
under finite unions follows from the definition, while the second claim follows from
equation (6). Moreover, σ(R)= σ(R̃)= F , so

S̃ :=
{ n∑

i

aiχBi | n ∈ N, Bi ∈ σ(R̃), ai ∈ C
}

is dense in L2(X, F , µ). Therefore, the Carathéodory/Kolmogorov extension theorem
implies that the measure µ|R̃ restricted to R̃ induces a unique (extended) measure on
F = σ(R), which we still call µ. (This is indeed the original measure on L2(X, F , µ) by
the uniqueness of the extension.)

To show that the vector χX is monic or, equivalently, that the set S is dense in
L2(X, F , µ) equipped with the usual metric dL2(X,F ,µ) coming from the L2 norm, we
invoke a standard fact about metric spaces: if (Q, dQ) is a metric space, and if 6̃ ⊆ Q is a
dense subset of (Q, dQ), then any other subset 6 ⊆ Q having the property that

for any ε > 0 and x̃ ∈ 6̃, there exists xε ∈6 with dQ(x̃, xε) < ε,

is also dense in (Q, dQ). We wish to apply this fact in the setting where

(Q, dQ)= (L2(X, F , µ), dL2(X,F ,µ)) with 6̃ = S̃, 6 = S.

Choose s̃ ∈ S̃ and fix ε > 0. Without loss of generality, we can assume
that s̃ =

∑n
i aiχBi for some n ∈ N, Bi ∈ σ(R̃), ai 6= 0. Define A :=

∑n
i |ai | ∈ R.
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The Carathéodory/Kolmogorov extension theorem† also guarantees that, for any B̃ ∈
σ(R̃)= F and for any ε > 0, there exists A B̃

ε ∈ R̃ with

µ
(
B̃1A B̃

ε

)
< ε,

where 1 denotes symmetric difference. In other words, for each i , there exists Aεi ∈ R̃
such that

µ(Bi1Aεi ) <
ε2

A2 or, equivalently, (µ(Bi1Aεi ))
1/2 <

ε

A
.

Thus, setting sε :=
∑n

i aiχAεi and using the triangle inequality yields that
dL2(X,F ,µ)(s̃, sε) < ε, as desired. �

Remark 4.6. Using the characterization of monic representations from Theorem 4.5,
it is straightforward to check that the 3-semibranching function systems detailed in
[24, Example 3.5 and §4] generate monic representations of C∗(3). Similarly, suppose
that 3=31 ×32 is a product k-graph and we have 3i -semibranching function systems
on measure spaces (X i , µi ) for i = 1, 2 such that the associated 3i -semibranching
representations are monic. Then Theorem 4.5 combines with [24, Proposition 3.4] to tell
us that the product 3-semibranching function system on (X1 × X2, µ1 × µ2) also gives
rise to a monic representation of C∗(3).

We now proceed to analyze several other examples of representations arising from 3-
semibranching function systems and establish which ones are monic representations.

Example 4.7. We present here an example of a 3-semibranching representation on a
1-graph that is not monic. The 1-graph 3 has two vertices v1 and v2 and three edges
f1, f2 and f3.

Let X be the closed unit interval [0, 1] of R with the usual Lebesgue σ -algebra and
measure µ. For v1 and v2, let Dv1 = [0,

1
2 ] and Dv2 = (

1
2 , 1]. Also for each edge f ∈3,

let D f = Ds( f ), and hence D f1 = Dv1 = [0,
1
2 ], D f2 = Dv2 = (

1
2 , 1] and D f3 = Dv2 =

( 1
2 , 1]. Now define prefixing maps for f1, f2 and f3 by

τ f1(x)=−
1
2 x + 1

2 for x ∈ D f1 = [0,
1
2 ],

τ f2(x)=−
1
2 x + 1

2 for x ∈ D f2 = (
1
2 , 1],

τ f3(x)= x for x ∈ D f3 = (
1
2 , 1].

Then R f1 = [
1
4 ,

1
2 ], R f2 = [0,

1
4 ) and R f3 = (

1
2 , 1]. Then the ranges of the prefixing maps

are mutually disjoint and X = R f1 ∪ R f2 ∪ R f3 . For each fi , since Lebesgue measure is

† See [16, p. 452], Appendix: Measure theory, Exercise 3.1.
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regular, the Radon–Nikodym derivative of τ fi is given by

8 fi (x)= inf
x∈E⊆D fi

(µ ◦ τ fi )(E)
µ(E)

= inf
x∈E⊆D fi


1
2µ(E)
µ(E)

, i = 1, 2,

µ(E)
µ(E)

, i = 3,

=

{ 1
2 , i = 1, 2,

1, i = 3.

Now define τ 1
: X→ X by

τ 1(x)=


τ−1

f1
(x) for x ∈ R f1 ,

τ−1
f2
(x) for x ∈ R f2 ,

τ−1
f3
(x) for x ∈ R f3 .

Since the sets R fi are mutually disjoint, τ 1 is well defined on X . Then τ 1 is the coding
map satisfying τ 1

◦ τ fi (x)= x for all x ∈ D fi .
It is a straightforward calculation to check that {τ fi : D fi → R fi , i = 1, 2, 3} is a

semibranching function system for (X, µ). To see that this 3-semibranching function
system does not give rise to a monic representation, we argue by contradiction. First,
observe that the only finite paths with range v2 are of the form f3 f3 · · · f3; and since
τ f3(x)= x on D3 = (1/2, 1],

R f3 = R f3 f3··· f3 = (1/2, 1].

Every other finite path λ, having range v1, will satisfy Rλ ⊆ Dv1 = [0, 1/2].
Consequently, R= {Rλ}λ∈3 does not generate the usual Lebesgue σ -algebra on

[0, 1], even after modification by sets of measure zero, since the restriction of R to
(1/2, 1] contains no non-trivial measurable sets. Therefore, Theorem 4.5 implies that
the representation of C∗(3) associated to this 3-semibranching function system is not
monic, and hence it is not equivalent to any representation on L2(3∞, µ) arising from a
3-projective system.

Remark 4.8. We observe that since monic representations are multiplicity free, it is easy
to construct further examples of non-monic representations by using direct sums of monic
representations (see [2, p. 54]).

In order to describe the following example of a 3-semibranching representation that is
monic, we review the concept of a Markov measure (see [20, §3.1] or [24, §4.2] for more
details, or see [3] for Markov measures in a more general context).

Definition 4.9. [20, Definition 3.1] A Markov measure on the infinite path space 3∞ON
of

the Cuntz algebra ON , where

3∞ON
=

∞∏
i=1

ZN = {(i1i2 . . . ) : in ∈ ZN , n = 1, 2, . . . },
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is defined by a vector λ= (λ0, . . . , λN−1) and an N × N matrix T such that λi > 0,
Ti, j > 0 for all i, j ∈ ZN , and if e = (1, 1, . . . , 1)t , then λT = λ and T e = e. The
Carathéodory/Kolmogorov extension theorem then implies that there exists a unique Borel
measure µ on 3∞ON

extending the measure µC defined on cylinder sets by

µC(Z(I )) := λi1 Ti1,i2 · · · Tin−1,in if I = i1 . . . in . (22)

The extension µ is called a Markov measure on 3∞ON
.

For N = 2, given a number x ∈ (0, 1), we can take T = Tx =
( x (1−x)
(1−x) x

)
and λ=

(1, 1). The resulting measure will, in this case, be called µx . Moreover, if x 6= x ′, [20,
Theorem 3.9] guarantees that µx , µx ′ are mutually singular.

Example 4.10. We now consider an example of 3-semibranching function system which
does give rise to a monic representation. Let 3 be the 2-graph below.

Recall from Remark 2.4 that every infinite path in a 2-graph can be uniquely written as an
infinite string of composable edges which alternate in color: red, blue, red, . . . . It follows
that the infinite path space of the above 2-graph is homeomorphic to 3∞O2

∼=
∏
∞

i=1 Z2 via
the identification

e f j1e f j2e f j3 · · · 7→ j1 j2 j3 · · · .

Therefore, the measure µx described above can be viewed as a measure on 3∞.
It is straightforward to check that, as operators on L2(3∞, µx ), the prefixing

operators σe, σ f1 , σ f2 have positive Radon–Nikodym derivatives at any point z ∈3∞.
Consequently, the standard prefixing and coding maps make (3∞, µx ) into a 3-
semibranching function system. The associated representation of C∗(3) is therefore
monic, by Theorem 4.2, Theorem 2.10 and Example 3.2.

5. A universal representation for non-negative 3-projective systems
The focus of this section is the construction of a ‘universal representation’ of C∗(3),
generalizing the work of [20, §4] for the Cuntz algebra setting, such that every
non-negative monic representation of C∗(3) is a sub-representation of the universal
representation. The Hilbert space H(3∞) on which our universal representation is defined
is the ‘universal space’ for representations of C(3∞) (see [42], and also [1, 4, 20, 32]).
For the case of ON , this space was also shown to be the ‘universal representation space’
for monic representations in [20]. We recall the construction of H(3∞) below.

Definition 5.1. Let 3 be a finite k-graph with no sources, and let 3∞ be the infinite path
space of 3, endowed with the topology generated by the cylinder sets and the Borel σ -
algebra associated to it.
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Consider the collection of pairs ( f, µ), where µ is a Borel measure on 3∞ and f ∈
L2(3∞, µ). We say that two pairs ( f, µ) and (g, ν) are equivalent, denoted by ( f, µ)∼
(g, ν), if there exists a finite Borel measure m on 3∞ such that

µ� m, ν� m and f

√
dµ
dm
= g

√
dν
dm

in L2(3∞, m).

We write f
√

dµ for the equivalence class of ( f, µ).

Proposition 8.3 of [4] establishes that H(3∞) is a Hilbert space, with the vector space
structure given by scalar multiplication and

f
√

dµ+ g
√

dν :=
(

f

√
dµ

d(µ+ ν)
+ g

√
dν

d(µ+ ν)

)√
d(µ+ ν),

and the inner product given by

〈 f
√

dµ, g
√

dν〉 :=
∫
3∞

f g
(√

dµ
d(µ+ ν)

√
dν

d(µ+ ν)

)
d(µ+ ν). (23)

We call H(3∞) the universal Hilbert space for 3∞.
The following fundamental property of H(3∞) justifies the name ‘universal Hilbert

space’.

PROPOSITION 5.2. ([32, Theorem 3.1], [20], [1]) Let 3 be a finite k-graph with no
sources. For every finite Borel measure µ on 3∞, define Wµ : L2(3∞, µ)→H(3∞)
by Wµ( f )= f

√
dµ. Then Wµ is an isometry of L2(3∞, µ) onto a subspace of H(3∞),

which we call L2(µ).

We are now ready to present the universal representation πuniv of C∗(3) on H(3∞).

PROPOSITION 5.3. Let 3 be a finite k-graph with no sources. Fix ( f, µ) ∈H(3∞). For
each λ ∈3n , define Suniv

λ ∈ B(H(3∞)) by

Suniv
λ ( f

√
dµ) := ( f ◦ σ n)

√
d(µ ◦ σ−1

λ ),

where σλ and σ n are the standard prefixing and coding maps of Definition 2.3. Then:
(a) the adjoint of Suniv

λ is given by (Suniv
λ )∗( f

√
dµ) := ( f ◦ σλ)

√
d(µ ◦ σλ);

(b) the operators {Suniv
λ : λ ∈3} generate a representation πuniv of C∗(3) on H(3∞),

which we call the ‘universal representation’; and
(c) the projection-valued measure P on 3∞ given in Proposition 3.8 associated to the

universal representation πuniv is given by

P(A)( f
√

dµ)= (χA · f )
√

dµ, (24)

where A is a Borel set.

Proof. The proof is similar to that of [20, Proposition 4.2], although the details are more
involved because of the more complicated k-graph structure. To simplify the notation, in
this proof, we will drop the superscript univ from Suniv

λ . To check that {Suniv
λ }λ∈3 gives a

representation of C∗(3), we first observe that the operators Sλ are well defined: in other
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words, if f
√

dµ= g
√

dν, we must have ( f ◦ σ n)

√
d(µ ◦ σ−1

λ )= (g ◦ σ n)

√
d(ν ◦ σ−1

λ )

for all λ ∈3.
Suppose that f

√
dµ= g

√
dν. Observe that µ ◦ σ−1

λ is zero off Z(λ), and µ ◦ σ−1
λ =

(m|Z(s(λ)) ◦ σ−1
λ ) on Z(λ). The fact that σ−1

λ = σ
d(λ) on Z(λ) now implies that, if n :=

d(λ),

( f ◦ σ n)

√
d(µ ◦ σ−1

λ )= (( f ◦ σ n)

√
d(µ ◦ σ−1

λ ))|Z(λ) = ( f
√

dµ)|Z(s(λ)) ◦ σ−1
λ

= (g
√

dν)|Z(s(λ)) ◦ σ−1
λ = ((g ◦ σ

n)

√
d(ν ◦ σ−1

λ ))|Z(λ)

= (g ◦ σ n)

√
d(ν ◦ σ−1

λ ).

It follows that Sλ is well defined.
To check the formula for S∗λ given in the statement of the proposition, we compute

〈S∗λ( f
√

dµ), g
√

dν〉 = 〈 f
√

dµ, Sλg
√

dν〉 = 〈 f
√

dµ, (g ◦ σ n)

√
d(ν ◦ σ−1

λ )〉

=

∫
3∞

f (x)(g ◦ σ n)(x)

√
dµ

d(µ+ (ν ◦ σ−1
λ ))

×

√√√√ d(ν ◦ σ−1
λ )

d(µ+ (ν ◦ σ−1
λ ))

d(µ+ (ν ◦ σ−1
λ )).

This integral vanishes off Z(λ) since σ−1
λ (and, consequently, d(ν ◦ σ−1

λ )) does. We thus
use the fact that (ν ◦ σ−1

λ )|Z(λ) = ν|Z(s(λ)) ◦ σ
−1
λ to rewrite

〈S∗λ( f
√

dµ), g
√

dν〉 =
∫

Z(s(λ))
f ◦ σλ(x)g(x)

×

√
d(µ ◦ σλ)

d((µ ◦ σλ)+ ν)

√
dν

d((µ ◦ σλ)+ ν)
d((µ ◦ σλ)+ ν).

Hence S∗λ( f
√

dµ)= ( f ◦ σλ)
√

d(µ ◦ σλ), which proves (a).
Checking condition (b), that the operators {Sλ} give a representation of C∗(3), is a

straightforward computation, analogous to the proof of Proposition 3.4.
To see (c), note that equation (24) follows from the observation that SνS∗ν acts by

multiplication by χZ(ν); the fact that disjoint unions of cylinder sets Z(ν) generate the
σ -algebra up to sets of measure zero [27, Lemma 4.1] therefore enables us to compute
P(A) by linearity, for any Borel set A. �

The following two propositions, which detail additional technical properties of the
projection-valued measure associated to πuniv, will be used in the proof of Theorem 5.7,
the main result of this section.

PROPOSITION 5.4. Let 3 be a finite k-graph with no sources, let H(3∞) be the
Hilbert space described in Definition 5.1 and let πuniv = {Suniv

λ : λ ∈3} be the universal
representation of C∗(3) on H(3∞) given in Proposition 5.3.
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(a) For y ∈H(3∞), define a function νy on 3∞ by

νy(Z(λ)) := 〈(Suniv
λ (Suniv

λ )∗)y, y〉,

where 〈·, ·〉 is the inner product given on H(3∞) in equation (23). Then νy gives a
measure on 3∞.

(b) Let T be a bounded operator on H(3∞). If T commutes with πuniv|C(3∞), then, for
any x ∈H(3∞),

νT (x)� νx .

(c) For every vector f
√

dµ ∈H(3∞), we have ν f
√

dµ = | f |
2µ.

Proof. As in equation (14), it is straightforward to see (a). For (b), fix x ∈H(3∞). Then,
since T commutes with Suniv

λ ,

νT (x)(Z(λ))= 〈(Suniv
λ (Suniv

λ )∗)T (x), T (x)〉 = 〈(Suniv
λ (Suniv

λ )∗)x, T ∗T (x)〉.

Since each Suniv
λ is a partial isometry, the Cauchy–Schwarz inequality then gives

νT (x)(Z(λ))2 ≤ ‖(Suniv
λ (Suniv

λ )∗)x‖2 ‖T ∗T x‖2 = νx (Z(λ))2 ‖T ∗T x‖2,

which gives that νT (x)� νx .
For (c), equation (24) implies that, for any cylinder set Z(η),

ν f
√

dµ(Z(η))= 〈(χZ(η) f )
√

dµ, f
√

dµ〉 =
∫
χZ(η) · | f |2 dµ =

∫
Z(η)
| f |2 dµ.

This gives the desired result. �

We now present an important result which will allow us to derive, in Theorem 5.7, the
desired universal property of the representation.

THEOREM 5.5. Let 3 be a finite k-graph with no sources. Let H(3∞) be the universal
Hilbert space for 3∞ and let πuniv be the universal representation of C∗(3) on H(3∞).
Then the following hold.
(a) An operator T ∈ B(H(3∞)) commutes with πuniv|C(3∞) if and only if there exists an

assignment µ 7→ Fµ of a function Fµ ∈ L∞(3∞, µ) to each finite Borel measure µ
on 3∞ that arises from a monic representation of C∗(3), as in equation (14), such
that:
(i) sup{‖Fµ‖ : µ arises from a monic representation}<∞;
(ii) if µ� λ, then Fµ = Fλ, µ-a.e.; and
(iii) T ( f

√
dµ)= Fµ f

√
dµ for all f

√
dµ ∈H(3∞).

(b) Let H denote the subspace of H(3∞) spanned by vectors of the form f
√

dµ, where
µ arises from a monic representation. An operator T ∈ B(H(3∞)) commutes with
πuniv|H if and only if, for every finite Borel measure µ on 3∞ arising from a monic
representation of C∗(3) and for each λ ∈3,

Fµ = F
µ◦σ−1

λ
◦ σλ µ− a.e.
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Proof. Recall from Proposition 5.2 the isometry Wµ of L2(3∞, µ) onto L2(µ).
Throughout the proof, we will assume that the finite Borel measure µ arises from a
monic representation. We first claim that if T commutes with πuniv|C(3∞), then T maps
L2(µ) into itself. To prove this, let x = f

√
dµ be in L2(µ), and let T (x)= g

√
dζ for

(g, ζ ) ∈H(3∞). Then Proposition 5.4(b) implies that νT (x)� νx . By Proposition 5.4(c),

νx = | f |2µ, and νT (x) = |g|2ζ.

Therefore |g|2ζ � µ, so by the Radon–Nikodym theorem there exists h ≥ 0 in L1(3∞, µ)

such that |g|2 dζ = h dµ. Then

|g|
√

dζ =
√

h
√

dµ and |g| g
√

dζ = g
√

h
√

dµ.

If g = 0 on some Borel set A, then
√

h
√

dµ(A)= 0 also. Therefore,

g
√

dζ =


g
√

h
|g|
√

dµ ∈ L2(µ), g 6= 0,

0, g = 0.

which shows that T maps L2(µ) into itself.
We now make some computations regarding the relationship between an arbitrary monic

representation π and the universal representation πuniv. Note that equation (24) implies
that πuniv(ψ)( f

√
dµπ )= (ψ · f )

√
dµπ for any f ∈ L2(3∞, µπ ).

On the other hand, since π is a monic representation, π(χZ(λ)) f = χZ(λ) · f ∈
L2(3∞, µπ ) by equation (16). Therefore,

πuniv(ψ)( f
√

dµπ )= [π(ψ)( f )]
√

dµπ .

By hypothesis, T commutes with πuniv|C(3∞). Since T preserves L2(µ) for each
measure µ arising from a monic representation, there must exist g ∈ L2(µπ ) such that
T ( f
√

dµπ )= g
√

dµπ . Consequently,

T [π(ψ) f ]
√

dµπ = Tπuniv(ψ)( f
√

dµπ )= πuniv(ψ)T ( f
√

dµπ )

= πuniv(ψ)(g
√

dµπ )= [π(ψ)(g)]
√

dµπ = π(ψ)T ( f
√

dµπ ),

so (identifying L2(µπ )⊆H(3∞) with L2(3∞, µπ )) we see that T commutes with π(ψ)
for all ψ ∈ C(3∞).

Therefore, we can pull back T to an operator T̃ on L2(3∞, µ) that commutes
with all of the multiplication operators {M f : f ∈ C(3∞)}. The fact (cf. [31]) that the
maximal abelian subalgebra of B(L2(3∞, µ)), for any finite Borel measure µ, is the
subalgebra L∞(3∞, µ) consisting of multiplication operators now implies that T̃ must
be a multiplication operator too. In other words, there exists a function Fµ in L∞(3∞, µ)
such that

T ( f
√

dµ)= Fµ f
√

dµ (25)

for all f ∈ L2(3∞, µ), establishing (iii). It remains to check the properties of the
functions Fµ. One immediately observes that

‖Fµ‖L∞(µ) ≤ ‖T ‖
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and this implies (i). To check (ii), suppose that µ� λ. Then, for all f ∈ L2(3∞, µ), we
have f

√
dµ= f

√
dµ/dλ

√
dλ, and hence

T ( f
√

dµ)= T
(

f

√
dµ
dλ

√
dλ
)
H⇒ Fµ f

√
dµ= Fλ f

√
dµ
dλ

√
dλ.

Thus, as elements of L2(λ), Fµ f
√

dµ/dλ= Fλ f
√

dµ/dλ for any f ∈ L2(3∞, µ),
which implies that Fµ dµ/dλ= Fλ dµ/dλ (λ− a.e.). It follows that, for any Borel set A,∫

A
(Fµ − Fλ) dµ=

∫
A
(Fµ − Fλ)

dµ
dλ

dλ= 0,

so Fµ = Fλ, µ-a.e. This proves (ii).
For the converse, assume that T is given on L2(µ) by a function Fµ ∈ L∞(3∞, µ)

satisfying (i),(ii) and (iii), i.e., T ( f
√

dµ)= Fµ f
√

dµ for all f
√

dµ ∈H(3∞) such that
µ arises from a monic representation. Then (i) implies that T is bounded with ‖T ‖ ≤
supµ{‖Fµ‖L∞(µ)}. Since T acts as a multiplication operator on each L2(µ), part (c) of
Proposition 5.3 implies that T commutes with P(A) for all Borel subsets A and therefore
T commutes with the restricted universal representation, πuniv|C(3∞), which proves (a).

To prove (b), note that if an operator T ∈ B(H(3∞)) commutes with the universal
representation πuniv of C∗(3) on H, then, in particular, T commutes with πuniv|C(3∞) on
H, and hence T ( f

√
dµ)= Fµ f

√
dµ is a multiplication operator on each L2(µ) when the

measure µ arises from a monic representation. In particular, T is normal (when restricted
to H). Therefore, by the Fuglede–Putnam theorem, T |H commutes with πuniv if and only
if T Suniv

λ |H = Suniv
λ T |H for all λ ∈3. Using the formulae for Suniv

λ from Theorem 5.5, we
see that T |H commutes with πuniv|H if and only if, for each f

√
dµ ∈H and λ ∈3n ,

F
µ◦σ−1

λ
( f ◦ σ n)

√
dµ ◦ σ−1

λ = (Fµ ◦ σ
n)( f ◦ σ n)

√
dµ ◦ σ−1

λ ,

or, equivalently, F
µ◦σ−1

λ
= (Fµ ◦ σ n) for λ ∈3n, (µ ◦ σ−1

λ )—a.e. for all measures µ
arising from monic representations of C∗(3). Composing with σλ gives the desired result
of (b). �

Definition 5.6. A monic representation {tλ}λ∈3 of a finite, source-free k-graph 3 is said
to be non-negative if the functions { fλ}λ∈3 of the associated 3-projective system on 3∞

are non-negative a.e.

The following result, which is a consequence of Theorem 5.5, proves that every
non-negative monic representation is equivalent to a sub-representation of {Suniv

λ }λ∈3,
justifying the name ‘universal representation’ for {Suniv

λ }λ∈3.

THEOREM 5.7. Let 3 be a finite k-graph with no sources. Let {tλ}λ∈3 be a non-negative
monic representation of C∗(3) on L2(3∞, µπ ). Let W be the isometry from L2(3∞, µπ )

onto L2(µπ ) given in Proposition 5.2, so that W f = f
√

dµπ . Then W intertwines {tλ}λ∈3
with the sub-representation {Suniv

λ |L2(µπ )
}λ∈3 of the universal representation {Suniv

λ }λ.

Proof. By Theorem 4.2 and Proposition 3.4, we can assume that tλ is of the form

tλ( f )= fλ · ( f ◦ σ d(λ)),
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where, since {tλ}λ∈3 is assumed to be non-negative, we may assume that fλ =√
d(µπ ◦ (σλ)−1)/dµπ . By Theorem 5.5,

W (tλ f )=W ( fλ( f ◦ σ d(λ)))= fλ( f ◦ σ d(λ))
√

dµπ = ( f ◦ σ d(λ))

√
| fλ|2dµπ

= ( f ◦ σ d(λ))

√
d[µπ ◦ (σλ)−1] = Suniv

λ ( f
√

dµπ )= Suniv
λ W ( f ).

In other words, W intertwines {tλ}λ∈3 and {Suniv
λ |L2(µπ )

}λ∈3, as claimed. �
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