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Abstract 

Human-Robot Collaboration (HRC), which envisions a workspace in which human and robot can dynamically collaborate, has been identified as 
a key element in smart manufacturing. Human action recognition plays a key role in the realization of HRC as it helps identify current human 
action and provides the basis for future action prediction and robot planning. Despite recent development of Deep Learning (DL) that has 
demonstrated great potential in advancing human action recognition, one of the key issues remains as how to effectively leverage the temporal 
information of human motion to improve the performance of action recognition. Furthermore, large volume of training data is often difficult to 
obtain due to manufacturing constraints, which poses challenge for the optimization of DL models. This paper presents an integrated method 
based on optical flow and convolutional neural network (CNN)-based transfer learning to tackle these two issues. First, optical flow images, 
which encode the temporal information of human motion, are extracted and serve as the input to a two-stream CNN structure for simultaneous 
parsing of spatial-temporal information of human motion. Then, transfer learning is investigated to transfer the feature extraction capability of a 
pretrained CNN to manufacturing scenarios. Evaluation using engine block assembly confirmed the effectiveness of the developed method.  
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1. Introduction 

Traditionally, robots in manufacturing have only been 
programmed to do static, repeated tasks. Robots and human 
workers are strictly separated due to safety concerns. As the 
manufacturing industry is transforming itself into Industry 4.0, 
robots are increasingly required to achieve higher levels of 
cooperation and communication with humans in order to meet 
the emerging demand of flexibility, efficiency and safety in 
smart manufacturing [1]. 

Recently, human-robot collaboration (HRC) has emerged as 
a key component for flexible and intelligent manufacturing. 
Instead of strict separation between human and robot, HRC 
allows them to work as a team to collaboratively finish the same 
tasks in the same workspace. During this process, robots can 
assist human workers to reduce the workload and improve 
efficiency as well as reliability in manufacturing, while human 

workers can help robots to complete higher-level, 
nondeterministic tasks. 

An HRC system consists of four basic elements: perception, 
recognition, prediction and action, as shown in Fig. 1. First, 
sensors monitor the manufacturing workspace and supply data 
(e.g. video footage) for the analysis of human actions. Then, 
human actions are recognized from the perceived data. Next, 
by analyzing the temporal information from the on-going 
action sequence, future human action is predicted. Finally, 
based on the anticipated future action, robot is able to assist 
human worker in a pro-active manner. As the first step after 
obtaining the sensing data, human action recognition plays a 
crucial role in HRC as it provides the basis for the subsequent 
action prediction and robot planning, and it has been an active 
research field in the scientific community. The main focus of 
the paper is to recognize human actions in manufacturing 
setting from video footage, which has been the predominant 
sensing modality in research on HRC. 

http://www.sciencedirect.com/science/journal/22128271
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Fig. 1. Flowchart of HRC 

Human action recognition traditionally involves two steps: 
feature extraction and action classification. For feature 
extraction, one of the most widely used methods is Scale 
Invariant Feature Transform (SIFT) [2]. In SIFT, a series of 
local feature vectors, which are invariant to transformation, are 
generated from the image to characterize human action. Similar 
methods, such as Speeded Up Robust Features (SURF) and 
Oriented FAST and rotated BRIEF (ORB) were also widely 
investigated [3, 4]. The other common approach is to utilize 
shape and contour of different human poses, by matching the 
captured video frames with a pre-constructed model. For 
example, Belongie et al. introduced a shape context descriptor 
in [5], and it is able to detect similar shapes in images. Skeleton 
model provides another method for human action 
characterization in which the information of human pose is 
reduced to the position and orientation of key body joints [6]. 
For action classification, Hidden Markov Model (HMM) has 
been widely investigated as a classifier which takes into account 
the uncertainty and variation embedded in human action. In [7], 
HMM has been used to analyze the 3D depth information and 
the developed model is able to characterize both human motion 
and human object interactions. Support Vector Machine (SVM) 
is another commonly used technique for classification tasks, 
which finds a hyperplane that provides the largest margin of 
separation for action-related image features [8, 9].  

More recently, to overcome the limitation of the manual 
feature extraction step that is subjective by nature, Deep 
Learning (DL) has emerged as a new paradigm that is capable 
of automatically learning features from data in a supervised 
manner. Many real-time action recognition tasks have been 
adapted into DL framework and convolutional neural networks 
(CNN) has been the foremost choice of DL architecture due to 
its image analysis capability [10, 11]. Chaudhary et al. [12] 
integrated CNN and the Weber Motion History Images 
(WMHI) to realize human action recognition. Ijjina et al. [13] 
applied CNN to automatically learn the discriminative features 
from RGB-D videos and confirmed the robustness of the 
method. To realize online action recognition and take into 
account the non-stationary environment, Ullah et al. [14] used 
an optimized deep autoencoder (DAE) to extract information 
w.r.t. the temporal environment changes. 

Despite the progress that has been made in human action 
recognition, some limitations remain. First, the conventional, 
single-stream CNN structure, which only receives one type of 
input, cannot simultaneously parse both spatial-temporal 
information of human action. Although this problem can be 
alleviated by using frame stacks as network input, the results 
were shown to be inferior than those methods using hand-
crafted features. The second limitation is that the DL-based 

method requires large amount of training data for network 
weights optimization. However, training data is often difficult 
to obtain in manufacturing environment, due to the constraints 
such as continuous production scheduling and often, only a 
small amount of data can be accessed.  

To tackle these limitations, a transferable two-stream CNN 
architecture (spatial and temporal) is proposed in this paper. 
First, optical flow is investigated to extract the temporal 
information directly from videos and a two-stream CNN 
structure is designed to parse both spatial and temporal 
information for action recognition. Then, transfer learning is 
investigated to pretrain a two-stream CNN model on a large-
scale open source human action dataset, and then transfer the 
pretrained model to recognize human actions in an assembly 
setting by leveraging the feature extraction capability obtained 
from the large scale, pretraining data. Finally, t-Distributed 
Stochastic Neighbor Embedding (t-SNE) is investigated to 
evaluate the performance of the developed method, by 
visualizing the separation of learned features.  

The rest of the paper is organized as follows. Section 2 
presents the theoretical foundation for the developed method, 
including optical flow, CNN and t-SNE. Experimental 
evaluation and results discussion are presented in Section 3, 
and conclusions are drawn in Section 4. 

2. Theoretical Foundation 

In this section, theoretical background of the approaches 
utilized in this research is introduced. First, Section 2.1 
illustrates the theory of optical flow, followed by the design of 
two-stream CNN structure in Section 2.2. Section 2.3 presents 
transfer learning and the principles of t-SNE is introduced in 
Section 2.4. 

2.1. Optical Flow 

Videos consist of a large amount of information in the form 
of spatial-temporal pixel intensity variation. In general, it is not 
straightforward to estimate the movement of every pixel in a 
sequence of frames. On the other hand, human workers and the 
object being handled are often the only moving objects in a 
manufacturing environment. Therefore, the ideal method to 
encode the temporal information in action is to eliminate the 
static background and only track the moving part. 

Optical flow is defined as the apparent movements of pixels 
in a frame sequence. As shown in Fig. 2, it describes a field 
pointing to where each pixel can be found in the next frame. 
Therefore, optical flow marks out the regions of the moving 
object as well as the velocity [15]. Fig. 3 shows the typical 
color-coding scheme to represent the velocities of pixels in 
different directions. 

  
(a) (b) 

Fig. 2. Sample still frame (a) and optical flow (b) [16] 
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Fig. 3. Optical flow color-coding [17] 

The optical flow algorithm calculates the pixel displacement 
vectors between two consecutive frames that are taken ∆𝑡𝑡 
apart. The corresponding pixels in two consecutive frames 
(before and after the movement) have the same intensity, and 
their locations are denoted as (𝑥𝑥,𝑦𝑦)  and (𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦) , 
respectively. Mathematically, this Brightness Constancy 
Constraint is expressed as: 

𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝐼𝐼(𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦, 𝑡𝑡 + ∆𝑡𝑡)           (1) 

Assuming both the time interval ∆𝑡𝑡 and movement ∆𝑥𝑥,∆𝑦𝑦 
are small, this constraint can be represented by Taylor Series: 

𝐼𝐼(𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦, 𝑡𝑡 + ∆𝑡𝑡) 

=  𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∆𝑥𝑥 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝑡𝑡 + 𝜀𝜀             (2) 

where 𝜀𝜀  is a small number defined as the remainder of the 
series. Based on Eq. (1) and (2), the following equation can be 
derived: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∆𝑥𝑥 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝑡𝑡 = 0                      (3) 

By denoting 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 as 𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦 , 𝐼𝐼𝑡𝑡, Eq. (3) is rewritten as: 

𝐼𝐼𝑥𝑥∆𝑥𝑥 + 𝐼𝐼𝑦𝑦∆𝑦𝑦 = −𝐼𝐼𝑡𝑡∆𝑡𝑡                        (4) 

In general cases, the neighbours of a pixel can be assumed 
to move at the same velocity. For example, the 3 × 3 region 
around the target pixel can be assumed to have the same 
displacement between the two consecutive frames. Therefore, 
by writing Eq. (4) for each pixel in the 3 × 3 region, the 
following set of equations can be obtained: 

⎣
⎢
⎢
⎡𝐼𝐼𝑥𝑥

(𝑝𝑝1) 𝐼𝐼𝑦𝑦(𝑝𝑝1)
𝐼𝐼𝑥𝑥(𝑝𝑝2) 𝐼𝐼𝑦𝑦(𝑝𝑝2)
⋮ ⋮

𝐼𝐼𝑥𝑥(𝑝𝑝9) 𝐼𝐼𝑦𝑦(𝑝𝑝9)⎦
⎥
⎥
⎤
�∆𝑥𝑥∆𝑦𝑦� = −∆𝑡𝑡 �

𝐼𝐼𝑡𝑡(𝑝𝑝1)
𝐼𝐼𝑡𝑡(𝑝𝑝2)
⋮

𝐼𝐼𝑡𝑡(𝑝𝑝)

�               (5) 

Equation (5) can be solved using traditional least square 
method. By solving Eq. (5) for all 3 × 3 regions in two 
consecutive frames, optical flow images can be obtained. 

2.2. Two-stream CNN 

Two-stream CNN was first proposed by Simonyan et al. 
[18] in which each stream consists of a series of hierarchically 
arranged convolutional layers for image feature extraction [19]. 
Specifically, the feature extraction step is achieved through 
sequential convolution between the kernels at each layer and 
feature maps produced in the preceding layer. For the lth layer 
with M input feature maps and N kernels, the jth output feature 
map l

jx  can be calculated as: 

1

1
,  =1, ,

M
l l l l
j i ij j

i
x f x k b j N−

=

 = ∗ + 
 
∑ L                 (6) 

where 1l
ix −  represents the ith input feature map, l

ijk denotes the 

jth kernel to convolve with the ith input feature map, l
jb  is the 

bias term, f denotes a non-linear function and * denotes the 
convolution operation.  

After convolution, a pooling layer is often implemented as 
a sub-sampling operation [10]. Max pooling and average 
pooling are the two most common types of the pooling 
operation. Max pooling selects the maximum feature value 
from each local region and discarding the rest, while average 
pooling computes the mean feature value within each local 
region. Both methods can reduce the dimensionality of the 
extracted features and thus improving computational efficiency. 
Furthermore, they have also shown to reduce feature’s 
sensitivity to small variations, such as pixel intensity change, 
and improve feature robustness [10]. Mathematically, the 
output feature maps of the lth layer after pooling can be 
computed as 

( )( )1 ,  =1, ,l l l l
j j j jx f down x b j Mβ −= + L              (7) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑() is the sub-sampling function. 
Through sequential operations of convolution and pooling, 

image features are gradually distilled to reflect the most 
relevant information to the specific task (e.g. human action 
recognition) [10]. At the end of each stream, the respective 
features are concatenated cross-stream before progressively 
reducing the dimension through fully-connected layers before 
a softmax layer carries out the classification. 

In the context of human action recognition, the two-stream 
CNN consists of the spatial stream and temporal stream as 
shown in Fig. 4. The spatial stream recognizes the spatial 
information from still frames, such as the appearance of 
workspace and human pose. The static appearance and human 
pose can provide useful clue for action recognition. For 
example, the specific position of human body in the workspace 
may strongly be associated with certain actions than the others, 
while the specific human pose may indicate the object the 
worker is handling. The architecture of the spatial stream is 
essentially a static image classifier, and it will be pretrained 
using a static image dataset in the presented research. 

 
Fig. 4. Structure of two-stream Convolutional Neural Network [18] 

The input of temporal stream consists of a stack of 
consecutive optical flow frames describing a series of 
movements during a time period of fixed duration. By 
observing the movement change, the temporal information can 
be extracted and complement the spatial information for more 
accurate human action recognition. The temporal stream will 
be pretrained using optical flow dataset processed from human 
action videos in the presented research.  

To determine the network parameters of the two-stream 
CNN, parameter grid search is performed. By comparing the 
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classification accuracy of the tasks described in Section 3, the 
selected combinations of network parameters for each stream 
are shown in Table 1 and Table 2, respectively. The 
dimensionality of the fused feature from both streams is 30 × 
40 × 64 (i.e. concatenation of two 30 × 40 × 32 features). 

 
Table 1. Structure of spatial stream 

Layer Kernel Size Stride Output size 

Conv1 (ReLU) 5 × 5(16) 1 120 × 160 × 16 

Max Pool - 2 60 × 80 × 16 

Conv2 (ReLU) 3 × 3(32) 1 60 × 80 × 32 

Average Pool - 2 30 × 40 × 32 

Table 2. Structure of temporal Stream 

Layer Kernel Size Stride Output size 

Conv1 (ReLU) 9 × 9(64) 1 120 × 160 × 64 

Max Pool - 2 60 × 80 × 64 

Conv2 (ReLU) 5 × 5(64) 1 60 × 80 × 64 

Conv3 (ReLU) 3 × 3(64) 1 60 × 80 × 64 

Conv4 (ReLU) 3 × 3(32) 1 60 × 80 × 32 

Average Pool - 2 30 × 40 × 32 

2.3. Transfer learning 

Many machine learning techniques, especially Deep 
Learning, work well only under the assumption that the 
collected training data are sufficient to optimize the large 
amount of network parameters (e.g. weights). However, it is 
generally difficult in manufacturing settings to acquire 
sufficient data that contain information on defects, due to the 
fact that defect-involved operation, once detected, will be 
terminated to avoid damage to the machines and products.  

Transfer learning refers to the technique that is capable of 
transferring the learned knowledge from a source domain to a 
related target domain [20]. In the context of DL, it saves the 
need and effort to collect large amount of training data in the 
target domain and build a new model from scratch [21]. 

In this research, the transfer of feature extraction capability 
of the CNN is explored. It has long been understood that the 
working mechanism of CNN is to first extract low-level image 
features (such as edge and curve) at early convolutional layers 
and then assemble these features into high-level patterns in 
fully-connected layers for classification. This implies that the 
early layers in a CNN has a more generic feature extraction 
capability that can potentially be generalized across different 
domains. In the developed transfer learning framework, the 
weights of the early layers in the pretrained CNN are frozen 
and transferred (i.e. 2 convolutional layers and 2 pooling layers 
in spatial stream. 4 convolutional layers and 2 pooling layers in 
temporal stream). To realize human action recognition in the 
target domain (i.e. manufacturing assembly), the fused features 
through the transferred layers are fed into fully-connected 
layers and classification layer. The weights in these two layers 
are fine-tuned using the data from the target domain for domain 
adaptation. Given that none of the weights in convolutional 
layers is further adjusted, the total number of weights in the 
two-stream CNN to be optimized using the target domain data 

is considerably reduced and therefore, the limitation in training 
data quantity is alleviated. 

 

 
Fig. 5. Spatial stream 

 
Fig. 6. Temporal stream 

2.4. Feature visualization 

Features extracted from CNN is presented in high 
dimensional space and is difficult to visualize. To facilitate the 
evaluation of the performance of the develop method (e.g. in 
terms of separability among features corresponding to different 
human actions), t-SNE, a method to visualize data in a high-
dimensional space, is investigated [22]. 

t-SNE is an improved version of Stochastic Neighbor 
Embedding (SNE). The basic idea of SNE is to represent the 
similarities between data points 𝑥𝑥𝑗𝑗  and 𝑥𝑥𝑖𝑖  from high-
dimensional space with the conditional probabilities 𝑝𝑝𝑖𝑖|𝑗𝑗 as: 

𝑝𝑝𝑗𝑗|𝑖𝑖 =
exp�

−∥𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗∥
2

2𝜎𝜎𝑖𝑖
2 �

∑ exp�
−∥𝑥𝑥𝑖𝑖−𝑥𝑥𝑘𝑘∥2

2𝜎𝜎𝑖𝑖
2 �𝑘𝑘≠𝑖𝑖

                            (8) 

where 𝜎𝜎𝑖𝑖 is the variance of the Gaussian distribution centered 
on 𝑥𝑥𝑖𝑖 . The conditional probabilities of low-dimensional 
counterparts 𝑦𝑦𝑗𝑗 and 𝑦𝑦𝑖𝑖  can be expressed in a similar manner: 

𝑞𝑞𝑗𝑗|𝑖𝑖 =
exp�−∥𝑦𝑦𝑖𝑖−𝑥𝑥𝑗𝑗∥2�

∑ exp(−∥𝑥𝑥𝑖𝑖−𝑥𝑥𝑘𝑘∥2)𝑘𝑘≠𝑖𝑖
                           (9) 

Intuitively, if 𝑝𝑝𝑖𝑖|𝑗𝑗 = 𝑞𝑞𝑖𝑖|𝑗𝑗, the low-dimensional counterparts 
𝑦𝑦𝑗𝑗 and 𝑦𝑦𝑖𝑖  perfectly represent the data points 𝑥𝑥𝑗𝑗 and 𝑥𝑥𝑖𝑖 in high-
dimensional space. However, this cannot always be achieved. 
Therefore, to find the best visualization of 𝑥𝑥𝑗𝑗  and 𝑥𝑥𝑖𝑖  in low-
dimensional space, the difference between 𝑝𝑝𝑖𝑖|𝑗𝑗  and 𝑞𝑞𝑖𝑖|𝑗𝑗  is 
minimized. The cost function representing the difference 
between 𝑝𝑝𝑖𝑖|𝑗𝑗  and 𝑞𝑞𝑖𝑖|𝑗𝑗  can be expressed as the summation of 
Kullback-Leibler divergence over all data points: 

𝐶𝐶 = ∑ 𝐾𝐾𝐾𝐾(𝑃𝑃𝑖𝑖 ∥ 𝑄𝑄𝑖𝑖) = ∑ ∑ 𝑝𝑝𝑗𝑗|𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑗𝑗|𝑖𝑖

𝑞𝑞𝑗𝑗|𝑖𝑖
𝑗𝑗𝑖𝑖𝑖𝑖                (10) 

t-SNE utilizes student t-distribution instead of Gaussian 
distribution when computing the conditional probabilities. 
Compared with SNE, execusion of t-SNE is simpler. Also, t-
SNE generally produces better visualizations by reducing the 
tendency to cluster points together in the center of the space 
[22]. 
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3. Experimental Evaluation and Discussion 

This section presents the experimental evaluation of the 
developed method and the result discussion.  

3.1. Experimental Setup 

The developed transferable two-stream CNN model is 
comprised of three parts: spatial stream, temporal stream, and 
classifier. The spatial stream and temporal stream, which 
consist of convolutional and pooling layers, work as feature 
extractors. The feature extracted by both streams will be fused 
before fed into the classifier, which consists of fully connected 
layers, and a softmax layer for classification. 

Figure. 7 shows the flow chart of transfer learning. First, still 
frame and optical flow images are extracted from open source 
human action videos to build the pretraining dataset (source 
domain). Next, they are utilized to pretrain the spatial and 
temporal stream of CNN. Then, the convolutional and pooling 
layers in the pretrained model are transferred to capture the 
features from assembly dataset (target domain). Finally, the 
weights in fully-connected layers are fine-tuned to fuse the 
extracted features for action recognition in target domain. 

3.1.1. Dataset 

The pretraining dataset consists of images of still frames and 
optical flow frames chosen from two large scale open source 
human action datasets, KTH human action dataset and UCF101 
human action dataset [23, 24]. Five human actions from KTH 
dataset: boxing, clapping, waving, jogging and walking and 
five human actions from UCF101 dataset: makeup, archery, 
cutting, fencing, and swimming, are chosen for pretraining and 
are shown in Fig. 8 and 9, respectively. In total, 11,450 still 
frames and optical flow frames from ten different categories 
are extracted from related videos. 

The assembly dataset is collected from an engine block 
assembly video on YouTube [25]. As shown in Fig. 10, the 
video consists of seven assembly actions: cleaning, 
hammering, installing, marking, polishing, smearing and 
screwing. In total, 3,948 still frames and optical flow frames of 
the seven categories are extracted from the assembly video. 

 
 

 
Fig. 8. Pretraining data from KTH [23] 

 
Fig. 9. Pretraining data from UCF101 [24] 

Fig. 7. Flowchart of transfer learning 
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Fig. 10. Assembly data of engine block assembly [25] 

3.1.2. Pretraining 

The objective of pretraining is to develop a model that can 
recognize human actions by classifying the related images. 
Therefore, two CNNs, namely spatial stream and temporal 
stream, are constructed to classify the images into ten different 
categories. The spatial stream is pretrained using individual 
still frames while the temporal stream is pretrained using stacks 
of optical flow images. Detailed CNN structures of the two 
streams are illustrated in Fig. 5 and Fig. 6 respectively. The 
pretraining dataset is randomly split into two for the purpose of 
training and testing, respectively. 85% of the samples in the 
pretraining dataset are used as training set, and the remaining 
are used as testing set.  

3.1.3. Evaluation in Target Domain 

After pretraining, the convolutional and pooling layers in 
spatial and temporal streams are frozen and transferred to 
recognize human actions in the assembly videos. Similarly, the 
samples in assembly dataset are randomly split for training 
(fine-tuning) and testing. 70% of data are used for fine-tuning 
the new classifier such that it is able to identify seven different 
human actions in assembly dataset. 30% of data are used to test 
the performance of the adapted classifier. 

3.2. Results 

Table 3 and Table 4 show the action classification accuracy 
of pretraining dataset and assembly dataset, respectively. 
Specifically, each network structure is tested five times with 
different random split of training and testing sets. The resulting 
mean classification accuracy and the corresponding standard 
deviation are shown.  

In Table 3, the mean classification accuracy of the two-
stream model is 88.31%, which is 5% higher than the mean 

classification accuracy when using the spatial stream alone 
(83.06%). It is also considerably higher than the accuracy using 
only the temporal stream (88.31% vs. 66.37%). This confirms 
the importance of using both spatial and temporal information 
for improved action recognition performance. In addition, the 
standard deviation of two-stream model results (0.0327) is 
lower than those from the two single-stream models (0.0419 
and 0.0448), suggesting that the two-stream model is more 
robust to data variation.  

Table 3. Accuracy of pretraining dataset 

 Mean Std. Dev. 

Spatial Stream 83.06% 0.0419 

Temporal Stream 66.37% 0.0448 

Two Stream 88.31% 0.0327 

Table 4. Accuracy of assembly dataset 

 Mean Std. Dev. 

Spatial Stream 99.95% 0.0002 

Temporal Stream 72.88% 0.0448 

Two Stream 100.00% 0.0000 

 
In Table 4, it is seen that the mean classification accuracy of 

the two-stream model has reached 100%, indicating that the 
transferred model has effectively captured the action-related 
image patterns from the assembly dataset, even though the 
feature extraction capability is obtained from the pretraining 
dataset. This suggests that the low-level feature extraction 
mechanism in CNN is indeed generic and can be generalized 
among different action recognition tasks. It is also seen that the 
two-stream model has the best performance as compared to two 
single-stream models after transfer, although the spatial stream 
also achieved near perfect recognition accuracy (99.95%). 

To evaluate the performance of the models beyond 
classification accuracy, t-SNE is deployed to map the extracted 
high-dimensional features into a two-dimensional space and 
visualize the feature separability. The larger the separation, the 
better the effectiveness of the model in distinguishing different 
human actions. Specifically, features extracted from the fully-
connected layer in each model are chosen to be visualized.  

The features from the pretraining dataset extracted by the 
spatial stream, temporal stream and the two-stream models are 
visualized in Fig. 11. By comparing the visualization of two-
stream model with that of single-stream model, it is seen that 
the clusters of data points from two-stream model are more 
separated from each other. Furthermore, the spatial and 
temporal information do seem to complement each other. For 
instance, the spatial stream model cannot distinguish hand 
waving from hand clapping. However, the difference is much 
clearer in the temporal stream, as shown by the two clusters 
with a more obvious border. This separation is the most 
obvious in the two-stream model, as the two clusters are 
completely separated. As another example, the temporal stream 
model failed to distinguish boxing from archery as both actions 
are finished with the movement of arm. However, by 
considering the additional spatial information, boxing and 
archery are successfully separated in both the spatial stream 
and the two-stream models. 
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Fig. 11. t-SNE results of pretraining dataset among spatial stream, temporal 
stream and two-stream network models 

Fig. 12 shows the visualization of features of the assembly 
dataset. Similarly, the performance of two-stream model is 
better than both the spatial stream and temporal stream models 
as the clusters of different human assembly actions are clearly 
separated from each other in two-stream model, while the 
separation in the spatial stream model is less obvious and poor 
separation is observed in the temporal stream model, which is 
consistent with the low classification accuracy achieved.  

 
Fig. 12. t-SNE results of assembly dataset among spatial stream, temporal 
stream and two-stream network models 

It is further noted in Fig. 12 that the cleaning and screwing 
actions exhibit clustering behavior within themselves. The 
reason is that, for the cleaning action, the engine block is 
presented with two configurations (i.e. standing and lying as 
shown in Fig. 13), and for the screwing action, the angle and 
distance of the camera from the engine block are both varying. 
The clustering behavior within the same activity shown in Fig. 

12 is the direct reflection of these variations. The capture of the 
in-class clustering and the accurate classification of the actions 
from different classes confirm the robustness of proposed 
method to the variations in the position and location of the 
camera and engine block.  
 

  
(a) (b) 

Fig. 13. Cleaning with (a) lying engine block; (b) standing engine block 

To gain insight into the robustness of the method to the 
variation in room light conditions, noise with different densities 
is progressively added into the raw images of all seven 
assembly actions. Noise density refers to the ratio of the 
number of the affected image pixels to the total number of 
pixels. Digital camera commonly adapts to the dimming light 
condition by increasing the “brightness level”, which generates 
image noise as trade-off. Therefore, progressive addition of 
noise serves as simulation of the varying light conditions. The 
peak signal-to-noise ratio (PSNR) values of the images with 
different noise densities are also calculated. PSNR is expressed 
as the ratio of the maximum possible value of a signal to the 
power of distorting noise that affects the quality of its 
representation [26] and is computed as: 

( )2

10

2 1
10 log

 − = ×
 
 

n

PSNR
MSE

                       (11) 

where MSE is the deviation of the noise image from the raw 
image computed as mean square error, n is determined by the 
image datatype (e.g. for uint8, n is 8). 
 

Table 5. Accuracy of assembly dataset under different noise densities 

Noise 
Density 

Sample Images 
(Cleaning) 

PSNR 
(dB) Mean Std. Dev 

0.0 

 

- 100.00% 0.0000 

0.2 

 

15.45 100.00% 0.0000 

0.4 

 

12.41 100.00% 0.0000 

0.6 

 

10.55 99.66% 0.0046 

0.8 

 

9.20 97.12% 0.0142 

 
Table 5 shows the sample images (cleaning operation) with 

different noise densities and the classification results under the 
corresponding noise contamination. It is seen that, the 
developed method has been able to correctly identify all seven 
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human assembly actions until the noise density is raised to 0.6 
when the mean classification accuracy drops to 99.66%. With 
a noise density of 0.8, the two-stream CNN still achieved a 
classification rate of 97.12%. These observations indicate that 
the developed method is robust to the image noise and 
consequently, the varying light conditions.  

4. Conclusion 

This paper presented an integrated method to advance 
human action recognition in HRC. First, optical flow images 
have been investigated to add temporal information to 
complement the spatial information from static images for 
CNN-based action recognition, for which a two-stream CNN 
structure has been designed. Then, to improve the 
generalization ability of the model and alleviate the limitation 
of training data quantity in manufacturing, transfer learning, an 
emerging learning paradigm that allows the models trained 
over a large-scale dataset to be effectively adapted to new 
domains, has been investigated. Experimental study has shown 
that the developed method based on optical flow and transfer 
learning is capable of achieving high human action recognition 
accuracy in a realistic assembly scenario. In addition, the 
developed method has shown to be robust under modest 
variation of assembly configuration and noisy video footage. 
Future work includes the theoretical analysis of data 
transferability, which would advance the developed method 
towards the broad acceptance as a trustworthy technique in 
HRC. 
 
Acknowledgment 
 

This work is partially supported by the National Science 
Foundation under award CMMI-1830295. 

References 

[1] Bauer, A., Wollherr, D. and Buss, M., 2008. Human–robot 
collaboration: a survey. International Journal of Humanoid Robotics, 
5(1), pp.47-66..  

[2] Lowe, D.G., 1999, September. Object recognition from local scale-
invariant features. International Conference on Computer Vision, 99(2), 
pp. 1150-1157.  

[3] Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L., 2008. Speeded-up 
robust features (SURF). Computer Vision and Image Understanding, 
110(3), pp.346-359. 

[4] Rublee, E., Rabaud, V., Konolige, K. and Bradski, G.R., 2011, 
November. ORB: An efficient alternative to SIFT or SURF. 
International Conference on Computer Vision, 11(1), p. 2. 

[5] Belongie, S., Malik, J. and Puzicha, J., 2002. Shape matching and object 
recognition using shape contexts. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 24(4), pp.509-522. 

[6] Han, J., Shao, L., Xu, D. and Shotton, J., 2013. Enhanced computer 
vision with microsoft kinect sensor: A review. IEEE Transactions on 
Cybernetics, 43(5), pp.1318-1334. 

[7] Wilson, A.D. and Bobick, A.F., 1999. Parametric hidden markov 
models for gesture recognition. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 21(9), pp.884-900. 

[8] Feng, K.P. and Yuan, F., 2013, December. Static hand gesture 
recognition based on HOG characters and support vector machines. 2nd 
International Symposium on Instrumentation and Measurement, Sensor 
Network and Automation (IMSNA). pp. 936-938. 

[9] Bobick, A.F. and Davis, J.W., 2001. The recognition of human 
movement using temporal templates. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 23(3), pp.257-267. 

[10] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 
521(7553), pp.436-444.  

[11] Wang, P., Liu, H., Wang, L. and Gao, R.X., 2018. Deep learning-based 
human motion recognition for predictive context-aware human-robot 
collaboration. CIRP Annals, 67(1), pp.17-20. 

[12] Chaudhary, S. and Murala, S., 2019. Deep network for human action 
recognition using Weber motion. Neurocomputing, 367, pp.207-216. 

[13] Ijjina, E.P. and Chalavadi, K.M., 2017. Human action recognition in 
RGB-D videos using motion sequence information and deep learning. 
Pattern Recognition, 72, pp.504-516. 

[14] Ullah, A., Muhammad, K., Haq, I.U. and Baik, S.W., 2019. Action 
recognition using optimized deep autoencoder and CNN for 
surveillance data streams of non-stationary environments. Future 
Generation Computer Systems, 96, pp.386-397. 

[15] Turaga, P., Chellappa, R. and Veeraraghavan, A., 2010. Advances in 
video-based human activity analysis: challenges and approaches. 
Advances in Computers, 80, pp. 237-290. 

[16] Optical flow, docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html. 
[17] Sánchez, J., Salgado, A. and Monzón, N., 2015. Computing inverse 

optical flow. Pattern Recognition Letters, 52, pp.32-39. 
[18] Simonyan, K. and Zisserman, A., 2014. Two-stream convolutional 

networks for action recognition in videos. Advances in neural 
information processing systems, pp. 568-576. 

[19] Wu, H. and Zhao, J., 2018. Deep convolutional neural network model 
based chemical process fault diagnosis, Computers and Chemical 
Engineering, 115, pp. 185–197. 

[20] Torrey, L. and Shavlik, J., 2010. Transfer learning. Handbook of 
research on machine learning applications and trends: algorithms, 
methods, and techniques, pp. 242-264. 

[21] Pan, S.J. and Yang, Q., 2009. A survey on transfer learning. IEEE 
Transactions on Knowledge and Data Engineering, 22(10), pp.1345-
1359.  

[22] Maaten, L.V.D. and Hinton, G., 2008. Visualizing data using t-SNE. 
Journal of Machine Learning Research, 9, pp.2579-2605. 

[23] Recognition of human actions, www.nada.kth.se/cvap/actions/ 
[24] Soomro, K., Zamir, A.R. and Shah, M., 2012. UCF101: A dataset of 

101 human actions classes from videos in the wild. arXiv:1212.0402.  
[25] How to assemble an engine block,Youtube, www.youtube. 

com/watch?v=zPAElcQH0YY. 
[26] Peak Signal-to-Noise Ratio as an image quality metric, National 

Instruments, www.ni.com/en-us/innovations/white-papers/11/peak-
signal-to-noise-ratio-as-an-image-quality-metric.html. 
 

 

http://www.youtube/

